

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 2 719 839 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
16.04.2014 Bulletin 2014/16

(51) Int Cl.:
E02F 9/22 (2006.01) *F15B 3/00 (2006.01)*
F15B 11/032 (2006.01) *F15B 21/14 (2006.01)*

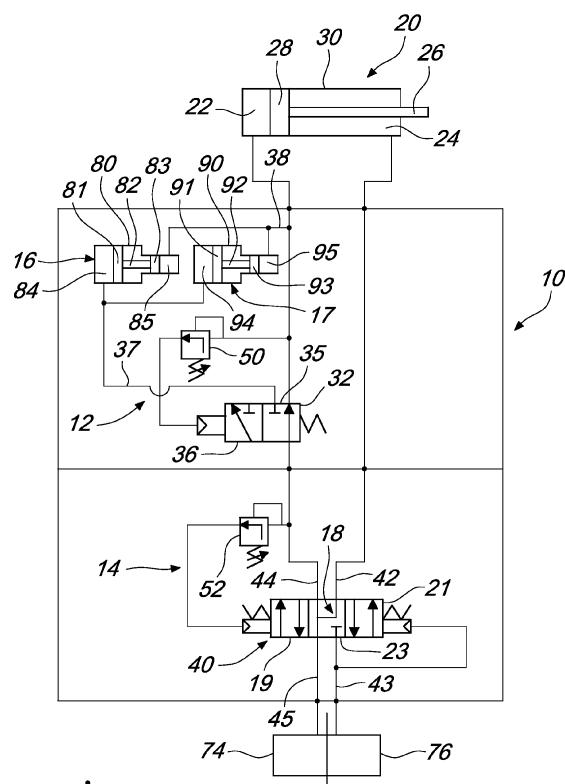
(21) Application number: 12187833.4

(22) Date of filing: 09.10.2012

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

Designated Extension States:
BA ME

(71) Applicant: **Caterpillar Work Tools B. V.**
5232 BJ 's-Hertogenbosch (NL)


(72) Inventors:
• **Luyendijk, Dirk Jacobus**
5473 RE HEESWIJK-DINTHER (NL)

• **Van Gemert, Johannes Lambertus Leonardus**
5451 BT MILL (NL)
• **Grant, Patrick**
5045 TILBURG (NL)

(74) Representative: **Modiano, Micaela Nadia et al**
Modiano & Partners
Via Meravigli 16
20123 Milano (IT)

(54) Hydraulic circuit for a hydraulic cylinder

(57) A hydraulic circuit (10) for operating a dual acting hydraulic cylinder (20) is disclosed. The hydraulic circuit reduces the extraction and retraction times of the hydraulic cylinder. The hydraulic circuit comprises a speed component (14) comprising a regeneration valve (18) arranged to return a hydraulic fluid from a rod-side chamber (24) to a piston-side chamber (22) of the cylinder (50) at a start phase of cylinder extraction, and a booster component (12) comprising first pressure intensifier (16) and a second pressure intensifier (17) arranged in parallel to increase flow of fluid at an end phase of cylinder extraction.

Description

Technical Field

[0001] This disclosure relates to a hydraulic apparatus for operation of a piston/cylinder assembly such as a dual acting hydraulic cylinder and to a method of cyclically operating a dual acting hydraulic cylinder. More particularly, this disclosure relates to cyclic operation of a dual acting hydraulic cylinder in a demolition machine.

Background

[0002] A hydraulic cylinder is a mechanical actuator which may be used to give a linear force. The hydraulic cylinder may have varied applications and may be used in vehicles and machines for example a demolition tool, which comprises of a jaw set that may be opened and closed by actuation of a hydraulic cylinder.

[0003] Hydraulic pressure from a pressurised fluid, such as oil, acts on the piston to perform linear work. Pressurised fluid may flow between a reservoir and the piston side or rod side chambers of the hydraulic cylinder for cyclic operation thereof. Generally, flow of pressurised oil into the piston side chamber may effect an extraction of the piston rod while flow of pressurised oil into the rod side chamber may effect retraction of the piston rod. Cycle time to extract or retract the piston rod may be dependent on multiple factors such as size of the cylinder. In certain engineering activities a reduction of the cycle time may be desired.

[0004] The cycle time of a hydraulic cylinder may be reduced by use of a speed valve or a regeneration valve.

[0005] US Patent No. 5996465 describes an oil-pressure cylinder in a crushing device connected to a crushing jaw to actuate the crushing jaw. Cylinder extension may cause the crushing jaw to close and crush an object. During a jaw closing stroke as the crushing jaw starts to close, to the point the crushing jaw comes into contact with the object, an acceleration (speed or regeneration valve) valve may make a continuous communication between a base-side port and a rod-side port in the cylinder. Oil from the rod-side port may be made to flow to the base-side port which may increase the movement-speed of the rod in the jaw closing stroke during the unloaded interval. When the crushing jaw comes into contact with the object, communication of the base-side port to the rod-side port is interrupted.

[0006] US Patent No. 7540231 describes a control valve device for the control of a dual-action consumer. A regeneration function allows the return side of the consumer to be connected with the admission side of the consumer. For the regeneration function, the connection of an additional pressure fluid line that forms the return side of the consumer with the reservoir can be blocked by a shutoff valve device located between the consumer and the control valve. The regeneration function may be overridden by an actuation of the shutoff valve device

toward the open position as a function of the admission pressure at the admission side of the consumer. Under operating conditions wherein a high admission pressure is necessary to achieve high output power or increased performance, the regeneration function may be deactivated by the overriding of the regeneration function to ensure that the regeneration function is active only to achieve an increased speed of movement of the consumer.

[0007] Although the time to extract the piston rod may be increased, the aforementioned speed valves have a disadvantage in that the time to retract the piston rod is relatively long.

[0008] US Patent No. 5542180 describes a heavy duty shear comprising a fixed lower jaw and a movable upper jaw driven by a hydraulic cylinder. To overcome jams, the hydraulic cylinder is provided with an intensifier which pressurises a portion of hydraulic fluid above the maximum pressure of the machine hydraulic system. The hydraulic fluid at a higher pressure is provided to the cylinder to facilitate opening of the jaws. The output pressure of the intensifier is selected to overcome the difference in the area at the rod side of the piston and area at the piston side of the piston. The high pressure to open the jaw may be present only when a jam is to be cleared.

[0009] US 5415076 describes fluid regeneration circuits which may be useful for filling expanding sides of a hydraulic cylinder with fluid being exhausted from the other side. A flow regeneration valve and a pressure boost valve may be used in combination with a meter-out valve for providing flow regeneration from the head end chamber to a rod end chamber when fluid pressure in the head end chamber is less than the pressure level of fluid in a passage as determined by a spring of the pressure boost valve. The pressure boost valve may be disposed within the passage and may be oriented to block fluid flow from the exhaust conduit to the inlet of the meter-out valve. The boost valve is biased to the closed position by the spring to block fluid flow from the inlet to the exhaust conduit until the fluid pressure in the inlet exceeds a predetermined level.

[0010] The pressure boost valve may be involved with control of fluid flowing to the tank and may not be involved in improving cycle time of the hydraulic cylinder.

[0011] EP 09178089.0, in the name of Caterpillar Work Tools B.V., discloses a hydraulic device for operating a dual acting hydraulic cylinder comprising a speed component arranged to return a hydraulic fluid from a rod-side chamber to a piston-side chamber of the cylinder at a start phase of cylinder extraction and a booster component arranged to increase the pressure of the fluid at an end phase of cylinder extraction.

[0012] The present disclosure is directed, at least in part, to improving or overcoming one or more aspects of the prior art system.

Brief Summary of the Invention

[0013] In a first aspect, the present disclosure describes a hydraulic circuit for operating a dual acting hydraulic cylinder comprising a speed component comprising a regeneration valve arranged to return a hydraulic fluid from a rod-side chamber to a piston-side chamber of the cylinder at a start phase of cylinder extraction; and a booster component comprising a first pressure intensifier and a second pressure intensifier arranged in parallel to increase flow of fluid at an end phase of cylinder extraction.

[0014] In a second aspect, the present disclosure describes a method of operating a dual acting hydraulic cylinder, the method comprising the steps of: returning a hydraulic fluid from a rod-side chamber to a piston-side chamber of the cylinder during a start phase of cylinder extraction with a speed component; and increasing flow of fluid during end phase of cylinder extraction with a booster component comprising a first pressure intensifier and a second pressure intensifier arranged in parallel.

Brief Description of the Drawings

[0015] The foregoing and other features and advantages of the present disclosure will be more fully understood from the following description of various embodiments, when read together with the accompanying drawings, in which:

Fig. 1 is a schematic representation of a first embodiment of a hydraulic circuit according to the present disclosure coupled to a hydraulic cylinder;

Fig. 2 is a schematic representation of a second embodiment of the hydraulic circuit according to the present disclosure coupled to a hydraulic cylinder; and

Fig. 3 is a comparative graph of operation cycle times of jaw sets of demolition tools during a demolition application including the operation cycle time of a jaw set actuated by a hydraulic cylinder coupled to the hydraulic circuit according to the present disclosure.

Detailed Description

[0016] This disclosure generally relates to a hydraulic device **10** for operating a piston/cylinder assembly such as a hydraulic cylinder, in particular a dual acting hydraulic cylinder.

[0017] Figure 1 shows a schematic representation of hydraulic connections between the hydraulic device **10** and a hydraulic cylinder **20** in a first embodiment. The hydraulic connections may be suitably provided for operation and control of the hydraulic device **10** and the hydraulic cylinder **20**. Operation of the hydraulic device **10** and the hydraulic cylinder **20** may be effected through pressurisation of the hydraulic fluid.

[0018] The hydraulic cylinder **20** may comprise of a piston-side chamber **22**, a rod-side chamber **24**, a rod **26**, a piston **28** and a cylinder body **30**. The hydraulic cylinder **20** may go through cylinder extraction or extraction stroke when the rod **26** moves out from cylinder body **30**. Cylinder retraction or retraction stroke may occur when the rod **26** moves into cylinder body **30**.

[0019] Hydraulic lines may be connected to the cylinder body **30** for passage of fluid into the piston-side chamber **22** and the rod-side chamber **24**. Line **44** may be connected to piston-side chamber **22**. Line **44** may permit flow of fluid to and from piston-side chamber **22**. Line **42** may be connected to the rod-side chamber **24**. Line **42** may permit flow of fluid to and from rod-side chamber **24**.

[0020] For cylinder retraction, the hydraulic fluid from a fluid reservoir **76** may be pumped to rod-side chamber **24** through line **43** and line **42** while fluid from the piston-side chamber **22** may be allowed to return to a fluid source **74** through the line **44** and line **45**.

[0021] In an embodiment, fluid reservoir **76** and fluid reservoir **74** may be the same.

[0022] For cylinder extraction, the hydraulic fluid may be pumped from the fluid source **74** to piston-side chamber **22** through line **45** and line **44** while fluid from the rod-side chamber **24** may be allowed to return to the fluid reservoir **76** through the line **42** and line **43**.

[0023] In an embodiment, at initiation of an operation cycle of the hydraulic circuit **10** the hydraulic cylinder **20** may be fully extracted. The jaws of a demolition device may be completely closed. The hydraulic cylinder **20** may be fully retracted at mid-cycle with the jaws of the demolition device being completely open. At the end of an operation cycle of the hydraulic circuit **10** the hydraulic cylinder **20** may be returned to the fully extracted position so that the jaws of the demolition device are returned to the completely closed position.

[0024] The hydraulic device **10** may comprise of a booster component **12**, a speed component **14** and a main valve **40**.

[0025] Main valve **40** may permit flow of fluid from the fluid source **74** and/ or the reservoir **76** to the hydraulic cylinder **20**. Main valve **40** may be connected to hydraulic cylinder **20** through lines **44** and **42**. Main valve **40** may permit fluid to flow between the hydraulic cylinder **20** and the fluid source **74** and/ or the reservoir **76** through lines **44** and **42**.

[0026] Main valve **40** may have an extraction flow position **19** and a retraction flow position **21**. At the extraction flow position **19** fluid may be permitted to flow from the fluid source **74** to line **44** and fluid may flow from line **42** to the fluid reservoir **76**. At the retraction flow position **21** fluid may be permitted to flow from the fluid reservoir **76** to line **42** and fluid may flow from line **44** to the fluid source **74**. The hydraulic cylinder **20** may operate under the normal extraction function with the main valve at the extraction flow position **19**. The hydraulic cylinder **20** may be under the normal extraction mode when the extraction flow position **19** is selected.

[0027] The booster component 12 and the speed component 14 may also comprise sequence valves 50, 52 for pressure controlled activation or deactivation of the components. In an embodiment, the hydraulic connections may be arranged to activate or deactivate the booster component 12 and the speed component 14 in sequence. The hydraulic cylinder 20 may be under the speed mode when the speed component 14 is activated and may be under the boost mode when the booster component 12 is activated.

[0028] The speed component 14 may comprise of a regeneration valve. In an embodiment, the regeneration valve 18 may be comprised within the main valve 40.

[0029] Main valve 40 may further comprise a regeneration position 23. Main valve 40 may be actuatable between the extraction flow position 19, the retraction flow position 21 and the regeneration position 23.

[0030] The speed component 14 may be arranged to be activated during the extraction stroke of the cylinder 20. The main valve 40 may be at the regeneration position 23. The speed component may be activated upon flow of hydraulic fluid into line 44.

[0031] At the regeneration position 23 the regeneration valve 18 may permit fluid to flow from the fluid source 74 to the piston-side chamber 22 and may divert fluid flowing from the rod-side chamber 24 to the piston-side chamber 22. The regeneration valve 18 may be active at the regeneration position 23. The regeneration function of hydraulic circuit 10 may be enabled at the regeneration position 23.

[0032] The main valve 40 may be actuatable under fluid pressure. Main valve 40 may be controlled through fluid pressure in lines 43 and 44. A position of the main valve 40 may be selected or deselected by the fluid pressures in the lines 43 and 44. A position of the main valve 40 may be selected or deselected by the difference in fluid pressures in the lines 43 and 44.

[0033] In an embodiment, increase in pressure in line 44 may actuate the main valve 40 from the regeneration position 23 to the extraction flow position 19. In an embodiment, increase in pressure in line 43 may actuate the main valve 24 from the extraction flow position 19 to the regeneration position 23. Return springs associated with the main valve 40 may return the main valve to a previous position upon a decrease in fluid pressure.

[0034] The speed component 14 may be arranged to be deactivated during the extraction stroke if the hydraulic pressure acting on a sequence valve 52 exceeds a predetermined pressure. Thereafter, the speed component 14 may be arranged to be re-activated during the extraction stroke if the hydraulic pressure acting on sequence valve 52 falls below a predetermined pressure. In an embodiment, the activation and deactivation pressures of the sequence valve 52 in speed component 14 may be the same.

[0035] The booster component 12 may comprise of a first pressure intensifier 16 and a second pressure intensifier 17. Booster component 12 may be connected to

the piston-side chamber 22 of cylinder 20 through hydraulic line 44.

[0036] The hydraulic circuit 10 may further comprise a control valve 32. Booster component 12 may be controlled by a control valve 32. Control valve 32 may control fluid pressures acting on the first pressure intensifier 16 and the second pressure intensifier 17. Control valve 32 may be positioned on line 44. Control valve 32 may control flow of fluid through line 44.

[0037] Control valve 32 may be a two way valve having a first position 35 and a second position 36. At first position 35 fluid may be permitted to flow directly to piston-side chamber 22. At second position 36 fluid may be diverted to flow directly to first pressure intensifier 16 and second pressure intensifier 17 through line 37. Line 37 may be connected through separate lines to first pressure intensifier 16 and second pressure intensifier 17. Fluid from the first pressure intensifier 16 and second pressure intensifier 17 may flow through line 38 to line 44. Line 38

may be connected through separate lines to first pressure intensifier 16 and second pressure intensifier 17. Fluid from line 38 may enter line 44 downstream from the control valve 32.

[0038] First pressure intensifier 16 may comprise a cylinder 80. The cylinder 80 may have a first side piston 81 and a second side piston 83. The first side piston 81 and the second side piston 83 may extend laterally from opposite ends of a central member 82. The cylinder 80 may comprise a first cavity 84 and a second cavity 85. First cavity 84 may accommodate the first side piston 81. Second cavity 85 may accommodate second side piston 83.

[0039] First cavity 84 may be connected to line 37 and second cavity 85 may be connected to line 38.

[0040] Second pressure intensifier 17 may comprise a cylinder 90. The cylinder 90 may have a first side piston 91 and a second side piston 93. The first side piston 91 and the second side piston 93 may extend laterally from opposite ends of a central member 92. The cylinder 90 may comprise a first cavity 94 and a second cavity 95. First cavity 94 may accommodate the first side piston 91. Second cavity 95 may accommodate second side piston 93.

[0041] First cavity 94 may be connected to line 37 and second cavity 95 may be connected to line 38.

[0042] The booster component 12 and the speed component 14 may be arranged to remain inactive during cylinder retraction regardless of the hydraulic pressure acting on sequence valves 50, 52.

[0043] The booster component 12 may be arranged to be activated during the extraction stroke if pressure acting on sequence valve 50 exceeds a predetermined pressure and may be deactivated if the pressure acting on sequence valve 50 falls below a predetermined pressure.

[0044] In an embodiment the activation and deactivation pressures of the sequence valve 50 in the booster component 12 may be the same.

[0045] The control valve 24 may be actuatable by fluid pressure in line 44. Increasing fluid pressure in line 44

may actuate sequence valve **50** to permit fluid to flow for actuation of the control valve **32** from the first position **35** to the second position **36**. As fluid pressure decreases the sequence valve **50** may no longer permit flow of fluid to control valve **32**. The decrease of pressure acting on control valve **32** may permit a return spring associated with the control valve **32** to move the control valve **32** from the second position **36** to the first position **35**.

[0046] At initiation of the operation cycle of the hydraulic circuit **10** the hydraulic cylinder **20** may be fully extracted and the main valve **40** may be at the retraction position **21** to enable retraction of the hydraulic cylinder **20**.

[0047] As the hydraulic cylinder **20** is retracted the operation cycle may reach mid-cycle and the hydraulic cylinder **20** may be fully retracted.

[0048] As the operation cycle moves from mid-cycle to the end of the cycle, the main valve **40** may be actuated from the regeneration position **23** to the extraction position **19** to enable extraction of the cylinder **20**. The extraction position **19** may be selected when fluid pressure increases to a predetermined pressure level in line **44**.

[0049] As the pressure in line **44** increases further the booster component **12** may be activated through the actuation of the sequence valve **50** and the control valve **32**.

[0050] In an embodiment, the regeneration position **23** may be selected only once during an operation cycle. Subsequent to complete retraction of the hydraulic cylinder **20** main valve **40** may be actuated to the regeneration position **23**. After the actuation from regeneration position **23** to the extraction position **19** the regeneration position **23** may not be re-selected before end of the operation cycle of the hydraulic circuit **10**.

[0051] Figure 2 shows a schematic representation of hydraulic connections between the hydraulic circuit **10** and the hydraulic cylinder **20** in a second embodiment.

[0052] In the second embodiment, the speed component **14** and the main valve **40** may function as described in the first embodiment.

[0053] In the second embodiment, the booster component **12** may comprise the first pressure intensifier **16**, the second pressure intensifier **17**, the sequence valve **50**, a diversion valve **54** and an additional sequence valve **56**.

[0054] The first pressure intensifier **16** and the second pressure intensifier **17** may comprise features as described in the first embodiment. Line **37** may connect diversion valve **54** through separate lines to first pressure intensifier **16** and second pressure intensifier **17**. Fluid from the first pressure intensifier **16** and second pressure intensifier **17** may flow through line **38** to the diversion valve **54**. Line **38** may be connected through separate lines to first pressure intensifier **16** and second pressure intensifier **17**.

[0055] The booster component **12** may be arranged for activation and deactivation during both the extraction and the retraction stroke. The hydraulic device **10** may have additional hydraulic connections to the hydraulic

cylinder **20**. Booster component **12** may be connected through hydraulic lines **42**, **44** to both the piston-side chamber **22** and the rod-side chamber **24**. The booster component **12** may be connected to the hydraulic lines **42**, **44** through a diversion valve **54**. The diversion valve **54** may be arranged to divert the flow of hydraulic fluid from either the piston-side chamber **22** or the rod-side chamber **24** of the hydraulic cylinder **20** through the booster component **12** in accordance with an extraction stroke or a retraction stroke.

[0056] The diversion valve **54** may be arranged to divert the flow of hydraulic fluid from the rod-side chamber **24** through the booster component **12** during retraction stroke. The diversion valve **54** may be arranged to divert the flow of hydraulic fluid from the piston-side chamber **22** through the booster component **12** during the extraction stroke.

[0057] For cylinder retraction, the main valve **40** may pump hydraulic fluid from the fluid reservoir **76** to rod-side chamber **24** through lines **42** and **43** while fluid from the piston-side chamber **22** may be allowed to return to the fluid source **74** through the lines **44** and **45**. The booster component **12** may be arranged to be activated during the retraction stroke if pressure acting on sequence valve **56** exceeds a predetermined pressure. The booster component **12** may be arranged to be deactivated during the retraction stroke if pressure acting on sequence valve **56** falls below a predetermined pressure. In an embodiment the activation and deactivation pressures of the sequence valve **56** in booster component **12** may be the same.

[0058] For cylinder extraction, the main valve **40** may pump hydraulic fluid from the fluid source **74** to piston-side chamber **22** through lines **44** and **45** while fluid from the rod-side chamber **24** may be allowed to return to the fluid reservoir **76** through the lines **42** and **43**. The booster component **12** may be arranged to be activated during the extraction stroke if pressure acting on sequence valve **50** exceeds a predetermined pressure and may be deactivated if the pressure acting on sequence valve **50** falls below a predetermined pressure. In an embodiment the activation and deactivation pressures of the sequence valve **50** in the booster component **12** may be the same.

[0059] The hydraulic circuit **10** may be provided with additional pressure intensifiers. The additional pressure intensifiers may be connected to the hydraulic circuit **10** between lines **37** and **38**. The additional pressure intensifiers may be connected so that fluid flow is as described with reference to the first and second pressure intensifiers **16**, **17**. In an embodiment, the hydraulic circuit **10** may comprise 3 or more booster components.

[0060] The hydraulic circuit **10** may engage the hydraulic cylinder **20** through an operation cycle thereof. A cycle of the hydraulic cylinder **20** may comprise of an extraction stroke and a retraction stroke. The retraction stroke of the hydraulic cylinder **20**, coupled to the hydraulic device **10**, may have a single phase with a high retraction speed.

The speed component 14 and the booster component 12 of the hydraulic device 10 may be inactive during the retraction stroke of the hydraulic cylinder 20.

[0061] The general operation of the hydraulic circuit 10 may proceed as follows. The main valve 40 may be at the regeneration position 23 for the start of the extraction stroke. As the load increases, the main valve 40 may be switched to the extraction flow position 19. The hydraulic circuit 10 may operate under the normal extraction mode and the cylinder 20 may extract at normal speed. As the load further increases, the control valve 32 may be activated so as to activate the booster component 12. The hydraulic circuit 10 may operate under the booster mode. Under the booster mode the pressure in the cylinder 20 may increase above the pressure of the machine. Subsequently, after the work material has been crushed, the pressure may decrease and the control valve 32 may be deactivated. The deactivation of the control valve 32 may permit the hydraulic circuit 10 to return to either the normal extraction mode or the speed mode.

[0062] The operation of hydraulic circuit 10 may effect an operation of the hydraulic cylinder 20. An operation cycle of the hydraulic cylinder 20 may comprise of an extraction stroke and a retraction stroke. The retraction stroke of the hydraulic cylinder 20 may have a single phase with a high retraction speed. The speed component 14 and the booster component 12 of the may not be selected during the retraction stroke of the hydraulic cylinder 20. During the retraction stroke the hydraulic cylinder 20 may not be subject to a load. The main valve may be at the retraction flow position 21.

[0063] In an embodiment, the booster component 12 may be activated during the retraction stroke, if a jam occurs during the stroke. Activation of the booster component 12 may decrease retraction speed.

[0064] In an embodiment, the hydraulic cylinder 20 may have a 3 phase extraction stroke when subjected to a load.

[0065] In the first phase, the regeneration position 23 may be selected and booster component 12 may not be activated. The hydraulic cylinder 20 may be under the regeneration mode and may have a high extraction speed combined with low force output. During the first phase, the hydraulic cylinder 20 may not yet be subjected to the load.

[0066] In the second phase, the extraction flow position 19 may be selected and the booster component 12 may not yet be activated. Hydraulic cylinder 20 may have a medium extraction speed combined with a medium force output. During the second phase hydraulic cylinder 50 may be subjected to the load.

[0067] In the third phase, the booster component 12 may be activated while the main valve is at the extraction flow position 19. The hydraulic cylinder 20 may have a low extraction speed and a high force output. During the third phase hydraulic cylinder 20 may be subjected to a higher load.

[0068] The respective times of each of the phase and

sequence of the phases may be dependent on the load of the hydraulic cylinder 20.

[0069] A 3 phase extraction may allow the hydraulic cylinder 20 to adapt suitably to requirements of a work application which may result in a more effective load cycle. Depending on the requirement of the work application the booster component 12 or the speed component 14 may be activated in order to provide sufficient closing speed or crushing force of a jaw set. The speed component 14 may be activated through the selection of the regeneration position 23 during cylinder extraction when no load is present. The booster component 12 may be selected during cylinder extraction when a higher crushing force is required. The switching capability allows for the right amount of force output to be provided as required by the momentary work requirement of the jaw set.

[0070] In certain work applications, the hydraulic circuit 10 may enable a 2 phase extension stroke of the hydraulic cylinder 20, when subjected to a load, wherein the first phase is followed immediately by the third phase. A 2 phase extension stroke of the hydraulic cylinder 20 may occur when the hydraulic cylinder 20 is subjected to a very high load as soon as the jaw set contact the material to be worked.

[0071] The transition between the phases may occur as a function of pressure changes within the hydraulic circuit 10. Hydraulic pressure within the hydraulic circuit 10 may effect activation of the speed component 14 or booster component 12 during the extraction stroke.

[0072] The hydraulic circuit 10 may provide for a short cycle time for a hydraulic cylinder 20 by decreasing the time needed for cylinder extraction. The hydraulic circuit 10 may increase fluid flow to the hydraulic cylinder 20 through the first and second pressure intensifiers 16, 17. The output fluid flow of the first and second pressure intensifiers 16, 17 may reduce decrease the extraction time of hydraulic cylinder 20.

[0073] Fig. 3 is a comparative graph of jaw set operation cycle times of demolition tools during a demolition application. The jaw set of the demolition tool may open to enable material to be introduced therein. To crush, cut, pulverise or otherwise work the material, the jaw set may close with the material contained therein.

[0074] The cycle time of the jaw set actuated by a hydraulic cylinder 20 coupled to an embodiment of the hydraulic circuit 10 is shown as line 306. The cycle time of the jaw set actuated by a hydraulic cylinder coupled to a single booster component and a regeneration component shown as line 300. The cycle time of a jaw set actuated by a hydraulic cylinder coupled to a booster component is shown as 302. The cycle time of a jaw set actuated by a hydraulic cylinder coupled to a regeneration component is shown as line 304.

55 i. Cylinder retraction

[0075] During cylinder retraction the jaw set of a demolition tool may move from a closed position to an open

position. The retraction flow position **21** may be selected in the main valve **40**. The booster component **12** and the speed component **14** may be inactive in the hydraulic circuit **10**. The hydraulic cylinder **20** may function as a standard dual acting cylinder. Hydraulic fluid may flow to the rod-side chamber **24** of the hydraulic cylinder **20** and pressure may be applied on the piston **28** at the rod-side chamber **24**.

[0076] The time for a jaw set of a demolition tool to fully open may be independent of a load presented by the material. The opening time may be dependent on the hydraulic cylinder and the components acting on the hydraulic cylinder. In Fig. 3 line **306** shows that the hydraulic cylinder **20** coupled to the hydraulic circuit **10** may be able to move from being fully closed (denoted by P_1) to fully open (denoted by P_2) in t_0-t_1 sec. Line **300** shows that the hydraulic cylinder coupled to the booster component and regeneration component may be able to move in the same time. Line **302** shows that the hydraulic cylinder coupled to the booster component may be able to move in the same time. Line **304** shows that the hydraulic cylinder coupled to the regeneration may be able to move from P_1 to P_2 in t_0-t_5 sec.

ii. Cylinder extraction (Start Phase)

[0077] During cylinder extraction the jaw set of a demolition tool may move from an open position to a closed position. The regeneration position **23** may be selected through actuation of the main valve **40**. The hydraulic cylinder **20** may operate under the regeneration function. Hydraulic fluid may flow to the piston-side chamber **22** of the hydraulic cylinder **20** and pressure may be applied on the piston **28** at the piston-side chamber **22**. Return flow of the hydraulic fluid from the rod-side chamber **24** may be redirected to the piston-side chamber **22** to increase velocity of cylinder extraction.

[0078] Return flow of the hydraulic fluid may be redirected as the hydraulic circuit **10** is subjected to a low to medium pressure. During this phase of cylinder extraction the jaw set which may contain the material to be worked, may not yet be subjected to the work load. As both jaws of a jaw set contact the material to be worked, the pressure in the hydraulic circuit **10** may spike (denoted by P_3).

[0079] The time for a jaw set of a demolition tool to move from P_2 to P_3 may be independent of a load of the material. The start phase time may be dependent on the hydraulic cylinder **20** and the components acting on the hydraulic cylinder **20**. In Fig. 3 line **306** shows that the hydraulic cylinder **20** coupled to the hydraulic circuit **10** may be able to move from P_2 to P_3 in t_1-t_2 sec.

[0080] Line **300** shows that the hydraulic cylinder coupled to the booster component and regeneration component may be able to move from P_2 to P_3 in the same time. Line **302** shows that the hydraulic cylinder coupled to the booster component may be able to move from P_2 to P_3 in t_1-t_3 sec. Line **304** shows that the hydraulic cylinder

coupled to the speed component may be able to move from P_2 to P_3 in about t_5-t_6 sec.

iii. Cylinder extraction (Intermediate Phase)

5

[0081] The pressure in the hydraulic cylinder **20** may increase as the jaw set contacts the material. The hydraulic cylinder **20** coupled to the hydraulic device **10** may be under the normal extraction function.

10

[0082] During this phase of cylinder extraction the jaw set which may contain the material to be worked, may be subjected to the work load as the jaw set initiates work on the material.

15

[0083] The time for a jaw set of a demolition tool to move from P_3 (i.e. position of jaw at deselection of speed component **12**) to P_4 may be dependent on the load of the material, on the hydraulic cylinder **20** and the components acting on the hydraulic cylinder **20**. In Fig. 3 line **306** shows that the hydraulic cylinder **50** coupled to the hydraulic circuit **10** may be able to move from P_3 to P_4 in t_2-t_4 sec.

20

[0084] Line **300** shows that the hydraulic cylinder coupled to the booster component and regeneration component may be able to move from P_3 to P_4 in the same time. Line **302** and line **304** respectively show that the hydraulic cylinder coupled to the booster component and the hydraulic cylinder coupled to the speed component do not exhibit a phase 2 during cylinder extraction and instead transition directly from the start phase to the end phase.

30

iv. Cylinder extraction (End Phase)

35

[0085] The pressure in the hydraulic cylinder **20** may increase as the jaw set continues work on the material. At a predetermined pressure value, the booster component **12** may be activated. The hydraulic cylinder **20** coupled to the hydraulic circuit **10** may transition from operating under the normal extraction function to operating under the booster function.

40

[0086] Hydraulic fluid from the first and second pressure intensifiers **16, 17** may flow to the piston-side chamber **22** of the hydraulic cylinder **20** may be applied on the piston **28** at the piston-side chamber **22**. Return flow from the rod-side chamber **24** may be redirected to the fluid reservoir **76**.

45

[0087] During this phase of cylinder extraction the jaw set which may contain the material to be worked, may be subjected to the work load as the jaw set continues work on the material resulting in a further increase of pressure in the hydraulic circuit **10**. The pressure intensifiers **16, 17** may increase the closing force of the jaw set to a maximum level by increasing the pressure of the fluid flowing to the piston-side chamber **22**.

50

[0088] The time for a jaw set of a demolition tool to move from P_4 (i.e. position of jaw set at activation of pressure intensifiers **16, 17**) to P_1 (i.e. fully closed position of jaw set) may be dependent on the load of the material, on the hydraulic cylinder **20** and the components acting

on the hydraulic cylinder **20**. In Fig. 3 line **306** shows that the hydraulic cylinder **10** coupled to the hydraulic circuit **10** may be able to move from P_4 to P_1 in t_4-t_7 sec.

[0089] Line **300** shows that the hydraulic cylinder coupled to a single booster component and regeneration component may be able to move from P_4 to P_1 in t_4-t_8 sec. Line **302** and line **304** respectively show that the hydraulic cylinder coupled to the booster valve and the hydraulic cylinder coupled to the speed valve transition directly from the start phase to the end phase. Line **302** shows that the hydraulic cylinder coupled to the booster valve may be able to move from P_3 to P_1 in t_3-t_{10} sec. Line **304** shows that the hydraulic cylinder coupled to the speed valve may be able to move from P_3 to P_1 in about t_6-t_9 sec.

[0090] Fig. 3 indicates that the overall cycle time of line **306** is shorter than the respective cycle times of lines **300**, **302** and **304**. Hence, the jaw set actuated by a hydraulic cylinder **20** coupled to the hydraulic circuit **10** may be able to open and close faster than jaws actuated by hydraulic cylinders coupled to a booster component or a speed component; or both a booster component and a speed component. The hydraulic cylinder **20** coupled to the hydraulic circuit **10** may require about half the time to open and close the jaw set compared to a hydraulic cylinder coupled to a single booster component and regeneration component. The time taken by hydraulic cylinder **20** coupled to the hydraulic circuit **10** may decrease to one third with three pressure intensifiers compared to a hydraulic cylinder coupled to a single booster component and regeneration component.

[0091] The skilled person would appreciate that foregoing embodiments may be modified or combined to obtain the hydraulic circuit **10** of the present disclosure.

Industrial Applicability

[0092] This disclosure describes a hydraulic circuit **10** for cyclically operating a dual acting hydraulic cylinder **20**.

[0093] In the operation of the hydraulic circuit **10** may be used to operate a dual acting hydraulic cylinder **20** that actuates a demolition tool. The hydraulic circuit **10** may be disposed within the demolition tool which incorporates the hydraulic cylinder **20**. The demolition tool may have a jaw set and may be used for crushing, cutting or pulverising material. The hydraulic circuit **10** may improve the opening and closing times of the jaw set.

[0094] The hydraulic circuit **10** may enable the jaws to open rapidly in the retraction stroke of the hydraulic cylinder **20**. Closing the jaw set in the extraction stroke of the hydraulic cylinder, the hydraulic circuit **10** may be actuated to the speed mode to enable the jaws to close at a faster rate, up to the point the jaws come into contact with material present in the jaws. Contact of the jaws with the material may result in a pressure spike in the hydraulic circuit **10** effecting a switch to the booster mode. In the boost mode a high pressure may be sent to the hydraulic cylinder **20** to increase the crushing, cutting or pulverising

force of the jaw.

[0095] Switching of modes in the hydraulic circuit **10** may be dependent on the material to be worked. As an example of concrete as a material. The hydraulic circuit **10** may be initially in the speed mode upon contact with the concrete the hydraulic circuit **10** may be actuated immediately from the speed mode to the boost mode. In an alternative example with steel as a material, the hydraulic circuit **10** may be initially in the speed mode upon contact with the steel the hydraulic circuit **10** may remain in the speed mode. As the jaws of the demolition tool closes further the hydraulic circuit **10** may be actuated to the boost mode.

[0096] The hydraulic circuit **10** may comprise a booster component **14** having a first pressure intensifier **16** and a second pressure intensifier **17** in combination with a regeneration valve **18**. The pressure intensifiers may be arranged in parallel so that the maximum output pressure will not be higher than a circuit having a single pressure intensifier. The output flow may be doubled in comparison to a circuit having a single intensifier. Although the output is doubled, the material stress levels are not increased on the individual components. The output flow of each individual pressure intensifier may be collected through a hydraulic manifold and directed into the hydraulic cylinder **20**.

[0097] The hydraulic circuit **10** with the first and second pressure intensifiers **16**, **17** may decrease the cycle time of a jaw set during normal operation. An advantage of the plurality of pressure intensifiers **16**, **17** may be that each of pressure intensifier may have a smaller diameter cylinder rather than a single pressure intensifier having a large diameter cylinder which is required to have the same amount of fluid flow. Additionally, the working pressure of the jaw set with the plurality of pressure intensifiers **16**, **17** may be substantially similar to the pressure of a single larger diameter cylinder.

[0098] Additionally, even with a failure of one pressure intensifier **16**, **17** work operations may still continue with the remaining pressure intensifier **16**, **17**.

[0099] Accordingly, this disclosure includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the disclosure unless otherwise indicated herein.

[0100] Where technical features mentioned in any claim are followed by reference signs, the reference signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly, neither the reference signs nor their absence have any limiting effect on the technical features as described above or on the scope of any claim elements.

[0101] One skilled in the art will realise the disclosure may be embodied in other specific forms without departing from the disclosure or essential characteristics thereof. The foregoing embodiments are therefore to be con-

sidered in all respects illustrative rather than limiting of the disclosure described herein. Scope of the invention is thus indicated by the appended claims, rather than the foregoing description, and all changes that come within the meaning and range of equivalence of the claims are therefore intended to be embraced therein.

Claims

1. A hydraulic circuit (10) for operating a dual acting hydraulic cylinder (20) comprising:

a speed component (14) comprising a regeneration valve (18) arranged to return a hydraulic fluid from a rod-side chamber (24) to a piston-side chamber (22) of the cylinder (50) at a start phase of cylinder extraction; and

a booster component (12) comprising a first pressure intensifier (16) and a second pressure intensifier (17) arranged in parallel to increase flow of fluid at an end phase of cylinder extraction.

2. The hydraulic circuit (10) of claim 2 further comprising a main valve (40) for control of fluid flow to the first pressure intensifier (16) and a second pressure intensifier (17) and the hydraulic cylinder (50).

3. The hydraulic circuit (10) of any one of preceding claims wherein the speed component (14), the first pressure intensifier (16) and the second pressure intensifier (17) are arranged to be inactive at an intermediate phase of cylinder extraction.

4. The hydraulic circuit (10) of any one of preceding claims comprising three pressure intensifiers.

5. The hydraulic circuit (10) of any one of preceding claims comprising a pressure actuated control valve (32) to divert fluid flow through the booster component (12).

6. A demolition tool comprising a hydraulic circuit (10) of any one of preceding claims.

7. A method of operating a dual acting hydraulic cylinder (20), the method comprising the steps of:

returning a hydraulic fluid from a rod-side chamber (24) to a piston-side chamber (22) of the cylinder (20) during a start phase of cylinder extraction with a speed component (14) comprising a regeneration valve (18); and increasing flow of fluid during end phase of cylinder extraction with a booster component (12) comprising a first pressure intensifier (16) and a second pressure intensifier (17) arranged in

parallel.

8. The method of claim 7 wherein the fluid pressure is increased at the rod-side chamber (24).

9. The method of claim 7 or 8 wherein step of increasing pressure of the fluid during end phase of cylinder extraction comprises increasing the fluid pressure at the piston-side chamber (22).

10. The method of claim 9 further comprising a step of returning fluid from the rod-side chamber (24) to a fluid reservoir (76) during an intermediate phase of cylinder extraction.

5

10

15

20

25

30

35

40

45

50

55

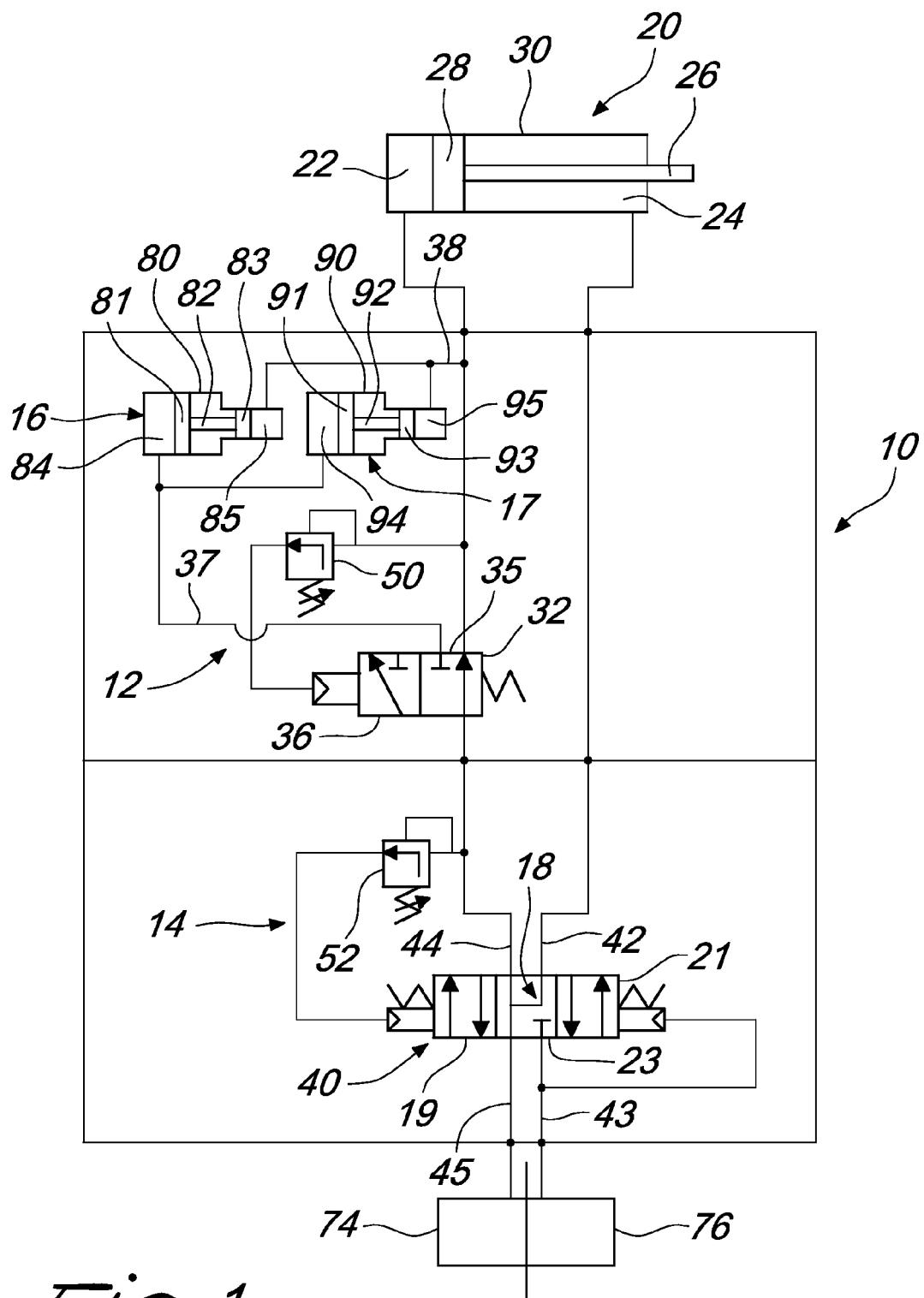
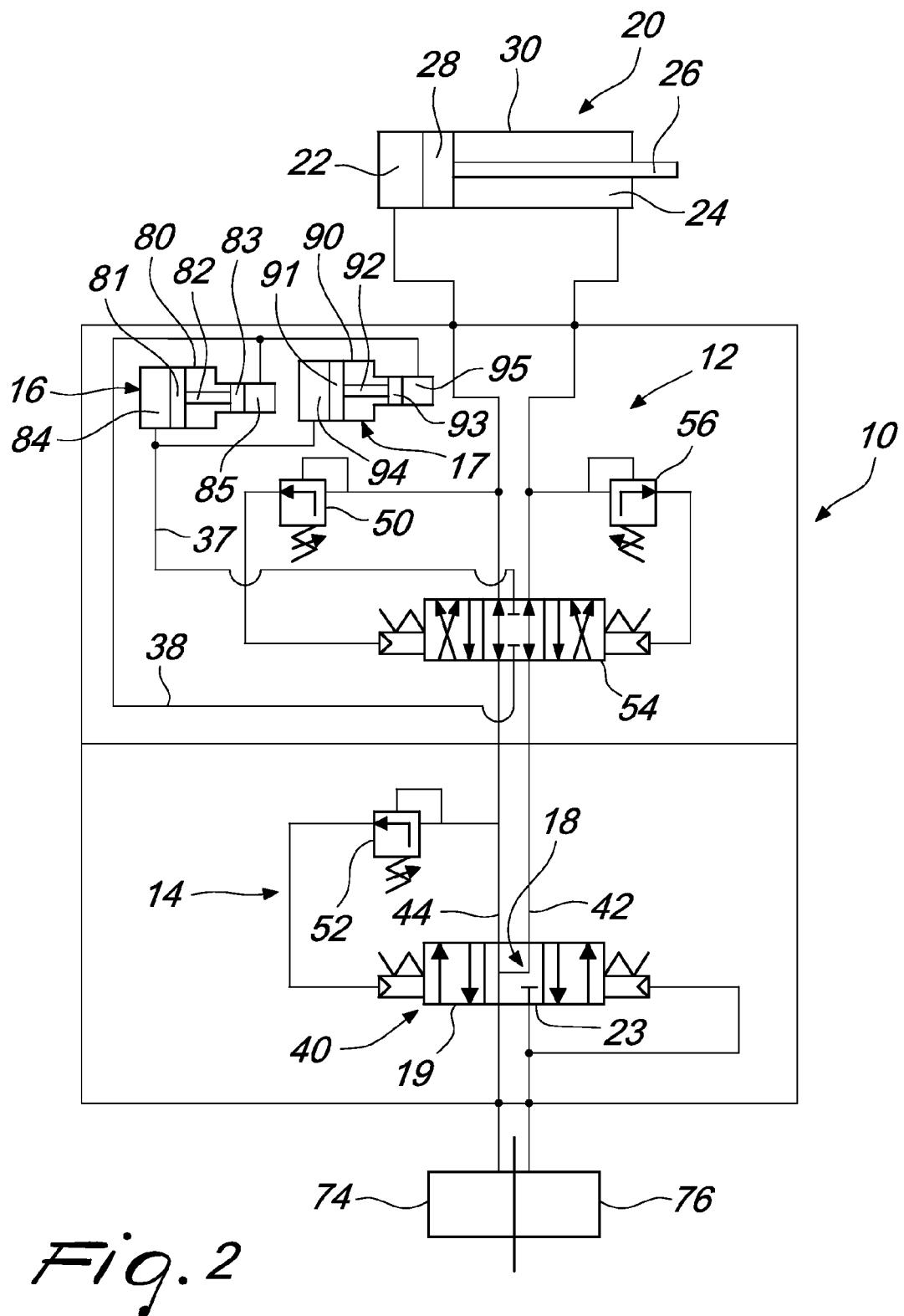




Fig. 1

Fig. 3

EUROPEAN SEARCH REPORT

Application Number
EP 12 18 7833

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	<p>WO 2008/057289 A1 (CATERPILLAR INC [US]; KHALIL RABIE E [US]) 15 May 2008 (2008-05-15) * page 5, lines 3-9 * * page 7, lines 26-27; figure 2 * * page 8, lines 13-15 * * page 10, line 15 - page 11, line 27 * * page 12, lines 15-23 *</p> <p>-----</p>	1-10	INV. E02F9/22 F15B3/00 F15B11/032 F15B21/14
X	<p>WO 2005/028879 A1 (BRUENINGHAUS HYDROMATIK GMBH [DE]; RUECKGAUER NORBERT [DE]) 31 March 2005 (2005-03-31) * page 1, lines 6-15; figure 3 * * page 10, line 15 - page 13, line 2 *</p> <p>-----</p>	1-4,6-10	
X	<p>US 5 852 933 A (SCHMIDT STEFAN [DE]) 29 December 1998 (1998-12-29) * column 3, lines 49-51; figure 3 * * column 6, line 53 - column 7, line 17 *</p> <p>-----</p>	1-4,6-10	
X	<p>JP H01 280132 A (KAWASAKI HEAVY IND LTD) 10 November 1989 (1989-11-10) * abstract; figure 5 *</p> <p>-----</p>	1-4,6-10	TECHNICAL FIELDS SEARCHED (IPC) F15B E02F
The present search report has been drawn up for all claims			
1	Place of search The Hague	Date of completion of the search 23 April 2013	Examiner Regaud, Christian
CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 12 18 7833

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-04-2013

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2008057289	A1	15-05-2008	US	2008104955 A1		08-05-2008
			WO	2008057289 A1		15-05-2008
<hr/>						
WO 2005028879	A1	31-03-2005	DE	10343016 A1		12-05-2005
			EP	1664550 A1		07-06-2006
			JP	2007506048 A		15-03-2007
			KR	20060061373 A		07-06-2006
			WO	2005028879 A1		31-03-2005
<hr/>						
US 5852933	A	29-12-1998	CA	2202523 A1		25-04-1996
			CZ	9701122 A3		13-08-1997
			DE	4436666 A1		18-04-1996
			EP	0785861 A1		30-07-1997
			ES	2120230 T3		16-10-1998
			JP	3648245 B2		18-05-2005
			JP	H10507133 A		14-07-1998
			US	5852933 A		29-12-1998
			WO	9611796 A1		25-04-1996
<hr/>						
JP H01280132	A	10-11-1989		NONE		
<hr/>						

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5996465 A [0005]
- US 7540231 B [0006]
- US 5542180 A [0008]
- US 5415076 A [0009]
- EP 09178089 A [0011]