

(11) **EP 2 727 882 A8**

(12) CORRECTED EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(15) Correction information:

Corrected version no 1 (W1 A1) Corrections, see Bibliography INID code(s) 71

(48) Corrigendum issued on: 18.06.2014 Bulletin 2014/25

(43) Date of publication: 07.05.2014 Bulletin 2014/19

(21) Application number: 12792175.7

(22) Date of filing: 29.05.2012

(51) Int Cl.:

C01B 31/20 (2006.01) B01J 37/34 (2006.01) C25B 11/03 (2006.01) B01J 23/42 (2006.01) C25B 1/00 (2006.01)

(86) International application number:

PCT/JP2012/003505

(87) International publication number: WO 2012/164912 (06.12.2012 Gazette 2012/49)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: **31.05.2011** JP 2011122067 **03.10.2011** JP 2011219484

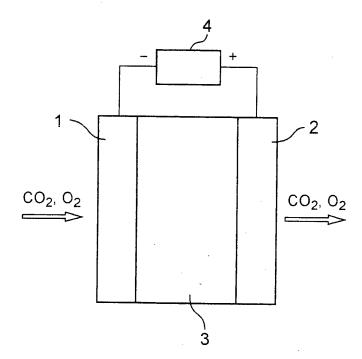
- (71) Applicant: Japan Science and Technology Agency Kawaguchi-shi Saitama 332-0012 (JP)
- (72) Inventors:
 - KAMAI, Ryo Osaka 540-6207 (JP)

- SUZUKA, Michio Osaka 540-6207 (JP)
- NAKANISHI, Shuji
 Osaka 540-6207 (JP)
- HASHIMOTO, Kazuhito Tokyo 113-8654 (JP)
- HELLER, Adam Austin, Texas 78701 (US)
- ZHAO, Yong Tokyo 113-8654 (JP)
- (74) Representative: Müller-Boré & Partner Patentanwälte PartG mbB Friedenheimer Brücke 21 80639 München (DE)

(54) CARBON DIOXIDE ENRICHMENT DEVICE

(57) An object of the present invention is to provide a carbon dioxide enrichment device that has high enrichment performance, and also enables a significant reduction in energy required during driving. Provided is a carbon dioxide enrichment device, comprising:

a first gas diffusion electrode 1;


a second gas diffusion electrode 2 separated from the first gas diffusion electrode 1; and

an electrolytic solution 3 existing between the first gas diffusion electrode 1 and the second gas diffusion electrode 2 to be in contact with the first gas diffusion electrode 1 and the second gas diffusion electrode 2,

wherein the electrolytic solution 3 contains a solvent and a solute dissolved in the solvent, and the solute is dissolved in the solvent to form a dissolved inorganic carbon

containing at least one of carbonic acid, hydrogen carbonate ions, and carbonic acid ions; oxygen is consumed by an oxygen reduction reaction on the first gas diffusion electrode 1, whereby a dissolved inorganic carbon is formed by a dissolution and ionization reaction of carbon dioxide in the solvent; the dissolved inorganic carbon derived from the solute or the dissolved inorganic carbon formed on the first gas diffusion electrode 1 is transported to the second gas diffusion electrode 2; and oxygen is formed from the solvent in the vicinity of the second gas diffusion electrode 2 by an oxidation reaction of the solvent on the second gas diffusion electrode 2, and carbon dioxide is formed from the dissolved inorganic carbon.

Fig. 1

