(19)
(11) EP 2 733 042 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
01.05.2019 Bulletin 2019/18

(21) Application number: 13191851.8

(22) Date of filing: 07.11.2013
(51) International Patent Classification (IPC): 
B61L 15/00(2006.01)
B61L 3/00(2006.01)
B61L 25/02(2006.01)
B61L 27/00(2006.01)
B61L 23/34(2006.01)

(54)

Operations-related information display system and method using real-time train traveling information

Betriebsbezogenes Informationsanzeigesystem und Verfahren unter Verwendung von Bahnstreckeninformationen in Echtzeit

Système d'affichage d'informations liées aux opérations et procédé utilisant des informations de voyage en train en temps réel


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 19.11.2012 JP 2012252853

(43) Date of publication of application:
21.05.2014 Bulletin 2014/21

(73) Proprietor: Hitachi, Ltd.
Tokyo 100-8280 (JP)

(72) Inventor:
  • Morifuji, Miki
    Tokyo, 100-8280 (JP)

(74) Representative: MERH-IP Matias Erny Reichl Hoffmann Patentanwälte PartG mbB 
Paul-Heyse-Strasse 29
80336 München
80336 München (DE)


(56) References cited: : 
EP-A2- 0 108 363
US-A1- 2012 166 025
DE-A1-102007 041 959
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present invention generally relates to an operations support system that makes use of real-time train traveling information, and more particularly, to a system for communicating the optimum operating method to a train operator using real-time information.

    [0002] A railroad vehicle operator is not able to ascertain the passenger boarding ratio of the train carriages during operation or the relative positions of a preceding or following train while traveling. Thus, proper operation in compliance with a timetable depends in large part on the experience and skill of the operator. Japanese Patent Application Publication No. 2009-29234 discloses technology for using traveling information of a train. Japanese Patent Application Publication No. 2009-29234 discloses technology for supporting train operations by displaying the location and speed of one's own train on a running curve that accords with the train's operations schedule.

    [0003] US 2012/0166025 A1 relates to an automatic train control device including a ground control device that computes a target stop position of a train, and in-vehicle control devices that receive the target stop position transmitted from the ground control device and compute speed control patterns to control the speed of the trains, respectively.

    SUMMARY



    [0004] However, Japanese Patent Application Publication No. 2009-29234 does not disclose the timing for calculating the traveling location and speed of one's own train. Thus, the display in real-time of operations support information to be communicated to the operator is not taken into account. Therefore, technology for processing ever-changing train traveling information, and creating and displaying in real-time operations support information is not disclosed.

    [0005] Accordingly, the present invention first transmits onboard information from a railroad vehicle in real-time to the ground. Then, the ground side merges the onboard information with ground information, performs automatic computations, and displays the optimum operating conditions on an operator's seat monitor. The present invention makes good use of information available only onboard the train and information available only on the ground, and tailors this information to the traveling environment in order to communicate the optimum operating conditions to the operator in real-time via a wireless network. The present invention is also able to speed up processing and improve information communication performance by using the traveling conditions to perform determination processes and narrowing down appropriate operating conditions from an existing table.

    [0006] According to the present invention, optimum operations that more closely adhere to the timetable are possible by operating in accordance with real-time instructions from the ground. Even when trains are running off schedule, operations that are closest to the original timetable are possible by making determinations in conjunction with the latest schedule information available only on the ground side. In addition, punctual operations that accord with the schedule enable the realization of more precise operations by reducing extra time allotted for service disruptions.

    [0007] According to the present invention an operations-related information display method according to claim 1 and an operations-related information display system according to claim 6 can be provided.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] 

    FIG. 1 is a schematic diagram of an operations support system;

    FIG. 2 is a drawing of the hardware configurations of a train-installed apparatus and a ground apparatus;

    FIG. 3 is an example of a latest train schedule table;

    FIG. 4 is an example of a boarding ratio table;

    FIG. 5 is an example of a table of GPS information;

    FIG. 6 is an example of a table of speed information;

    FIG. 7 is an example of a table of optimum operating conditions;

    FIG. 8 is a flowchart showing processing for the operations support system as a whole;

    FIG. 9 is a flowchart showing computational processing for determining the distance between traveling trains;

    FIG. 10 is a flowchart showing the processing for determining the optimum operating conditions when there are no changes to the timetable; and

    FIG. 11 is a flowchart showing the processing for determining the optimum operating conditions when there has been a change to the timetable.


    DETAILED DESCRIPTION


    [Embodiment 1]



    [0009] An aspect of this embodiment will be described hereinbelow using the drawings.

    [0010] FIG. 1 is a schematic diagram of an operations support system. A traveling train 101 continuously transmits speed information, boarding ratio information, and GPS information in real-time to a ground apparatus 102. Here, real-time means sequentially transmitting information to the ground apparatus 102 at a timing at which the train-installed apparatus acquires the train traveling information from various devices of the train (sensors and the like).

    [0011] The ground apparatus 102 is configured to perform determination processing by combining the onboard information with information available only on the ground side, calculating the optimum operating conditions (speed information, braking information) and returning this information to the train 101. It is supposed that the onboard information and the results of the ground determination are transmitted and received via an existing 3G network or wireless link. Furthermore, in this embodiment, it is assumed that the real-time communications are performed in units of hundreds of milliseconds, but the present invention is not limited thereto. According to this embodiment, optimum operating conditions in accordance with the latest traveling situation are instructed in real-time to the train, thereby making it possible for the operator to quickly ascertain the situation and implement an operation closer to the optimum operation. Each operator has his own operating habits, but continuously issuing operating instructions from the ground side makes it possible to achieve uniform operations.

    [0012] FIG. 2 is an example of the hardware configurations of the equipment required in this embodiment. Simple configurations formed of the train-installed apparatus and the ground apparatus enable the rapid processing and communication of information. First, a description of the configuration of the train-installed apparatus 103 will be given. The train-installed apparatus 103 has a train information unit 104, and an operator's seat display device 113. The train information unit 104 is a device having a CPU, and comprises a train information collection function for collecting the train information, a train information packing unit for packing the train information, and a train information transmitting function for transmitting the train information to the ground side. The processing involved in these functions will be described in detail using FIG. 8. The operator's seat display device 113 is configured to display operating instructions to the operator.

    [0013] Next, the configuration of the ground apparatus 102 will be described. The ground apparatus 102 has a train information transceiving unit 106 for transmitting and receiving data to and from the train-installed apparatus 103, a DB group for storing information received from the train-installed apparatus 103 (a latest schedule DB 107, a boarding ratio DB 108, a GPS DB 109, a speed DB 110, and an optimum operating conditions DB 111), and a train information computation unit 112 for extracting information from the DBs and computing the optimum operating conditions. The train information computation unit 112 is a device having a CPU, and possesses a distance-between-vehicles computation function for using position information stored in the GPS DB 109 to compute the distance between trains, and an optimum speed computation function for using the latest schedule DB 107, the boarding ratio DB 108, the speed DB 110, and the optimum operating conditions DB 111 to calculate the optimum speed. Each method of computation will be described in detail using FIG. 8. Next, the flow of data will be described. The information collected by the train information unit 104 is transmitted to the train information transceiving unit 106 via a network apparatus 105 such as a 3G or a wireless LAN, and stored in the DB group (latest schedule DB 107, boarding ratio DB 108, GPS DB 109, speed DB 110). The results obtained by the train information computation unit 112 processing the stored information are once again transmitted to the train-installed apparatus 103 via the train information transceiving unit 106 and the network apparatus 105, and displayed on the operator's seat display device 113. Ground-onboard communications can be via a 3G or via a wireless LAN, and can be switched automatically depending on the traveling location and situation (inside a tunnel) of the train, making reliable communication possible under all sorts of situations and enabling operating instructions to be issued in a continuous manner. The optimum speed computation is calculated using a stored pattern table, and as such, processing is completed quickly without the need to perform a complicated computation process.

    [0014] FIG. 3 is an example of the latest schedule table needed to compute the optimum operating conditions. The latest schedule information at the time of a schedule change due to an accident or a malfunction is stored in this table. This table comprises train number information, which is the train identifier, route information showing the route the train takes, identifier information on each station, and information on the arrival/departure times at these stations. Arrival times are not shown in the drawing for the intermediate stations, but arrival time information may be stored in the table. This table maintains the latest information by being updated each time the schedule changes. The latest schedule information is not known on the train side, and therefore plays an important role in this embodiment.

    [0015] FIG. 4 is an example of a boarding ratio table. Boarding ratio information obtained when each train stops at a station is stored in this table. Using the boarding ratio to change the way braking is performed makes it possible achieve eco-operations that consume wasted energy. The boarding ratio calculation may be determined from the overall weight of the train including the passengers, or may be determined using various sensors disposed inside the train.

    [0016] FIG. 5 is an example of a GPS information table. This example is one in which train position information is stored at fixed periods of time. However, because of the need for cautious control of the distances between trains during rush periods when headway becomes tight, the GPS device sequentially writes GPS information to the GPS table and sequentially transmits this information to the ground apparatus at the shortest cycle, thereby making it possible to react in real-time to instructed operating conditions. This enables operations support even when operations are being carried out under extremely tight conditions.

    [0017] FIG. 6 is an example of a speed table. This example is one in which the train speed is stored at fixed periods of time. The speed information in this table prescribes the optimum speed at the time. The displaying of ever-changing speed information is essential to operations support.

    [0018] FIG. 7 is an example of an optimum operating conditions table. This table associates various conditions with information for optimum operations under these conditions. Based on this table, it is possible to extract the optimum operating conditions by refining the conditions. In the optimum operating conditions column, S stands for speed and B stands for braking. In this table, braking is only ON or OFF, but when the brakes are applied in multiple stages, a record may be created in this table for each stage.

    [0019] FIG. 8 is the overall processing of this embodiment. First, onboard real-time speed information, boarding ratio information, and GPS information is collected in accordance with an onboard information collection process (S0001). In a collected information packing process (S0002), the collected information is packed into a format for transmission to the ground side. Next, the packed information is transmitted to the ground side via a 3G or wireless network in accordance with a train information transmission process (S0003). A traveling train generates an enormous amount of information, and packing this information prior to transmitting the information to the ground enables more rapid processing. Packing is a process for minimizing data size and compressing the data into a transmittable format by extracting, from among an enormous amount of binary data, the portions of data needed for subsequent processing, and/or the portions in which data are actually contained or portions for which the data has changed (and discarding the rest).

    [0020] The processing up to this point is performed by the train information unit 104 in FIG. 2. The transmitted information is received by the train information transceiving unit 106 (S0004) in Fig. 2 and stored in the respective tables (S0005). Next, information required for performing a distance-between-trains computation, a schedule change determination, a static operating conditions computation, and a dynamic operating conditions computation, which are carried out by the train information computation unit 112 of FIG. 2, is extracted from the DB group (S0006). Using the extracted GPS information, first a distance-between-trains computation (S0007) is performed to calculate the distance to the preceding train.

    [0021] Thereafter, a determination is made as to whether or not that schedule for that day has been changed due to an accident or a rolling stock malfunction (S0008). This process obtains information on a schedule change by linking up with an operations management system (not shown in the drawings) coupled to the ground apparatus. In a case where the schedule has not changed and train service is operating as usual, a static operating conditions computation process (S0009) is performed to calculate the optimum operating conditions. When the train schedule for the day in question has changed, a dynamic operating conditions computation process (S0010) is performed using the latest updated schedule information in the DB to calculate the optimum operating conditions. The distance-between-trains computation, the static operating conditions computation process, and the dynamic operating conditions computation process will be described in detail using FIGS. 9, 10, and 11, respectively. The processing can be speeded up by performing a computation using a table (optimum speed condition DB 111 of FIG. 2) prepared beforehand when schedule is normal as a separate computation for determining a special case (in this embodiment, the presence or absence of a train schedule change). Next, the optimum operating conditions calculated in accordance with the static operating conditions computation process and the dynamic operating conditions computation process are once again transmitted to the train-installed apparatus 103 from the train information transceiving unit 106 of FIG. 2 (S0011), and displayed on the display device 113 in the operator's seat (S0012).

    [0022] FIG. 9 is the detailed processing of the distance-between-trains computation process in FIG. 8. First, GPS information on the vehicle n, which is transmitting the operating instructions, and the preceding railroad vehicle n-1 is acquired from the DB (S0101). The GPS information of the two vehicles is compared (S0102), and the distance between the vehicle and the preceding vehicle is calculated (S0103). Up until now, the distance between trains could not be ascertained in real-time, but this processing makes it possible, enabling even tighter operations during the rush periods.

    [0023] FIG. 10 is the detailed processing of the static operating conditions computation process in FIG. 8. In this process, an optimum operating conditions table like that shown in FIG. 7 is stored in advance to shorten the processing time, and refinements are made in accordance with the traveling conditions and environment to calculate the optimum operating conditions. Processing time can be shortened by starting the condition narrowing down process with railroad vehicle information for which selection conditions, such as type of vehicle and travel route, are limited, and shifting to unique information in each time period, such as the real-time boarding ratio and the traveling location.

    [0024] Specifically, first a vehicle type determination process (S0201), a route determination process (S0202), and an inbound/outbound determination process (S0203) are performed. At this point, the current traveling location is determined from the GPS information, and the route situation in the direction of travel (inclines, extent of curves, and so forth) are calculated from the route and inbound/outbound determinations. Next, the processing shifts to real-time information, a distance-between-trains determination process (S0204), a process for determining a discrepancy between the timetable and the current traveling location (S0205), a boarding ratio determination process (S0206), and a traveling location determination process (S0207) are performed, and optimum operating conditions such as "accelerate to 'xxx' kilometers per hour; brakes OFF" are calculated (S0208) as shown in the table in Fig. 7.

    [0025] FIG. 11 is the detailed processing of the dynamic operating conditions computation process in FIG. 5. When the train schedule is disrupted by an accident or a rolling stock malfunction, processing branches off to this dynamic optimum operating conditions computation process. First, the latest schedule information acquired from the DB is acquired (S0301), and a distance-between-trains determination process (S0302), a boarding ratio determination process (S0303), and a traveling location determination process (S0304) are performed using the results calculated from the real-time information, and the optimum operating conditions are calculated (S0305). When the schedule gets disrupted, a rapid service correction is required to quickly return operations to normal and not to cause passengers any inconvenience, and by incorporating the latest schedule information available only on the ground side into the computation process, it becomes possible to calculate operating conditions that enable a lag in operations to be alleviated rather quickly.

    [0026] Features, components and specific details of the structures of the above-described embodiments may be exchanged or combined to form further embodiments optimized for the respective application. As far as those modifications are apparent for an expert skilled in the art they shall be disclosed implicitly by the above description without specifying explicitly every possible combination.


    Claims

    1. An operations-related information display method for displaying information on an operator's seat display device related to operations on the basis of train traveling information comprising at least boarding ratio information and GPS information,
    the method comprising:

    a traveling information transmission step of transmitting sequentially train traveling information comprising at least boarding ratio information and GPS information to a server, which is not installed in the train (101), via a network at a timing at which the traveling information is acquired;

    an operations-related information creation step of creating, in the server, information related to train operations from the traveling information; and

    an operations-related information transmission step of transmitting the created operations-related information to the train (101).


     
    2. An operations-related information display method according to claim 1, characterized in that
    the server comprises an operating conditions table in which a traveling state of the train is associated with the information related to operations in the traveling state, and
    a support information creation step creates the operations-related information from the traveling information and the operating conditions table.
     
    3. An operations-related information display method according to claim 2, characterized in that
    the traveling information includes position information on the train, and
    the support information creation step identifies a preceding train, which travels preceding to the train (101), from schedule information, calculates a distance between the train and the preceding train from the position information on the preceding train and the position information on/ the train, and creates the operations-related information from the distance between the trains (101) and the operating conditions table.
     
    4. An operations-related information display method according to claim 3, further comprising a step of determining whether or not there has been a change in the schedule.
     
    5. An operations-related information display method according to any of claims 1 through 4, characterized in that, in the traveling information transmission step, information acquired from a device of a train (101) is transmitted to the server, which is not installed in the train, after this information is subjected to packing.
     
    6. An operations-related information display system for displaying information related to operations on the basis of train traveling information comprising at least boarding ratio information and GPS information by using a train-installed apparatus (103) and a ground apparatus (102),
    the train-installed apparatus (103) comprising:

    a traveling information transmission processor configured to sequentially transmit the traveling information comprising at least boarding ratio information and GPS information to a server, which is not installed in the train (101), via a network at a timing at which the traveling information is acquired; and

    a display unit configured to display support information on an operator's seat display device transmitted from the ground apparatus (102), and

    the ground apparatus (102) comprising:
    a train information computation unit configured to create information related to the operations of the train (101) from the traveling information.


     
    7. An operations-related information display system according to claim 6, characterized in that
    the ground apparatus (102) comprises an operating conditions table in which a traveling state of the train (101) is associated with the information related to operations in the traveling state, and
    the train information computation unit is configured to create the operations-related information from the traveling information and the operating conditions table.
     
    8. An operations-related information display system according to claim 7, characterized in that
    the traveling information includes position information on the train (101), and
    the train information computation unit is configured to identify a preceding train, which travels preceding to the train (101), from schedule information, calculate a distance between the train (101) and the preceding train from the position information on the preceding train and the position information on the train (101), and create the train operations-related information from the distance between the trains (101) and the operating conditions table.
     
    9. An operations-related information display system according to claim 8, characterized in that
    the train information computation unit is also configured to perform a process for determining whether or not there has been a change in the schedule.
     
    10. An operations-related information display system according to any of claims 6 through 9, characterized in that
    the traveling information transmission processor is configured to acquire the traveling information from a device of a train (101) and transmit the traveling information to the server, which is not installed in the train (101), after subjecting the information to packing.
     


    Ansprüche

    1. Anzeigeverfahren für betriebsbezogene Daten zum Anzeigen von Daten auf einer Fahrersitzanzeigevorrichtung, die mit dem Betrieb in Beziehung stehen, auf der Grundlage von Zugfahrdaten, die mindestens Einstiegsratendaten und GPS-Daten umfassen, wobei
    das Verfahren Folgendes umfasst:

    ein Fahrdatensendeschritt zum sequentiellen Senden von Zugfahrdaten, die mindestens Einstiegsratendaten und GPS-Daten umfassen, zu einem Zeitpunkt, zu dem die Fahrdaten erfasst werden, über ein Netz zu einem Server, der nicht im Zug (101) installiert ist;

    einen Erzeugungsschritt für betriebsbezogene Daten zum Erzeugen im Server von Daten, die mit dem Betrieb des Zugs in Beziehung stehen, aus den Fahrdaten; und

    einen Sendeschritt für betriebsbezogene Daten zum Senden der erzeugten betriebsbezogenen Daten zum Zug (101).


     
    2. Anzeigeverfahren für betriebsbezogene Daten nach Anspruch 1, dadurch gekennzeichnet, dass
    der Server eine Betriebszustandstabelle umfasst, in der ein Fahrzustand des Zugs den Daten, die mit dem Betrieb im Fahrzustand in Beziehung stehen, zugeordnet ist und
    ein Unterstützungsdatenerzeugungsschritt die betriebsbezogenen Daten aus den Fahrdaten und der Betriebszustandstabelle erzeugt.
     
    3. Anzeigeverfahren für betriebsbezogene Daten nach Anspruch 2, dadurch gekennzeichnet, dass
    die Fahrdaten Positionsdaten über den Zug enthalten und
    der Unterstützungsdatenerzeugungsschritt einen vorausfahrenden Zug, der vor dem Zug (101) fährt, aus Fahrplandaten identifiziert, einen Abstand zwischen dem Zug und dem vorausfahrenden Zug aus den Positionsdaten über den vorausfahrenden Zug und den Positionsdaten über den Zug berechnet und die betriebsbezogenen Daten aus dem Abstand zwischen den Zügen (101) und der Betriebszustandstabelle erzeugt.
     
    4. Anzeigeverfahren für betriebsbezogene Daten nach Anspruch 3, das ferner einen Schritt des Bestimmens, ob eine Änderung des Fahrplans aufgetreten ist oder nicht, umfasst.
     
    5. Anzeigeverfahren für betriebsbezogene Daten nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Fahrdatensendeschritt Daten, die von einer Einrichtung eines Zugs (101) erfasst wurden, zum Server, der nicht im Zug installiert ist, gesendet werden, nachdem diese Daten einer Komprimierung unterworfen worden sind.
     
    6. Anzeigesystem für betriebsbezogene Daten zum Anzeigen von Daten, die mit dem Betrieb in Beziehung stehen, auf der Grundlage von Zugfahrdaten, die mindestens Einstiegsratendaten und GPS-Daten umfassen, unter Verwendung einer im Zug installierten Vorrichtung (103) und einer Bodenvorrichtung (102), wobei
    die im Zug installierte Vorrichtung (103) Folgendes umfasst:

    einen Fahrdatensendeprozessor, der konfiguriert ist, die Fahrdaten, die mindestens Einstiegsratendaten und GPS-Daten umfassen, zu einem Zeitpunkt, zu dem die Fahrdaten erfasst werden, über ein Netz zu einem Server, der nicht im Zug (101) installiert ist, sequentiell zu senden; und

    eine Anzeigeeinheit, die konfiguriert ist, Unterstützungsdaten, die von der Bodenvorrichtung (102) gesendet wurden, auf einer Fahrersitzanzeigevorrichtung anzuzeigen, und

    die Bodenvorrichtung (102) Folgendes umfasst:
    eine Zugdatenberechnungseinheit, die konfiguriert ist, Daten, die mit dem Betrieb des Zugs (101) in Beziehung stehen, aus den Fahrdaten zu erzeugen.


     
    7. Anzeigesystem für betriebsbezogene Daten nach Anspruch 6, dadurch gekennzeichnet, dass
    die Bodenvorrichtung (102) eine Betriebszustandstabelle umfasst, in der ein Fahrzustand des Zugs (101) den Daten, die mit dem Betrieb im Fahrzustand in Beziehung stehen, zugeordnet ist und
    die Zugdatenberechnungseinheit konfiguriert ist, die betriebsbezogenen Daten aus den Fahrdaten und der Betriebszustandstabelle zu erzeugen.
     
    8. Anzeigesystem für betriebsbezogene Daten nach Anspruch 7, dadurch gekennzeichnet, dass
    die Fahrdaten Positionsdaten über den Zug (101) enthalten und
    die Zugdatenberechnungseinheit konfiguriert ist, einen vorausfahrenden Zug, der vor dem Zug (101) fährt, aus Fahrplandaten zu identifizieren, einen Abstand zwischen dem Zug (101) und dem vorausfahrenden Zug aus den Positionsdaten über den vorausfahrenden Zug und den Positionsdaten über den Zug (101) zu berechnen und die zugbetriebsbezogenen Daten aus dem Abstand zwischen den Zügen (101) und der Betriebszustandstabelle zu erzeugen.
     
    9. Anzeigesystem für betriebsbezogene Daten nach Anspruch 8, dadurch gekennzeichnet, dass
    die Zugdatenberechnungseinheit außerdem konfiguriert ist, einen Vorgang zum Bestimmen, ob eine Änderung des Fahrplans aufgetreten ist oder nicht, durchzuführen.
     
    10. Anzeigesystem für betriebsbezogene Daten nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass
    der Fahrdatensendeprozessor konfiguriert ist, die Fahrdaten von einer Einrichtung des Zugs (101) zu erfassen und die Fahrdaten zum Server, der nicht im Zug (101) installiert ist, zu senden, nachdem er die Daten einer Komprimierung unterworfen hat.
     


    Revendications

    1. Procédé d'affichage d'informations relatives à l'exploitation pour afficher sur un dispositif d'affichage de siège d'opérateur des informations relatives à l'exploitation sur la base d'informations de déplacement de train comprenant au moins des informations sur le taux d'embarquement et des informations GPS,
    le procédé comprenant :

    une étape de transmission d'informations de déplacement qui consiste à transmettre séquentiellement des informations de déplacement de train comprenant au moins des informations de taux d'embarquement et des informations GPS à un serveur, qui n'est pas installé dans le train (101), via un réseau à un instant auquel les informations de déplacement sont acquises ;

    une étape de création d'informations relatives à l'exploitation qui consiste à créer, dans le serveur, des informations relatives à l'exploitation du train à partir des informations de déplacement ; et

    une étape de transmission d'informations relatives à l'exploitation qui consiste à transmettre au train (101) les informations relatives à l'exploitation créées.


     
    2. Procédé d'affichage d'informations relatives à l'exploitation selon la revendication 1, caractérisé en ce que
    le serveur comprend une table de conditions d'exploitation dans laquelle un état de déplacement du train est associé aux informations relatives à l'exploitation dans l'état de déplacement et
    une étape de création d'informations de support crée les informations relatives à l'exploitation à partir des informations de déplacement et de la table de conditions d'exploitation.
     
    3. Procédé d'affichage d'informations relatives à l'exploitation selon la revendication 2, caractérisé en ce que
    les informations de déplacement incluent des informations de position sur le train et
    l'étape de création d'informations de support identifie un train précédent, qui se déplace avant le train (101), à partir d'informations d'horaire, calcule une distance entre le train et le train précédent à partir des informations de position sur le train précédent et des informations de position sur le train, et crée les informations relatives à l'exploitation à partir de la distance entre les trains (101) et de la table de conditions d'exploitation.
     
    4. Procédé d'affichage d'informations relatives à l'exploitation selon la revendication 3, comprenant en outre une étape consistant à déterminer s'il y a eu ou non un changement dans l'horaire.
     
    5. Procédé d'affichage d'informations relatives à l'exploitation selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, dans l'étape de transmission d'informations de déplacement, des informations acquises d'un dispositif d'un train (101) sont transmises au serveur, qui n'est pas installé dans le train, après que ces informations ont été soumises à une compression.
     
    6. Système d'affichage d'informations relatives à l'exploitation pour afficher des informations relatives à l'exploitation sur la base d'informations de déplacement de train comprenant au moins des informations de taux d'embarquement et des informations GPS en utilisant un appareil installé dans le train (103) et un appareil au sol (102),
    l'appareil installé dans le train (103) comprenant :

    un processeur de transmission d'informations de déplacement configuré pour transmettre séquentiellement les informations de déplacement comprenant au moins des informations de taux d'embarquement et des informations GPS à un serveur, qui n'est pas installé dans le train (101), via un réseau à un instant auquel les informations de déplacement sont acquises ; et

    une unité d'affichage configurée pour afficher sur un dispositif d'affichage de siège d'opérateur des informations de support transmises depuis l'appareil au sol (102) et

    l'appareil au sol (102) comprenant :
    une unité de calcul d'informations de train configurée pour créer des informations relatives à l'exploitation du train (101) à partir des informations de déplacement.


     
    7. Système d'affichage d'informations relatives à l'exploitation selon la revendication 6, caractérisé en ce que
    l'appareil au sol (102) comprend une table de conditions d'exploitation dans laquelle un état de déplacement du train (101) est associé aux informations relatives à l'exploitation dans l'état de déplacement et
    l'unité de calcul d'informations de train est configurée pour créer les informations relatives à l'exploitation à partir des informations de déplacement et de la table de conditions d'exploitation.
     
    8. Système d'affichage d'informations relatives à l'exploitation selon la revendication 7, caractérisé en ce que
    les informations de déplacement incluent des informations de position sur le train (101) et
    l'unité de calcul d'informations de train est configurée pour identifier un train précédent, qui se déplace avant le train (101), à partir d'informations d'horaire, calculer une distance entre le train (101) et le train précédent à partir des informations de position sur le train précédent et des informations de position sur le train (101) et créer les informations relatives à l'exploitation du train à partir de la distance entre les trains (101) et de la table de conditions d'exploitation.
     
    9. Système d'affichage d'informations relatives à l'exploitation selon la revendication 8, caractérisé en ce que
    l'unité de calcul d'informations de train est également configurée pour effectuer un processus pour déterminer s'il y a eu ou non un changement dans l'horaire.
     
    10. Système d'affichage d'informations relatives à l'exploitation selon l'une quelconque des revendications 6 à 9, caractérisé en ce que
    le processeur de transmission d'informations de déplacement est configuré pour acquérir les informations de déplacement d'un dispositif d'un train (101) et transmettre les informations de déplacement au serveur, qui n'est pas installé dans le train (101), après avoir soumis les informations à une compression.
     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description