[0001] The present invention refers to an elevator rope terminal which is used to fix a
rope end of e.g. a hoisting rope, suspension rope or compensation rope of an elevator
to an elevator component or to the elevator shaft or machine room or to a mounting
structure fixed in these parts of the building.
[0002] Particularly when the ropes are to be fixed to an elevator car or a counterweight
the rope terminals sometimes have a deflection element which is usually formed as
a diverting pulley around which the elevator rope runs roughly along an angle of 90
degrees so that the elevator rope is deflected from the vertical course in the elevator
shaft to a horizontal direction, e. g. under the bottom of the elevator car. By this
arrangement the vertical height of the elevator rope fitting is reduced. It is obligatory
for an elevator rope terminal that the rope end is flexibly supported by a spring
means so that in high load situations of the rope, e. g. in case of an emergency stop
of the elevator car, the tension peaks are lowered by the elastic support based on
the stroke of the spring means. The function of the spring means is to equalize rope
force differences during the operation of the elevator and, in particular, indicate
the existence of the differences to a service man, so that he can make balancing adjustments.
Accordingly, during normal operation of the elevator there is a certain change in
the load impact on the rope, e.g. during acceleration and deceleration of the elevator
car or when the elevator car starts or stops or when the load of the elevator car
changes.
[0003] Usually the deflection element is a roller supported on a pivot axis at the elevator
component. As the elevator rope runs dynamically on said pivoted roller within the
maximum stroke of the spring means there is a certain wear of the elevator rope running
over said roller with every movement of the rope caused by any deflection of the spring
means during the operation of the elevator. Accordingly, in a certain contact area
wherein the rope meets the circumferential groove of the roller according to the stroke
of the spring means the elevator rope is either straightened or is bent on the pulley.
This means that there is a dynamical straightening and bending of the ropes in these
areas so that the rope undergoes an increased wear. This wear is further increased
when a roller with a small diameter is used as a deflection element. For dynamical
use European regulations demand a ratio of the rope diameter to the roller diameter
of smaller than 1:40. Thus, in the prior art rope terminal there is a certain conflict
between a low vertical height of the rope terminal and a long lifetime of the rope.
[0004] WO 2007/013400 discloses an eleator rope terminal according to the preamble of claim 1.
[0005] Accordingly, it is object of the invention to provide an elevator rope terminal which
has a small vertical height and also provides less wear of the elevator rope than
in currently known solutions.
[0006] The object of the invention is solved with an elevator rope terminal according to
claim 1. Preferred embodiments of the invention are subject matter of the dependent
claims.
[0007] According to the invention the elevator rope terminal comprises a rope fitting for
fixing the rope end to an elevator component. The elevator component may be an elevator
car, a counterweight or any structure in the elevator shaft or the machine room. The
rope fitting comprises a spring means for elastically fixing the rope end to the elevator
component. Furthermore, the rope terminal comprises a deflection element for deflecting
the rope from a first - usually vertical - direction, into a second - usually horizontal
- direction in which the rope end is fixed to the elevator component. The deflection
element has a circumferential area for receiving the rope, e. g. a rope groove and
is pivotably supported via a pivot axis at the elevator component. The pivot axis
can be located directly at the elevator component or via a structure which is part
of the elevator rope terminal.
[0008] In this connection it has to be mentioned that an elevator rope usually comprises
a set with a plurality of separate ropes. Thus, a rope terminal usually supports the
ends of a plurality of ropes, although it may only support one rope, e.g. in small
load elevators.
[0009] According to the invention the circumferential area has a first curved contact area
for the rope coming from the shaft which first contact area defines all possible contact
points of the rope with the circumferential area within the maximum stroke of the
spring means during any kind of operation of the elevator.
[0010] Furthermore, the circumferential area has a second curved contact area for the rope
connected to the rope fitting, which second curved contact area defines all possible
contact points of the rope with the circumferential area within the maximum stroke
of the spring means during any kind of operation of the elevator.
[0011] Finally, the circumferential area has a curved deflection area, which is located
between the first and the second curved contact areas. In this deflection area the
essential part of the deflection of the rope takes place. If the desired deflection
angle of the rope is e.g. 90 degrees, the bending angle of the deflection area should
be at least 70 degrees, preferably more than 80 degrees. The aim is to minimize the
rope deflection in the contact areas so that also the bending of the rope in the contact
areas can be minimized.
[0012] Preferably, in the curved deflection area more than 90 % of the deflection of the
rope - usually from the vertical to the horizontal direction - takes place. The advantage
of this solution is that the upper most part of the rope deflection has been shifted
to the deflection area in which the bending of the rope is static, i.e. essentially
without wear. By this means in the contact areas where the bending and straightening
of the rope, i.e. the dynamical stress of the rope takes place according to the stroke
of the spring means the rope is bent only to a very small degree.
[0013] The curved deflection area is preferably abuts to the first and second curved contact
areas. However, solutions are possible, wherein a distance may remain between the
curved contact areas and the curved deflection area.
[0014] When the invention speaks of the radius of the curvature of an area it is assumed
that the area has only one radius. If the radius should change over the length of
an area (in running direction of the rope) the arithmetic mean value of the radius
of said area is taken as radius instead.
[0015] According to the invention the radius of the curvature of the deflection area is
smaller than the radius of the curvatures in the first and second contact areas. This
has the effect that based on the larger radius of the curvature in the contact areas
only minor bending of the ropes takes place there. Instead, the rope bending is shifted
to the deflection area where the rope is bent with an essentially smaller radius than
in the contact areas. The bending of the rope with a small radius is not harmful for
the ropes because the rope is arranged statically in the deflection area.
[0016] Further by the different radius of the contact areas and the deflection areas a kind
of rectangular profile of the deflection element is achieve which prevents the rotation
of the deflection element as far as not caused by the change of the status of the
spring means. This leads to the fact that the deflection area always remains the area
where the rope remains static in the rope grooves in the circumference of the deflection
element. This is in contrast to known rollers which may rotate further, particularly
if the rope has a certain texture which initiates a movement of the roller in one
direction.
[0017] Preferably, the radius of the curvature in the first and second contact areas is
at least 40 times the rope diameter, preferably larger. This supports a long lifetime
of the rope.
[0018] Preferably, the radius of the curvature in the deflection area is less than 40 times
the rope diameter, preferably less than 30 times, most preferably less than 20 times,
even less than ten times the rope diameter. As the rope is statically arranged on
the deflection area the resulting small bending radius does not affect rope lifetime.
[0019] Preferably at least a middle portion of said first curved area has a first distance
to the pivot axis, at least a middle portion of said second curved area has a second
distance to the pivot axis, and at least a middle portion of the deflection area has
a third distance to the pivot axis, whereby the third distance is larger than the
second distance. This leads to a kind of rectangular layout of the deflection element
which further reduces the vertical height of the deflection element compared to a
known roller. By this measure the vertical height of the rope terminal can be reduced.
[0020] In this context the middle portion preferably designates the exact middle of an area
(in running direction of the rope). If this exact middle should deviate from the general
curvature of an area also a limited area around the exact middle of e.g. 10 mm can
be used as middle portion.
[0021] Preferably, the first radius and/or the second radius is/are larger than the respective
first and/or second distance. Accordingly, the vertical height requirement which is
based on the second distance can be kept essentially smaller although the bending
radius of the rope is kept large, which attributes to a long rope lifetime.
[0022] Preferably the second distance is smaller than 40 times the rope diameter, preferably
less than 30 times, most preferably less than 20 times, even less than ten times the
rope diameter. Therefore the vertical height of the deflection element is clearly
less than that of a known roller.
[0023] Advantageously, the first and/or second radius is between 1,5 to 2,5 times as large
as the corresponding first and/or second distance. By this means the vertical height
of the deflection element is kept small whereas the bending radius of the rope in
the contact areas is kept large.
[0024] By advantageously keeping the third radius between 0,3 to 0,7 times as large as the
third distance the required high deflection of the rope in the deflection area is
obtained in a comparably small area.
[0025] By the fact, that the second distance can be made essentially smaller than the radius
of a known diverting roller according to European regulations the vertical height
requirement for the inventive rope terminal is clearly reduced compared to known solutions.
The second distance may be only 0.4 to 0.8, preferably 0.5 to 0.7 times as large as
a required roller radius (which is according to EN 81-1 about 40 times the rope diameter).
As only the second distance is essential for the vertical height of the deflection
element an essential reduction of the vertical height of the deflection element and
accordingly a corresponding reduction of the vertical height of the complete rope
terminal is achieved without affecting the rope wear.
[0026] In the deflection area which has a larger distance to the pivot axis but a shorter
bending radius than the contact areas the essential bending of the elevator rope takes
place. The bending radius in this area can be kept much smaller than the obligatory
40:1 ratio with respect to the rope diameter as in this area the rope remains in contact
with the diverting pulley independent of the stroke of the spring means. Therefore
there is no dynamic bending stress for the rope in this area. The EN81-1 1998 and
corresponding codes allow a smaller D/d ratio than 40 if it can be proved with a risk
assessment that the chosen rope construction provides sufficient life time. This is
realized by the invention. The first and second radius r1 and r2 can correspond to
D/d ratios 40 or larger or smaller, but the curvature of the third radius in the deflection
area which somewhat forms a corner can be tighter in order to achieve space saving
benefits. Thus, the deflection area has a small third radius which is preferably essentially
smaller than the third distance of the middle of the deflection area to the pivot
axis. Preferably, the third radius is 0.3 to 0.8 times as large as the third distance.
[0027] On the contrary in the first and second curved areas the bending radius at least
in the middle of said areas is essentially larger than the corresponding distance
to the pivot axis. Preferably, the radius of the first and second curved contact areas
is in between 1.5 to 2.5 as large as the corresponding first and second distances.
Again from this embodiment it is clear that in the first and second contact areas
only a very small bending of the ropes occur according to the stroke of the spring
means whereas the essential part of the deflection takes part in the deflection area.
[0028] Preferably, the first and second radiuses are identical. Furthermore, preferably
the first and second distances are identical. Via these measures the rope stress in
both contact areas can be kept on the same level and the manufacture of the deflection
element is facilitated.
[0029] Preferably, the pivot axis is located near the edge or border area of the deflection
element which is located remote from the second curved deflection area. Whereas in
a roller the pivot axis is in the center of the roller the above measure leads to
a shifting of the pivot axis to the edge or border area of the deflection element
which is remote from the second curved area. Compared to a roller, the necessary vertical
height of the deflection element is more or less reduced from the diameter to the
radius of the deflection element, i.e a reduction by factor 2. Therefore, according
to this embodiment not only the fact that the circumferential area is divided into
differently shaped contact and a deflection areas but also the fact that the pivot
axis is shifted to the edge of the deflection element clearly reduces the vertical
height of the elevator rope terminal without affecting the lifetime of the rope.
[0030] Preferably, the pivot axis is located in the last quarter or third of the vertical
extension of the deflection element which is remote from the second contact area.
Via this arrangement of the pivot axis the vertical extension of the deflection element
only slightly exceeds the second distance d2 of the pivot axis to the second contact
area. This reduces the vertical extension of the deflection element and on the other
hand ensures that the pivot axis is positioned in a part of the deflection element
which maintains a proper function of the deflection element although the pivot axis
is no longer located in the center thereof.
[0031] The elevator rope terminal may have the rope fitting and deflection element directly
mounted to the elevator component. Preferably, the rope fitting as well as the pivot
axis for the deflection element is mounted to a frame of the elevator rope terminal.
This frame preferably has a support part of the rope fitting and forms a part of the
rope fitting itself. The advantage of a frame comprising all the necessary elements
of the elevator rope terminal is that all elements of the rope terminal can simply
be mounted to the elevator component by simply fixing the frame of the elevator rope
terminal to the elevator component, for example via bolts and/or form fittings.
[0032] Preferably the support part is a plate having a perforation which is preferably mounted
to the frame. The rope fitting then preferably includes a threaded bolt connected
to the rope end. The bolt penetrates the perforation of the plate and the part of
the bolt extending through the plate carries a nut and a compression spring which
is fitted between the plate and the nut. This arrangement forms the spring means of
the invention. By adjusting the nut on the thread of the bolt the compression force
of the compression spring can be adjusted according to the actual need. Preferably
the nut is secured by a counter nut. Such kind of rope fitting is per se known and
reliable whereby the production costs are comparably low.
[0033] Preferably, the perimeter of the first and second curved areas should preferably
be equal to maximum rope travel (between rope in rest and the spring fully compressed).
Via this measure it is ensured that the curved areas cover all meeting points of the
rope with the circumferential area of the deflection element having a radius large
enough to reduce rope wear.
[0034] The invention also refers to an elevator component and/or an elevator having an elevator
rope terminal according to the above description.
[0035] In this context is may be emphasized that all the above mentioned embodiments of
the invention may be combined with each other as long as no conflicts are caused by
such combination.
[0036] The invention is now described by example via the enclosed schematic drawing. Therein
Figure 1 shows an elevator rope terminal according to prior art, and
Figure 2 shows an inventive elevator rope terminal in side view.
[0037] Figure 1 shows in side view a part of an elevator car 10 as an example of an elevator
component with a rope terminal 12 mounted to the bottom of the car. The rope terminal
12 comprises a frame 14 with a pivot axis 16 carrying a deflection roller 18 as deflection
element. The deflection roller 18 has a circumferential groove around which the elevator
rope 20 passes from its vertical course in the elevator shaft to a horizontal direction
at the rope end. The rope end is fixed via a rope fitting 22 to a threaded bolt 24.
The bolt protrudes a perforation in a perforated support plate 26 which is preferably
part of the frame of the elevator rope terminal but may also be mounted to the elevator
component, e.g. the car 10. The part of the threaded bolt 24 extending through the
perforation carries a nut 28. Between the perforated plate 26 and the nut 28 a compression
spring 30 is fitted around the bolt 24 which fixes the rope end elastically to the
elevator car 10. The deflection roller 18 has a radius r of a prescribed minimum size
to reduce rope wear. The circumferential area of the deflection roller comprises rope
grooves and can be divided in three areas.
[0038] A first upper contact area ca1 is defined by the points where the elevator rope from
the shaft meets the rope grooves according to the stroke of the compression spring.
A second lower contact area ca2 is defined by the points where the elevator rope connected
to the rope fitting 22 meets the rope grooves according to the stroke of the compression
spring. The maximal stroke of the compression spring is defined between the two extreme
positions totally compressed and totally unloaded. In operation any position between
those extreme positions are possible which correspond to contact points of the rope
in the first and second contact area. Between these two contact areas a deflection
area is provided. As the deflection element is a roller the radius of the rope grooves
is the same in all areas which means that either a large radius leads to a long service
life of the rope but leads to large vertical height of the rope terminal or the radius
is small which reduces the vertical height of the rope terminal but reduces the lifetime
of the rope.
[0039] In this connection it is essential that in the prior art rope terminal having a roller
as deflection element the contact areas and the deflection area have not been experienced
as separate areas. The appreciation of these areas as separate areas is already part
of the invention.
[0040] Figure 2 shows the inventive rope terminal in the same view as figure 1 whereby identical
parts or functionally identical parts are indicated with the same reference numerals.
[0041] In contrast to the elevator rope terminal of figure 1 the deflection element 32 of
figure 2 is not a roller as in figure 1 but a kind of rectangular plate which is pivoted
around the pivot axis 16 supported at the frame 14 of the inventive elevator rope
terminal 32. The deflection element 34 has a first curved contact area ca1 which is
defined by the contact points where the rope 20 coming from the shaft runs onto the
circumference, particularly a rope groove in the circumference of the deflection element
34 according to the possible stroke of the compression spring 30, a second curved
contact area ca2 which is defined by the points of contact of the rope 20 coming from
the rope fitting 22 onto the rope groove at the circumference of the deflection element
34. Between and in abutment to both contact areas ca1 and ca2 is the deflection area
da.
[0042] The essential difference of this deflection element 34 to the deflection roller 18
of figure 1 is that in the contact areas only very little bending of the rope occurs
as the radius of curvature in the contact areas ca1 and ca2 is larger than the radius
of the curvature in the deflection area da. On the other hand, the essential deflection
of the ropes happens in the deflection area between both contact areas. In this area
the rope does not leave the deflection element so that the contact of the rope on
the deflection element in this area is continuous. Accordingly, the load on the rope
is static and not a dynamic as in the contact areas where the rope enters or leaves
the circumferential area according to the actual compression status of the spring
means.
[0043] The - in running direction of the rope - middle of the first contact area ca1 has
a first distance d1 to the pivot axis 16. The middle of the second curved contact
area ca2 has a second distance d2 to the pivot axis, whereas the middle of the deflection
area da has a third distance d3 to the pivot axis. The third distance d3 of the middle
of the deflection area to the pivot axis 16 is larger than the second distance d2
of the second curved contact area ca2, which leads to the fact, that the vertical
extension of the deflection element 34 is small. Preferably, the third distance d3
of the middle of the deflection area d3 is also larger than the first distance d1
of the first contact area ca1 to the pivot axis 16. The first and second distance
d1 and d2 may be identical but this is not obligatory.
[0044] Further, the first radius r1 of the curvature the first contact area ca1 is larger
than the corresponding first distance d1. Also the second radius r2 of the curvature
of the second curved contact area ca2 is larger than the corresponding second distance
d2. In contrast thereto the third radius r3 of the curvature of the deflection area
is smaller than the corresponding third distance d3. This again leads to the fact
that the bending angle of rope in both contact areas is essentially lower than in
the deflection area where the bending angle because of the small bending radius is
high. This is not harmful for the rope as the rope contact in this area is static
without any movement between the deflecting element and the rope.
[0045] Furthermore, the pivot axis 16 is located in the third of the vertical extension
of the deflection element 34 which is remote from the second contact area ca2. In
the drawing this is the upper third. Via this measure the pivot axis 16 is in located
in the area of the upper edge or more general in the region of the remote edge with
respect to the second contact area. This also reduces the vertical extension of the
deflection element as in the invention more or less only the radius of the deflection
element has to be provided whereas in a roller 18 according to figure 1 the diameter,
i. e. two times of the radius has to be provided. Accordingly, the rope terminal of
the present invention has a very low vertical extension without affecting the lifetime
of the rope.
[0046] Preferably, the third distance d3 is larger than the distance d1 as well as the distance
d2, which stabilizes the orientation of the deflection element.
[0047] The invention can be varied within the scope of the appended claims.
1. Elevator rope terminal (32) for an elevator rope (20) comprising a rope fitting (23,
24, 26, 28, 30) for the fixing of the rope end to an elevator component (10), which
rope fitting comprises a spring means (30) for elastically fixing the rope end (22)
to the elevator component, the rope terminal further comprises a deflection element
(34) for deflecting the rope from a first direction before being received by the rope
terminal to a second direction in which the rope end is fixed to the elevator component,
which deflection element has a circumferential area (ca1, da, ca2) for receiving the
rope and is pivotably supported via a pivot axis (16) at the elevator component,
characterized in that the circumferential area has
- a first curved contact area (ca1) for receiving the rope, which first contact area
is defined by all contact points of the rope with the contact area within the maximum
stroke of the spring means,
- a second curved contact area (ca2) for the rope portion connected to the rope fitting,
which second contact area is defined by all contact points of the rope with the contact
area within the maximum stroke of the spring means,
- a curved deflection area (da) between the first and second curved contact areas,
whereby the third radius (r3) of the curvature of the curved deflection area (da)
is smaller than the first and second radius (r1, r2) of the curvature of the first
and second curved contact areas (ca1, ca2).
2. Elevator rope terminal according to claim 1, wherein the third radius (r3) is between
0,2 to 0,5 times as large as the first and/or second radius (r1, r2).
3. Elevator rope terminal according to one of the preceding claims, wherein the first
and second radius (r1, 2) are identical.
4. Elevator rope terminal according to one of the preceding claims, wherein
- at least a middle portion of said first curved area (ca1) has a first distance (d1)
to the pivot axis (16),
- at least a middle portion of said second curved area (ca2) has a second distance
(d2) to the pivot axis, and
- at least a middle portion of the deflection area (da) has a third distance (d3)
to the pivot axis, whereby the third distance (d3) is larger than the second distance
(d2).
5. Elevator rope terminal according to claim 4, wherein the first radius (r1) and/or
the second radius (r2) is/are larger than the respective first and/or second distance
(d1, d2).
6. Elevator rope terminal according to claim 5, wherein the first and/or second radius
(r1, r2) is between 1,5 to 2,5 times as large as the corresponding first and/or second
distance (d1, d2).
7. Elevator rope terminal according to one of claims 4 to 6, wherein the third radius
(r3) is between 0,3 to 0,7 times as large as the third distance (d3).
8. Elevator rope terminal according to one of the preceding claims, wherein the pivot
axis (16) is located in a border area of the deflection element (34) remote from the
second contact area (ca2).
9. Elevator rope terminal according to one of the preceding claims, comprising a frame
(14) for being mounted to the elevator component (10), which frame has with a support
part (26) of the rope fitting (23, 24, 26, 28, 30) and a pivot axis (16) for the deflection
element (34).
10. Elevator rope terminal according to claim 9, wherein the support part (26) is a plate
with a perforation and wherein the rope fitting (23, 24, 26, 28, 30) includes a threaded
bolt (24) connected the rope end (22), which bolt penetrates the perforation in the
plate, and wherein the bolt carries a nut (28) on its thread, and a compression spring
(30) surrounding the bolt (24) is fitted between the plate (26) and the nut (28).
11. Elevator having at least one elevator component with an elevator rope terminal (34)
according to one of the preceding claims.
12. Elevator according to claim 11, wherein the elevator rope (20) is a hoisting rope
or compensation rope.
13. Elevator according to claim 11 or 12, wherein the elevator component (10) is an elevator
car and/or counterweight.
14. Elevator according to one of claims 11 to 13, wherein the elevator component is the
elevator shaft or machine room or a fixed structure located therein.
1. Aufzugseilanschluss (32) für ein Aufzugseil (20) umfassend eine Seilaufnahme (21,
24, 26, 28, 30) für die Befestigung des Seilendes an einer Aufzugskomponente (10),
welche Seilaufnahme eine Federeinrichtung (30) zum elastischen Befestigen des Seilendes
(22) an der Aufzugskomponente aufweist, wobei der Seilanschluss weiterhin ein Ablenkelement
(34) enthält, um das Seil von einer ersten Richtung abzulenken, bevor es von dem Seilanschluss
in einer zweiten Richtung aufgenommen wird, in welcher das Seilende an der Aufzugskomponente
befestigt wird, welches Ablenkelement eine Umfangsfläche (ca1 da, ca2) zum Aufnehmen
des Seiles hat und schwenkbar mittels einer über eine Schwenkachse (16) an der Aufzugskomponente
getragen ist,
dadurch gekennzeichnet, dass die Umfangsfläche folgende Bereiche aufweist:
- einen ersten gekrümmten Kontaktbereich (ca1) für die Aufnahme des Seiles, welcher
erste Kontaktbereich definiert wird durch alle Kontaktpunkte des Seiles mit dem Kontaktbereich
innerhalb des maximalen Hubs der Federeinrichtung,
- einen zweiten gekrümmten Kontaktbereich (ca2) für den Seilabschnitt, der mit der
Seilaufnahme verbunden ist, welcher zweite Kontaktbereich definiert ist durch alle
Kontaktpunkte des Seiles mit dem Kontaktbereich innerhalb des maximalen Hubs der Federeinrichtung,
- ein gekrümmter Ablenkbereich (da) zwischen dem ersten und zweiten gekrümmten Kontaktbereich,
wobei der dritte Radius (r3) der Krümmung des gekrümmten Ablenkbereichs (da) kleiner
ist als der erste und zweite Radius (r1, r2) der Krümmung des ersten und zweiten gekrümmten
Kontaktbereichs (ca1 ca2).
2. Aufzugseilanschluss nach Anspruch 1, bei welchem der dritte Radius (r3) zwischen 0,2
bis 0,5 Mal so groß ist wie der erste und/oder zweite Radius (r1 r2).
3. Aufzugseilanschluss nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste und zweite Radius (r1, r2) identisch sind.
4. Aufzugseilanschluss nach einem der vorhergehenden Ansprüche, bei dem
- wenigstens ein mittlerer Abschnitt des ersten gekrümmten Bereichs (ca1) einen ersten
Abstand (d1) zu der Schwenkachse (16) hat,
- wenigstens ein mittlerer Abschnitt des zweiten gekrümmten Bereiches (ca2) eine zweite
Distanz (d2) zu der Schwenkachse hat, und
- wenigstens ein mittlerer Abschnitt des Ablenkbereiches (da) eine dritte Distanz
(d3) zu der Schwenkachse hat, wobei die dritte Distanz (d3) größer ist als die zweite
Distanz (d2).
5. Aufzugseilanschluss nach Anspruch 4, bei welchem der erste Radius (r1) und/oder der
zweite Radius (r2) größer sind als der entsprechende erste und/oder zweite Abstand
(d1, d2).
6. Aufzugseilanschluss nach Anspruch 5, bei welchem der erste und/oder zweite Radius
(r1, r2) zwischen 1,5 bis 2,5 Mal so groß wie der entsprechende erste und/oder zweite
Abstand (d1, d2) ist/sind.
7. Aufzugseilanschluss nach einem der Ansprüche 4-6, bei welchem der dritte Radius (r3)
zwischen 0,3 bis 0,7 Mal so groß ist wie der dritte Abstand (d3).
8. Aufzugseilanschluss nach einem der vorhergehenden Ansprüche, bei dem die Schwenkachse
(16) in einem Randbereich des Ablenkelements (34) entfernt von dem zweiten Kontaktbereich
(ca2) angeordnet ist.
9. Aufzugseilanschluss nach einem der vorhergehenden Ansprüche, umfassend einen Rahmen
(14), um an der Aufzugskomponente (10) montiert zu werden, welcher Rahmen ein Tragteil
(26) der Seilaufnahme (23, 24, 26, 28, 30) und eine Schwenkachse (16) für das Ablenkelement
(34) hat.
10. Aufzugseilanschluss nach Anspruch 9, bei welchem das Tragteil (26) eine Platte mit
einer Perforation ist und bei dem die Seilaufnahme (23, 24, 26, 28, 30) einen Gewindebolzen
(24) enthält, der mit dem Seilende (22) verbunden ist, welcher Bolzen die Perforation
in der Platte durchsetzt, und bei welchem der Bolzen eine Nuss (28) an seinem Gewinde
trägt, und eine Druckfeder (30), die den Bolzen (24) umgibt, die zwischen der Platte
(26) und der Nuss (28) angeordnet ist.
11. Aufzug mit wenigstens einer Aufzugkomponente mit einem Aufzugseilanschluss (34) nach
einem der vorhergehenden Ansprüche.
12. Aufzug nach Anspruch 11, bei welchem das Aufzugseil (20) ein Hebe- oder Kompensationsseil
ist.
13. Aufzug nach Anspruch 11 oder 12, bei welchem die Aufzugskomponente (10) eine Aufzugskabine
und/oder ein Gegengewicht ist.
14. Aufzug nach einem der Ansprüche 11-13, in welchem die Aufzugskomponente der Aufzugschacht
oder ein Maschinenraum oder eine darin angeordnete feste Struktur ist.
1. Elément d'extrémité de câble d'ascenseur (32) pour un câble d'ascenseur (20) comprenant
une attache de câble (23, 24, 26, 28, 30) pour la fixation de l'extrémité de câble
à un composant d'ascenseur (10), laquelle attache de câble comprend un moyen de ressort
(30) pour fixer de manière élastique l'extrémité de câble (22) au composant d'ascenseur,
l'élément d'extrémité de câble comprend en outre un élément de déviation (34) pour
faire dévier le câble d'une première direction avant d'être reçu par l'élément d'extrémité
de câble vers une seconde direction dans laquelle l'extrémité de câble est fixée au
composant d'ascenseur, lequel élément de déviation a une zone périphérique (ca1, da,
ca2) pour recevoir le câble et est supporté pivotant par l'intermédiaire d'un axe
de pivotement (16) au niveau du composant d'ascenseur,
caractérisé par le fait que la zone périphérique a
- une première zone de contact incurvée (ca1) pour recevoir le câble, laquelle première
zone de contact est définie par tous les points de contact du câble avec la zone de
contact dans la limite de la course maximale du moyen de ressort,
- une seconde zone de contact incurvée (ca2) pour la partie de câble raccordée à l'attache
de câble, laquelle seconde zone de contact est définie par tous les points de contact
du câble avec la zone de contact dans la limite de la course maximale du moyen de
ressort,
- une zone de déviation incurvée (da) entre les première et seconde zones de contact
incurvées, le troisième rayon (r3) de la courbure de la zone de déviation incurvée
(da) étant plus petit que le premier et le second rayon (r1, r2) de la courbure des
première et seconde zones de contact incurvées (ca1, ca2).
2. Elément d'extrémité de câble d'ascenseur selon la revendication 1, dans lequel le
troisième rayon (r3) est entre 0,2 et 0,5 fois plus grand que les premier et/ou second
rayons (r1, r2).
3. Elément d'extrémité de câble d'ascenseur selon l'une des revendications précédentes,
dans lequel les premier et second rayons (r1, r2) sont identiques.
4. Elément d'extrémité de câble d'ascenseur selon l'une des revendications précédentes,
dans lequel
- au moins une partie centrale de ladite première zone incurvée (ca1) a une première
distance (d1) par rapport à l'axe de pivotement (16),
- au moins une partie centrale de ladite seconde zone incurvée (ca2) a une seconde
distance (d2) par rapport à l'axe de pivotement (16), et
- au moins une partie centrale de la zone de déviation (ca) a une troisième distance
(d3) par rapport à l'axe de pivotement, la troisième distance (d3) étant supérieure
à la seconde distance (d2).
5. Elément d'extrémité de câble d'ascenseur selon la revendication 4, dans lequel le
premier rayon (r1) et/ou le second rayon (r2) est/sont plus grand(s) que la première
et/ou seconde distance (d1, d2) respective.
6. Elément d'extrémité de câble d'ascenseur selon la revendication 5, dans lequel le
premier et/ou second rayon (r1, r2) est entre 1,5 et 2,5 fois plus grand que la première
et/ou seconde distance (d1, d2) correspondante.
7. Elément d'extrémité de câble d'ascenseur selon l'une des revendications 4 à 6, dans
lequel le troisième rayon (r3) est entre 0,3 et 0,7 fois plus grand que la troisième
distance (d3).
8. Elément d'extrémité de câble d'ascenseur selon l'une des revendications précédentes,
dans lequel l'axe de pivotement (16) est situé dans une zone de bordure de l'élément
de déviation (34) à distance de la seconde zone de contact (ca2).
9. Elément d'extrémité de câble d'ascenseur selon l'une des revendications précédentes,
comprenant un cadre (14) destiné à être monté sur le composant d'ascenseur (10), lequel
cadre a un élément de support (26) de l'attache de câble (23, 24, 26, 28, 30) et un
axe de pivotement (16) pour l'élément de déviation (34).
10. Elément d'extrémité de câble d'ascenseur selon la revendication 9, dans lequel l'élément
de support (26) est une plaque avec une perforation et dans lequel l'attache de câble
(23, 24, 26, 28, 30) comprend un boulon fileté (24) raccordé à l'extrémité de câble
(22), lequel boulon pénètre dans la perforation dans la plaque, et dans lequel le
boulon porte une rainure (28) sur son filetage, et un ressort de compression (30)
entourant le boulon (24) est installé entre la plaque (26) et la rainure (28).
11. Ascenseur ayant au moins un composant d'ascenseur comportant un élément d'extrémité
de câble d'ascenseur (34) selon l'une des revendications précédentes.
12. Ascenseur selon la revendication 11, dans lequel le câble d'ascenseur (20) est un
câble de levage ou un câble de compensation.
13. Ascenseur selon la revendication 11 ou 12, dans lequel le composant d'ascenseur (10)
est une cabine d'ascenseur et/ou un contrepoids.
14. Ascenseur selon l'une des revendications 11 à 13, dans lequel le composant d'ascenseur
est la cage d'ascenseur ou le local des machines ou une structure fixe y étant située.