[0001] Die Erfindung betrifft eine Anordnung und ein Verfahren zum Eintragen von Wärme in
eine geologische Formation, insbesondere in eine in einer geologischen Formation vorliegenden
Lagerstätte, insbesondere zur Gewinnung einer kohlenwasserstoffhaltigen Substanz -
insbesondere Erdöl - aus der Lagerstätte, wobei eine Erschließung der Lagerstätte
mit Schächten, Stollen, Strecken oder anderen Grubenbauten erfolgt. Die Erfindung
betrifft insbesondere die Gewinnung von viskosen, hochviskosen und bitumenartigen
Erdölen.
[0002] Es ist bekannt, hochviskose und bitumenartige Erdöle - so genannte Ölsande - im Tagebau
abzubauen. Dies erfolgt häufig in Regionen, in denen solche Lagerstätte aufgeschlossen
bzw. von weniger als 75 m Sediment bedeckt sind.
[0003] Bei unterirdischen Lagerstätten, ab einer Tiefe von etwa 75 m, bedient man sich häufig
so genannter "In situ"-Methoden. Das bedeutet, dass bei dieser Technik der Ölsand
- also der Sand und das Gestein mit dem enthaltenen Öl - an Ort und Stelle verbleibt.
Das Öl bzw. das Bitumen wird mittels verschiedener Verfahren vom Sandkorn getrennt
und fließfähiger gemacht, damit es gefördert werden kann. Die "in situ"-Methoden haben
üblicherweise das Prinzip, die Temperatur im Untergrund zu erhöhen und somit die Viskosität
des gebundenen Öls bzw. des Bitumens zu verringern und es fließfähiger zu machen,
um es anschließend abpumpen zu können. Die Hitzeinwirkung bewirkt insbesondere, dass
sich langkettige Kohlenwasserstoffe des hochviskosen Bitumens aufspalten.
[0004] Als Verfahren, die auf diesen Prinzipien beruhen, sind insbesondere SAGD ("steam
assisted gravity drainage"), CSS ("cyclic steam stimulation"), THAI ("toe to heel
air injection"), VAPEX ("vapor extraction process") bekannt.
[0005] Das am weitesten verbreitete und angewendete "in situ"-Verfahren zur Förderung von
viskosen Öle und Bitumen ist das SAGD-Verfahren, das im Folgenden beispielhaft erläutert
wird. Dabei wird Wasserdampf unter Druck durch ein innerhalb des Reservoirs horizontal
verlaufendes Bohrloch eingepresst, wobei das Bohrloch dafür mit einem speziellen geschlitzten
Injektionsrohr ausgestattet ist. Das aufgeheizte, geschmolzene und vom Sand oder Gestein
abgelöste Bitumen/Schweröl sickert zu einem zweiten geschlitzten Rohr - das Produktionsrohr
-, dass in einem etwa 5 m (Abstand von Injektor- und Produktionsrohr abhängig von
Reservoirgeometrie) tiefer gelegenen horizontalen Bohrloch eingebracht ist und durch
welches die Förderung des verflüssigten Bitumens/Schweröl erfolgt. Der Wasserdampf
erfüllt dabei mehrere Aufgaben gleichzeitig, nämlich die Einbringung der Heizenergie
zur Verflüssigung, das Ablösen vom Sand, sowie den Druckaufbau im Reservoir, um einerseits
das Reservoir technisch für einen Bitumentransport durchlässig zumachen (Permeabilität)
und andererseits die Förderung des Bitumens zu ermöglichen.
[0006] Beim SAGD-Verfahren sind üblicherweise zwei technologische Phasen zeitlich nacheinander
durchzuführen: Eine Dampf-Zirkulationsphase über mehrere Monate gefolgt von einer
Produktionsphase (SAGD-Phase), wobei bei letzterem die Dampfeinbringung fortgeführt
wird.
[0007] Während die vorstehend genannten Verfahren insbesondere für permeable Sande vorgesehen
sind, gibt es auch Öllagerstätten, bei dem in gering oder teilweise permeablen Gestein
hochviskose Öle und Bitumen eingeschlossen sind, bzw. sich Schichten aus permeablen
und nicht permeablen Gestein abwechseln, so dass eine bergbauliche Erschließung denkbar
ist.
[0008] Ein Verfahren bei bergbaulicher Erschließung ist beispielsweise aus dem Abstract
der Patentanmeldung
RU2268356 zu entnehmen, bei dem Dampf aus einem Bergbautunnel (Schacht) in eine Zone eingeleitet
wird, um daraufhin Öl zu fördern.
[0009] Wird zur Erdölgewinnung durch Schachtabbau als Wärmeträger Dampf oder heißes Wasser
verwendet, können sich folgende Nachteile ergeben:
- Möglichkeit des Dampfdurchbruches in die Grubenbauten, was zum Verlust des Wärmeträgers
führt und die Betriebssicherheit gefährdet,
- Hohe Investitions- und Betriebskosten, die durch Bau/Erwerb und Betrieb der Anlagen
für Dampfproduktion entstehen.
- Hoher Aufwand zur Trennung des Öl-Wassergemisches und hoher Aufwand zur Wasseraufbereitung
des produzierten Wassers.
[0010] Es ist Aufgabe der vorliegenden Erfindung, eine Anordnung für den Schachtabbau anzugeben,
bei der die vorstehend genannten Nachteile in einem geringeren Umfang auftreten. Außerdem
ist es Aufgabe der Erfindung eine Steigerung des Entölungsgrades der Lagerstätte zu
ermöglichen.
[0011] Die Aufgabe wird erfindungsgemäß durch die Merkmale der unabhängigen Patentansprüche
gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung sind in den
Unteransprüchen angegeben.
[0012] Die Erfindung betrifft eine Anordnung zum Eintragen von Wärme in eine geologische
Formation, insbesondere in eine in einer geologischen Formation - d.h. im Untergrund
- vorliegenden Lagerstätte, insbesondere zur Gewinnung einer kohlenwasserstoffhaltigen
Substanz - insbesondere Erdöl - aus der Lagerstätte, wobei in der geologischen Formation
mindestens ein unterirdischer Grubenbau bergmännisch hergestellt ist und der Grubenbau
mindestens einen Schacht und/oder mindestens eine Strecke umfasst. Die bergmännische
Herstellung des Grubenbaus ist insbesondere für einen Schachtabbau bzw.
[0013] Untertagebau vorgesehen. Weiterhin ist ein elektrischer Leiter zumindest teilweise
in der geologischen Formation eingebracht, wobei der Leiter in einem ersten Leiterstück
innerhalb des Grubenbaus verläuft. Der Leiter weist darüber hinaus zumindest einen
Leiter-Abschnitt auf, der derart ausgebildet ist, dass im Betrieb ein elektromagnetisches
Feld auf das zum Leiter-Abschnitt benachbarte Erdreich mittels elektromagnetischer
Induktion einwirkt, so dass eine Temperaturerhöhung und somit eine Verringerung der
Viskosität einer im benachbarten Erdreich vorliegenden Substanz bewirkt wird. Bei
dieser erwärmten Substanz handelt es sich insbesondere um die genannte kohlenwasserstoffhaltigen
Substanz, insbesondere im Untergrund vorliegendes Erdöl.
[0014] Unter dem Ausdruck "Eintragen von Wärme" ist insbesondere ein Einbringen von Wärme
bzw. das Erzielen einer Temperaturerhöhung zu verstehen, so dass sich eine höhere
Temperatur innerhalb der Lagerstätte einstellt.
[0015] Die Temperaturerhöhung wirkt sich insbesondere auf organische Substanzen des benachbarten
Erdreichs aus. Die Temperaturerhöhung ergibt sich weiterhin vorzugsweise dadurch,
dass sich in elektrisch leitfähigen Schichten des Erdreichs aufgrund des elektromagnetisches
Feldes Wirbelströme mittels Induktion ausbilden, welche daraufhin joulsche Wärme erzeugen,
die eine Temperaturerhöhung und somit eine Verringerung der Viskosität der im Erdreich
befindlichen Substanz bewirken.
[0016] Grubenbauten, d.h. Schächte, Strecken und Stollen, vorzusehen ist dabei insbesondere
vorteilhaft, wenn im Untergrund zumindest anteilig feste Gesteinsschichten vorliegen,
die zumindest so stabil sind, dass einfach derartige Grubenbauten eingebracht - im
Fachvokabular auch als "aufgefahren" bezeichnet - werden können.
[0017] Als "Stollen" ist ein Grubenbau zu verstehen, der weitgehend waagerecht oder leicht
ansteigend ausgebildet ist, wobei der Stollen an der Tagesoberfläche beginnt.
[0018] Als "Strecke" ist ein Grubenbau zu verstehen, der weitgehend waagerecht oder leicht
ansteigend ausgebildet ist, jedoch nicht zwingend an der Tagesoberfläche beginnt sondern
auch vollständig im Untergrund sein kann.
[0019] Strecken und Stollen sind somit üblicherweise unterirdische Gänge. Sie haben vorzugsweise
dabei mindestens einen Querschnitt, dass Personal, Geräte oder abgeräumtes Erdreich
durch die Strecke oder den Stollen passieren kann. Eine bloße Bohrung für ein Rohr
soll dagegen nicht als Strecke oder Stollen verstanden werden.
[0020] Unter "benachbartem" Erdreich ist das direkt umgebende Erdreich um den elektrischen
Leiter zu verstehen oder auch Erdreich mit einem Abstand zum elektrischen Leiter,
sofern in dem Abstand noch das elektromagnetisches Feld des Leiters wirkt.
[0021] Der Begriff "Erdreich" ist als sandiges, eventuell verfestigtes, zementiertes Gestein
als auch als felsiges Gestein zu verstehen, inklusive aller im Boden enthaltenen Stoffe,
wie die zu fördernden kohlenwasserstoffhaltigen, öligen Bestandteile.
[0022] Die Erfindung ist insbesondere vorteilhaft, als dass wegen bereits vorhandener bzw.
vorher eingebrachter Grubenbauten - d.h. Schächte, Strecken und/oder Stollen - vereinfachte
Bohrverfahren verwendet werden können, um den elektrischen Leiter sowie Drainageleitungen
für das Fördern der fluiden Substanz, im wesentlichen bestehend aus Rohöl und Wasser,
einbringen zu können. Der elektrische Leiter ist nämlich in der bevorzugten Ausführungsform
als geschlossene ununterbrochene Schleife ausgebildet, wobei Hin- und Rückleiter an
einen Frequenzgenerator angeschlossen werden können, der den elektrischen Leiter mit
einer dafür vorgesehenen Frequenz bestromt. Beispielsweise kann für den Leiter eine
überwiegend gerade verlaufende Bohrung vom/zum Schacht bzw. von der/zur Strecke angelegt
werden. Weiterhin kann eine Bohrung für ein Produktionsrohr für das Wegleiten eines
flüssigen Produktionsgutes vom bzw. zum Schacht bzw. Strecke durchgeführt werden.
Dasselbe gilt für möglicherweise ebenfalls anzulegende Injektionsrohre für das Einleiten
eines Fluids in den Untergrund, die ebenfalls in Bohrungen vom bzw. zum Schacht oder
von der bzw. zur Strecke installiert werden können. Aufgrund der Einbeziehung von
Schächten und Strecken für weiterführende Bohrungen können weitgehend gerade, krümmungsfreie
Bohrungen für die Verlegung des Leiters durchgeführt werden. Die Schächte und Strecken
können auch zum Sammeln und für den Abtransport des Produktionsgutes verwendet werden.
Weiterhin kann in den Schächten und/oder Strecken der Frequenzgenerator oder weitere
elektronische Komponenten für den Betrieb des elektrischen Leiters installiert werden.
Zusätzlich erlauben die Schächte und Strecken, dass ein Abschnitt des Leiters in einem
Schacht und/oder einer Strecke positioniert werden kann, insbesondere entlang der
Erstreckung des Schachts und/oder der Strecke oder auch quer durch den Schacht und/oder
der Strecke.
[0023] Darüber hinaus ermöglichen die Schächte und Strecken eine vereinfachte Installation
des Leiters in Form einer Leiterschleife, die zwei im wesentlichen parallel zueinander
verlaufende Leiter-Abschnitte aufweist, mit geringen Kurvenradien der Leiterschleife,
weil die Kurve der Leiterschleife im Schacht und/oder Strecke erfolgen kann. Eine
Bohrung von gekrümmten Radien im Erdreich kann somit vermieden werden bzw. die Anzahl
von gekrümmten Bohrungen kann verringert werden. Eine gewünschte Schleife für den
elektrischen Leiter wird vorzugsweise so gebildet, dass der elektrische Leiter durch
eine Bohrung vom Frequenzgenerator in eine Strecke hingeführt wird, dort innerhalb
der Strecke, evtl. mit einem Übergang zu einer weiteren Strecke, zur nächsten Bohrung
geführt wird, welche wieder zurück zum Frequenzgenerator führt.
[0024] Neben der bereits erläuterten Anordnung betrifft die Erfindung auch ein Installationsverfahren,
wobei im Untergrund mindestens ein Schacht und/oder mindestens eine Strecke für einen
Schachtabbau angelegt wird. Weiterhin wird eine Bohrung für einen Leiter durchgeführt,
in dem ein elektrischer Leiter zumindest teilweise in den Untergrund - d.h. in die
geologische Formation - eingebracht wird.
[0025] Darüber hinaus betrifft die Erfindung auch ein Betriebsverfahren, bei dem für eine
vorstehend genannte Anordnung der Leiter so betrieben wird, dass im Betrieb ein elektromagnetisches
Feld auf das zum Leiter-Abschnitt benachbarte Erdreich mittels elektromagnetischer
Induktion einwirkt, so dass eine Temperaturerhöhung und somit eine Verringerung der
Viskosität der im benachbarten Erdreich vorliegenden Substanz bewirkt wird.
[0026] Hierbei wird - wie bereits erläutert - ausgenutzt, dass sich mittels elektromagnetischer
Induktion in den elektrisch leitfähigen Schichten Wirbelströme ausbilden, welche joulsche
Wärme erzeugen.
[0027] Erfindungsgemäß wird ein elektrischer Leiter eingesetzt, den im Betrieb zielgerichtet
ein elektromagnetisches Feld umgibt, so dass sich mittels elektromagnetischer Induktion
ein umgebendes Erdreich erwärmt. Hierunter sind allerdings keine parasitären Effekte
zu verstehen, die möglicherweise bei vielen elektrischen Leitern im Betrieb auftreten.
Die elektromagnetische Induktion erfolgt erfindungsgemäß oberhalb einer Schwelle unterhalb
der unvermeidlich Induktionsvorgänge als Nebenerscheinungen erfolgen.
[0028] Unter der elektromagnetischen Induktion sind insbesondere kein Widerstandsheizen
(bzw. resistives Heizen) oder Mikrowellen-Heizen zu verstehen. Allerdings könnten
zusätzlich zur Erfindung spezifische Einrichtungen zum derartigen Heizen eingesetzt
werden.
[0029] Gemäß der Erfindung ist ein erstes Leiterstück des Leiters in dem mindestens einen
Schacht und/oder in der mindestens einen Strecke angeordnet. Dies kann so implementiert
sein, dass der Leiter in diesem ersten Leiterstück keinen unmittelbaren körperlichen
Kontakt zum Erdreich aufweist und nicht unmittelbar vom Erdreich umschlossen ist.
Das erste Leiterstück kann frei im Schacht oder Strecke zu Liegen kommen. Hierdurch
sind insbesondere kleine Kurvenradien des Leiters möglich. Darüber hinaus ist ein
Zugriff auf den Leiter durch Installations- oder Bedienpersonal möglich.
[0030] In einer vorteilhaften Ausgestaltung der Anordnung und des Verfahrens 'kann eine
für die Installation des elektrischen Leiters vorgesehene mindestens eine Bohrung
einen gekrümmten Abschnitt und einen quasihorizontalen Abschnitt aufweisen. Weiterhin
kann die Bohrung im Grubenbau enden.
[0031] In einer vorteilhaften Ausgestaltung kann ein zweites Leiterstück des Leiters in
einer Bohrung im Erdreich angeordnet sein und mit dem Erdreich in Berührung sein.
Der Leiter kann dabei gemantelt sein und/oder die Bohrung kann verrohrt sein, so dass
der Übergang des Leiters zum umgebenden Erdreich über diese Mantelung und/oder dieses
Rohr und/oder Hohlräume im Erdreich erfolgt. Dabei ist zu verstehen, dass es sich
hierbei nicht um einen thermischen oder elektrischen Übergang zwischen Leiter und
Erdreich handelt, sondern nur um ein umgebendes Feld des Leiters.
[0032] Um eine ungestörte Wirkung der elektromagnetischen Strahlung vom elektrischen Leiter
ins Erdreich zu gewährleisten, wird der Leiter insbesondere ohne ihn umgebende Verrohrung
verlegt. Alternativ kann eine nicht-metallische Verrohrung verwendet werden. Darüber
hinaus kann vorzugsweise eine Ummantelung des Leiters aus nicht-metallischem Material
bestehen.
[0033] Vorzugsweise können zwischen zwei im wesentlichen parallelen - also quasiparallelen
- Strecken zwei im wesentliche parallele Bohrungen durchgeführt werden, und der Leiter
in die parallelen Strecken und die parallelen Bohrungen gezogen wird, so dass der
Leiter eine Leiterschleife bildet. Dies kann vorzugsweise so durchgeführt werden,
dass eine Leiterschleife mit einem ersten Leiter-Abschnitt in einer ersten Bohrung
weitgehend horizontal verlegt sein kann und die erste Bohrung in einer weitgehend
rechtwinklig dazu verlaufenden ersten Strecke enden kann, und weiterhin dass die Leiterschleife
mit einem zweiten Leiter-Abschnitt in einer zweiten Bohrung weitgehend horizontal
verlegt sein kann und die zweite Bohrung in der weitgehend rechtwinklig dazu verlaufenden
ersten Strecke enden kann, und darüber hinaus die Leiterschleife einen dritten Leiterabschnitt
umfassen kann, der in der ersten Strecke angeordnet sein kann und eine Verbindung
zwischen dem ersten Leiter-Abschnitt und dem zweiten Leiter-Abschnitt bereitstellen
kann.
[0034] Weiterhin kann vorgesehen sein, dass der erste Leiter-Abschnitt über die erste Bohrung
oder über den mindestens einen Schacht an die Erdoberfläche geführt ist und dass der
zweite Leiter-Abschnitt über die zweite Bohrung oder über den mindestens einen Schacht
an die Erdoberfläche geführt ist. Somit kann ein an der Oberfläche installierter Frequenzgenerator
zur Bestromung des elektrischen Leiters an den Leiter angeschlossen werden.
[0035] Des Weiteren kann eine Leiterschleife in einem Grubenbau, insbesondere in einer zweiten
Strecke, zusammengeführt und/oder geschlossen werden. Dies kann insbesondere dadurch
erfolgen, dass zwei Leiter-Enden in unmittelbare Nähe zueinander gebracht werden,
um so an einen Frequenzgenerator anschließen zu können. Dies kann vorzugsweise so
umgesetzt werden, dass der erste Leiter-Abschnitt an dem der ersten Strecke gegenüberliegenden
Ende über die erste Bohrung in einer weitgehend rechtwinklig zur ersten Bohrung verlaufenden
zweiten Strecke endet und dass der zweite Leiter-Abschnitt an dem der ersten Strecke
gegenüberliegenden Ende über die zweite Bohrung in der weitgehend rechtwinklig zur
zweiten Bohrung verlaufenden zweiten Strecke endet und mindestens ein vierter Leiterabschnitt
der Leiterschleife - vorzugsweise zwei vierte Leiterabschnitte - in der zweiten Strecke
angeordnet ist. Die zwei vierten Leiterabschnitte laufen dabei vorzugsweise gegenläufig
aufeinander zu.
[0036] Vorzugsweise kann der Frequenzgenerator und/oder weitere elektronische Komponenten
zum Betrieb des elektrischen Leiters an der Oberfläche - Obertage - angeordnet sein.
Dazu kann mindestens ein fünfter Leiter-Abschnitt der Leiterschleife in einer von
der zweiten Strecke ausgehenden vertikalen Bohrung oder einem von der zweiten Strecke
ausgehenden vertikalen Schacht angeordnet sein, wobei der mindestens eine fünfte Leiterabschnitt
vorzugsweise eine Verbindung zu einem Frequenzgenerator bereitstellt. "Vertikal" ist
dabei so zu verstehen, dass eine derartige Bohrung oder ein derartiger Schacht eine
vertikale Vektorkomponente hat, die größer ist als eine horizontale Vektorkomponente
der Bohrung oder des Schachts. In idealer Ausführung ist die horizontale Vektorkomponente
Null, so dass eine perfekt vertikale Ausrichtung gegeben ist. Der fünfte Leiter-Abschnitt
kann somit im wesentlichen vertikal oder gegenüber der Oberfläche schräg verlaufen.
[0037] Weiterhin können vorzugsweise Bohrungen und in diese installierte Rohre vorgesehen
sein, über die die Substanz ausgeleitet werden kann oder über die Wasser in flüssiger
Form oder als Dampf, eventuell unter Zufügung von weiteren Komponenten wie Elektrolyte,
eingespeist werden kann. Dies kann vorzugsweise so erfolgen, dass zwischen zwei in
einer ersten Tiefe angeordneten im wesentlichen parallel verlaufenden Leiter-Abschnitte
parallel dazu ein Injektionsrohr zum Einspeisen eines zu injizierenden Fluids in die
Lagerstätte und/oder ein Produktionsrohr - ein Sammelrohr - zum Abführen eines aus
der Lagerstätte entnommenen Fluids angeordnet ist. Die genannten Rohre können dabei
geschlitzt und in anderer Form durchlässig ausgebildet sein, so dass Flüssigkeit und/oder
Gas - evtl. inklusive kleinerer Feststoffe - ein- bzw. austreten kann.
[0038] Eine Zuführung des zu injizierenden Fluids zum Injektionsrohr kann vorzugsweise über
den mindestens einen Grubenbau - einen Schacht, eine Strecke und/oder einen Stollen
- erfolgen. Ein Abführen und/oder Sammeln des entnommenen Fluids vom Produktionsrohr
kann über den mindestens einen Grubenbau erfolgen.
[0039] In einer weiteren Ausgestaltung kann innerhalb der ersten Bohrung zusätzlich zum
Leiter oder nach Entfernen des Leiters alternativ zum Leiter ein Injektionsrohr und/oder
ein Produktionsrohr angeordnet sein. Weiterhin kann innerhalb der zweiten Bohrung
zusätzlich zum Leiter oder nach Entfernen des Leiters alternativ zum Leiter ein Injektionsrohr
zum Einspeisen eines zu injizierenden Fluids in die Lagerstätte und/oder ein Produktionsrohr
zum Abführen eines aus der Lagerstätte entnommenen Fluids angeordnet sein.
[0040] Weiterhin kann ein Frequenzgenerator zum Betreiben des Leiters vorgesehen sein. Der
Frequenzgenerator kann dabei an der Erdoberfläche oder im Grubenbau angeordnet sein.
[0041] Vorzugsweise können Enden des Leiters, insbesondere bei Untertage-Installation des
Hochfrequenzgenerators, in einer explosionsgeschützten und/oder wetterfesten Klemmbox
angeschlossen werden, welche gegenüber dem Frequenzgenerator explosionsgeschützt abgeschlossen
und abgedichtet sein kann. Bezüglich des Bereitstellens bzw. des Auffahrens der Grubenbauten
können zwei der mindestens einen Schächte oder Strecken quasiparallel anordnet werden.
Weiterhin kann die mindestens eine Strecke - oder beide der genannten zwei Strecken
- in der Streichungsrichtung einer ölführenden Schicht angeordnet sein.
Eine oder mehrere für den Leiter vorgesehene Bohrungen zwischen den Grubenbauten können
in einer Neigung der Falllinie oder in der Schwebensrichtung der ölführenden Schicht
angeordnet werden.
[0042] Weiterhin kann eine erste der mindestens einen Strecke in den Firstengesteinen einer
ölführenden Schicht und einer zweiten der mindestens einen Strecke in den Solegesteinen
der ölführenden Schicht angeordnet werden. Vorzugsweise kann der Grubenbau in einer
ölführenden Schicht der Lagerstätte und/oder in Nebengesteinen der Lagerstätte bereitgestellt
sein. Die Bereitstellung in den Nebengesteinen kann vorzugsweise derart ausgebildet
sein, dass eine erste der mindestens einen Strecke in den Firstengesteinen einer ölführenden
Schicht und dass eine zweite der mindestens einen Strecke in den Solegesteinen der
ölführenden Schicht (5) angeordnet sind.
[0043] Weiterhin kann insbesondere für eine verbesserte Förderung der Substanz zwischen
zwei für den Leiter vorgesehenen quasiparallelen Bohrungen zusätzlich mindestens noch
zwei weitere quasiparallelen Bohrungen in der ölführenden Schicht mit einer dazwischen
liegenden Spalte angeordnet werden.
[0044] Zur erfindungsgemäßen Ausgestaltung gehören weiterhin, neben den vorstehend als strukturelle
Anordnung erläuterten Ideen, auch die dafür notwendigen Errichtungsschritte - also
z.B. das Bohren von Bohrungen, das Graben, Bohren und Einbringen von Schächten und
Strecken inklusive benötigter statischer Stabilisierungsmaßnahmen, das Einführen des
Leiters in die Bohrungen oder Grubenbauten (Strecken oder Schächte). Weiterhin sind
auch die Betriebsverfahren für die vorstehend beschriebenen Anordnungen zur Erfindung
gehörend oder als eine Weiterbildung dazu zu verstehen. Insbesondere gilt dies für
den Betrieb des im Untergrund installierten Leiters durch Beaufschlagung des Leiters
mit Wechselspannung, vorzugsweise zur Gewinnung der - insbesondere kohlenwasserstoffhaltigen
- Substanz.
[0045] In einer Weiterbildung des Verfahrens zum Eintragen von Wärme in eine geologische
Formation, insbesondere in eine in einer geologischen Formation vorliegenden Lagerstätte,
insbesondere zur Gewinnung einer kohlenwasserstoffhaltigen Substanz, insbesondere
von gebundenem Erdöl, kann in einer vorstehend beschriebenen Anordnung zeitlich nach
einer durch den bestromten Leiter erfolgten Temperatursteigerung einer beheizten Zone
von bis zu 120-140°C die beheizte Zone mit einem wässrigem Fluidmedium, welches Wasser
und vorzugsweise mindestens ein Glucan mit einer β-1,3-glykosidisch verknüpften Hauptkette
und β-1,6-glykosidisch daran gebundenen Seitengruppen umfasst, geflutet werden. Das
Glucan kann dabei vorzugsweise ein gewichtsmittleres Molekulargewicht von 1,5*10e6
bis 25*10e6 g/mol aufweisen.
[0046] Die Ausgestaltungen der Erfindung betreffen weiterhin bzw. zusammenfassend insbesondere
folgende Aspekte, wobei als Verfahren formulierte Konzepte auch eine Anordnung zur
Durchführung dieses Verfahrens offenbaren, oder auch umgekehrt:
[0047] Eine erste Ausgestaltung betrifft ein Verfahren zur Erdölgewinnung durch Schachtabbau,
wobei die Lagerstätte bergbaulich aufgeschlossen werden kann, die vertikalen oder
geneigten Schächten/Stollen abgeteuft und die Strecken als Grubenbauten aufgefahren
werden können, mindestens zwei Bohrungen in den ölführenden Schichten gebohrt werden
können, in den Bohrungen die elektrischen Leitungen, die die Induktionsschleife bilden,
verlegt werden können, die Lagerstätte induktiv beheizt und das Erdöl mit reduzierter
Viskosität gefördert werden kann, wobei mindestens ein Grubenbau in der ölführenden
Schicht oder in den Nebengesteinen der ölführenden Schicht aufgefahrt werden kann
und - insbesondere von der Oberfläche - mindestens zwei Bohrungen mit quasihorizontalen,
quasiparallelen Abschnitten bis zu Kreuzung des Grubenbaues von einer Seite gebohrt
werden kann, wobei die Achsen der quasihorizontalen Bohrlochabschnitten quasisenkrecht
zur Achse des Grubenbaues orientiert und die elektrischen Leitungen in den beiden
Bohrungen sowie im Grubenbaue mit Bildung einer Schleife verlegt werden können.
[0048] Insbesondere können die Bohrungen mindestens in zwei Reihen gebohrt werden, können
die Bohrungsreihen links und rechts von der Grubenbauachse positioniert werden und
können der Grubenbau von beiden Seiten mit quasihorizontalen Bohrlochabschnitten überkreuzt
werden.
[0049] Weiterhin kann der Induktor bestromt werden bis sich eine Temperatursteigerung der
beheizten Zone im Reservoir auf bis zu 120°C oder bis zu 140°C ergibt. Nach dieser
Temperatursteigerung der beheizten Zone kann die beheizte Zone mit wässrigem Fluidmedium
geflutet werden. Insbesondere kann dieses Fluidmedium neben Wasser mindestens ein
Glucan (G) mit einer β-1,3-glykosidisch verknüpften Hauptkette und β-1,6-glykosidisch
daran gebundenen Seitengruppen umfassen, wobei das Glucan ein gewichtsmittleres Molekulargewicht
Mw von 1,5*10e6 bis 25*10e6 g/mol aufweisen kann.
[0050] In einer Ausgestaltung der Erfindung kann das Flutmedium in die Lagerstätte aus dem
Grubenbaue verpresst werden.
[0051] Vorteilhafterweise kann eine erste horizontale Bohrung als Injektor und eine andere
horizontale Bohrung als Förderbohrung genutzt werden.
[0052] In einer weiteren Ausgestaltung kann mindestens ein Grubenbau in der ölführenden
Schicht oder in den Nebengesteinen der ölführenden Schicht aufgefahren werden und
die Bohrungen mit quasihorizontalen, quasiparallelen Abschnitten bis zur Kreuzung
des Grubenbaues von einer Seite gebohrt werden, wobei die Achsen der quasihorizontalen
Bohrlochabschnitten quasisenkrecht zur Achse des Grubenbaues orientiert werden können
und die elektrischen Leitungen in den beiden Bohrungen sowie im Grubenbaue mit Bildung
einer Schleife verlegt sein können.
[0053] In einer anderen Ausgestaltung können die Bohrungen mindesten in zwei Reihen gebohrt
werden, wobei die Bohrungsreihen links und rechts von der Grubenbauachse positioniert
werden können und der Grubenbau von beiden Seiten mit quasihorizontalen Bohrlochabschnitten
überkreuzt werden kann.
[0054] Vorzugsweise kann in einer erfindungsgemäßen Anordnung ein Frequenzgenerator vorgesehen
sein, welcher die Induktorschleife mit einer Frequenz zwischen 1kHz und 500kHz speist.
Vorzugsweise kann der Frequenzgenerator in spezieller Ausführungsform explosionsgeschützt
ausgelegt sein.
[0055] Darüber hinaus können die Enden der Induktionsschleife in einer speziell angeordneten,
separaten explosionsgeschützten Klemmbox angeschlossen werden, welche gegenüber dem
Frequenzgenerator explosionsgeschützt abgeschlossen und abgedichtet ist.
[0056] Der Frequenzgenerator kann als Umrichter mit Leistungshalbleitern ausgeführt sein.
Vorzugsweise können diese wassergekühlt sein und über einen speziellen Rückkühler
über das Grubenwasser rückgekühlt werden.
[0057] In einer weiteren Ausgestaltung kann, wenn kein Rückkühlmedium vorgesehen ist, eine
Heatpipe oder ein Thermosyphon eingebaut werden, welcher von sich aus eine explosionsgeschützte
Kühlung erlaubt und unabhängig von einem externen Kühlmedium arbeitet.
[0058] Weiterhin kann der Umrichter in einer speziellen Bauform ausgestaltet sein, welche
wetterfest containerisiert ist und bei dem die Leistungsbauelemente stoßsicher eingehangen
sind.
[0059] Die Erfindung betrifft weiterhin in einer Ausgestaltung ein Verfahren zur Erdölgewinnung
durch Schachtabbau, wobei die Lagerstätte bergbaulich aufgeschlossen werden kann,
die vertikalen oder geneigten Schächten/Stollen abteuft und die Strecken als Grubenbauten
aufgefahren werden können, die Bohrungen in der ölführenden Schichten gebohrt werden
können, in den Bohrungen die elektrischen Leitungen, die die Induktionsschleife bilden,
verlegt werden könnnen, die Lagerstätte induktiv beheizt und das Erdöl mit reduzierter
Viskosität gefördert werden kann, wobei mindestens zwei quasiparallelen Grubenbauten
in der ölführenden Schicht oder in den Nebengesteinen aufgefahren werden können, zwischen
den Grubenbauten mindestens zwei durchgehenden quasiparallelen Bohrungen gebohrt werden
können, in den Bohrungen die Induktionsschleife verlegt werden können, wobei der Anfangsabschnitt
und der Endabschnitt der Induktionsschleife in einem Grubenbau angeordnet sein können
und ein Teil der Induktionsschleife in dem anderen Grubenbau zwischen zwei Bohrungseingängen
frei verlegt werden kann.
[0060] Weiterhin kann vorgesehen sein, dass der Grubenbau, in dem der Anfangsabschnitt und
der Endabschnitt der Induktionsschleife angeordnet sind, durch eine quasivertikale
Bohrung mit Obertage verbunden werden kann. In dieser Bohrung können Abschnitte der
Induktionsschleife oder elektrische Zuleitungen für den Anschluss der Induktionsschleife
an den Frequenzgenerator bzw. die Elektroenergiequelle verlegt werden.
[0061] Der elektrische Leiter kann als Induktionsleitung ausgebildet sein, damit er den
hochfrequenten Strom, verlustarm als Resonanzkreis betrieben, tragen kann. Da vorzugsweise
beide Enden an den Frequenzgenerator angeschlossen werden, bildet die Induktionsleitung
eine Induktionsschleife. Die technische Realisierung der elektrischen Leitung wird
als Resonanzkreis durchgeführt.
[0062] Der Frequenzgenerator kann als Frequenzumrichter ausgebildet werden, welcher eine
Spannung mit einer Frequenz von 50Hz oder 60Hz aus dem Netz in eine Spannung mit einer
Frequenz im Bereich von 1kHz bis 500kHz umwandelt. Der Frequenzumrichter kann Obertage
installiert sein. Alternativ kann der Frequenzumrichter in einem Grubenbau platziert
werden.
[0063] Die zwei quasiparallelen Grubenbauten können vorzugsweise in unterschiedlicher Teufe
aufgefahren werden. Der Anfangsabschnitt und der Endabschnitt der Induktionsschleife
können in dem Grubenbau, der höher als der zweite Grubenbau liegt, angeordnet werden.
[0064] In einer Ausgestaltung der Erfindung können zwischen zwei durchgehenden quasiparallelen
Bohrungen, in denen Abschnitte der Induktionsschleife verlegt werden, mindestens eine
nichtdurchgehende Förderbohrung aus einem Grubenbau gebohrt werden, die die erwärmte
Lagerstättezone mit einem von zwei quasiparallelen Grubenbauten verbindet.
[0065] Weiterhin kann vorzugsweise in die durch die Induktionsschleife erwärmte Lagerstättezone
mindestens eine Förderbohrung gebohrt werden.
[0066] Darüber hinaus kann zwischen zwei durchgehenden quasiparallelen Bohrungen, in denen
die Induktionsschleife angeordnet ist, mindestens eine nichtdurchgehende Injektionsbohrung
aus einem Grubenbau gebohrt werden.
[0067] In einer Ausgestaltung können die durchgehenden Bohrungen, in denen die rückführende
oder die zuführende elektrische Leitung der Induktionsschleife verlegt sind, als Produktionsbohrungen
genutzt werden. Dabei kann die Bohrung gleichzeitig oder zeitlich nacheinander für
die Induktionsschleife und für den Abtransport der Produktion verwendet werden.
[0068] Somit kann beispielsweise die von der elektrischen Leitung befreite Bohrung als Produktionsbohrung
genutzt werden.
[0069] Es kann überdies vorgesehen sein, dass die von der elektrischen Leitung befreite
Bohrung als Injektionsbohrung genutzt wird.
[0070] Des Weiteren kann nach dem Erwärmen der Lagerstättezone zwischen zwei durchgehenden
quasiparallelen Bohrungen die rückführende oder die zuführende elektrische Leitung
der Induktionsschleife aus einer Bohrung entfernt und in einer benachbarten durchgehenden
Bohrung verlegt werden.
[0071] Vorzugsweise erfolgt die Orientierung der Bohrungen entsprechend der geologischen
Gegebenheiten. Vorzugsweise können die zwei quasiparallelen Grubenbauten in der Streichungsrichtung
der ölführenden Schicht aufgefahren werden und die durchgehenden Bohrungen in den
Einfallen oder in der Schwebensrichtung der ölführenden Schicht gebohrt werden.
[0072] Weiterhin kann ein Grubenbau in den Firstengesteinen der ölführenden Schicht und
den zweiten Grubenbau in den Solegesteinen der ölführenden Schicht aufgefahren werden.
[0073] Die Öllagerstätte kann durch Scheibenabbau und entgegengesetzt zur Fallrichtung (schwebenden
Verhieb) entwickelt werden, wobei für jede Scheibe zwei quasiparallele Grubenbauten
aufgefahren werden können.
[0074] Zwischen zwei durchgehenden quasiparallelen Bohrungen können zusätzlich mindestens
noch zwei durchgehende quasiparallele Bohrungen in der ölführenden Schicht gebohrt
werden und eine Spalte zwischen den zusätzlichen Bohrungen gebildet werden.
[0075] Durchgehende Spalte können dabei zwischen zusätzlichen Bohrungen mit einem Seilschrämgerät
gebildet werden.
[0076] In einer weiteren Ausgestaltung können die Grubenbauten mindestens in zwei Förderhorizonten
aufgefahren werden, zwischen den Grubenbauten Durchhiebe in jedem Förderhorizont aufgefahren
werden und die Durchhiebe mit durchgehenden Bohrungen, die in der ölführenden Schicht
gebohrt werden, miteinander verbunden werden.
[0077] Die bisherigen Ausführungsformen sind im wesentlichen auf die Erwärmung zur Förderung
von in der Lagerstätte vorliegendem Erdöl oder anderen kohlenstoffhaltigen Substanzen
gerichtet. Allerdings kann das erfindungsgemäße Verfahren auch in anderen Umgebungen
oder Anwendungsgebieten eingesetzt werden, Bergbau, Tunnelbau und/oder Bau. Beispielsweise
kann durch das Erwärmen von mittels Induktion anregbaren Substanzen die Gewinnung
z.B. von Metallen aus Erzlagerstätten unterstützt werden.
[0078] Die Untertagelaugung ist eine bekannte und breit eingesetzte Technologie beim Gewinnen
von vielen Metallen z.B. Uran, Gold, Kupfer, Kobalt. Nach dieser Technologie werden
unterschiedliche wässrige Lösungen (z.B. schwache Lösung der Schwefelsäure) in die
Lagerstätte injiziert. Die Lösungen filtrieren sich durch die porösen oder zerklüfteten
Gesteine/Erze. Die oxidierende Lösung mobilisiert die Metalle, wobei die Effizienz
der Mobilisierung und/oder der Auslaugung stark von der Temperatur der Lagerstätte
und/oder der Lösung abhängig ist. Die Verwendung der beschriebenen Einrichtung ermöglicht
die Temperatursteigerung direkt in der Erzlagerstätte, wodurch verringert sich die
Auslaugezeit und steigt der Ausbeutegrad.
[0079] Beim Tunnelbau und Bau (Übertage) ist man oft konfrontiert mit Treibsand/Schwimmsand
und anderen geologischen Objekten, die verwässert und unstabil sind. Diese geologischen
Objekte erschweren das Errichten der unterirdischen Grubenbauten und haben negative
Wirkung auf die Stabilität der obertageliegenden Bauten. Die Verwendung der beschriebenen
Einrichtung ermöglicht durch das Eintragen von Wärme in solche geologischen Objekte
die Modifizierung der rheologischen Eigenschaften der Treibsande/Schwimmsande und
anderen unstabilen geologischen Strukturen.
[0080] Die vorliegende Erfindung und deren Weiterbildungen werden nachfolgend im Rahmen
eines Ausführungsbeispiels an Hand von Figuren näher erläutert.
[0081] Dabei zeigen in schematischer Darstellung
- Figur 1
- - eine schematische Darstellung einer bergbaulich erschlossenen Öllagerstätte in einer
Draufsicht,
- Figur 2
- - einen vertikalen Querschnitt der Öllagerstätte und Grubenbauten mit einer Bohrung
für einen elektrischen Leiter,
- Figur 3
- - eine Darstellung einer Öllagerstätte, Grubenbauten und installierten Leiter, sowie
die thermische Auswirkung des betriebenen Leiters,
- Figur 4
- - eine Darstellung einer Öllagerstätte, Grubenbauten, installierten Leiter und Produktionsrohre,
- Figur 5
- - eine Darstellung einer Öllagerstätte, Grubenbauten, und installierten Leiter mit
Fluid-Injektion,
- Figur 6
- - eine Darstellung einer Öllagerstätte, Grubenbauten, und installierten Leiter mit
alternativer Fluid-Injektion,
- Figur 7
- - eine Darstellung einer Öllagerstätte, Grubenbauten, und installierten Leiter mit
weiterer alternativer Fluid-Injektion,
- Figur 8
- - einen vertikalen Schnitt der Öllagerstätte mit installiertem Leiter und Frequenzgenerator
Obertage,
- Figur 9
- - eine Darstellung mit Grubenbauten in Nebengesteinen bei bergbaulicher Entwicklung
einer Öllagerstätte mit großer Ölschichtmächtigkeit,
- Figur 10
- - ein mechanisches Bilden einer durchgehenden Spalte zwischen Bohrungen,
- Figur 11
- - einen vertikaler Schnitt der Öllagerstätte bei zwei Förderhorizonten,
- Figur 12
- - einen zu Figur 11 gehörenden Schnitt entlang der Fläche C-C,
- Figur 13
- - eine Lagerstätte mit einer Strecke,
- Figur 14
- - eine alternative Lagerstätte mit einer Strecke,
- Figur 15
- - einen vertikalen Querschnitt des Grubenbaues und der Lagerstätte mit dem Grubenbau
in der ölführenden Schicht,
- Figur 16
- - einen vertikalen Querschnitt des Grubenbaues und der Lagerstätte, mit dem Grubenbau
in Nebengesteinen.
[0082] Sich in den Figuren entsprechende Teile sind jeweils mit denselben Bezugszeichen
versehen.
[0083] Die Figuren zeigen eine Öllagerstätte - im Folgenden auch Reservoir, Produktionsschicht
oder bloß als Lagerstätte bezeichnet - mit hochviskosem Erdöl oder Bitumen oder Schweröl
(beispielsweise einer dynamischen Viskosität, also Zähflüssigkeit, von 200 bis 1000000
cP, wobei cP für Centi-Poise steht, und wobei die genannten Werte im SI-System 0,2
bis 1000 Ns/m
2 entsprechen), die zum Beispiel in einer Tiefe - bergmännisch auch als Teufe bezeichnet
- unterhalb der Erdoberfläche von 50 bis 1200 Meter liegt. Diese Öllagerstätte soll
in den Figuren bergbaulich aufgeschlossen sein oder werden, d.h. sie ist für den Bergbau
mittels Grubenbau erschlossen und umfasst Schächte und Strecken. Die Schächte und
Strecken sind dabei insbesondere für den Zugang von Personen und für das Einbringen
und Abtransportieren von Material dimensioniert. Als Schacht ist gemäß diesem Dokument
ein Grubenbau im Bergbau zu verstehen, mit dem die Lagerstätte von der Oberfläche
- Übertage - her erschlossen wird. Schächte dienen dem Transport von Personen und
Material. Weiterhin können Schächte für die Förderung von Abbauprodukten - z.B. die
zu fördernde kohlenwasserstoffhaltigen Substanz, insbesondere Erdöl - sowie der Bewetterung
bzw. Frischluftversorgung dienen. Im Sinne der Erfindung ist ein Schacht insbesondere
deutlich größer dimensioniert als ein Durchmesser eines stromführenden Leiters, über
den im Betrieb ein elektromagnetisches Feld im Untergrund aufgebaut werden soll. Ein
Schacht verläuft senkrecht oder zur Senkrechten geneigt in den Untergrund, d.h. in
die geologische Formation. Als Strecke ist gemäß diesem Dokument ein Grubenbau im
Bergbau zu verstehen, der als weitgehend waagerechter oder leicht geneigter, länglich
erstreckender Hohlraum ausgebildet ist und mit der Lagerstätte angrenzt oder durch
die Lagerstätte durchgeht. Strecken können mit weiteren Strecken in Verbindung stehen
und werden über Schächte bewettert.
[0084] Figur 1 zeigt schematisch einen vereinfachten Aufbau eines einfachen Grubenbaus als
Schnitt in der Draufsicht. Zwei Schächte 1 sind vorgesehen, um eine Verbindung zur
Oberfläche herzustellen. Weiterhin sind in der dargestellten Ebene Strecken 2, 3,
4 vorgesehen. Die Strecken 2 sind vorzugsweise für den Zugang in der Lagerstätte Untertage
vorhanden. Die Strecken 3 und 4 sind vorzugsweise weitgehend parallele Strecken, die
eine potentielle ölführende Schicht umschließen oder durchdringen. Der umgebende Bereich
kann als Lagerstättenblock 12 als erfindungsgemäße Lagerstätte bezeichnet werden und
umfasst vorzugsweise Anteile von Erdöl. Zur Bereitstellung dieses Grubenbaus werden
die vertikalen oder geneigten Schächte 1 in den Untergrund abgeteuft - d.h. in den
Untergrund bergbaulich getrieben. Darüber hinaus werden die Strecken 2, 3, 4 als weiterer
Grubenbau im Untergrund angelegt. Die Grubenbauten - also die Schächte 1 und die Strecken
2, 3, 4 - werden vorzugsweise in Nebengesteinen von ölführenden Schichten oder direkt
in der ölführenden Schicht positioniert bzw. aufgefahren. Dafür können konventionelle
bergbauliche Einrichtungen und Maschinen verwendet werden. Die Grubenbauten können
für die Bewetterung des Grubenbaunetzes - d.h. die Versorgung mit Luft -, den Transport
der Materialien und des zu fordernden Erdöles benutzt werden.
[0085] In einer in Figur 1 dargestellten Ausgestaltung der Erfindung werden zwei im wesentlichen
parallele Strecken 3 und 4 im Untergrund angelegt. Die Strecken 3, 4 können dabei
horizontal verlaufen oder auch geneigt. Die Strecken 3, 4 sollen dabei vorzugsweise
in der ölführenden Schicht oder in den Nebengesteinen - neben der ölführenden Schicht
- errichtet bzw. aufgefahren werden.
[0086] Zwischen den Strecken 3 und 4 werden mindestens zwei durchgehende quasiparallele
Bohrungen 6 gebohrt in die die elektrische Leitung verlegt werden kann.
[0087] Die durchgehenden quasiparallelen Bohrungen 6 werden nach Figur 1 Untertage ausgehend
von einer Strecke - z.B. Strecke 3 - und endend in einer weiteren Strecke - z.B. Strecke
4 - gebohrt. Dafür können konventionelle mobile bergbauliche Bohranlagen verwendet
werden. Die Kosten für den Bau der Bohrungen 6 sind in diesem Fall wesentlich niedriger
als die möglichen Bohrkosten beim Bohren dieser Bohrungen direkt von der Oberfläche,
insbesondere weil lediglich eine gerade Bohrung ausreicht und das Bohren einer Kurve
nicht benötigt wird.
[0088] In Figur 1 ist ein Schnitt A-A quer zu den Strecken 3 und 4 und entlang der Bohrung
6 angedeutet, der nun in Figur 2 weiter betrachtet wird.
[0089] Wie gesagt sind die Strecken 3 und 4 im Untergrund angeordnet. Diese Strecken können
in einer horizontalen Ebene liegen (nicht dargestellt) oder wie in Figur 2 angedeutet
in unterschiedlicher Tiefe angeordnet sein. Zwischen den Strecken 3 und 4 sind die
Bohrungen 6 - im Schnitt der Figur 2 ist nur eine Bohrung 6 zu erkennen - vorgesehen,
um durch sie hindurch ein Induktorkabel zu installieren. Der Abstand zwischen den
Strecken 3 und 4 kann dabei beispielsweise von 20 bis 1000 Meter weit sein.
[0090] Wenn eine ölführende Schicht 5 flach einfallend lagert, dann können die zwei quasiparallelen
Strecken 3 und 4 in der Streichungsrichtung der ölführenden Schicht 5 angeordnet werden
und die Bohrungen 6 als Verbindung zwischen den Strecken 3 und 4 in der Einfall- oder
Schweberichtung der ölführenden Schicht 5 gebohrt werden (Fig. 2A). Die zwei quasiparallelen
Strecken 3 und 4 können direkt in der ölführenden Schicht 5 gebaut werden (vgl. Fig.
2A), insbesondere wenn die Gesteine der ölführenden Schicht stabil sind und eine Gasausscheidung
aus den Gesteinen der ölführenden Schicht 5 niedrig ist, sowie das Öl hochviskos ist
und nicht unter Gravitationskräften und Lagerstättedruck in die Strecken 3 und 4 austritt.
Einer oder beide der zwei quasiparallelen Strecken 3 und 4 können auch in Nebengesteinen
18 oberhalb, unterhalb oder neben der ölführenden Schicht 5 gebaut werden (vergleiche
Fig. 2B und 2C), die oft stabiler sind als die Gesteine der ölführende Schicht 5.
[0091] Anhand Fig. 3A wird nun für eine aus Fig. 1 und 2 bekannte Anordnung aus Strecken
3 und 4, sowie Bohrungen 6 in einer Draufsicht auf eine weitgehend horizontale Schnittebene
schematisch erläutert, wie ein Induktorkabel installiert werden kann und welche physikalischen
Effekte sich im Betrieb ergeben.
[0092] In zwei - vorzugsweise benachbarten - Bohrungen 6 und in Abschnitten der Strecken
3 und 4 wird ein elektrischer Leiter 7 verlegt, der als Leiterschleife ausgebildet
ist. Der elektrische Leiter 7 ist als so genannter Induktor ausgebildet und wird im
Betrieb mit Wechselspannung betrieben, so dass sich um den Leiter 7 ein elektromagnetisches
Wechselfeld aufbaut, welches wiederum in der natürlich vorhandenen elektrischen Leitfähigkeit
des Reservoires Wirbelströme anregt, damit joulsche Wärme erzeugt - d.h. das im Lagerstättenblock
12 - befindliche gebundene Öl oder andere Flüssigkeiten werden somit indirekt oder
direkt erheizt.
[0093] Der Leiter 7 besteht vorzugsweise aus einer Abfolge von induktiv und kapazitiv wirkenden
Elementen, welche einen Serienresonanzkreis bilden, der als Schleife ausbildet ist,
dessen Enden an den Frequenzgenerator angeschlossen werden, welcher die Schleife bestromt.
[0094] Der elektrische Leiter 7 bildet eine Leiterschleife, in dem ein im wesentlichen gerader
Anfangsabschnitt 71 in der Strecke 4 zu liegen kommt, dann über eine Krümmung 74 in
einen überwiegend geraden zweiten Leitungsabschnitt 75 fortgesetzt wird. Dieser zweiten
Leitungsabschnitt 75 wird in einer der Bohrungen 6 geführt. Der Leiter 7 wird daraufhin
über eine weitere Krümmung 6 durch einen dritten weitgehend geraden Leitungsabschnitt
73 in Strecke 3 positioniert. Mittels einer weiteren Krümmung 74 erfolgt ein Übergang
zu einem im wesentlichen geraden vierten Leitungsabschnitt 76, der innerhalb einer
weiteren Bohrung 6 zu liegen kommt. Über eine weitere Krümmung 74 erfolgt der Übergang
in die ursprüngliche Strecke 4, worin ein Endabschnitt 72 des Leiters 7 angeordnet
ist. Auf diese Weise wird eine fast vollständig geschlossene Leiterschleife gebildet.
Es fehlt lediglich noch der Frequenzgenerator, der an den Anfangsabschnitt 72 und
an den Endabschnitt 71 anzubringen ist. Dies kann innerhalb der Strecke 4 erfolgen.
Alternativ - wie in Fig. 3A angedeutet - kann der Leiter 7 durch eine im wesentlichen
vertikale Bohrung 8 mittels zwei weiteren Leitungsabschnitten, die an den Anfangsabschnitt
72 und an den Endabschnitt 71 anschließen an die Oberfläche oder in eine andere Bergbauebene
geführt werden, wo wiederum der Frequenzgenerator angeordnet sein kann.
[0095] Es sei noch einmal betont, dass in der vorliegenden Ausgestaltung der Leiter 7 in
den explizit für den Leiter 7 vorgesehenen weitgehend parallelen Bohrungen 6 verlegt
wird, wobei der Anfangsabschnitt 71 und der Endabschnitt 72 der Induktionsschleife
des Leiters 7 in Strecke 4 angeordnet wird und dort frei verlegt werden kann. Weiterhin
wird der dritte Leitungsabschnitt 73 der Induktionsschleife in dem zur Strecke 4 quasiparallel
angeordneten Strecke 3 zwischen den zwei Bohrungseingängen der Bohrungen 6 frei verlegt.
[0096] Der Abstand zwischen den durchgehenden quasiparallelen Bohrungen 6 kann beispielsweise
im Intervall von 10 bis 200 Meter liegen. Typische Abstände zwischen den Hin- und
Rückleitern - der zweite Leitungsabschnitt 75 wird als Hinleiter betrachtet und der
vierte Leitungsabschnitt 76 als Rückleiter -, die die Induktionsschleife des Leiters
7 bilden, sind 5 bis 60 m bei einem Außendurchmesser des Leiters 7 von 4 bis 50 cm.
[0097] Wie erwähnt ist die Strecke 4 in Fig. 3A, in der der Anfangsabschnitt 71 und der
Endabschnitt 72 der Induktionsschleife angeordnet sind, durch eine quasivertikale
Bohrung 8 mit Obertage verbunden. In dieser Bohrung 8 werden elektrischen Zuleitungen
10 (dargestellt in Fig. 8) für den Anschluss der Induktionsschleife an die Elektroenergiequelle
bzw. den Frequenzgenerator 11 (siehe Fig. 8) verlegt.
[0098] Die vertikale Bohrung 8 kann dabei auch als Schacht 1 ausgebildet sein. Die elektrische
Leitungen 10 für den Anschluss der Induktionsschleife können somit auch im Schacht
1 verlegt werden.
[0099] Die elektrischen Zuleitungen 10 können dabei ebenfalls als Induktor ausgebildet sein.
Alternativ können die elektrischen Zuleitungen 10 als ein Kabel mit wenigen Verlusten
ausgebildet sein, das erst in der in Fig. 3A dargestellten Ebene zu einem Induktor
wird, der ein erhebliches elektromagnetisches Feld generiert.
[0100] Der Frequenzgenerator 11 bzw. der Frequenzumrichter kann auch Untertage in einem
Grubenbau unterbracht werden, z.B. in Strecke 4. In diesem Fall hat der Frequenzgenerator
11 vorzugsweise eine explosionsgeschützte und/oder wetterfeste Ausführung.
[0101] Bei kleiner Lagerstättetiefe kann je Lagerstättenblock 12 oder je Leiterschleife
eine Bohrung 8 vorgesehen sein. Alternativ kann eine Bohrung 8 für viele Leiterschleifen
und/oder für viele Lagerstättenblöcke 12 vorgesehen sein.
[0102] Unter geeigneter Bestromung des Leiters 7 bildet sich ein elektrisches Wechselfeld
um den Leiter 7, der in der natürlich vorhandenen elektrischen Leitfähigkeit des dem
Leiter umgebenden Erdreiches Wirbelströme anregt und durch Erzeugung Joulscher Wärme
das Erdreich somit induktiv erheizt. Diese Erwärmungszone 13 als umgebendes Erdreich
ist ebenfalls in Fig. 3A dargestellt, wobei sich die Erwärmung nicht lediglich in
der dargestellten Schnittebene einstellt, sondern in einem dreidimensionalen Volumen.
[0103] Die zwei quasiparallelen Strecken bzw. Grubenbauten 3 und 4 können, wie bereits in
Bezug auf Fig. 2 erläutert, in der unterschiedlichen Tiefe angeordnet werden, d.h.
in unterschiedlicher Teufe aufgefahren werden, wobei der Anfangsabschnitt 71 und der
Endabschnitt 72 der Induktionsschleife 7 in dem höheren der beiden Strecken 3, 4 anordnet
werden kann. Die unterschiedlichen Tiefenlage der Strecken 3 und 4 (wie in Fig. 2
dargestellt) begünstigt den Zufluss der im Lagerstättenblock 12 aufgewärmten Öle durch
die Bohrungen und Klüfte in den tiefer liegenden Grubenbauten, wo das Öl gesammelt
wird und bis zu einem so genannten Sumpf - einer Sammelstelle - weiter fließen wird.
[0104] Da bei einer derartigen Anordnung der Anschluss der Induktionsschleife an die elektrischen
Leitungen 10 in dem höherliegenden und vermeintlich "trockenen" Grubenbau stattfindet,
steigt die Sicherheit bzgl. Fehlfunktionen bei der Elektroenergieversorgung und folglich
auch die Arbeitssicherheit.
[0105] Nach der Vollendung der bergbaulichen Arbeiten für die Schächte 1 und Strecken 2,
3, 4 und dem Bohren von mindestens zwei durchgehenden Bohrungen 6 zwischen den Strecken
3 und 4, sowie nach Verlegung des Leiter 7 als Induktionsschleife in mindestens zwei
Bohrungen 6 und dem Anschluss der Induktionsschleife an den Frequenzgenerator 11 beginnt
das Bestromen des Leiters 7, somit das induktive Erwärmen der Lagerstätteblocks 12
mit sich ergebener Bildung der Erwärmungszone 13, die sich durch eine erhöhte Temperatur
auszeichnet.
[0106] Ein Leiter 7 kann einen Längsinduktivitätsbelag von 1,0 bis 2,7 µH/m (micro Henry
je Meter Länge) aufweisen. Der Querkapazitätsbelag liegt beispielsweise bei 10 bis
100 pF/m (pico Farad je Meter Länge). Die charakteristische Frequenz der Anordnung
ist bedingt durch die Schleifenlänge und -form und den Querkapazitätsbelag entlang
der Induktorschleife.
[0107] Die Beschreibung der elektrotechnischen Parameter der induktiven Heizungsanlage auf
Basis einer Induktionsschleife ist im Folgenden kurz erläutert:
[0108] Die Leiterschleife oder Induktionsschleife wirkt im Betrieb als Induktionsheizung,
um zusatzliche Wärme in die Lagerstätte einzubringen. Der aktive Bereich des Leiters
kann in im wesentlicher horizontaler Richtung innerhalb der Lagerstätte eine nahezu
geschlossenen Schleife (also ein Oval) beschreiben. An den aktiven Bereich kann sich
ein - eventuell oberirdisch gelegener - Endbereich anschließen. Die oberirdisch gelegenen
Teile des Anfangs- und Endbereiches des Leiters können elektrisch mit einer Stromquelle
- einem Frequenzgenerator - kontaktiert sein. Es ist vorzugsweise vorgesehen, die
Leitungsinduktivität des Leiters abschnittsweise durch diskret oder kontinuierlich
ausgeführte Serienkapazitäten zu kompensieren. Dabei kann für die Leitung mit integrierter
Kompensation vorgesehen sein, dass die Frequenz des Frequenzgenerators auf die Resonanzfrequenz
der Stromschleife abgestimmt wird. Die Kapazität im Leiter kann von Zylinderkondensatoren
zwischen einer rohrförmigen Außenelektrode eines ersten Kabel-Abschnitts und einer
rohrförmigen Innenelektrode eines zweiten Kabel-Abschnitts gebildet, zwischen denen
sich ein Dielektrikum befindet. Ganz entsprechend wird der benachbarte Kondensator
zwischen den folgenden Kabel-Abschnitten gebildet. Das Dielektrikum des Kondensators
wird dabei so gewählt, dass es eine hohen Spannungsfestigkeit und eine hohe Temperaturbeständigkeit
erfüllt.
[0109] Weiterhin ist denkbar, eine Ineinanderschachtelung mehrerer koaxialer Elektroden
vorzusehen. Auch andere übliche Kondensatorbauformen können in die Leitung integriert
werden.
[0110] Weiterhin kann die gesamte Elektrode bereits von einer Isolation umgeben sein. Die
Isolierung gegen das umliegende Erdreich ist vorteilhaft, um resistive Ströme durch
das Erdreich zwischen den benachbarten Kabel-Abschnitten insbesondere im Bereich der
Kondensatoren zu verhindern. Die Isolation verhindert weiterhin einen resistiven Stromfluss
zwischen Hin- und Rückleiter.
[0111] Mehrere rohrförmige Elektroden können parallel geschaltet werden. Vorteilhafterweise
kann die Parallelschaltung der Kondensatoren zur Erhöhung der Kapazität oder zur Erhöhung
ihrer Spannungsfestigkeit genutzt werden.
[0112] Weiterhin kann eine Kompensation der Längsinduktivität mittels vorwiegend konzentrierter
Querkapazitäten erfolgen: Anstelle mehr oder weniger kurzer Kondensatoren als konzentrierte
Elemente in die Leitung einzubringen, kann auch der Kapazitätsbelag - den eine Zweidrahtleitung
wie z. B. eine Koaxialleitung oder Mehrdrahtleitungen ohnehin über ihre gesamt Länge
bereitstellen - zur Kompensation der Längsinduktivitäten verwendet werden. Dazu wird
in gleichen Abständen abwechselnd der Innen- und Außenleiter unterbrochen und so der
Stromfluss über die verteilten Querkapazitäten erzwungen.
[0113] Die konstruktive Ausgestaltung der Leiterschleife kann als Kabelbauform oder als
Massivleiterbauform erfolgen. Die Bauform ist jedoch unerheblich für die zuvor beschriebene
elektrische Funktionsweise.
[0115] Ein Frequenzgenerator zum Ansteuern des elektrischen Leiters ist vorzugsweise als
Hochfrequenzgenerator ausgebildet. Der Frequenzgenerator kann dreiphasig aufgebaut
sein und vorteilhafterweise eine transformatorische Kopplung und Leistungshalbleiter
als Bauelemente beinhalten. Insbesondere kann die Schaltung einen Spannung einprägenden
Wechselrichter beinhalten. Bei einem solchen Generator kann für den bestimmungsgemäßen
Gebrauch ein Betrieb unter Resonanzbedingungen erforderlich sein, um eine Blindleistungskompensation
zu erreichen. Gegebenenfalls ist die Ansteuerfrequenz im Betrieb geeignet nachzustellen.
[0116] An der Oberfläche können zur Ansteuerung des Leiters folgende Komponenten vorhanden
sein: Ausgehend von der 3phasigen Netzwechselspannungsquelle z. B. 50Hz oder 60 Hz,
wird beispielsweise ein dreiphasiger Gleichrichter angesteuert, dem über einen Zwischenkreis
mit Kondensator ein dreiphasiger Wechselrichter nachgeschaltet ist, der periodische
Rechtecksignale geeigneter Frequenz generiert. Über ein Anpassnetzwerk aus Induktivitäten
und Kondensatoren werden Induktoren als Ausgang angesteuert. Ein Verzicht auf das
Anpassnetzwerk ist allerdings möglich, wenn der Induktor als Induktionsschleife ausgebildet
ist, welche aufgrund ihrer Induktivität und des kapazitiven Belages das Einstellen
der erforderlichen Resonanzfrequenz ermöglicht.
[0117] Die beschriebenen Frequenzgeneratoren lassen sich grundsätzlich als spannungseinprägende
Stromrichter oder entsprechend als stromeinprägenden Stromrichter einsetzen.
[0118] Die Temperatur in der Erwärmungszone 13 hängt von der eingebrachten elektromagnetischen
Leistung ab, welche sich aus den geologischen und physikalischen (z. B. elektrische
Leitfähigkeit) Parametern der Lagerstätte, sowie den technischen Parametern der elektrischen
Anordnung, insbesondere bestehend aus Leiter 7 und dem Hochfrequenzgenerator 11, ergibt.
Diese Temperatur kann bis zu 300°C erreichen und ist regelbar durch Änderung der Stromstärke
durch die Induktorschleife. Die Regelung erfolgt über den Frequenzgenerator 11. Die
elektrische Leitfähigkeit der Lagerstätte kann durch zusätzliches Injizieren von Wasser
oder eines anderen Fluides, z. B. eines Elektrolytes, erhöht werden.
[0119] Ein typisches Temperaturprofil ist in Figur 3B dargestellt. Die Ordinate gibt die
Temperatur T an, die Abszisse ist die lokale Position in der Lagerstätte, wobei die
gestrichelten Linien die nächstgelegenen Punkte zu einem Induktorabschnitt darstellen,
wobei die Induktorabschnitte des Hin- und Rückleiters im Abstand D angeordnet sind.
Die dargestellten Temperaturprofile entsprechen der Anordnung aus Fig. 3A. Im oberen
Diagramm erfolgte über einen Zeitraum eine Ansteuerung des Leiters 7, wobei zunächst
noch kein Abtransport der erwärmten Fluide erfolgt ist. Die Temperaturentwicklung
erfolgt zunächst aufgrund der Induktion von Wirbelströmen in den elektrisch leitfähigen
Schichten des Lagerstättenblocks 12. Im Verlauf der Erwärmung entstehen Temperaturgradienten,
das heisst Orte höherer Temperatur, als der ursprünglichen Reservoirtemperatur (die
original Reservoirtemperatur entspricht im Diagramm dem Null-Wert der Ordinatenachse).
Die Orte höherer Temperatur entstehen dort, wo Wirbelströme induziert werden. Der
Ausgangspunkt der Wärme ist daher nicht die Induktionsschleife bzw. der elektrische
Leiter, sondern es sind die durch das elektromagnetische Feld in der elektrisch leitfähigen
Schicht induzierten Wirbelströme. Durch die im Laufe der Zeit entstehenden Temperaturgradienten
kommt es in Abhängigkeit der thermischen Parameter wie thermischer Leitfähigkeit auch
zur Wärmeleitung, wodurch sich das Temperaturprofil ausgleicht. Mit größerem Abstand
zum Leiter 7 verringert sich die Stärke des Wechselfeldes, so dass dort nur noch eine
geringere Erwärmung ermöglicht wird.
[0120] Erfolgt dagegen ein Abtransport der Fluide oder der fluide gemachten elektrisch leitfähigen
Flüssigkeiten sofort, sobald sie fluide gemacht wurden, so erfolgt an den leergeförderten
Stellen um so weniger Erwärmung durch elektrische Wirbelströme, je mehr das Erdreich
mit seiner elektrischen Leitfähigkeit mit abtransportiert wurde. Zwar ist das elektromagnetische
Feld immer noch da, jedoch können sich Wirbelströme nur dort ausbilden, wo noch Leitfähigkeit
vorhanden sein wird. Allerdings kann ein Abfließen einer Flüssigkeit bewirken, dass
andere Flüssigkeit nachfließt.
[0121] Das untere Diagramm in Fig. 3B zeigt den Temperaturverlauf zu einem Zeitpunkt, bei
dem bereits die Förderung des Öls begonnen hat. Die Temperatur im Reservoir hat sich
durch Wärmeleitung ausgeglichen.
[0122] Das Design der elektrischen Anordnung wählt man vorzugsweise daher so, dass die Eindringtiefe
des elektromagnetischen Feldes typischerweise dem halben Abstand der horizontal ausgebildeten
Induktorleiter entspricht. Damit wird erreicht, dass sich das elektromagnetische Feld
eines Hin- und Rückleiters des Leiters 7 nicht kompensiert und auf der anderen Seite
die Anzahl der Bohrungen im Verhältnis zur Dicke des Reservoirs optimal gering gehalten
werden kann. Im Falle des sofortigen Abtransportes der fluide gemachten elektrisch
leitfähigen Flüssigkeiten erreicht das elektromagnetische Feld weiter entfernt vom
Induktorkabel elektrisch leitfähige Schichten und induziert dort Wirbelströme. Der
Vorteil ist, dass es ein selbst-penetrierender Effekt ist, das heißt, dass die absolut
eingebrachte Leistung in das Reservoir immer konstant gehalten werden kann, z. B.
im Bereich von einigen 100kW bis einige MegaWatt, z. B. 1 MW. Am Anfang ist die höchste
spezifische Leistungsdichte in der Nähe des Induktorkables, sobald jedoch die Fluide
abtransportiert sind, ist im weiter außerhalb liegenden Radius eine zwar geringere
spezifische Leistungsdichte, jedoch in einem größeren Volumen vorhanden, was zur Folge
hat, dass die absolut eingebrachte Leistung eben gleich bleibt, z. B. 1MW. Das kann
durch andere elektrische Verfahren nicht erreicht werden: Z. B. bei einem Heizstab
(im Aufbau vergleichbar mit einem Tauchsieder) ist die in die Umgebung einbringbare
Leistung immer vom Temperaturgradienten sowie von der sich über der Temperatur veränderlichen
thermischen Leitfähigkeit abhängig, weil der Heizstab der Ausgangspunkt der Temperatur
ist.
[0123] Die Anordnung zur induktiven Heizung der Lagerstätte, die in den Figuren 2 und 3
dargestellt ist, ist nur eine mögliche Variante. Die Anzahl der zu installierenden
Induktionsschleifen 7 -die zeitgleich oder nacheinander betrieben werden können -
hängt von der Größe der Lagerstätte ab und die Anzahl gleichzeitig in Betrieb befindlicher
Induktionsschleifen hängt beispielsweise von der zur Verfügung stehenden elektrischen
Leistung ab.
[0124] Zwischen zwei durchgehenden quasiparallelen Bohrungen 6, in denen die Induktionsschleife
des Leiters 7 verlegt ist, kann mindestens eine nichtdurchgehende Förderbohrung 14
aus einem Grubenbau gebohrt werden. Dies ist in Fig. 4 dargestellt. Nichtdurchgehend
bedeutet hierbei, dass die Förderbohrung 14 eine Art Sackbohrung ist, die im Unterschied
zu den Bohrungen 6 von der Strecke 4 ausgeht aber nicht in der Strecke 3 endet. Die
Förderbohrung 14 kann mit einem Förderrohr bestückt werden (nicht explizit ausgewiesen
in Fig. 4). Das Förderrohr ist dazu vorgesehen, das fließend gewordene Fluid inklusive
dem Öl aufzunehmen und abzutransportieren.
[0125] Die Zahl der Förderbohrungen 14 hängt von den Abmessungen des Lagerstättenblocks
12 ab.
[0126] In Fig. 4 ist darüber hinaus eine Installation eines zweiten Leiters 77 angedeutet,
der in zwei weiteren Bohrungen 6 verlegt wird, wobei der Abstand zwischen den sich
nächstkommenden Leitungsabschnitten zweier benachbarter Leiter 7 und 77 vorzugsweise
mindestens der doppelte Abstand der Eindringtiefe des Wechselfeldes sein sollte.
[0127] Im Betrieb des Leiters 7, fließt das Erdöl aufgrund reduzierter Viskosität in die
Förderbohrungen 14 bzw. in ein jeweils darin installiertes Förderrohr.
[0128] Der Fließvorgang des Erdöles kann durch das Injizieren von Fluiden (Wasser, Wasser
mit Additiven, Dampf) unterstützt werden. Die Flutmedien kann man gleichzeitig in
die zwei durchgehenden Bohrungen 6, die den Lagerstättenblock 12 begrenzen, injizieren.
Das Injizieren der Fluide in die zwei durchgehenden Bohrungen 6 kann während der Erwärmung
des Lagerstättenblocks 12 und/oder nach der Beendigung der Bestromung des Leiters
7 stattfinden. Beim Injizieren wird ein Ausgang der durchgehenden Bohrungen 6 mit
einem Packer 15 als Blockierungselement isoliert (vgl. Fig.5). Das Injizieren der
Fluide - in Fig. 5 durch Pfeile angedeutet - nach dem Aufheizen ist besonders wirkungsvoll,
da das hochfluide gemachte Schweröl sich auf diese Weise leichter verdrängen lässt.
Ebenfalls ist in Fig. 5 durch weitere Pfeile der Abtransport des Öls im Produktionsrohr
angedeutet.
[0129] Als Variante kann jeder Lagerstättenblock 12 (bei geringer Lagerstättentiefe) mit
der Oberfläche 9 durch eine vertikale Bohrung 16 verbunden werden. Dies ist in Fig.
8 dargestellt. Die Bohrung 16 trifft die Erwärmungszone 13 in der ölführenden Schicht
5 und kann für das Fluten durch ein Fluid oder für Ölförderung verwendet werden.
[0130] Nach einer anderen Ausführung - vgl. Fig. 6 - des Verfahrens wird das erwärmte Erdöl
mit einem Fluid, das in lediglich eine der durchgehenden Bohrungen 6 mit Packer 15
verpresst wird, verdrängt und durch die zweite durchgehende Bohrungen 6 gewonnen.
Es ist somit gemäß Fig. 6 lediglich ein Packer 15 vorgesehen, wohingegen in Fig. 5
beide Bohrungen 6 mit jeweils einem Packer 15 verschlossen werden. Es ergibt sich
somit eine Bohrung 6, die als eine kombinierte Installation 61 von Induktor und Fluidzuführung
ausgestaltet ist. Weiterhin ergibt sich eine Bohrung 6, die wiederum als eine kombinierte
Installation 62 von Induktor und Förderrohr ausgestaltet ist.
[0131] Der oder die Packer 15 können auf der Seite mit der höherliegenden Strecke 4 installiert
werden, wie dies in den Figuren gezeigt ist. Evtl. vorteilhaft mag aber sein, den
oder die Packer 15 auf der Seite der niedriger gelegenen Strecke 3 zu installieren.
[0132] Nach anderer Ausführung des Verfahrens wird - siehe Fig. 7 - zwischen zwei durchgehenden
quasiparallelen Bohrungen 6, in denen die Induktionsschleife des Leiters 7 verlegt
ist oder zu einem vorherigen Zeitabschnitt verlegt war, mindestens eine nicht durchgehende
Injektionsbohrung 17 - vorgesehen für ein Injektionsrohr - als Sackloch aus einem
der Strecken 3 oder 4 gebohrt. Das Verpressen der Flutmedien in die Injektionsbohrung
17 beginnt vorzugsweise nach Reduktion der Ölviskosität im Lagerstättenblock 12. Damit
können die durchgehenden für den Leiter 7 vorgesehenen Bohrungen 6, zusätzlich als
Produktionsbohrungen genutzt. In diese Bohrungen 6 und/oder in zusätzlich vorhandene
Produktionsbohrungen - entsprechend Produktionsrohr 44, wie in Fig. 5 gezeigt - wird
das Öl verdrängt.
[0133] Nach Erwärmen eines Blocks 12 und rapider Steigerung des Ölfliesvermögens beginnt
man mit der thermischen Behandlung eines Nachbarblockes. Um die Montagearbeiten zu
vereinfachen, wird vorzugsweise aus einer Bohrung 6 die rückführende oder die zuführende
elektrische Leitung der Induktionsschleife des Leiters 7 entfernt und in der benachbarten
durchgehenden Bohrung 6 verlegt (gestrichelt in Fig. 4 angedeutet). Die von der elektrischen
Leitung befreite Bohrung 6 kann allerdings weiter als Produktionsbohrung oder Injektionsbohrung
genutzt werden.
[0134] In Fig. 8 wird analog zu Fig. 2 ein seitlicher Schnitt einer Lagerstätte schematisch
dargestellt, wobei in den Strecken 3 und 4 und in der Bohrung 6 der Leiter 7 eingebracht
ist. Weiterhin wird der Leiter 7 über die elektrischen Zuleitungen 10 innerhalb der
vertikalen Bohrung 8 bis zur Oberfläche 9 an Frequenzgenerator 11 angeschlossen. Optional
ist die vertikale Bohrung 16 vorhanden, die es erlaubt ein Fluid von der Oberfläche
bis zur ölführenden Schicht 5 zu transportieren und dort zu injizieren.
[0135] Bisher wurde überwiegehend davon ausgegangen, dass die ölführende Schicht 5 flach
einfallend im Untergrund vorliegt. In Fig. 9 wird nun eine Lösung erläutert, bei der
ein Grubenbau bestehend aus den Strecken 3 und 4 so gebaut wird, dass die Strecke
4 in den Firstengesteinen der ölführenden Schicht 5 - d.h. im Dachgebirge oberhalb
der ölführenden Schicht 5 - und die zweite Strecke 3 in den Sohlegesteinen der ölführenden
Schicht 5 - d.h. unterhalb der ölführenden Schicht 5 - gebaut werden (vgl. Fig. 9A).
Die Strecken 3 und 4 werden oberhalb des Öl-Wasser-Kontaktes vorzugsweise auf der
gleichen Höhenlage aufgefahren und die Öllagerstätte wird durch Scheibenabbau und
entgegengesetzt zur Fallrichtung (schwebender Verhieb) entwickelt. Für jede Scheibe
können zwei quasiparallele Strecken 6 aufgefahren werden (in Fig. 9A ist eine erste
Phase strichelt dargestellt und eine später Phase mit durchgezogenen Linien). Diese
Vorgehensweise kann vorwiegend bei der Entwicklung von Öllagerstätten/Bitumenlagerstätten
mit größerer Mächtigkeit der olführenden Schichten 5 und steil fallenden ölführenden
Schichten 5 eingesetzt werden.
[0136] In Fig. 9B wird eine Draufsicht entsprechend des Schnittes B-B in vertialer Höhe
der Strecken 3 und 4 und der Bohrung 6 dargestellt. Dabei wird verdeutlicht, dass
eine ölführende Schicht 5 wie dargestellt auch gekrümmt sein kann oder jede an beliebige
Form annehmen kann.
[0137] Hauptvorteil der bergbaulichen Entwicklung der Lagerstätte mit hochviskosem Öl mittels
Grubenbauten, insbesondere Strecken - auch Stollen - und Schächten, ist die Steigerung
der Entölung.
[0138] Um diesen Effekt zu erweitern, können im Lagerstättenblock 12 zusätzlich mindestens
noch zwei durchgehende quasiparallele Bohrungen 19 und 20 in der ölführenden Schicht
5 gebohrt werden (vgl. Fig. 10). In Fig. 10 zeigt Fig. 10A analog Fig. 2 einen vertikalen
Schnitt parallel zu einer der Bohrungen 6. Fig. 10B zeigt einen dazu passenden vertikalen
Schnitt. Fig. 10C zeigt eine alternative Ausgestaltung zu 10B, die nicht mit Fig.
10A übereinstimmt. Die Bohrungen 19 und 20 werden in einer vertikalen Fläche (siehe
Fig. 10A und 10B) oder in der Fläche der Einfallrichtung der ölführenden Schicht 5
(siehe Fig. 10C) gebohrt. In den Bohrungen 19 und 20 wird ein Seil 21 eines Seilschrämgerätes
22 verlegt und eine Spalte 23 in der ölführenden Schicht 5 durch Sägen gebildet. Der
Abstand zwischen Bohrungen 19 und 20 ist 1-10 Meter. Entsprechend breit ist auch die
Spalte 23, die durchgehend oder nicht durchgehend zwischen Grubenbauten 3 und 4 gebildet
werden kann.
[0139] Gemäß Fig. 10A beginnt die Spalte 23 bei Strecke 4 und endet, soweit das Seilschrämgerät
22 bisher vorgedrungen ist. Die Spalte 23 wird somit im Betrieb des Seilschrämgerätes
22 immer länger. Die Spalte 23 erstreckt sich dabei ausgehend von Strecke 4 in Richtung
der Strecke 3.
[0140] Beim Erwärmen des Lagerstättenblocks 12 fliest das Öl in die Spalte 23 und weiter
in die Grubenbauten.
[0141] Ein Seilschrämgerät 22 wird üblicherweise vorwiegend beim Kohlegewinnen eingesetzt
und nun gemäß dieser Ausgestaltung auch für die Ölgewinnung. Bitumen und hochviskoses
Öl lagert oft in geologischen Schichten mit Festigkeiten, die kleiner als die Festigkeit
der Kohle ist, z. B. in wenig zementierten Sand. Außerdem wirkt das Öl der Lagerstätte
wie ein Schmiermittel bei den Pendelbewegungen des Seils 21 in den Bohrungen 19 und
20. Damit werden die Reibungskräfte des Seils 21 wesentlich reduziert und die Energie
des Seilschrämgeräts 22 wird vorwiegend für das Schneiden/Sägen der ölführenden Schicht
5 verwendet.
[0142] Nach einer anderer in Fig. 11 und 12 dargestellten Ausführung des Verfahrens bzw.
der Anordnung werden die Grubenbauten mindestens in zwei Förderhorizonten - d.h. unterschiedlicher
Tiefe - in Nebengesteinen aufgefahren. In einer ersten Ebene werden die Strecken 3
und 4 wie bisher angelegt. Darüber hinaus werden in einer zweiten Ebene die weiteren
Strecken 31 und 41 auf analoge Weise im Untergrund angeordnet. Zwischen den Streckenpaaren
3, 4 sowie 31, 41 werden in jedem Förderhorizont jeweils Durchhiebe 24 vorwiegend
und vorzugsweise in horizontaler Ebene, beispielsweise im Abstand 20-50 Meter voneinander
angeordnet. Die Durchhiebe 24, die in unterschiedlichen Förderhorizonten gebaut sind,
werden auch mit durchgehenden Bohrungen 6 verbunden.
[0143] Die Durchhiebe 24 - die ebenfalls eine Strecke darstellen - durchqueren die ölführende
Schicht 5. Die Durchhiebe 24, die in einem Förderhorizont gebaut sind, werden mittels
durchgehender quer zu den Durchhieben verlaufenden Bohrungen 25 miteinander verbunden.
Eine Leiterschleife wird dann in eine erste Bohrung 25 im ersten Förderhorizont, in
eine zweite Bohrung 25 im zweiten Förderhorizont sowie in zwei Bohrungen 6 installiert.
Dies ist in Fig. 12 dargestellt, die ein Schnitt entlang der Ebene C-C darstellt,
wobei der Schnitt C-C wiederum in der schiefen Ebene der Bohrungen 6 durchgeführt
wird.
[0144] Die in die Bohrungen 24 und 6 (siehe Fig. 12) eingebrachte Induktionsschleife des
Leiters 7 wird erneut im Betrieb für die Erhitzung der Lagerstätte, insbesondere der
ölführenden Schicht 5 betrieben.
[0145] In Fig. 13-18 sind nun sich gegenüber Fig. 1-12 unterscheidende Ausführungsformen
dargestellt. Weiterhin wird jedoch versucht gleiche Bezugszeichen zu verwenden.
[0146] In Fig. 13 ist lediglich eine Strecke 2 - d.h. ein Grubenbau - vorgesehen, in dem
erneut ein Abschnitt des Leiters 7 zu liegen kommt. Die übrigen Abschnitte des Leiters
7 werden allerdings allesamt in speziell für den Leiter 7 vorgesehenen Bohrungen 66
durchgeführt, wobei im Unterschied zu den bisherigen Ausgestaltungen eine Bohrung
67 von der Oberfläche 9 vorgesehen ist, die neben einem weitgehend vertikalen Abschnitt
nach einer Krümmung 68 in eine im wesentlichen horizontale Erstreckung der Bohrung
69 übergeht. Die Bohrung 69 endet in der Strecke 2. Die Leiterschleife des Leiters
7 folgt somit von der Oberfläche 9 der Bohrungen 67, der Krümmung 68, der Bohrung
69 und einem Querstück 70 in der Strecke 2, sowie erneut durch eine weitere der Bohrungen
69, eine weitere Krümmung 68 und eine weitere Bohrung 67 zur Oberfläche 9. An der
Oberfläche wird die Leiterschleife geschlossen und über einen nicht weiter dargestellten
Frequenzgenerator betrieben.
[0147] Das Verwenden der Strecke 2 für die Leiterschleife erlaubt es eine Leiterschleife
zu verlegen, die im Übergang zwischen der Bohrung 66 und der Strecke 2 einen geringen
Krümmungsradius aufweist, der deutlich geringer als eine Krümmung ist, die ein Bohrkopf
ermöglicht. Man kann davon sprechen, dass die Leiterschleife an dieser Stelle abknickt.
Somit können die Bohrungen im wesentlichen auf jeweils eine gekrümmte Stelle beschränkt
werden, wodurch der Bohrvorgang einfach ausgeführt werden kann.
[0148] In Fig. 14 sind zwei Leiterschleifen 100 und 101 installiert, die jeweils wie soeben
beschrieben einen Leiterabschnitt 70 in einer Strecke 2 aufweisen. Diese Leiterabschnitte
70 können so ausgebildet sein, dass sie keine elektromagnetischen Wellen ausstrahlen,
so dass sich die Leiterschleifen 100 und 101 nicht gegenseitig nachteilig beeinflussen.
[0149] Weiterhin ist in Fig. 14 eine Leiterschleife 102 dargestellt, die aus 4 Bohrungen
von der Oberfläche bestehen, wobei jeweils 2 Bohrungen sich von gegenüberliegenden
Seiten in der Strecke 2 treffen.
[0150] Fig. 15 zeigt nun die Darstellung der Fig. 14 in einem vertikalen Schnitt. Mittels
eines geneigten Schachts 80 erfolgt eine Verbindung von der Oberfläche 9 in die ölführende
Schicht 5. Dort erfolgt eine Biegung des Schachts in eine im wesentlichen horizontale
Erstreckung. Der nun horizontal verlaufende Schacht endet nun in der Strecke 2, der
sich ebenfalls in der ölführenden Schicht 5 befindet, wobei die Strecke 2 wiederum
mit einem vertikalen Schacht 1 verbunden sein kann.
[0151] Fig. 16 zeigt nun eine leicht veränderte Darstellung der Fig. 14 in einem vertikalen
Schnitt, wobei zwei Strecken 2 vorgesehen sind, einer oberhalb der ölführenden Schicht
5 und einer unterhalb der öflührenden Schicht 5. Vorzugsweise liegen beide Strecken
2 vertikal übereinander und sich mit einem Schacht 1 miteinander verbunden. Die Bohrung
für den geneigten Schacht 80 erfolgt erneut von der Oberfläche 9 schräg bis in die
ölführende Schicht 5. Nun erfolgt nach einer Krümmung eine Verbindung des Schachts
zu einem der Strecken 2 dergestalt, dass der Schacht sich im wesentlichen gerade erstreckt
und in gerader Linie mit dem Strecken 2 verbunden wird. Wenn nun in diese Bohrung
eine Leiterschleife installiert wird, so verläuft sie weitestgehend im gewünschten
Bereich der ölführenden Schicht 5 und nur im Randbereich in der Nähe der Strecke bzw.
in der Zuleitung von der Oberfläche außerhalb dieser Zone. In Fig. 16 ist eine erste
Implementierung offenbart, bei der die Strecke 2 oberhalb der ölführenden Schicht
5 angeordnet ist, sowie eine zweite Implementierung, bei der die Strecke 2 unterhalb
der ölführenden Schicht 5 angeordnet ist.
[0152] In der beispielhaften Darstellung der Fig. 16 können somit zwei getrennte Leiterschleifen
installiert werden. Denkbar ist auch eine Verbindung von zwei Leiterschleifenhälften
über die beiden Strecken 2 und den dazwischen liegenden Schacht 1.
[0153] Bezüglich aller genannten Ausführungsformen ist eine obertäge Installation des Frequenzgenerators
welcher die Induktorschleife mit einem hochfrequenten Strom speist, möglich. Alternativ
ist eine untertägige Aufstellung möglich. Dabei sind vorzugsweise bei untertägiger
Aufstellung des Frequenzgenerators besondere Anforderungen an Explosionsschutz und/oder
Kühlung und/oder Wetterschutz zu beachten.
[0154] Bei obertägiger Aufstellung werden Umrichter über vorhandene Wasseranschlüsse über
Wasser-Wasser-Rückkühler oder an der Luft über Wasser-Luft-Rückkühler gekühlt. Gekühlt
werden müssen vor allem die Durchlass- und Schaltverluste der Leistungshalbleiter,
so dass diese sich nicht überhitzen. Untertage werden nach entsprechender Aufheizung
der Lagerstätte möglicherweise hohe Umgebungstemperaturen, hohe Luftfeuchte und ggf.
ein Mangel an fluidem Rückkühlmedium, z.B. Grubenwasser, herrschen. Von daher ist
es notwendig, eine spezielle Ausführungsform zu verwenden, welche die Verluste explosionsgeschützt
und wetterfest abführt. Zur Anwendung kommt beispielsweise ein Thermosyphon oder eine
Heatpipe, welche als absolut geschlossenes Kühlsystem arbeiten kann. Das Arbeitsmedium
des geschlossenen Kühlkreislaufes, welche auf Verdampfung zur Abführung der Wärme
und Re-Kondensation basieren kann, benötigt ein kaltes Ende, in dem das Kühlmedium
re-kondensiert wird. Hierfür kann eine elektrisch betriebene Wärmepumpe angewendet
werden. Als Arbeitsmedium im Kühlkreislauf kommen Medien in Frage, die bei Normaldruck
zwischen 60°C und 120°C verdampfen, z.B. Wasser.
[0155] Weiterhin ist eine vorgesehene Terminalbox - ein Klemmkasten - für den Anschluß des
Hin- und Rückleiters explosionsgeschützt und abgedichtet vom Umrichter auszuführen,
so dass keine explosiven Grubengase eindringen können, die sich aufgrund von nicht
auszuschliessenden Teilentladungen aufgrund der dort vorhandenen elektrischen Spannungen
von bis zu mehreren kiloVolt (kV) entzünden würden.
[0156] Die vorgestellten Anordnungen und Verfahren sind insbesondere vorteilhaft für eine
Bitumlagerstätte z. B. mit Ölviskosität 100 000cP. Sie könnte in einer Tiefe von 150-200
Meter unter der Oberfläche gelagert sein. Die Lagerstätte kann durch eine ölführende
Schicht mit einer Mächtigkeit von 20 - 30 Metern und einem Einfallwinkel von 25 -
30° ausgebildet sein. Das Öl kann bei den gegebenen Bedingungen in der Schicht bei
einer Temperatur von 8°C wegen hoher Viskosität unbeweglich oder gering beweglich
sein. Die ölführende Schicht kann weitgehend aus Sand mit niedrigem Zementierungsgrad
aufgebaut sein. Die Oberfläche mag über der Lagerstättenkontur teilweise bebaut sein.
[0157] In diesem Fall können beispielsweise zwei vertikale Schächte an der Grenze der Lagerstättenkontur
gebohrt werden. Eine Bohrung von der Oberfläche wird nicht benötigt.
[0158] Die Füllanlagen sowie die Transport -und Bewitterungsstrecken können in den Nebengesteinen
der ölführenden Schicht gebaut werden.
[0159] Sofern die Stabilität der ölführenden Schicht relativ hoch und die Gasführung relativ
niedrig ist, können neben Transport -und Bewitterungsstrecken zwei Strecken parallel
zueinander mit Abstand von 200 Meter direkt in der ölführenden Schicht aufgefahren
werden. Zwischen diesen Grubenbauten können durchgehende parallele Bohrungen mit einem
Abstand von 20-30 Meter gebohrt werden. Die Bohrungen werden mit Verrohrung insbesondere
aus Kunststoff versehen und darin mindestens in zwei benachbarten Bohrungen die elektrischen
Leitungen, die die Induktionsschleife bilden, verlegt.
[0160] Untertage können mindestens ein schlagwetterfester FrequenzGenerator installiert
werden. Nach Erwärmen des Lagerstättenabschnittes kann die bisher verwendete Induktionsschleife
entfernt und das Erdöl mit reduzierter Viskosität gefördert werden.
[0161] Zusammenfassend werden noch einmal wesentliche Prinzipien hervorgehoben, die ein
bergbauliches Aufschließen einer Öllagerstätte gemäß bevorzugten Ausführungsformen
der Erfindung ermöglichen:
- mindestens zwei quasiparallele Grubenbauten - insbesondere Strecken - in der ölführenden
Schicht oder in den Nebengesteinen können bereitgestellt werden, wobei zwischen den
Grubenbauten mindestens zwei durchgehende quasiparallele Bohrungen gebohrt werden
können, in den Bohrungen die Induktionsschleife verlegt werden kann, wobei der Anfangsabschnitt
und der Endabschnitt der Induktionsschleife in einem Grubenbau angeordnet wird und
ein Teil der Induktionsschleife in dem anderen Grubenbau zwischen zwei Bohrungseingängen
frei verlegt ist;
- der Grubenbau, in dem der Anfangsabschnitt und der Endabschnitt der Induktionsschleife
angeordnet sind, durch eine quasivertikale Bohrung mit Obertage verbunden wird und
in dieser Bohrung die elektrischen Leitungen für Anschluss der Induktionsschleife
an Frequenzgenerator bzw. dem Frequenzumrichter verlegt werden;
- den Frequenzumrichter in einem Grubenbau platziert wird;
- die zwei quasiparallelen Grubenbauten in unterschiedlicher Tiefe aufgefahren werden
und der Anfangsabschnitt und der Endabschnitt der Induktionsschleife in dem Grubenbau,
der höher als der zweite Grubenbau liegt, angeordnet wird;
- zwischen zwei durchgehenden quasiparallelen Bohrungen, in denen die Induktionsschleife
angeordnet ist, mindestens eine nichtdurchgehende Förderbohrung aus einem Grubenbau
gebohrt wird, die die erwärmte Lagerstättezone mit einem von zwei quasiparallelen
Grubenbauten verbindet;
- in die durch die Induktionsschleife erwärmte Lagerstättenzone mindestens eine Förderbohrung
von der Oberfläche gebohrt wird;
- zwischen zwei durchgehenden quasiparallelen Bohrungen, in denen die Induktionsschleife
angeordnet ist, mindestens eine nichtdurchgehende Injektionsbohrung aus einem Grubenbau
gebohrt wird;
- nach dem Erwärmen der Lagerstättezone zwischen zwei durchgehenden quasiparallelen
Bohrungen die rückführende oder die zuführende elektrische Leitung der Induktionsschleife
aus einer Bohrung entfernt und in der benachbarten durchgehenden Bohrung verlegt wird;
- die von der elektrischen Leitung befreite Bohrung als Produktionsbohrung genutzt wird;
- die von der elektrischen Leitung befreite Bohrung als Injektionsbohrung genutzt wird;
- die zwei quasiparallelen Grubenbauten in der Streichungsrichtung der ölführenden Schicht
aufgefahren werden und die durchgehenden Bohrungen in der Einfall- oder Schwebensrichtung
der ölführenden Schicht gebohrt wird;
- ein erster Grubenbau in den Firstengesteinen der ölführenden Schicht und ein zweiter
Grubenbau in den Solegesteinen der ölführenden Schicht aufgefahren werden;
- die Öllagerstätte durch Scheibenabbau und entgegengesetzt zur Fallrichtung (schwebenden
Verhieb) entwickelt wird, wobei für jede Scheibe zwei quasiparallele Grubenbauten
aufgefahren werden;
- zwischen zwei durchgehenden quasiparallelen Bohrungen zusätzlich mindestens noch zwei
durchgehende quasiparallele Bohrungen in der ölführenden Schicht gebohrt werden, wodurch
sich eine Spalte zwischen den zusätzlichen Bohrungen bildet;
- die durchgehende Spalte zwischen zusätzlichen Bohrungen mit einem Seilschrämgerät
gebildet wird;
- die Grubenbauten mindestens in zwei Förderhorizonten aufgefahren werden, zwischen
Grubenbauten in jedem Förderhorizont die Durchhiebe aufgefahren werden und die Durchhiebe
mit durchgehenden Bohrungen miteinander verbunden werden.
[0162] Zusammenfassend gilt, dass Erläuterungen, die ein Bergbauverfahren zur Bereitstellung
und späteren Betrieb einer Bergbau-Anordnung beschreiben, auch für die auf diese Weise
bereitgestellte Bergbau-Anordnung gelten und umgekehrt. Ebenso können die in den Figuren
beschriebenen Ausgestaltungen auch beliebig miteinander kombiniert werden, sofern
sie sich nicht widersprechen.
[0163] Die Erfindung ist insbesondere vorteilhaft, wenn bereits Schächte und/oder Strecken
vorhanden sind und nun verflüssigbare, jedoch hochviskose Ölbestände extrahiert werden
sollen. Die Einbeziehung der bestehenden Schächte und/oder Strecken erlaubt es mit
einfacher Bohrtechnik und einfacherem Borhwerkzeug eine Leiterschleife zu installieren,
da zu weiten Teilen nur gerade gebohrt wird bzw. sich auf eine einzige Krümmung je
Bohrung beschränkt wird. Die Erfindung ist insbesondere vorteilhaft für das Fördern
von Schweröl. Weiterhin ist die Erfindung insbesondere vorteilhaft für das Fördern
von in Sandschichten gebundenem Öl, wobei die Sandschichten von Fels und Gestein zumindest
partiell begrenzt sein kann. Die Sandschichten können dabei aufgrund einer Zementierung
fest sein.
1. Anordnung zum Eintragen von Wärme in eine geologische Formation, insbesondere in eine
in einer geologischen Formation vorliegenden Lagerstätte (12), insbesondere zur Gewinnung
einer kohlenwasserstoffhaltigen Substanz aus der Lagerstätte (12), wobei
- in der geologischen Formation mindestens ein unterirdischer Grubenbau (1,2,3,4)
bergmännisch hergestellt ist und der Grubenbau (1,2,3,4) mindestens einen Schacht
(1) und/oder mindestens eine Strecke (2,3,4) umfasst,
- ein elektrischer Leiter (7) zumindest teilweise in der geologischen Formation eingebracht
ist und der Leiter (7) in einem ersten Leiterstück (73) innerhalb des Grubenbaus (1,2,3,4)
verläuft, und
- der Leiter (7) zumindest einen Leiter-Abschnitt (75, 76) aufweist, der derart ausgebildet
ist, dass im Betrieb ein elektromagnetisches Feld auf das zum Leiter-Abschnitt (75,
76) benachbarte Erdreich (13) mittels elektromagnetischer Induktion einwirkt, so dass
eine Temperaturerhöhung und somit eine Verringerung der Viskosität einer im benachbarten
Erdreich (13) vorliegenden Substanz bewirkt wird.
2. Anordnung nach Anspruch 1,
dadurch gekennzeichnet,
dass für die Installation des elektrischen Leiters (7) vorgesehene mindestens eine Bohrung
einen gekrümmten Abschnitt (68) und einen quasihorizontalen Abschnitt (67, 69) aufweist
und die Bohrung im Grubenbau endet.
3. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein zweites Leiterstück (75,76) des Leiters in einer Bohrung (6) im Erdreich (13)
angeordnet ist und mit dem Erdreich (13) in Berührung ist.
4. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Leiterschleife mit einem ersten Leiter-Abschnitt (75) in einer ersten Bohrung
(6,66,69) weitgehend horizontal verlegt ist und die erste Bohrung (6,66,69) in einer
weitgehend rechtwinklig dazu verlaufenden ersten Strecke (2,3) endet, und
dass die Leiterschleife mit einem zweiten Leiter-Abschnitt (76) in einer zweiten Bohrung
(6,66,69) weitgehend horizontal verlegt ist und die zweite Bohrung (6,66,69) in der
weitgehend rechtwinklig dazu verlaufenden ersten Strecke (2,3) endet, und
die Leiterschleife einen dritten Leiter-Abschnitt (73) umfasst, der in der ersten
Strecke (3) angeordnet ist und eine Verbindung zwischen dem ersten Leiter-Abschnitt
(75) und dem zweiten Leiter-Abschnitt (76) bereitstellt.
5. Anordnung nach Anspruch 4,
dadurch gekennzeichnet,
dass der erste Leiter-Abschnitt (75) über die erste Bohrung (67) oder über den mindestens
einen Schacht (1) an die Erdoberfläche (9) geführt ist und
dass der zweite Leiter-Abschnitt (76) über die zweite Bohrung oder über den mindestens
einen Schacht (1) an die Erdoberfläche (9) geführt ist.
6. Anordnung nach Anspruch 4,
dadurch gekennzeichnet,
dass der erste Leiter-Abschnitt (75) an dem der ersten Strecke (3) gegenüberliegenden
Ende über die erste Bohrung (6) in einer weitgehend rechtwinklig zur ersten Bohrung
verlaufenden zweiten Strecke (4) endet und dass der zweite Leiter-Abschnitt (76) an
dem der ersten Strecke (3) gegenüberliegenden Ende über die zweite Bohrung (6) in
der weitgehend rechtwinklig zur zweiten Bohrung (6) verlaufenden zweiten Strecke (4)
endet und mindestens ein vierter Leiterabschnitt (71, 72) der Leiterschleife in der
zweiten Strecke (4) angeordnet ist.
7. Anordnung nach Anspruch 6,
dadurch gekennzeichnet,
dass mindestens ein fünfter Leiterabschnitt (10) der Leiterschleife in einer von der zweiten
Strecke ausgehenden vertikalen Bohrung (8) oder einem von der zweiten Strecke (4)
ausgehenden vertikalen Schacht (1) angeordnet ist, wobei der mindestens eine fünfte
Leiterabschnitt (10) vorzugsweise eine Verbindung zu einem Frequenzgenerator (11)
bereitstellt.
8. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass zwischen zwei in einer ersten Tiefe angeordneten weitgehend parallel verlaufenden
Leiter-Abschnitte (75, 76) parallel dazu ein Injektionsrohr zum Einspeisen eines zu
injizierenden Fluids in die geologische Formation und/oder in die Lagerstätte (12)
und/oder ein Produktionsrohr (44) zum Abführen eines aus der geologische Formation
und/oder aus der Lagerstätte (12) entnommenen Fluids angeordnet ist.
9. Anordnung nach Anspruch 8,
dadurch gekennzeichnet,
dass eine Zuführung des zu injizierenden Fluids zum Injektionsrohr über den mindestens
einen Schacht (1) und/oder der mindestens einen Strecke (2,3,4) erfolgt und/oder
dass ein Abführen und/oder Sammeln des entnommenen Fluids vom Produktionsrohr (44) über
den mindestens einen Schacht (1) und/oder der mindestens einen Strecke (2,3,4) erfolgt.
10. Anordnung nach einem der vorhergehenden Ansprüche, sofern abhängig von Anspruch 4,
dadurch gekennzeichnet,
dass innerhalb der ersten Bohrung (6) zusätzlich zum Leiter (7) oder nach Entfernen des
Leiters (7) alternativ zum Leiter (7) ein Injektionsrohr und/oder ein Produktionsrohr
angeordnet ist und/oder
dass innerhalb der zweiten Bohrung (6) zusätzlich zum Leiter (7) oder nach Entfernen des
Leiters (7) alternativ zum Leiter (7) ein Injektionsrohr zum Einspeisen eines zu injizierenden
Fluids in die geologische Formation und/oder in die Lagerstätte und/oder ein Produktionsrohr
zum Abführen eines aus der geologische Formation und/oder aus der Lagerstätte (12)
entnommenen Fluids angeordnet ist.
11. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein Frequenzgenerator (11) zum Betreiben des Leiters (7) vorgesehen ist und der Frequenzgenerator
(11) an der Erdoberfläche (9) oder dem unterirdischen Grubenbau (1,2,3,4) angeordnet
ist.
12. Anordnung nach Anspruch 11,
dadurch gekennzeichnet,
dass Enden des Leiters in einer explosionsgeschützten und/oder wetterfesten Klemmbox angeschlossen
werden, welche gegenüber dem Frequenzgenerator explosionsgeschützt abgeschlossen und
abgedichtet ist.
13. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die mindestens eine Strecke (3,4) in der Streichungsrichtung einer ölführenden Schicht
(5) angeordnet ist und/oder eine für den Leiter (7) vorgesehene Bohrung (6) zwischen
zwei der mindestens einen Strecke (3,4) in einer Neigung einer Falllinie oder in der
Schwebensrichtung der ölführenden Schicht (5) angeordnet ist.
14. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
dass der Grubenbau in einer ölführenden Schicht (5) der Lagerstätte (12) und/oder
in Nebengesteinen der Lagerstätte (12) bereitgestellt ist, wobei die Bereitstellung
in den Nebengesteinen vorzugsweise derart ausgebildet ist, dass eine erste der mindestens
einen Strecke in den Firstengesteinen einer ölführenden Schicht (5) und dass eine
zweite der mindestens einen Strecke in den Solegesteinen der ölführenden Schicht (5)
angeordnet sind.
15. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass zwischen zwei für den Leiter (7) vorgesehenen quasiparallelen Bohrungen (6) zusätzlich
mindestens noch zwei weitere quasiparallelen Bohrungen (19,20) in der ölführenden
Schicht (5) mit einer dazwischen liegenden Spalte (23) angeordnet sind.
16. Verfahren zum Eintragen von Wärme in eine geologische Formation, insbesondere in eine
in einer geologischen Formation vorliegenden Lagerstätte (12), insbesondere zur Gewinnung
einer kohlenwasserstoffhaltigen Substanz aus der Lagerstätte (12), wobei
in einer Anordnung nach einem der Ansprüche 1 bis 15 nach einer durch den bestromten
Leiter (7) erfolgten Temperatursteigerung einer beheizten Zone von bis zu 120-140°C
die beheizte Zone mit einem wässrigem Flutmedium, welches Wasser und vorzugsweise
mindestens ein Glucan mit einer β-1,3-glykosidisch verknüpften Hauptkette und β-1,6-glykosidisch
daran gebundenen Seitengruppen umfasst, wobei das Glucan vorzugsweise ein gewichtsmittleres
Molekulargewicht von 1,5*106 bis 25*106 g/mol aufweist, geflutet wird.