(11) EP 2 747 453 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

25.06.2014 Bulletin 2014/26

(51) Int Cl.: H04R 25/00 (2006.01)

(21) Application number: 12199096.4

(22) Date of filing: 21.12.2012

... _____

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(71) Applicant: GN ReSound A/S 2750 Ballerup (DK)

(72) Inventors:

- Lu, Dongmei
 DK-2630 Taastrup (DK)
- Kobbernagel, Jens Sparre 2200 København (DK)
- Meinertz, Philip 2820 Gentofte (DK)
- (74) Representative: Zacco Denmark A/S Hans Bekkevolds Allé 7 2900 Hellerup (DK)

(54) Battery door and hearing device

(57) The present disclosure relates to a hearing device and a battery door for a hearing device. The battery door comprises a body with at least one pivoting element for coupling the battery door to the hearing device such that the battery door is configured to pivot about a pivoting axis, the body having a bottom part and a sidewall, the bottom part having a first bottom surface and the sidewall having a first wall surface and a second wall surface, the first wall surface comprising contact points for supporting

a battery with a battery radius, wherein the first bottom surface and the first wall surface at least partly defines a battery compartment with a battery axis and contact points of the first wall surface arranged at a battery distance from the battery axis, wherein a center axis perpendicularly crosses the pivoting axis and crosses the battery axis. The battery door comprises a first locking element and a second locking element arranged in the bottom part of the body.

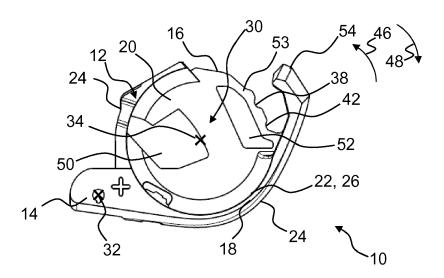


Fig. 1

EP 2 747 453 A1

20

Description

[0001] The present invention relates to a battery door for a hearing device and a hearing device comprising a battery door.

BACKGROUND

[0002] A focus in the hearing aid industry is to make hearing aids smaller and more discrete for the benefit of the user and thus a design which can decrease the size of the hearing aid is of importance. Further, it is of great interest from a cost perspective that designs are easy and cheap to manufacture. Generally a button battery is used in a hearing device and traditionally a battery door of a hearing aid has been fitted with a locking mechanism, e.g. operated by a small slider or relying on a spring effect of the material, leading to bulky hearing devices a complex manufacturing process and/or high failure rate of the locking mechanism.

SUMMARY

[0003] Despite the known solutions, there is still a need for reducing the size of a hearing device and components or parts thereof.

[0004] Accordingly, a battery door for a hearing device is provided, the battery door comprising a body with at least one pivoting element for coupling the battery door to a hearing device housing such that the battery door is configured to pivot about a pivoting axis. The body has a bottom part and a sidewall. The bottom part has a first bottom surface and the sidewall has a first wall surface, the first wall surface comprising contact points for supporting a battery with a battery radius, wherein the first bottom surface and the first wall surface at least partly defines a battery compartment with a battery axis and contact points of the first wall surface arranged at a battery distance from the battery axis. A center axis perpendicularly crosses the pivoting axis and crosses the battery axis. The battery door further comprises a first locking element and a second locking element. The first locking element may be arranged in the bottom part of the body and/or the second locking element may be arranged in the bottom part of the body.

[0005] A hearing device comprising a housing and a battery door as described is disclosed, wherein the hearing device comprises at least one engagement member configured to engage with the first and second locking element of the battery door, when the battery door is in a first and second position, respectively.

[0006] The disclosed battery door is advantageous in that it decreases the space needed for the locking mechanism, thus facilitating a small hearing device and a small battery door. Furthermore, due to a simplification of the locking mechanism, a battery door that is simple to manufacture and has reduced requirements to material quality is provided, resulting in reduced costs and reduced

failure rates.

BRIEF DESCRIPTION OF THE DRAWINGS

- **[0007]** The above and other features and advantages of the present invention will become readily apparent to those skilled in the art by the following detailed description of exemplary embodiments thereof with reference to the attached drawings, in which:
 - Fig. 1 schematically illustrates an exemplary battery door according to the invention,
- Fig. 2 schematically illustrates an exemplary battery door according to the invention with important angles,
- Fig. 3 schematically illustrates an exemplary battery door according to the invention with important distances,
- Fig. 4 illustrates a perspective view of an exemplary battery door with a battery,
- Fig. 5 schematically illustrates an exemplary hearing device according to the invention, with the battery door in an open position,
- Fig. 6 schematically illustrates an exemplary hearing device according to the invention, with the battery door in a first position,
 - Fig. 7 schematically illustrates an exemplary hearing device according to the invention, with the battery door in a second position,
 - Fig. 8 schematically illustrates an exemplary battery door according to the invention,
- 40 Fig. 9 schematically illustrates an exemplary battery door according to the invention, and
 - Fig. 10 schematically illustrates an exemplary battery door according to the invention.

DETAILED DESCRIPTION

[0008] The figures are schematic and simplified for clarity, and they merely show details which are essential to the understanding of the invention, while other details have been left out. Throughout, the same reference numerals are used for identical or corresponding parts.

[0009] A positive angle between the center axis and an axis is an angle from the center axis to the respective axis in the intended closing direction of the battery door.
[0010] A negative angle between the center axis and an axis is an angle from the center axis to the respective axis in the intended opening direction of the battery door.

25

35

40

45

50

55

[0011] The battery distance is measured perpendicular to the battery axis.

[0012] The body has a first end and a second end. Typically, the battery is inserted into the battery compartment through an opening in the first end along the battery axis.

[0013] The bottom part of the body is the part of the body between the first bottom surface and the second and

[0014] The first locking element may be arranged in the bottom part at a first distance from the battery axis. The first distance may be less than the battery distance. The second locking element may be arranged in the bottom part at a second distance from the battery axis. The second distance may be less than the battery distance. In a prefered battery door, the first distance and the second distance are both less than battery distance. As a consequence the locking mechanism of the battery door is an integrated part of the bottom part, located underneath the battery when inserted, facilitating a battery door with reduced size. The second distance may be less than the first distance. The second distance may be larger than the first distance.

[0015] The first locking element may be arranged on a first straight axis perpendicularly crossing the pivoting axis, wherein a first angle between the center axis and the first axis may be in the range from -20° to 20°. The first angle may be in the range from -10° to 10°. The first angle may be larger than 0°.

[0016] The second locking element may be arranged on a second straight axis perpendicularly crossing the pivoting axis, wherein a second angle between the center axis and the second axis may be in the range from -20° to 20°. The second angle may be in the range from -10° to 10°. The second angle may be less than 0°.

[0017] The smallest angle between the first axis and the second axis is denoted the third angle. The numerical value of the third angle may be in the range from 5° to 30°, e.g. in the range from 5° to 20°. In an exemplary battery door, the numerical value of the third angle is in the range from 6° to 15°, e.g. 8°. The third angle must be large enough to facilitate a tactile difference between the first and second positions. On the other hand, a small angle may be desired to facilitate a compact design and prevent the battery door from being too open in a first position.

[0018] The locking elements may comprise one or more recesses in the bottom surface. A recess may extend in any direction and may be in one direction in the first locking element and another in the second locking element. The locking element(s) may each comprise one or more recesses extending radially inward towards the battery axis. Thereby a compact design is facilitated preventing the locking mechanism from taking up excess space.

[0019] The bottom part may have a first cutout section. The first cutout section may extend to a second wall surface or outer surface of the sidewall, such that an elec-

trical connector placed inside the housing of the hearing aid engages with the bottom of a battery placed in the battery door when a user closes the battery door by pivoting the battery door in the closing direction.

[0020] To provide a certain amount of flexibility to the locking elements, the bottom part may also have a second cutout section. The second cutout may be located such that the bottom part comprises an arc-shaped bridge element. The first locking element and/or the second locking element may be formed on an outer edge of the bridge element. The thickness of the bridge element is to be determined by the specific material in use and should be thin enough to provide enough flexibility for an engagement member of the hearing aid to engage with the locking elements and thick enough to prevent the bridge element from breaking due to wear and tear.

[0021] The second cutout section may be an open cutout forming at least a first arm element in the bottom part. The first arm element may point in the opening or the closing direction. The second cutout may form a second arm element in the bottom part. The first locking element and the second locking element may be formed in the first arm element. In an exemplary battery door, the first locking element is formed in the first arm element and the second locking element is formed in the second arm element. An arm element facilitates greater flexibility, but also dictates a higher demand to strength of the material. In an exemplary battery door, one of the locking elements, e.g. the first locking element, may be located on the first arm element while the other locking element, e.g. the second locking element, is formed as part of a cutout. [0022] Fig. 1 shows a top view of an exemplary battery door 10 for a hearing device. The battery door 10 comprises a body 12 with at least one pivoting element 14 for coupling the battery door 10 to the hearing device such that the battery door 10 is configured to pivot about a pivoting axis 32. The body may comprise first and second pivoting elements with bores for accomodating a rod or pin to pivot the body 12 about the rod/pin forming the pivoting axis 32. The body 12 has a bottom part 16 and a sidewall 18, the bottom part 16 having a first bottom surface 20 and the sidewall having a first wall surface 22 and a second wall surface 24. The first wall surface comprises contact points and/or contact surfaces (26) for supporting a battery 28 with a battery radius R_{bat} (see Fig. 4) The first bottom surface 20 and the first wall surface 22 at least partly defines a battery compartment 30 with a battery axis 34 and contact points of the first wall surface 22 arranged at a battery distance R₁ (see Fig. 3) from the battery axis 34. Further, the battery door 10 comprises a first locking element 38 formed as a first recess extending radially inward (perpendicular to the battery axis) in the bottom part 16. Further, the battery door 10 comprises a second locking element 42 formed as a second recess extending radially inward (perpendicular to the battery axis) in the bottom part 16.

[0023] The bottom part 16 has a first cutout 50 extending to the second wall surface 24, such that an electrical

20

25

30

40

45

connector arranged inside the housing of the hearing aid is connectable to a bottom of a battery placed in the battery door by pivoting the battery door about the pivot axis 32. The battery bottom of a battery is the battery surface facing the bottom part. The bottom part 16 has a second cutout 52 forming a bridge element 53 in the bottom part, and wherein the first locking element 38 and the second locking element 42 are formed on an outer edge of the bridge element. The bridge element 53 is flexible and allows the bridge element 53 with the first and second locking elements to move during opening and closing of the battery door, such that the first and second locking elements can engage with engagement member(s) of a hearing device housing in first and second positions, respectively. The user opens the battery door 10 by pushing the tip of the handle element 54 in the opening direction 48. Closing the battery door is achieved by pushing the body 12 or the handle element 54 in the closing direction 46.

[0024] Fig. 2 shows a top view of the battery door 10 with indication of the center axis, first axis and second axis. A center axis 36 perpendicularly crosses the pivoting axis 32 and crosses the battery axis 34. A first axis 40 perpendicularly crosses the pivoting axis 32 and crosses the first locking element 38. A second axis 44 perpendicularly crosses the pivoting axis 32 and crosses the second locking element 42. The angle between the center axis 42 and the first axis 40 and the angle between the center axis 42 and the second axis 44, are denoted as V₁ and V₂ respectively. A positive angle between the center axis 42 and an axis is an angle from the center axis 42 to the respective axis in the intended closing direction 46 of the battery door 10. A negative angle between the center axis 42 and an axis is an angle from the center axis 42 to the respective axis in the intended opening direction 48 of the battery door 10. Also shown is the third angle between the second axis and the first axis, denoted V₁₂. In the example shown, V₁ is 2°, V₂ is -6° and V₁₂ is therefore 8°, thus providing a good balance between compact design and tactile impression between the first position and the second position.

[0025] Fig. 3 shows a top view of an exemplary battery door 10 with indication of distances. A first distance from the battery axis 34 to the bottom of the recess forming the first locking element 38 is denoted R_{lock1} , and a second distance from the battery axis 34 to the bottom of the recess forming the second locking element 42 is denoted R_{lock2} .

[0026] Fig. 4 shows a perspective view of the battery door 10 with a battery 28 having a battery radius R_{bat} inserted in the battery compartment 30. The at least one pivoting element of the battery door 10 comprises first pivoting element 14a and second pivoting element 14b each having an opening for a pivot pin. The at least one pivoting element may be constructed as a single pivoting element or a plurality of pivoting elements.

[0027] Figs. 5-7 show an exemplary hearing device 2 comprising an exemplary battery door 10 in an open po-

sition, first position (OFF) and second position (ON), respectively. When the battery door 10 is rotated around the pivoting axis 32 in the closing direction 46, the battery door 10 will engage in the first position, as shown in Fig. 6, where an engagement member 56 of the housing 4, engages the first locking element 38. When a user rotates the battery door further in the closing direction 46, the battery door 10 will engage in the second position as shown in Fig. 7, where the engagement member 56 engages the second locking element 42. The first and second positions may be utilized as means for switching the hearing device off and on, thus having a first position where the hearing device is off and the battery door is nearly closed, thereby supporting and storing the battery and protecting the battery door from mechanical stress. When the battery door 10 is in the second position, an electrical connector 58 of the hearing device 2 will connect to the bottom part of a battery placed in the battery compartment through the first cutout. The battery bottom of a battery is the battery surface facing the bottom part of the battery door when the battery is inserted in the battery compartment..

[0028] Fig. 8 shows an exemplary battery door, where the second cutout 52 is an open cutout, forming a first arm element 60 of the bottom part 16 pointing in the closing direction, wherein the first locking element 38 and the second locking element 42 are located. The first arm element flexes radially during opening and closing as indicated.

[0029] Fig. 9 shows an exemplary battery door, where the second cutout 52 is an open cutout, forming a first arm element 60 of the bottom part 16 pointing in the opening direction, wherein the first locking element 38 is located, and the opening of the second cutout 52 forms the second locking element 42.

[0030] Fig. 10 shows an exemplary battery door according to the invention, where the second cutout 52 is an open cutout, and where the opening of the second cutout 52 is located between the first locking element 38 and the second locking element 42 forming a first arm element 60 and a second arm element 62 of the bottom part 16, wherein the first locking element 38 and the second locking element 42 are located on different arm elements.

LIST OF REFERENCES

[0031]

50	2	hearing device
	4	housing
	6	first housing part
	10	battery door
	12	body
55	14, 14a, 14b	pivoting element
	16	bottom part
	18	sidewall
	20	first bottom surfac

20

25

30

40

45

50

55

	7	EP 2 7
22	first wall surface	
24	second wall surface	
26	contact points	
28	battery	
30	battery compartment	
32	pivoting axis	
34	battery axis	
36	center axis	
38	first locking element	
40	first axis	
42	second locking element	
44	second axis	
46	closing direction	
48	opening direction	
50	first cutout	
52	second cutout	
53	bridge element	
54	handle element	
56	engagement member	
58	electrical connector	
60	first arm element	
62	second arm element	
R _{bat}	battery radius	
R_1	battery distance	
R _{lock1}	first distance from battery axis	to first
	locking element	
R _{lock2}	second distance from battery a	axis to
	second locking element	
V_1	first angle from the center axis to t axis	he first

Claims

1. A battery door for a hearing device, the battery door comprising a body with at least one pivoting element for coupling the battery door to a hearing device housing such that the battery door is configured to pivot about a pivoting axis, the body having a bottom part and a sidewall, the bottom part having a first bottom surface and the sidewall having a first wall surface, the first wall surface comprising contact points for supporting a battery with a battery radius, wherein the first bottom surface and the first wall surface at least partly defines a battery compartment with a battery axis and contact points of the first wall surface arranged at a battery distance from the battery axis, wherein a center axis perpendicularly crosses the pivoting axis and crosses the battery axis, wherein the battery door comprises a first locking element and a second locking element arranged in the bottom part of the body.

second angle from the second axis to

third angle being the smallest angle be-

tween the second axis and the first axis.

the center axis

2. A battery door according to claim 1, wherein the first

locking element is arranged in the bottom part at a first distance from the battery axis less than the battery distance.

- 3. A battery door according to any of claims 1-2, wherein the second locking element is arranged in the bottom part at a second distance from the battery axis less than the battery distance.
- 4. A battery door according to any of the preceding claims, wherein the second locking element is arranged at a second distance from the battery axis less than the first distance between the first locking element and the battery axis.
 - 5. A battery door according to any of the preceding claims, wherein the first locking element being arranged on a straight first axis perpendicularly crossing the pivoting axis, and the second locking element being arranged on a straight second axis perpendicularly crossing the pivoting axis, and wherein a first angle between the center axis and the first axis is in the range from -20° to 20° and a second angle between the center axis and the second axis is in the range from -20° to 20°.
 - 6. A battery door according to claim 5, wherein the first angle is in the range from - 10° to 10°, and the second angle is in the range from -10° to 10°.
 - 7. A battery door according to any of claims 5-6, wherein the first angle is larger than 0° and the second angle is less than 0°.
- 35 8. A battery door according to any of claims 5-7, wherein the angle from the second axis to the first axis is in the range from 5° to 20°.
 - 9. A battery door according to any of the preceding claims, wherein the first locking element comprises a first recess in the first bottom surface, the first recess extending radially inward.
 - 10. A battery door according to any of the preceding claims, wherein the second locking element comprises a second recess in the first bottom surface, the second recess extending radially inward.
 - 11. A battery door according to any of the preceding claims, wherein the bottom part has a first cutout section, the first cutout section extending to a second wall surface of the sidewall, such that an electrical connector placed inside the housing of the hearing aid is connectable to the bottom of a battery placed in the battery door upon closing of the battery door.
 - 12. A battery door according to any of the preceding claims, wherein the bottom part has a second cutout

section.

13. A battery door according to any of the preceding claims, wherein the bottom part comprises an arcshaped bridge element, and wherein the first locking element and the second locking element are formed on an outer edge of the bridge element.

14. A battery door according to any of claims 1-13, wherein the bottom part comprises a first arm element, wherein the first locking element is formed on an outer edge of the first arm element.

15. A hearing device comprising a housing and a battery door according to any of the preceding claims, the hearing device comprising at least one engagement member configured to engage with the first and second locking element when the battery door is in a first and second position, respectively.

20

25

30

35

40

45

50

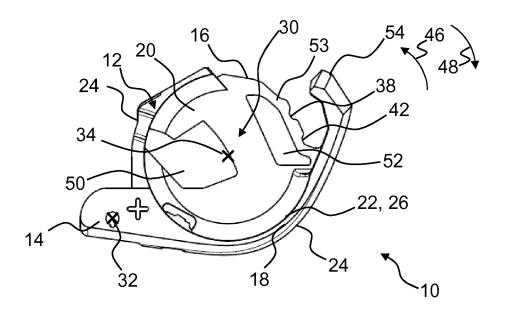


Fig. 1

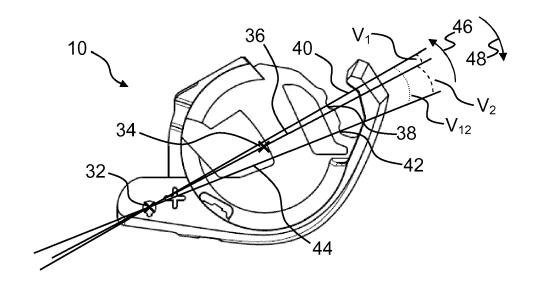


Fig. 2

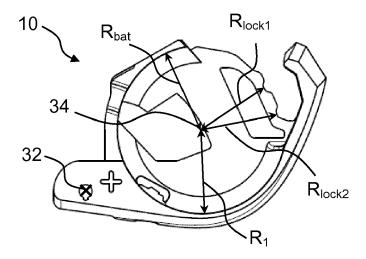


Fig. 3

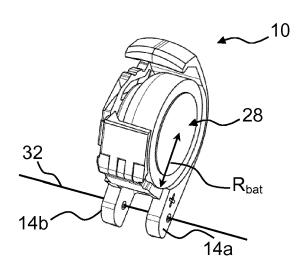


Fig. 4

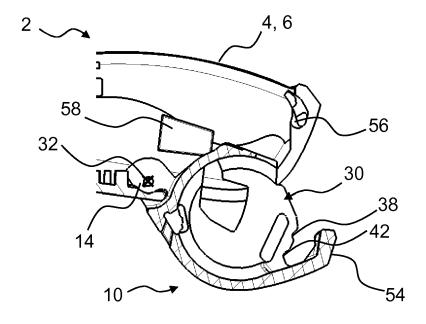


Fig. 5

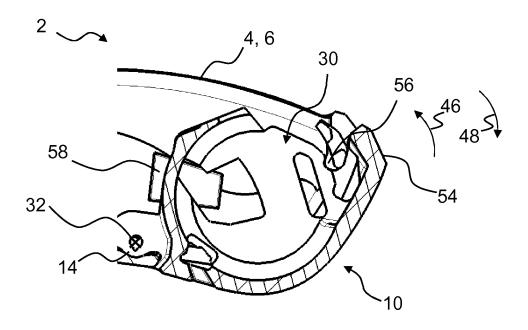
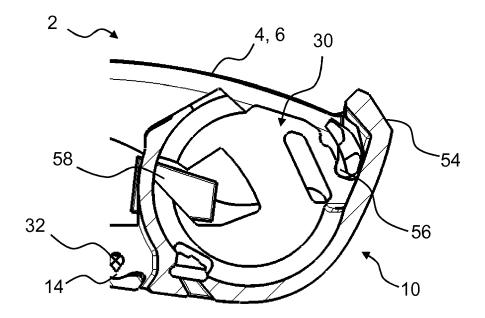



Fig. 6

Fig. 7

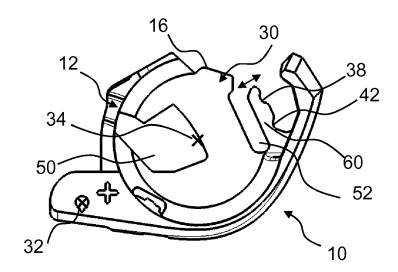
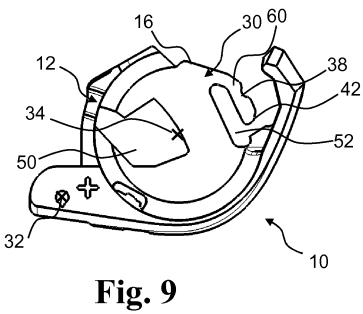
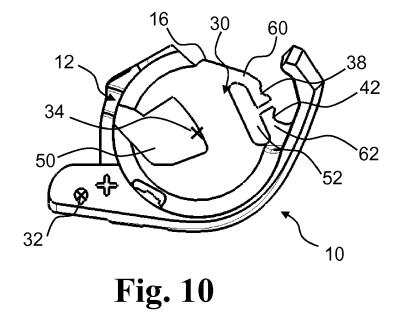




Fig. 8

EUROPEAN SEARCH REPORT

Application Number EP 12 19 9096

	DOCUMENTS CONSID	ERED TO BE	RELEVANT					
Category	Citation of document with in of relevant pass		ropriate,		Relevant o claim	CLASSIFICATION OF THE APPLICATION (IPC)		
Х	EP 2 528 138 A1 (PA 28 November 2012 (2 * paragraphs [0019] figures 5-7 *	2012-11-28)		1-	15	INV. H04R25/00		
Х	WO 2009/120148 A1 (PTE LTD [SG]; LEONG 1 October 2009 (200 * page 13, line 19 figures 2,4,7,8 *	CHEE WAH [9 9-10-01)	SG])	1				
A	DE 10 2010 040930 A INSTR PTE LTD [SG]) 22 March 2012 (2012 * the whole documer	2-03-22)	MEDICAL	1-	15			
						TECHNICAL FIELDS SEARCHED (IPC)		
						H04R		
	The present search report has	•						
	Place of search		npletion of the search		.,	Examiner		
	Munich	12 Ma	12 March 2013			Kunze, Holger		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		her	T: theory or princi E: earlier patent of after the filing d D: document cited L: document cited &: member of the document	locumer late I in the a	shed on, or			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 12 19 9096

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-03-2013

1	0	

15

	Patent document ed in search report		Publication date		Patent family member(s)		Publication date
EP	2528138	A1	28-11-2012	EP JP US WO	2528138 5080703 2013004003 2012093655	B2 A1	28-11-201 21-11-201 03-01-201 12-07-201
WO	2009120148	A1	01-10-2009	NON	E		
DE	102010040930	A1	22-03-2012	DE EP WO	102010040930 2569956 2012034815	A1	22-03-201 20-03-201 22-03-201

20

25

30

35

40

45

50

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82