

(11) **EP 2 757 219 A2**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 23.07.2014 Patentblatt 2014/30

(51) Int Cl.: **E05F 15/14** (2006.01)

(21) Anmeldenummer: 13199798.3

(22) Anmeldetag: 30.12.2013

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 21.01.2013 DE 102013200877

(71) Anmelder: Gebr. Willach GmbH 53809 Ruppichteroth (DE)

(72) Erfinder:

• Willach, Jens 53783 Eitorf (DE)

Schmitz, Stefan
 53819 Neunkirchen-Seelscheid (DE)

(74) Vertreter: Von Kreisler Selting Werner Partnerschaft
von Patentanwälten und Rechtsanwälten mbB
Deichmannhaus am Dom
Bahnhofsvorplatz 1
50667 Köln (DE)

(54) Antriebsvorrichtung für eine Schiebetür

(57) Die vorliegende Erfindung betrifft eine Antriebsvorrichtung (1) für eine Schiebetür mit einem Motor (5) und mit einem Getriebe (7) mit einem Getrieberahmen (9) und mit einem Antriebsgehäuse (3), in dem der Motor (5) und das Getriebe (7) aufgenommen sind. Der Getrieberahmen (9) ist formschlüssig in dem Antriebsgehäuse (3) aufgenommen. Zwischen jeder den Formschluss bildenden Fläche (11) des Antriebsgehäuses (3) und dem Getrieberahmen (9) ist eine elastische Zwischenlage (13) angeordnet.

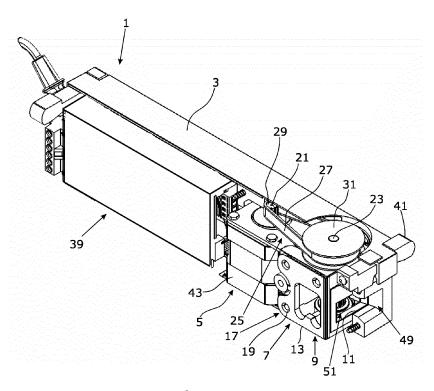


Fig.1

15

Beschreibung

[0001] Die vorliegende Erfindung betrifft eine Antriebsvorrichtung für eine Schiebetür nach dem Oberbegriff von Anspruch 1.

[0002] Zur Führung von Schiebetüren, insbesondere Glasschiebetüren, existieren Führungssysteme, die eine Laufschiene zur Führung einer Laufrolle einer Türführung aufweisen, wobei die Laufschiene eine Führungsbahn für die Laufrolle aufweist.

[0003] Dabei ist es bekannt, die Schiebetüren über ein Antriebssystem anzutreiben, so dass die Schiebetüren von dem Antriebssystem in eine geöffnete oder geschlossene Stellung angetrieben werden. Bekannte Antriebssysteme weisen beispielsweise einen Riementrieb auf, der die Türflügel antreibt, wobei der Riementrieb über einen Elektromotor und ein zwischengeschaltetes Getriebe angetrieben wird. Aus dekorativen Gründen und aus Platzgründen wird zumeist versucht, dass das Antriebssystem oder ein Großteil des Antriebssystems im Bereich des Tragprofils, das die Laufschiene für die Türführung bildet, angeordnet ist.

[0004] Ein Tragprofil einer Türanlage weist zumeist eine große Länge auf und bildet durch den Verfahrraum, in dem die Türführung der Schiebetür verfahren werden kann, einen großen Resonanzkörper. Da auf das Tragprofil übertragene Vibrationen und Schall durch den Resonanzkörper verstärkt werden, wird versucht, die Türführung möglichst vibrations- und geräuscharm auszubilden. Auch wird versucht, die Einleitung von Schall und Vibrationen, über beispielsweise eine an oder in dem Tragprofil angeordnete Antriebsvorrichtung, zu reduzieren.

[0005] Es ist daher die Aufgabe der vorliegenden Erfindung, eine Antriebsvorrichtung zu schaffen, die eine möglichst geringe Geräuschentwicklung besitzt. Darüber hinaus soll die Antriebsvorrichtung vibrationsarm ausgebildet sein, so dass diese in vorteilhafter Weise an einem Tragprofil einer Schiebetüranlage anordbar ist.

[0006] Die Erfindung ist durch die Merkmale des Anspruchs 1 definiert.

[0007] Die Erfindung sieht eine Antriebsvorrichtung für eine Schiebetür mit einem Motor und mit einem Getriebe mit einem Getrieberahmen sowie mit einem Antriebsgehäuse, in dem der Motor und das Getriebe aufgenommen sind, vor. Die Erfindung ist dadurch gekennzeichnet, dass der Getrieberahmen formschlüssig in dem Antriebsgehäuse aufgenommen ist, wobei zwischen jeder den Formschluss bildenden Fläche des Antriebsgehäuses und dem Getrieberahmen eine elastische Zwischenlage angeordnet ist.

[0008] Durch die formschlüssige Aufnahme des Getrieberahmens in dem Antriebsgehäuse kann der Getrieberahmen in besonders vorteilhafter Weise in dem Antriebsgehäuse festgelegt werden, wobei durch das Vorsehen einer elastischen Zwischenlage zwischen jeder den Formschluss bildenden Fläche des Antriebsgehäuses und dem Getrieberahmen erreicht wird, dass Vibra-

tionen, die von dem Getriebe auf den Getrieberahmen übertragen werden, durch die elastische Zwischenlage abgedämpft werden. Dadurch wird in besonders zuverlässiger Weise verhindert, dass von dem Getriebe Vibrationen und Schall auf das Antriebsgehäuse übertragen werden. Die erfindungsgemäße Antriebsvorrichtung kann somit in vorteilhafter Weise an einem Tragprofil einer Schiebetür angeordnet werden, da eine Schall- und Vibrationsentwicklung bereits innerhalb des Antriebsgehäuses gedämpft und somit über das Antriebsgehäuse nicht oder nur geringfügig auf das Tragprofil übertragen wird. Durch das Vorsehen einer formschlüssigen Aufnahme des Getrieberahmens in dem Antriebsgehäuse lässt sich darüber hinaus der Getrieberahmen auf besonders einfache Art und Weise in dem Antriebsgehäuse befestigen.

[0009] Die formschlüssige Aufnahme bietet darüber hinaus die Möglichkeit, dass zwischen jedem Teilbereich des Getrieberahmens, der sich in Richtung eines Teils des Antriebsgehäuses erstreckt, und dem Antriebsgehäuse eine elastische Zwischenlage angeordnet ist. Dadurch wird verhindert, dass es durch einen direkten Kontakt zwischen dem Antriebsgehäuse und dem Getrieberahmen zu einer Vibrations- oder Schallübertragung kommen kann. Etwaige Befestigungsmittel, wie beispielsweise Schrauben, die eine Vibrations- oder Schallübertragung zulassen könnten, werden gänzlich vermieden

[0010] Vorzugsweise ist vorgesehen, dass der Motor ausschließlich und gegenüber dem Antriebsgehäuse freihängend an dem Getrieberahmen befestigt ist. Dadurch wird erreicht, dass auch keine Kontaktflächen zwischen dem Antriebsgehäuse und dem Motor existieren, so dass auch Schall oder Vibrationen von dem Motor nicht direkt auf das Antriebsgehäuse übertragen werden können. Etwaige Vibrationen des Motors werden auf den Getrieberahmen übertragen und von der bereits vorgesehenen elastischen Zwischenlage gedämpft. Dadurch kann auf eine separate Dämpfung des Motors verzichtet werden, wodurch Material eingespart werden kann. Durch die Befestigung des Motors an dem Getrieberahmen wird darüber hinaus erreicht, dass etwaige Kräfte, die auf das Getriebe ausgeübt werden, keine Auswirkungen auf die Verbindung zwischen Getriebe und dem Motor haben, da der Motor durch die freie Aufhängung gegenüber dem Antriebsgehäuse jegliche Bewegung des Getrieberahmens in Folge einer Krafteinwirkung auf das Getriebe mit durchführen kann. Eine derartige Krafteinwirkung kann beispielsweise eine Zugkraft sein, die durch einen Antriebsriemen, der mit dem Getriebeabtrieb zusammenwirkt und der mit der Türführung verbunden ist, erzeugt wird. Bei der Einwirkung von Kräften auf das Getriebe werden somit Spannungen zwischen Motor und Getriebe vermieden.

[0011] In einem bevorzugten Ausführungsbeispiel der Erfindung ist vorgesehen, dass an dem Antriebsgehäuse Stifte angeordnet sind, die in Löcher in dem Getrieberahmen eingreifen, wobei die Stifte von elastischen Auf-

45

20

sätzen umgeben sind. Durch die Stifte wird der Getrieberahmen in vorteilhafter Weise formschlüssig in dem Antriebsgehäuse befestigt, wodurch mittels der elastischen Aufsätze auf den Stiften erreicht wird, dass zwischen dem Getrieberahmen und den Stiften und somit dem Antriebsgehäuse eine Schall-bzw. Vibrationsdämpfung vorliegt.

[0012] Die Löcher in dem Getrieberahmen können beispielsweise als Sacklöcher ausgebildet sein, in die jeweils ein Stift eingreift. Die als Sacklöcher ausgebildeten Löcher in dem Getrieberahmen lassen sich auf konstruktiv einfache Art und Weise herstellen. Ferner wird durch das Eingreifen von jeweils einem Stift in die Sacklöcher eine formschlüssige Befestigung des Getrieberahmens in dem Antriebsgehäuse auf vorteilhafte Weise erreicht. [0013] Vorzugsweise ist vorgesehen, dass der Motor eine Motorwelle aufweist und die Motorwelle und eine den Getriebeabtrieb bildende Getriebewelle parallel zueinander angeordnet sind, wobei die Motorwelle und die Getriebewelle über ein Zwischengetriebe verbunden sind. Das Zwischengetriebe kann beispielsweise als Riementrieb ausgebildet sein. Durch die parallele Anordnung von Motorwelle und Getriebewelle und ein dazwischen angeordnetes Zwischengetriebe wird erreicht, dass eine relativ geräuscharme Übertragung zwischen Motor und Getriebe stattfindet. Darüber hinaus werden in dem Stand der Technik häufig verwendete Winkelgetriebe vermieden, so dass das Getriebe und das Zwischengetriebe einen hohen Wirkungsgrad aufweisen. Dadurch kann die Dimensionierung des Motors relativ klein gehalten werden, wobei gleichzeitig der Widerstand, den eine Schiebetür beim Ausfall des Motors bei manueller Betätigung überwinden muss, reduziert ist, da sowohl der Widerstand des Motors als auch der durch den Wirkungsgrad des Getriebes bestimmte Widerstand gering gehalten werden. Dies ist insbesondere bei Notöffnungen einer mit der erfindungsgemäßen Antriebsvorrichtung ausgerüsteten Türanlage von Vorteil.

[0014] In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass das Antriebsgehäuse eine Öffnung aufweist, die an einen Durchlass im Getrieberahmen angepasst ist, wobei durch die Öffnung und den Durchlass ein mit der Schiebetür verbundenes Antriebsmittel, vorzugsweise ein Antriebsriemen, zum Getriebe führbar ist und dass die Zwischenlage dichtend an den die Öffnungen des Antriebsgehäuses umgebenden Rändern anliegt. Dadurch wird in vorteilhafter Weise ermöglicht, dass das Antriebsmittel für die Schiebetür, beispielsweise ein Antriebsriementrieb, zu dem Getriebe führbar ist. Durch die dichtende Anlage der elastischen Zwischenlage an der Öffnung des Antriebsgehäuses wird darüber hinaus erreicht, dass eine Schallisolierung zu dem Inneren des Antriebsgehäuses erfolgt. Durch die Öffnung in dem Antriebsgehäuse ist somit lediglich eine Verbindung zu dem Inneren des Getrieberahmens ermöglicht, jedoch keine Verbindung zu weiteren Freiräumen in dem Antriebsgehäuse. Dadurch wird verhindert, dass ein eventuell in Freiräumen in dem Antriebsgehäuse erzeugter Schall durch die Öffnung in dem Antriebsgehäuse nach außen, beispielsweise in das Tragprofil, gelangen kann.

[0015] Vorzugsweise ist vorgesehen, dass die elastische Zwischenlage einteilig ausgebildet ist. Dadurch lässt sich die elastische Zwischenlage in vorteilhafter Weise herstellen. Ferner lässt sich die einteilige Zwischenlage auf besonders einfache Art und Weise an dem Getrieberahmen anordnen, indem die Zwischenlage den Getrieberahmen zumindest teilweise umwickelt. Dadurch kann ferner auf einfache Art und Weise erreicht werden, dass zwischen jeder den Formschluss bildenden Fläche des Antriebsgehäuses und dem Getrieberahmen die elastische Zwischenlage liegt.

[0016] Die Erfindung kann in vorteilhafter Weise vorsehen, dass die Zwischenlage die elastischen Aufsätze bildet. Dadurch wird die Montage der erfindungsgemäßen Antriebsvorrichtung vereinfacht, da bei der Anordnung der Zwischenlage automatisch die elastischen Aufsätze für die Stifte angeordnet werden. Dabei ist vorzugsweise vorgesehen, dass die Zwischenlage über die elastischen Aufsätze an dem Getrieberahmen befestigbar ist. Dadurch wird erreicht, dass die Zwischenlage auf besonders einfache Art und Weise an dem Getrieberahmen befestigt wird, indem die Zwischenlage an dem Getrieberahmen angelegt wird und über die elastischen Aufsätze in die Löcher in dem Getrieberahmen eingreift. Dadurch ist ein Festlegen der Zwischenlage an dem Getrieberahmen möglich, wodurch eine besonders einfache Montage ermöglicht wird. Die Zwischenlage kann somit an dem Getrieberahmen befestigt werden, bevor anschließend der Getrieberahmen formschlüssig in das Antriebsgehäuse eingesetzt wird. Durch die Befestigung der Zwischenlage über die elastischen Aufsätze an dem Getrieberahmen kann auf zuverlässige Art und Weise verhindert werden, dass bei dem Einsetzen des Getrieberahmens in das Antriebsgehäuse die Zwischenlage verrutscht, so dass sichergestellt wird, dass nach dem Einsetzen des Getrieberahmens in das Antriebsgehäuse zwischen jeder den Formschluss bildenden Fläche des Antriebsgehäuses und dem Getrieberahmen die elastische Zwischenlage angeordnet ist.

[0017] Vorzugsweise ist vorgesehen, dass die elastische Zwischenlage an die Außenkontur des Getrieberahmens angepasst ist.

[0018] In einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass der Motor über einen plattenförmigen Flansch an dem Getrieberahmen befestigt ist. Die Befestigung erfolgt vorzugsweise über ein den Motor und die Motorwelle aufnehmendes Motorgehäuse. Auf diese Weise lässt sich in vorteilhafter Weise gewährleisten, dass der Motor ausschließlich an dem Getrieberahmen befestigt und gegenüber dem Antriebsgehäuse freihängend angeordnet ist. Der plattenförmige Flansch ermöglicht ferner, dass eine parallele Anordnung von Motorwelle und Getriebewelle ermöglicht wird, indem der plattenförmige Flansch zwei in die gleiche Richtung weisende Stirnflächen von Motor und Getrieberahmen mit-

35

40

45

50

einander verbindet.

[0019] In einem Ausführungsbeispiel der Erfindung ist vorgesehen, dass das Zwischengetriebe als Riementrieb ausgebildet ist, wobei zwischen dem Motor und dem Getriebe eine Federvorrichtung, vorzugsweise eine Gummifeder, zur Bereitstellung einer Riemenvorspannkraft angeordnet ist. Auf diese Weise lässt sich die Motorwelle und die Getriebewelle in vorteilhafter Weise über einen Riementrieb verbinden, da die Federvorrichtung bereits die für den Riementrieb notwendige Riemenvorspannkraft bereitstellt. Nach dem Anlegen eines Riemens des Riementriebs ist daher keine weitere Einstellung notwendig, sondern die gewünschte Riemenvorspannkraft wird automatisch von der Federvorrichtung bereitgestellt.

[0020] Dieser Aspekt der Erfindung hat separate Bedeutung und kann auch losgelöst von der erfindungsgemäßen Anordnung des Getrieberahmens in dem Antriebsgehäuse verwirklicht werden. Somit ist auch eine Antriebsvorrichtung denkbar, bei der der Motor und das Getriebe verbunden sind, insbesondere über einen plattenförmigen Flansch, wobei der Motor und das Getriebe über ein Zwischengetriebe, das als Riementrieb ausgebildet ist, verbunden sind und wobei zwischen dem Motor und dem Getriebe eine Federvorrichtung zur Bereitstellung einer Riemenvorspannkraft des Riementriebs angeordnet ist. Bei dieser Antriebsvorrichtung sowie bei der erfindungsgemäßen Antriebsvorrichtung kann dabei vorgesehen sein, dass der Motor gegenüber dem Getriebe beweglich ist, indem beispielsweise der Motor über in dem plattenförmigen Flansch angeordnete Langlöcher mit dem plattenförmigen Flansch verbunden ist. Dadurch lässt sich der Motor gegenüber dem Getriebe entgegen der Federkraft der Federvorrichtung in Richtung des Getriebes bewegen, so dass der Riementrieb auf einfache Art und Weise angelegt werden kann. Anschließend stellt die Federvorrichtung eine ausreichende Riemenvorspannkraft zur Verfügung, indem die Federvorrichtung den Motor von dem Getriebe wegdrückt. Dadurch sind keine weiteren Einstellungen für die Riemenvorspannkraft an dem Zwischengetriebe notwendig, wodurch ferner Einbaufehler vermieden werden.

[0021] Im Rahmen der Erfindung kann selbstverständlich vorgesehen sein, dass der Getrieberahmen auch als Getriebegehäuse ausgebildet ist. Die elastische Zwischenlage kann beispielsweise aus einem Elastomer, beispielsweise Gummi, sein.

[0022] Im Folgenden wird unter die Bezugnahme auf die nachfolgenden Figuren die Erfindung näher erläutert. Es zeigen:

- Fig. 1 eine schematische perspektivische Ansicht einer erfindungsgemäßen Antriebsvorrichtung,
- Fig. 2 eine schematische Draufsicht einer erfindungsgemäßen Antriebsvorrichtung in einem in eine Laufschiene eingebauten Zustand,
- Fig. 3 eine schematische perspektivische Ansicht ei-

nes Teils des Antriebsgehäuses und

Fig. 4 eine schematische perspektivische Ansicht des Motors und des Getriebes.

[0023] In Fig. 1 ist eine erfindungsgemäße Antriebsvorrichtung 1 schematisch in einer perspektivischen Darstellung und in Fig. 2 in einer Draufsicht (von oben), eingesetzt in eine Laufschiene 100, gezeigt.

[0024] Die Antriebsvorrichtung 1 weist ein Antriebsgehäuse 3 auf, das der Übersichtlichkeit halber in den Fign. 1 und 2 nur teilweise dargestellt ist. Ein Abdeckungsteil des Antriebsgehäuses 3 wurde weggelassen, um das Innere des Antriebsgehäuses 3 sichtbar zu machen. Die Antriebsvorrichtung 1 weist einen Motor 5 und ein Getriebe 7 auf. Das Getriebe 7 ist über einen Getrieberahmen 9 formschlüssig in dem Antriebsgehäuse 3 aufgenommen, wobei zwischen jeder den Formschluss bildenden Fläche 11 und dem Getrieberahmen 9 eine elastische Zwischenlage 13 angeordnet ist. Die den Formschluss bildenden Flächen 11 sind am besten in der Fig. 3 ersichtlich, in der ein Teil des Antriebsgehäuses 3 dargestellt ist.

[0025] Zur Verbesserung des Formschlusses zwischen dem Getrieberahmen 9 und dem Antriebsgehäuse 3 sind in dem Antriebsgehäuse 3 Stifte 15 angeordnet, die in Sacklöcher 17, die in dem Getrieberahmen 9 ausgebildet sind, eingreifen. Die elastische Zwischenlage 13 weist dabei elastische Aufsätze 19 für die Stifte 15 auf, die beim Eingriff der Stifte 15 in die Sacklöcher 17 auf den Stiften 15 aufsitzen. Die Außenflächen der Stifte 15 sind dabei ebenfalls den Formschluss zwischen Getrieberahmen 9 und dem Antriebsgehäuse 3 bildende Flächen.

[0026] Die Zwischenlage 13 ist einstückig ausgebildet und umwickelt den Getrieberahmen 9 zumindest teilweise, wie am besten in Fig. 4 ersichtlich ist. Dabei greift die Zwischenlage 13 mit den elastischen Aufsätzen 19 in die Sacklöcher 17 in den Getrieberahmen 9 ein und wird somit an dem Getrieberahmen 9 befestigt. Dadurch wird beim Einsetzen des Getriebe-rahmens 9 in das Antriebsgehäuse 3 verhindert, dass die Zwischenlage 13 verrutscht, so dass sichergestellt ist, dass zwischen jeder den Formschluss bildenden Fläche 11 und dem Getrieberahmen 9 ein Teil der elastischen Zwischenlage angeordnet ist. Die elastische Zwischenlage 13 ist an die Außenkontur des Getrieberahmens 9 angepasst.

[0027] Eine Motorwelle 21 bildet den Abtrieb des Motors 5 und steht mit einer Getriebewelle 23 des Getriebes 7 in Wirkverbindung. Die Verbindung zwischen der Motorwelle 21 und der Getriebewelle 23 erfolgt dabei über ein Zwischengetriebe, das in dem in den Figuren dargestellten Ausführungsbeispiel als Riementrieb 25 ausgebildet ist. Ein Riemen 27 des Riementriebs 25 greift dabei direkt auf ein Ritzel 29 an der Abtriebsseite der Motorwelle 21 an und überträgt das Drehmoment auf eine Riemenscheibe 31, die an der Getriebewelle 23 angebracht ist.

25

30

40

45

[0028] Wie am besten aus Fig. 2 ersichtlich ist, verlaufen die Motorwelle 21 und die Getriebewelle 23 parallel zueinander. Die Anordnungsrichtungen der Motorwelle 21 und der Getriebewelle 23 sind in Fig. 2 durch eine gestrichelte Linie angedeutet. Ferner ist die Motorwelle 21 in horizontaler Antriebsvorrichtung der nicht dargestellten Schiebetür (die Antriebsrichtung ist durch einen Doppelpfeil gezeigt) hintereinander angeordnet. Dadurch ist in vertikaler Richtung eine sehr kompakte Ausgestaltung der erfindungsgemäßen Antriebsvorrichtung 1 möglich.

[0029] An dem Getriebeabtrieb 33, der als Ritzel ausgebildet ist, greift ein Antriebsriementrieb 35, der mit der Schiebetür verbunden ist, über einen Antriebsriemen 37 an. In Fig. 2 sind der Antriebsriemen 37 sowie der Riemen 27 des Riementriebs 25 jeweils zu Verdeutlichungszwecken geschnitten dargestellt. Wie aus Fig. 2 hervorgeht, verlaufen die Motorwelle 21 und die Getriebewelle 23 bei dem in den Figuren dargestellten Ausführungsbeispiel in einer horizontalen Ebene. Auf der von dem Getriebe 7 abgewandten Seite des Motors 5 ist ferner eine Steuerelektronik 39 für den Motor 5 angeordnet, über die der Motor 5 steuerbar ist. Die gesamte Antriebsvorrichtung 1 ist, wie aus den Figuren hervorgeht, langgestreckt ausgebildet und kann somit in vorteilhafter Weise in die Laufschiene 100 eingesetzt werden. Dazu kann das Antriebsgehäuse 3 der erfindungsgemäßen Antriebsvorrichtung 1 Vorsprünge 41 aufweisen, die in eine Laufbahn 102 der Laufschiene 100 eingreifen. Auf der Laufbahn 102 kann beispielsweise eine Führungsvorrichtung, wie beispielsweise ein Laufwagen, der Türführung abrollen. Auf diese Weise lässt sich die erfindungsgemäße Antriebsvorrichtung 1 in vorteilhafter Weise an der Laufschiene 100 befestigen, indem über den Vorsprung 41 in die Laufschiene eingegriffen und die Antriebsvorrichtung 1 beispielsweise klemmend in der Laufschiene 100 befestigt wird. Zusammen mit einer Blende 104 bildet die Laufschiene 100 ein Tragprofil für die Schiebetür, wobei sich über die Blende 104 das gesamte Innere des Tragprofils und somit auch die Antriebsvorrichtung 1 verdecken lässt. Dadurch kann eine Türanlage in ästhetisch besonders ansprechender Weise geschaffen werden.

[0030] Die Antriebsvorrichtung 1 und insbesondere der Motor 5 und das Getriebe 7 sind in Fortführung eines Verfahrraums 106 der Führungsvorrichtung der Schiebetür, der innerhalb der Laufschiene 100 gebildet ist, angeordnet.

[0031] Der Motor 5 ist über ein Motorgehäuse 43 freihängend an dem Getrieberahmen 9 befestigt. Dadurch hängt das Motorgehäuse 43 und somit der Motor 5 frei gegenüber dem Antriebsgehäuse 3 und berührt das Antriebsgehäuse 3 nicht. Somit kann keine direkte Schallübertragung oder Übertragung von Vibrationen von dem Motor 5 auf das Antriebsgehäuse 3 erfolgen.

[0032] Durch die Anordnung der elastischen Zwischenlage 13 zwischen jeder den Formschluss bildenden Fläche 11 des Antriebsgehäuses 3 und dem Getrieberahmen 9 ist der Getrieberahmen 9 und somit das Ge-

triebe 7 schall- und vibrationsgedämpft gegenüber dem Antriebsgehäuse 3. Da der Motor 5 gegenüber dem Antriebsgehäuse 3 frei hängt und lediglich mit dem Getrieberahmen 9 verbunden ist, werden über die elastische Zwischenlage 13 auch die von dem Motor 5 erzeugten Vibrationen gegenüber dem Antriebsgehäuse 3 gedämpft.

[0033] Die erfindungsgemäße Antriebsvorrichtung 1

ist somit derart ausgebildet, dass nur eine geringe Geräuschentwicklung entsteht, wobei bereits eine Schallund Vibrationsdämpfung innerhalb des Antriebsgehäuses 3 der Antriebsvorrichtung 1 erfolgt. Somit erfolgt nur eine geringe Schall- oder Vibrationsübertragung auf die Laufschiene 100, wodurch mit der erfindungsgemäßen Antriebsvorrichtung 1 eine Türanlage mit einem Antrieb geschaffen werden kann, der sehr leise betreibbar ist. [0034] Ein plattenförmiger Flansch 45 verbindet den Getrieberahmen 9 mit dem Motorgehäuse 43, um den Motor 5 an dem Getriebe 7 festzulegen. Dabei kann vorgesehen sein, dass der Motor 5 gegenüber dem Getriebe 7 verschiebbar ist, indem beispielsweise in dem plattenförmigen Flansch 45 Langlöcher vorgesehen sind. Zwischen dem Motor 5 und dem Getriebe 7 kann eine Federvorrichtung 47 angeordnet sein, die beispielsweise als Gummifeder ausgebildet ist. Der Motor 5 und das Getriebe 7 lassen sich somit zueinander, entgegen der Federkraft der Federvorrichtung 47 drücken, so dass in vorteilhafter Weise der Riemen 27 des Riementriebs 25 angelegt werden kann. Die Federvorrichtung 47 drückt den Motor 5 und das Getriebe 7 anschließend auseinander und stellt die Riemenvorspannkraft für den Riementrieb 25 zur Verfügung. Dadurch lässt sich der Riementrieb 25 in vorteilhafter Weise montieren, da keine aufwändige Einstellung der Riemenvorspannkraft notwendig ist.

[0035] Die Getriebewelle 23 ist direkt mit dem Riementrieb 25 und dem Getriebeabtrieb 33 verbunden, so dass ein kompaktes Getriebe geschaffen werden kann.

[0036] Das Antriebsgehäuse 3 weist eine Öffnung 49, die an einen Durchlass 51 angepasst ist, auf. Durch die Öffnung 49 und den Durchlass 51 kann der Antriebsriemen 37 des Antriebsriementriebs 35 zu dem Getriebeabtrieb 33 geführt werden. Die Zwischenlage 13 liegt dabei dichtend an den die Öffnung 49 des Antriebsgehäuses 3 umgebenden Rändern 53 an. Dazu weist die Zwischenlage 13, wie am besten aus Fig. 4 ersichtlich ist, eine Verdickung 13a auf. Durch die dichtende Anlage der Zwischenlage 13 an den die Öffnung 49 umgebenden Rändern 53 wird eine Schallisolierung erreicht, so dass lediglich eine direkte Verbindung zwischen dem Inneren des Getrieberahmens 9 und der Öffnung 49 des Antriebsgehäuses 3 vorliegt. Weiterer innerhalb des Antriebsgehäuses 3 eventuell entstehender Schall wird durch die dichtende Anlage der Zwischenlage 13 an dem Austreten durch die Öffnung 49 gehindert. Da die Öffnung 49 des Antriebsgehäuses 3 in direkter Verbindung mit dem Verfahrraum 106 des Tragprofils steht, wird somit die Gefahr, dass in dem Antriebsgehäuse 3 entstehender Schall

20

25

30

35

in den Verfahrraum 106 übertragen wird, verringert. [0037] Durch die Befestigung des Motors 5 an dem Getrieberahmen 9 und der freien Aufhängung des Motors 5 gegenüber dem Antriebsgehäuse 3 wird darüber hinaus erreicht, dass eine durch den Antriebsriemen 37 auf das Getriebe ausgeübte Zugkraft auf den Motor 5 übertragen wird, ohne dass es zu einer Spannung zwischen dem Motor 5 und dem Getriebe 7 kommen kann, da der Motor bei eventuellen Bewegungen, die das Getriebe 7 ausführt, mitgenommen wird. Darüber hinaus wird verhindert, dass eventuelle Kräfte, die auf das Getriebe 7 ausgeübt werden, die Riemenvorspannkraft des Riementriebs 25 negativ beeinflussen.

Patentansprüche

Antriebsvorrichtung (1) für eine Schiebetür mit einem Motor (5) und mit einem Getriebe (7) mit einem Getrieberahmen (9) und mit einem Antriebsgehäuse (3), in dem der Motor (5) und das Getriebe (7) aufgenommen sind,

dadurch gekennzeichnet,

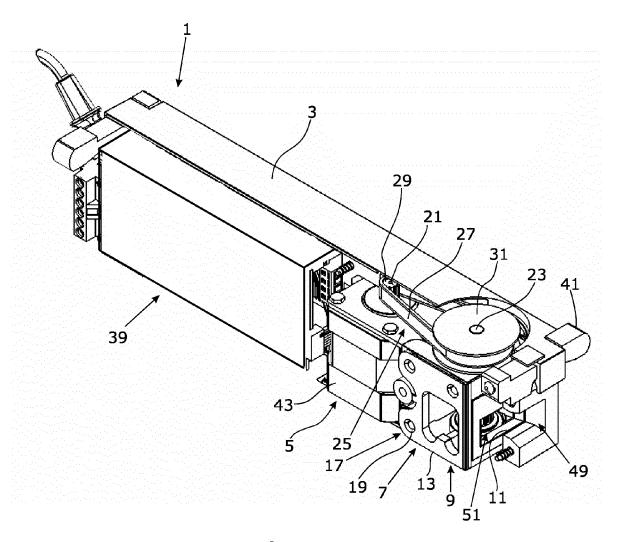
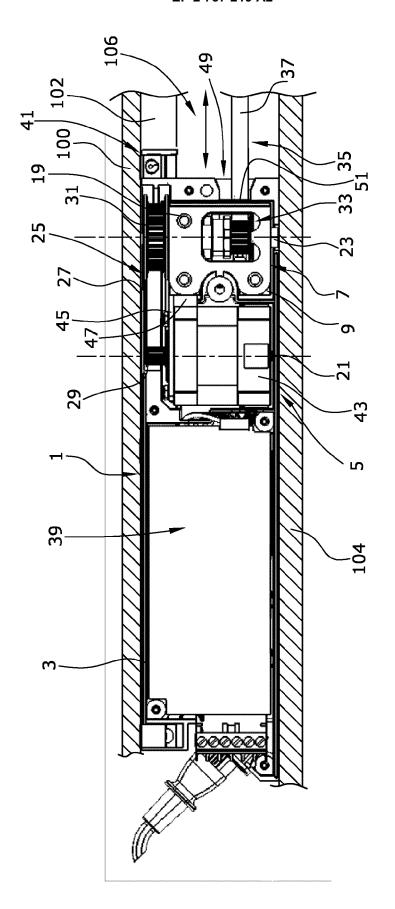
dass der Getrieberahmen (9) formschlüssig in dem Antriebsgehäuse (3) aufgenommen ist, wobei zwischen jeder den Formschluss bildenden Fläche (11) des Antriebsgehäuses (3) und dem Getrieberahmen (9) eine elastische Zwischenlage (13) angeordnet ist.

- 2. Antriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Motor (5) ausschließlich und gegenüber dem Antriebsgehäuse (3) frei hängend an dem Getrieberahmen (9) befestigt ist.
- 3. Antriebsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an dem Antriebsgehäuse (3) Stifte (15) angeordnet sind, die in Löcher in dem Getrieberahmen (9) eingreifen, wobei die Stifte (15) von elastischen Aufsätzen (19) umgeben sind.
- 4. Antriebsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Löcher in dem Getrieberahmen (9) als Sacklöcher (17) ausgebildet sind, in die jeweils ein Stift (15) eingreift.
- 5. Antriebsvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Motor (5) eine Motorwelle (21) aufweist und die Motorwelle (21) und eine den Getriebeabtrieb (33) bildende Getriebewelle (23) parallel zueinander angeordnet sind, wobei die Motorwelle (21) und die Getriebewelle (23) über ein Zwischengetriebe verbunden sind.
- Antriebsvorrichtung nach einem der Ansprüche 1 bis
 , dadurch gekennzeichnet, dass das Antriebsgehäuse (3) eine Öffnung (49) aufweist, die an einen

Durchlass (51) im Getrieberahmen (9) angepasst ist, wobei durch die Öffnung (49) und den Durchlass (51) ein mit der Schiebetür verbundenes Antriebsmittel zum Getriebe (7) führbar ist, und dass die elastische Zwischenlage (13) dichtend an den die Öffnung (49) des Antriebsgehäuses (3) umgebenden Rändern anliegt.

- Antriebsvorrichtung nach einem der Ansprüche 1 bis
 dadurch gekennzeichnet, dass die elastische Zwischenlage (13) einteilig ausgebildet ist.
- Antriebsvorrichtung nach einem der Ansprüche 3 bis
 , dadurch gekennzeichnet, dass die Zwischenlage (13) die elastischen Aufsätze (19) bildet.
- Antriebsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Zwischenlage (13) über die elastischen Aufsätze (19) an dem Getrieberahmen (9) befestigbar ist.
- 10. Antriebsvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet die Zwischenlage (13) an die Außenkontur des Getrieberahmens (9) angepasst ist.
- Antriebsvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Motor (5) über einen plattenförmigen Flansch (45) an dem Getrieberahmen (9) befestigt ist.
- 12. Antriebsvorrichtung nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, dass das Zwischengetriebe als Riementrieb (25) ausgebildet ist, wobei zwischen dem Motor (5) und dem Getriebe (7) eine Federvorrichtung (47) zur Bereitstellung einer Riemenvorspannkraft angeordnet ist.

55

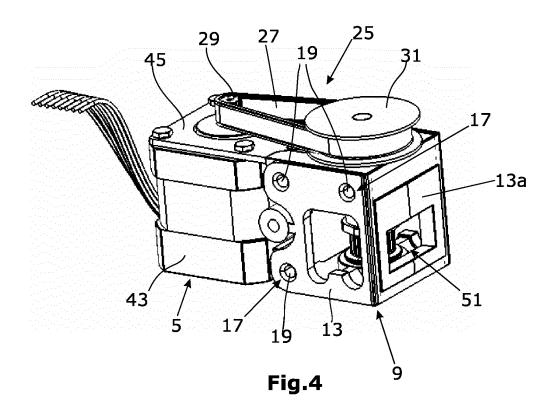

Fig.1

Fig.2

Fig.3

