BACKGROUND
[0001] In this century, the shortage of fresh water will surpass the shortage of energy
as a global concern for humanity, and these two challenges are inexorably linked,
as explained in the "
Special Report on Water" in the 20 May 2010 issue of The Economist. Fresh water is one of the most fundamental needs of humans
and other organisms; each human needs to consume a minimum of about two liters per
day. The world also faces greater freshwater demands from farming and industrial processes.
[0002] The hazards posed by insufficient water supplies are particularly acute. A shortage
of fresh water may lead to a variety of crises, including famine, disease, death,
forced mass migration, cross-region conflict/war, and collapsed ecosystems. Despite
the criticality of the need for fresh water and the profound consequences of shortages,
supplies of fresh water are particularly constrained. 97.5% of the water on Earth
is salty, and about 70% of the remainder is locked up as ice (mostly in ice caps and
glaciers), leaving only a fraction of all water on Earth as available fresh (non-saline)
water.
[0003] Moreover, the earth's water that is fresh and available is not evenly distributed.
For example, heavily populated countries, such as India and China, have many regions
that are subject to scarce supplies. Further still, the supply of fresh water is often
seasonally inconsistent. Meanwhile, demands for fresh water are tightening across
the globe. Reservoirs are drying up; aquifers are falling; rivers are dying; and glaciers
and ice caps are retracting. Rising populations increase demand, as do shifts in farming
and increased industrialization. Climate change poses even more threats in many regions.
Consequently, the number of people facing water shortages is increasing. Naturally
occurring fresh water, however, is typically confined to regional drainage basins;
and transport of water is expensive and energy-intensive.
[0004] On the other hand, many of the existing processes for producing fresh water from
seawater (or to a lesser degree, from brackish water) require massive amounts of energy.
Reverse osmosis (RO) is currently the leading desalination technology. In large-scale
plants, the specific electricity required can be as low as 4 kWh/m
3 at 30% recovery, compared to the theoretical minimum of around 1 kWh/m
3; smaller-scale RO systems (
e.g., aboard ships) are less efficient.
[0005] Other existing seawater desalination systems include thermal-energy-based multi-stage
flash (MSF) distillation, and multi-effect distillation (MED), both of which are energy-
and capital-intensive processes. In MSF and MED systems, however, the maximum brine
temperature and the maximum temperature of the heat input are limited in order to
avoid calcium sulphate precipitation, which leads to the formation of hard scale on
the heat transfer equipment.
[0006] Humidification-dehumidification (HDH) desalination systems include a humidifier and
a dehumidifier as their main components and use a carrier gas (
e.g., air) to communicate energy between the heat source and the brine. In the humidifier,
hot seawater comes in direct contact with dry air, and this air becomes heated and
humidified. In the dehumidifier, the heated and humidified air is brought into (indirect)
contact with cold seawater and gets dehumidified, producing pure water and dehumidified
air. Some of the present inventors were also inventors on the following patent applications
that include additional discussion relating to HDH processes for purifying water:
US Application Serial No. 12/554,726, filed 4 September 2009 (attorney docket number mit-13607);
US Application Serial No. 12/573,221, filed 5 October 2009 (attorney docket number mit-13622); and
US Application Serial No. 13/028,170, filed 15 February 2011 (attorney docket number mit-14295).
[0007] An approach from the University of Florida, which is described in
US Patent No. 6,919,000 B2, reduced the thermal resistance associated with incondensable gases by using a direct-contact
condenser instead of a standard, indirect contact dehumidifier. This method increases
the heat transfer rates in the condenser at the expense of energy efficiency, as the
energy from the humid air entering the dehumidifier is not directly recovered to preheat
the seawater. Thus, although the cost of the dehumidification device is reduced, energy
costs increase.
[0008] GB698966 relates to improvements in or relating to cooling, condensing or absorption apparatus
liquids, gases or vapors having a strong corrosive or etching action.
US2002/053505 relates to a horizontal distillation apparatus.
US4762593 relates to a distilling apparatus.
US4,252,546 relates to a process and apparatus for the recovery of the solvent from the exhaust
air of dry cleaning machines.
US2010/314238 relates to a hybrid solar desalination system.
US3,583,895 relates to a process of heating and evaporating solutions, and condensing vapors
formed therefrom.
US5290403 relates to a liquid evaporating apparatus.
SUMMARY
[0009] Single-stage and multi-stage bubble-column vapor mixture condensers (referred to
simply as a condenser elsewhere herein) and the operation thereof are described herein.
Various embodiments of the apparatus and methods may include some or all of the elements,
features and steps described below.
[0010] In the multi-stage bubble-column condenser, a fluid source supplies a carrier-gas
stream including a condensable fluid. The multi-stage condenser includes at least
a first stage and a second stage, each of which includes an inlet, an outlet and a
chamber in fluid communication with the inlet and the outlet. The inlet of the first
stage of the bubble-column condenser is coupled with the fluid source, and the outlet
of the first stage is in fluid communication with the inlet of the second stage to
facilitate flow of the carrier-gas stream from the fluid source through the chamber
of the first stage and then through the chamber of the second stage. The condensable
fluid in liquid phase fills the chambers of the first stage and the second stage such
that the carrier-gas stream passes through in direct contact with the liquid, which
is stationary or in counterflow with the carrier-gas stream, when passing from the
inlet to the outlet of each stage.
[0011] The present invention relates to a humidification-dehumidification system as per
claim 1. The system comprises a humidifier including a carrier-gas inlet and a carrier-gas
outlet; a liquid inlet and a liquid outlet, wherein the liquid inlet is coupled with
a liquid source; and a chamber in which liquid introduced from the liquid inlet can
contact a carrier gas containing a condensable fluid in vapor phase that is introduced
from the carrier-gas inlet in a counterflow arrangement and in which a portion of
the liquid can vaporize into the carrier gas; a bubble-column vapor mixture condenser
including at least a first stage including a carrier-gas inlet, a carrier-gas outlet
and a chamber that contains a liquid bath in fluid communication with the carrier-gas
inlet and the carrier-gas outlet, wherein the carrier-gas inlet of the condenser is
in fluid communication with the carrier-gas outlet of the humidifier, wherein the
carrier gas outlet of the condenser is in fluid communication with the carrier gas
inlet of the humidifier, wherein the carrier-gas inlet of the condenser is a bubble
generator positioned in contact with the liquid bath so that the carrier gas can bubble
up through the liquid bath from the bubble generator, overcoming a hydrostatic head
of the liquid bath, and wherein the carrier-gas outlet is positioned with an opening
for carrier gas extraction above the liquid bath, the bubble-column vapor mixture
condenser further comprising a conduit extending through the liquid bath in the chamber
and coupled with the liquid source and with the liquid inlet of the humidifier to
flow the liquid from the source, through the chamber of the condenser, where the liquid
can be preheated by recovering energy from condensation, to the humidifier; and wherein
the system further comprises a blower or a compressor configured to pump the carrier
gas: from the humidifier's carrier gas outlet to the condenser's carrier gas inlet
via a conduit, and through the bubble generator thereby enabling the carrier gas to
bubble up through the liquid bath.
[0012] The present invention also relates to a method as per claim 7 for condensing a fluid
from a carrier-gas stream. The method comprising: using a blower or compressor to
pass a carrier-gas stream through a humidifier and out of the humidifier via a conduit,
where, in the humidifier, a condensable fluid in vapor phase is added to the carrier-gas
stream in a chamber by introducing a liquid through a liquid inlet thereby contacting
a carrier-gas containing a condensable fluid in vapor phase that is introduced from
a carrier-gas inlet in a counterflow arrangement and in which a portion of the liquid
can vaporize into the carrier gas; using a bubble generator to bubble the carrier-gas
stream comprising the condensable fluid in vapor phase through a first bath of the
fluid in liquid phase in a first stage of a bubble-column condenser, wherein the carrier-gas
stream contacts the first bath, and wherein some of the fluid in vapor phase in the
carrier-gas stream condenses into the first bath; exhausting the carrier-gas stream
with a reduced content of the fluid in vapor phase from the first stage of the bubble-column
condenser and passing the carrier-gas stream back through the humidifier via a conduit,
where, in the humidifier, additional vapor-phase fluid is added to the carrier-gas
stream after the carrier-gas stream is exhausted from the first stage; and passing
the liquid through a conduit that passes through the liquid-phase fluid in the first
stage to recover energy from the condensation in the bubble-column condenser to the
liquid passing through the conduit before the liquid is introduced through the liquid
inlet of the humidifier.
[0013] The apparatus and methods can be used to separate pure water from a liquid mixture
(including but not limited to seawater, brackish water and waste water) in a cost-efficient
manner, which can result in substantially reduced costs compared with previous approaches.
Embodiments of the apparatus and methods can offer numerous advantages. First, based
on data for bubble columns given in open literature, the heat-transfer coefficient
in the multi-stage bubble-column condenser is estimated to be 7 kW/m
2·K (i.e., at least one order of magnitude higher than the current state-of-art). This
heat-transfer coefficient is comparable to, if not higher than, film condensation
of steam. Second, the high energy recovery can be maintained using a novel multi-staging
technique. Third, multi-extraction can be employed in the apparatus and methods to
further increase heat recovery. Fourth, the overall cost of the system is reduced
as the energy cost and the equipment cost are both reduced.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014]
FIG. 1 is a sectional illustration of a single-stage bubble-column condenser.
FIG.2 is a schematic illustration of an embodiment of a humidification-dehumidification
water-purification system including a multi-stage bubble-column condenser.
FIG. 3 plots the temperature profile across columns in a multi-stage bubble-column
condenser from the top of the bubbling columns.
FIG. 4 plots the temperature profile in a single-stage bubble-column condenser from
the top of the bubbling column.
FIG. 5 is a schematic illustration of an embodiment of a multi-extraction humidification-dehumidification
water-purification system including a multi-stage bubble-column condense.
[0015] In the accompanying drawings, like reference characters refer to the same or similar
parts throughout the different views; and apostrophes are used to differentiate multiple
instances of the same or similar items sharing the same reference numeral. The drawings
are not necessarily to scale, with emphasis instead being placed upon illustrating
particular principles, discussed below.
DETAILED DESCRIPTION
[0016] The foregoing and other features and advantages of various aspects of the invention(s)
will be apparent from the following, more-particular description of various concepts
and specific embodiments within the broader bounds of the invention(s). Various aspects
of the subject matter introduced above and discussed in greater detail below may be
implemented in any of numerous ways, as the subject matter is not limited to any particular
manner of implementation. Examples of specific implementations and applications are
provided primarily for illustrative purposes.
[0017] Unless otherwise defined, used or characterized herein, terms that are used herein
(including technical and scientific terms) are to be interpreted as having a meaning
that is consistent with their accepted meaning in the context of the relevant art
and are not to be interpreted in an idealized or overly formal sense unless expressly
so defined herein. For example, if a particular composition is referenced, the composition
may be substantially, though not perfectly pure, as practical and imperfect realities
may apply;
e.g., the potential presence of at least trace impurities (
e.g., at less than 1 or 2% by weight or volume) can be understood as being within the
scope of the description; likewise, if a particular shape is referenced, the shape
is intended to include imperfect variations from ideal shapes,
e.g., due to machining tolerances.
[0018] Although the terms, first, second, third,
etc., may be used herein to describe various elements, these elements are not to be limited
by these terms. These terms are simply used to distinguish one element from another.
Thus, a first element, discussed below, could be termed a second element without departing
from the teachings of the exemplary embodiments.
[0019] Spatially relative terms, such as "above," "below," "left," "right," "in front,"
"behind," and the like, may be used herein for ease of description to describe the
relationship of one element to another element, as illustrated in the figures. It
will be understood that the spatially relative terms, as well as the illustrated configurations,
are intended to encompass different orientations of the apparatus in use or operation
in addition to the orientations described herein and depicted in the figures. For
example, if the apparatus in the figures is turned over, elements described as "below"
or "beneath" other elements or features would then be oriented "above" the other elements
or features. Thus, the exemplary term, "above," may encompass both an orientation
of above and below. The apparatus may be otherwise oriented (
e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors
used herein interpreted accordingly.
[0020] Further still, in this disclosure, when an element is referred to as being "on,""connected
to" or "coupled to" another element, it may be directly on, connected or coupled to
the other element or intervening elements may be present unless otherwise specified.
[0021] The terminology used herein is for the purpose of describing particular embodiments
and is not intended to be limiting of exemplary embodiments. As used herein, singular
forms, such as "a" and "an," are intended to include the plural forms as well, unless
the context indicates otherwise. Additionally, the terms, "includes," "including,"
"comprises" and "comprising," specify the presence of the stated elements or steps
but do not preclude the presence or addition of one or more other elements or steps.
[0022] The presence of incondensable gases can drastically increase the thermal resistance
associated with film condensation of steam on a cold surface. For the typical mole
fraction (about 70%) of air (incondensable gas) present in a dehumidifier (condenser)
of a humidification-dehumidification system, the heat-transfer coefficient can be
as low as 1/100th of that for pure steam condensation (in multi-effect-distillation
and multi-stage-flash systems). In absolute value, the heat-transfer coefficient can
be as low as 10 W/m
2·K. Hence, it is advantageous to reduce the thermal resistance associated with the
incondensable gas, while at the same time preserving the advantageous increase in
energy efficiency brought about by the methods described in the inventors' previous
patent applications, noted in the Background.
[0023] A sectional view of an embodiment of a single-stage bubble-column condenser 12 is
provided in FIG. 1. The bubble column 14 contains a bath of a liquid 15 (
e.g., distilled water in this embodiment). The liquid 15 is supported on a bubble generator
44 inside the bubble-column chamber. Gas chambers 17 and 19 are respectively positioned
below and above the liquid. Chamber 17 below the liquid allows a moist carrier gas
to be pumped from conduit 32' via a compressor/blower 34 through orifices in the bubble
generator 44 into the liquid 15 in the form of bubbles 21, though the lower chamber
17 can be omitted where the bubble generator 44 includes a network of perforated pipes
through which the carrier gas is pumped. A tube coil 20 that is coupled with a fluid
source (
e.g., sea water) snakes through the water 15 in the condenser 12, allowing for heat transfer
from the water 15 in the chamber to the sea water being directed through the tube
coil 20. Accordingly, cool fluid enters the tube coil 20 at the lower left and exits
as heated fluid at the upper right. After passing through the liquid 15, the dry carrier
gas collects in the gas chamber 19 at the top of the chamber and is extracted through
gas conduit 32".
[0024] The bubble generator 44 can have a diameter,
e.g., of 1.25 m, and can have a plurality of orifices, each having a diameter,
e.g., of 1 mm for generating bubbles of approximately the same diameter. The bubble generator
44 can be in the form of, for example, a sieve plate, wherein the carrier gas is pumped
through the orifices in the sieve plate. Alternatively, the bubble generator 44 can
be in the form of a sparger with perforated pipes for distributing the carrier gas,
wherein the sparger distributes the bubbles through the perforated pipes, which can
extend from a central conduit. The perforated pipes in the sparger can feature,
e.g., a radial, multiple-concentric-ring, spider-web, or hub-and-spoke wheel-type configuration
of the perforated pipes through which the carrier gas is pumped from an external source.
[0025] All components of the bubble column (
e.g., all walls and the bubble generator can be oriented at an angle to the vertical,
α, between 0° and 60° with respect to vertical (
e.g., with respect to an axis along a radian passing through the center of the earth).
As the bubble column 14 is oriented at an angle, the hydrostatic head reduces from
ρgH to ρgH·(cosα), where ρ is density (kg/m
3), g is gravitational acceleration (9.81 m/s
2), and h is the height of the liquid in the column. This reduction in hydrostatic
head comes with a reduction in fluid pressure drop of up to 50%. This pressure drop,
however, will come with a reduction in the fluid-side heat transfer coefficient at
higher angles (
α > 45°). This is because, at higher angles, the liquid circulation will not be set
up in a regular manner. However, for optimized design, the angled configuration with
lesser pressure drop may provide significant savings in energy cost.
[0026] An embodiment of a multi-stage bubble-column condenser in a humidification-dehumidification
(HDH) water purifier system 10 is shown in FIG. 2, wherein the dehumidifier is a multi-stage,
bubble-column, vapor mixture condenser (also referred to as a "bubbler") 12 instead
of using an indirect-contact heat exchanger (as is common with conventional HDH systems)
to dehumidify moist carrier gas (
e.g., moist air) and produce fresh liquid water efficiently. The carrier gas is humidified
with vaporized water from a liquid composition (
e.g., sea water or waste water) in the humidifier 24; and the water vapor entrained in
the carrier gas is then transported via conduit 32' to the bubble-column condenser
12, where the water in the moist air is condensed to produce fresh (
i.e., substantially pure) water.
[0027] The liquid composition (
e.g., sea water) is provided from a source 16 (
e.g., a tank) and circulated through the system by a pump 36, which can mounted in the
conduit 18 between the source 16 and the bubble-column condenser 12. The liquid composition
is passed through each stage 14 of the condenser 12 via internal conduits 20 mounted
in each stage 14, wherein the design of each of the stages 14 can substantially match
that of the single-stage bubble column of FIG. 1. In this embodiment, the liquid composition
is passed between stages 14via adjoining external conduits 18 to preheat the liquid
composition. The internal conduits 20 can have thermally conductive surfaces (
e.g., fins) 23 extending from the conduits 20 (as shown in FIG. 2) to increase the heat
transfer from the liquid in the stages 14 to the liquid composition passing through
the tube coil 20. After exiting the internal tube coil 20 in the bottom (first) stage
14' of the bubble-column condenser 12, the liquid composition passes through an additional
conduit 18 to a heater 22 (
e.g., a solar water heater or a waste-heat source) that further heats the liquid composition
(
e.g., to 80°C) before the liquid composition is passed into the humidifier 24 and atomized
and dispersed via a nozzle 26.
[0028] Inside the humidifier, packing material 28 is provided in the form,
e.g., of polyvinyl chloride (PVC) packing to facilitate the gas flow and to increase
the liquid surface area that is in contact with the carrier gas to increase the portion
of the vaporizable liquid that is vaporized into the carrier gas. The body of the
humidifier 24 (and the dehumidifier 12 as well as the conduits 18 and 32) can be formed,
e.g., of stainless steel and is substantially vapor impermeable In one embodiment, the
humidifier 24 is substantially cylindrical with a height of about 2.5 m and a radius
of about 0.5 m.
[0029] The humidifier 24 and dehumidifier 12 are both of a modular construction (
i.e., each in the form of a separate and discrete device) and are substantially thermally
separated from one another. The characterization of the humidifier 24 and dehumidifier
12 as being "substantially thermally separated" is to be understood as being structured
for little or no direct conductive thermal energy transfer through the apparatus between
the humidifier 24 and the dehumidifier 12, though this characterization does not preclude
a mass flow carrying thermal energy (via gas and/or liquid flow) between the chambers.
This "substantial thermal separation" characterization thereby distinguishes the apparatus
from,
e.g., a dewvaporation apparatus, which includes a shared heat-transfer wall between the
humidifier and dehumidifier. In the apparatus of this disclosure, the humidifier 24
and dehumidifier 12 need not share any common walls that would facilitate conductive
heat transfer there between.
[0030] The carrier gas flows upward through the chamber defined by the humidifier 24 from
the port for conduit 32"" to the port for conduit 32', where it exits with a higher
content of vaporized liquid. Humidification of the carrier gas is achieved by spraying
the liquid composition from one or more nozzles 26 at the top of the humidifier 24
down through a zone including packing material 28, where some of the water in the
liquid composition will evaporate, while a non-evaporated remnant of the liquid composition
(
e.g., brine) flows down through a rain zone to the base of the chamber defined by the
humidifier 24, where the brine is drained via a conduit 18 into a brine-collection
tank 30. Meanwhile, the carrier gas moves up through the humidifier 24 and is brought
into contact with the liquid composition, particularly in the bed of packing material
28, to humidify the carrier gas with water vapor evaporated from the liquid composition.
The carrier gas can consequently be saturated with water vapor before being withdrawn
from the humidifier 24 via conduit 32' and pumped via a compressor/blower 34 through
the inlet of a first stage 14' of the multi-stage bubble column condenser 12. In particular
embodiments, an air heater and/or an air compressor or thermal vapor compressor can
be mounted in conduit 32' to heat and/or compress the carrier gas before it is pumped
into the dehumidifier 12. Where an air compressor or thermal vapor compressor is mounted
in conduit 32', a complimentary air expander can be mounted in conduit 32"" to expand
the carrier gas, as it is circulated back to the humidifier 24. In other embodiments,
the compressor/blower 34 can be positioned in the conduit 32"" leading to the humidifier
24 because of operational considerations.
[0031] The flow of seawater through the tube coil 20 inside the dehumidifier 12 can ensure
that the heat is directly recovered to preheat the liquid composition (
e.g., sea water in this embodiment) during the condensation process. The bubble-column
condenser 12 includes a plurality of stages 14, each filled with a bath of liquid
(
e.g., distilled water) through which moist, hot carrier gas is passed using a compressor/blower
34 and a bubble generator 44 that injects gas bubbles (or through which bubbles are
injected) into the bath.
[0032] The hot water-vapor-laden carrier gas emitted from the humidifier (evaporator) 24
passes (
e.g., at a temperature of 70°C) through the conduit 32' extending from the top of the
humidifier 24 and is bubbled through each of the stages 14 in the dehumidifier 12,
where the carrier gas is cooled and dehumidified. The carrier gas collects at the
top of each stage14 and is passed from an outlet atop each stage 14 via a conduit
32 into and through an inlet of the next stage 14 and through the bubble generator
44, which generates bubbles of the carrier gas that then pass through the distilled
water in the stage 14, and the carrier gas is then again collected at the top of the
column. This process is sequentially repeated in each subsequent column.
[0033] A low pressure drop in the present dehumidifier 12 can keep pumping power low, thereby
enabling an economically feasible system. This focus on maintaining low pumping power
is in contrast to many bubble columns in the chemical industry, where the primary
concern is heat and mass transfer, and where pressure drop may not be a significant
design constraint. Pressure drop in the bubble chamber in each stage 14 occurs largely
due to the following three factors: (1) head loss at the bubble generator 44, where
bubbles are generated, (2) friction between the carrier gas and the distilled water
as the bubbles rise through the liquid, and (3) the hydrostatic head. As the hydrostatic
head is the largest contributor to total pressure drop across a given stage 14, the
height of each stage 14 (measured vertically in the orientation shown in the Figures)
is advantageously kept low. To obtain a pressure drop lower than 1 kPa, for example,
the total height of all the stages 14 sum to less than about 1 m. Typically, this
height constraint manifests itself in the form of a low-aspect-ratio bubble column,
where the ratio of column height to diameter (measured horizontally in the orientation
shown) is less than 1.In particular embodiments, the diameter of the column is 0.5
to 1 m, while the height of the column is 0.0.5 to 0.1 m (for an aspect ratio of the
column is about 0.1).
[0034] The temperature of the carrier gas can drop at least 5°C from each stage to 14 the
next in the de-humidifier 12, as it is cooled by the liquid bath in each stage 14.For
example, in the conduit 32" from the outlet of the first stage 14' to the inlet second
stage 14", the carrier gas can have a temperature,
e.g., of about 60°C, while the carrier gas in the conduit 32'" from the outlet of the
second stage 14" to the inlet of the third stage 14'" can have a reduced temperature,
e.g., of about 50°C. When the carrier gas exits the bubble-column condenser 12 through
the top conduit 32"", the carrier gas circles back to the bottom of the humidifier
24 (with a reduced content of the vaporizable liquid), its temperature can be further
reduced to,
e.g., about 30°C. In the initial transient period during process startup, water vapor
in the hot-humid carrier gas transmits the latent heat to the water in each stage
14 (in which a natural circulation loop is established); and a mixed average temperature
of the water stage 14 is eventually achieved at steady state. Once steady state is
achieved, the heat of condensation is directly extracted by seawater that is sent
through the coiled tube 20. Thus, direct heat recovery is achieved.
[0035] Where the condensed vapor is water, the dehumidification of the carrier gas in each
stage 14 releases water from the carrier gas to the distilled water through which
carrier gas is bubbled. The water is drained from each stage 14 (equivalent to the
water increase provided by the dehumidification of the carrier gas) through conduits
38 to a pure-water collection tank 40. Alternatively, the liquid (
e.g., water) can be extracted via a conduit from the bath in the third stage 14"' and
passed to the lower-temperature second stage 14" and extracted via another conduit
from the second-stage 14" and passed to the still-lower-temperature first stage 14',
from which it is finally extracted from the multi-stage, bubble-column condenser 12
as product.
[0036] Though a single stage/column 14 can be used, the use of multiple stages in the bubble-column
condenser 12 pushes the temperature to which the seawater is preheated toward the
maximum possible (which is the temperature of the carrier gas inlet). The effects
of this staging can be clearly understood via the temperature profiles in a multi-stage
bubble-column condenser (shown in FIG. 3) and in a single-stage bubble-column condenser
(shown in FIG. 4), where the seawater exit temperature can be seen to be much higher
in the plots for the multi-stage bubble-column condenser, as shown in FIG. 3. Each
of the plotted horizontal segments 46 (∼308 K), 48 (∼318 K), 50 (∼327 K), 52 (∼335
K), 54 (∼342 K), 56(∼348 K) in FIG. 3 represents the temperature in a respective column/stage
14 in a six-stage bubble-column condenser, where the horizontal axis of the chart
represents non-dimensional distance from the top to the bottom of the bubble-column
condenser 12 (
i.e., reference line 46 represents the temperature of the top-most stage 14). The diagonal
line 58 represents the temperature of the seawater as it flows through the bubble-column
condenser 12 as a function of distance from the top of the bubble-column condenser
12. Meanwhile, the temperature 60 in the single-stage, bubble-column condenser (shown
in FIG. 4) is seen to be substantially constant (at 323 K) throughout the bubble-column
condenser and approximately equal to the average of the inlet and the outlet carrier
gas temperatures.
[0037] The multi-stage bubble-column condenser 12, additionally, presents a direct advantage
of enabling extraction/injections of seawater from in-between the bubble-column stages
via intermediate exchange conduits 42, as shown in FIG. 5, where the intermediate
exchange conduits 42 are coupled with the bubble-column condenser 12 between the first
and second stages 14' and 14" and between the second and third stages 14" and 14"'
of a three-stage bubble-column condenser system. Saline water is collected in intermediate
trays 43' and 43" at respective intermediate stages in the chamber of the humidifier
24 and injected into the external conduits 18 through which the sea water flows between
stages 14' and 14" and between stages 14" and 14'", respectively. In other embodiments,
the direction of injection/extraction can be reversed (
e.g., saline water can be extracted from the condenser 12 and injected into the humidifier
24), depending on the conditions of operation. Such extraction flows can enable construction
of systems that are thermodynamically balanced. In additional embodiments, the moist
carrier gas can be extracted/injected instead of extracting/injecting saline water.
Owing to the higher heat-transfer coefficients in a bubble-column condenser and a
lower terminal temperature difference, the apparatus described herein (such as the
one shown in FIG. 5) can provide superior performance in terms of dehumidification
and the efficiency thereof.
[0038] In describing embodiments of the invention, specific terminology is used for the
sake of clarity. For the purpose of description, specific terms are intended to at
least include technical and functional equivalents that operate in a similar manner
to accomplish a similar result. Additionally, in some instances where a particular
embodiment of the invention includes a plurality of system elements or method steps,
those elements or steps may be replaced with a single element or step; likewise, a
single element or step may be replaced with a plurality of elements or steps that
serve the same purpose. Further, where parameters for various properties are specified
herein for embodiments of the invention, those parameters can be adjusted up or down
by 1/100
th, 1/50
th, 1/20
th, 1/10
th, 1/5
th, 1/3
rd, 1/2, 2/3
rd, 3/4
th, 4/5
th, 9/10
th, 19/20
th, 49/50
th, 99/100
th,
etc. (or up by a factor of 1, 2, 3, 4, 5, 6, 8, 10, 20, 50, 100,
etc.), or by rounded-off approximations thereof, unless otherwise specified. Moreover,
while this invention has been shown and described with references to particular embodiments
thereof, those skilled in the art will understand that various substitutions and alterations
in form and details may be made therein without departing from the scope of the invention
(for example, the condensed liquid can be a composition other than water; more or
fewer stages can be used in the bubble-column condenser; and the configuration of
those stages can be readily altered).
1. A humidification-dehumidification system (10) comprising:
a humidifier (24) including a carrier-gas inlet and a carrier-gas outlet; a liquid
inlet and a liquid outlet, wherein the liquid inlet is coupled with a liquid source
(16); and a chamber in which liquid introduced from the liquid inlet can contact a
carrier gas containing a condensable fluid in vapor phase that is introduced from
the carrier-gas inlet in a counterflow arrangement and in which a portion of the liquid
can vaporize into the carrier gas;
a bubble-column vapor mixture condenser (12) including at least a first stage (14')
including a carrier-gas inlet, a carrier-gas outlet and a chamber that contains a
liquid bath (15) in fluid communication with the carrier-gas inlet and the carrier-gas
outlet, wherein the carrier-gas inlet of the condenser is in fluid communication with
the carrier-gas outlet of the humidifier, wherein the carrier-gas outlet of the condenser
is in fluid communication with the carrier-gas inlet of the humidifier, wherein the
carrier-gas inlet of the condenser is a bubble generator (44) positioned in contact
with the liquid bath so that the carrier gas can bubble up through the liquid bath
from the bubble generator, overcoming a hydrostatic head of the liquid bath, and wherein
the carrier-gas outlet is positioned with an opening for carrier gas extraction above
the liquid bath, the bubble-column vapor mixture condenser further comprising a conduit
(20) extending through the liquid bath in the chamber and coupled with the liquid
source and with the liquid inlet of the humidifier to flow the liquid from the source,
through the chamber of the condenser, where the liquid can be preheated by recovering
energy from condensation, to the humidifier; and
wherein the system further comprises a blower or a compressor (34) configured to pump
the carrier gas: from the humidifier's carrier gas outlet to the condenser's carrier
gas inlet via a conduit (32'), and through the bubble generator thereby enabling the
carrier gas to bubble up through the liquid bath.
2. The humidification-dehumidification system (10) of claim 1, wherein the bubble-column
vapor mixture condenser (12) further comprises a second stage (14") that also includes
a carrier-gas inlet, a carrier-gas outlet and a chamber configured to contain a liquid
bath (15) in fluid communication with the carrier-gas inlet and the carrier-gas outlet
of the second stage, wherein the carrier-gas outlet of the first stage is in fluid
communication with the carrier-gas inlet of the second stage to facilitate flow of
the carrier gas from the humidifier (24) through the chamber of the first stage and
then through the chamber of the second stage before returning to the humidifier.
3. The humidification-dehumidification system (10) of claim 1, further comprising a bubble
generator (44) coupled with the inlet of each stage to generate bubbles of the carrier
gas in the liquid, preferably wherein the bubble generator is selected from (a) a
sieve plate and (b) a radial, ring, spider, and wheel-type sparger.
4. The humidification-dehumidification system (10) of claim 1, further comprising an
intermediate exchange conduit (42) coupled with the conduit (20) between (a) the first
stage (14') and the second stage (14") and (b) an intermediate tray (43', 43") in
the humidifier chamber at an intermediate stage for transfer of the liquid therebetween.
5. The humidification-dehumidification system (10) of claim 1, wherein the chamber containing
the liquid has a height-to-diameter aspect ratio less than 1.
6. The humidification-dehumidification system (10) of claim 1, wherein the chambers containing
the liquid are at an angle to the vertical.
7. A method for condensing a fluid from a carrier-gas stream, comprising:
using a blower or compressor (34) to pass a carrier-gas stream through a humidifier
(24) and out of the humidifier via a conduit (32'), where, in the humidifier, a condensable
fluid in vapor phase is added to the carrier-gas stream in a chamber by introducing
a liquid through a liquid inlet thereby contacting a carrier-gas containing a condensable
fluid in vapor phase that is introduced from a carrier-gas inlet in a counterflow
arrangement and in which a portion of the liquid can vaporize into the carrier gas;
using a bubble generator (44) to bubble the carrier-gas stream comprising the condensable
fluid in vapor phase through a first bath of the fluid (15) in liquid phase in a first
stage (14') of a bubble-column condenser (12), wherein the carrier-gas stream contacts
the first bath, and wherein some of the fluid in vapor phase in the carrier-gas stream
condenses into the first bath;
exhausting the carrier-gas stream with a reduced content of the fluid in vapor phase
from the first stage of the bubble-column condenser and passing the carrier-gas stream
back through the humidifier via a conduit (32""), where, in the humidifier, additional
vapor-phase fluid is added to the carrier-gas stream after the carrier-gas stream
is exhausted from the first stage (14'); and
passing the liquid as a coolant through a conduit (20) that passes through the liquid-phase
fluid in the first stage to recover energy from the condensation in the bubble-column
condenser to the liquid passing through the conduit before the liquid is introduced
through the liquid inlet of the humidifier.
8. The method of claim 7, further comprising:
using the blower or compressor to reintroduce the carrier-gas stream to the first
stage of the bubble-column condenser (12) via the conduit (32') and again passing
the carrier-gas stream through the first bath.
9. The method of claim 7, further comprising:
passing the carrier-gas stream from the first stage (14') of the bubble-column condenser
(12) to a second stage (14") of the bubble-column condenser;
bubbling the carrier-gas stream through a second bath of the fluid in liquid phase
in the second stage of the bubble-column condenser, wherein the carrier-gas stream
contacts the second bath, and wherein at least some of the fluid in vapor phase in
the carrier-gas stream condenses into the second bath; and
exhausting the carrier-gas stream with a reduced content of the fluid in vapor phase
from the second stage of the bubble-column condenser.
10. The method of claim 9, wherein the liquid in the first stage (14') is at least 5°
C warmer than the liquid in the second stage (14").
11. The method of claim 7, wherein the fluid is water.
12. The method of claim 7, further comprising generating the water vapor in the carrier-gas
stream by evaporating the water from a saline solution.
13. The method of claim 12, wherein the saline solution is heated with a solar heater
or a waste-heat source before the water is evaporated from the saline solution.
14. The method of claim 12, further comprising passing the saline solution through the
conduit in each of the stages (14) of the bubble-column condenser (12) to pre-heat
the saline solution for water evaporation.
15. The method of claim 7, further comprising extracting the fluid in liquid phase from
the first bath.
1. Befeuchtungs-Entfeuchtungssystem (10), umfassend:
einen Befeuchter (24), aufweisend einen Trägergaseinlass und einen Trägergasauslass;
einen Flüssigkeitseinlass und einen Flüssigkeitsauslass, wobei der Flüssigkeitseinlass
mit einer Flüssigkeitsquelle (16) verbunden ist; und eine Kammer, in der Flüssigkeit,
die vom Flüssigkeitseinlass aus eingeleitet wird, mit einem Trägergas in Kontakt kommen
kann, das ein kondensierbares Fluid in der Dampfphase enthält und aus dem Trägergaseinlass
in einer Gegenstromanordnung eingeleitet wird, und in der ein Teil der Flüssigkeit
in das Trägergas hinein verdampfen kann;
einen Blasensäulen-Dampfgemisch-Kondensator (12), aufweisend mindestens eine erste
Stufe (14'), die einen Trägergaseinlass, einen Trägergasauslass und eine Kammer aufweist,
die ein Flüssigkeitsbad (15) in Fluidverbindung mit dem Trägergaseinlass und dem Trägergasauslass
enthält, wobei der Trägergaseinlass des Kondensators mit dem Trägergasauslass des
Befeuchters fluidverbunden ist, wobei der Trägergasauslass des Kondensators mit dem
Trägergaseinlass des Befeuchters fluidverbunden ist, wobei der Trägergaseinlass des
Kondensators ein Blasengenerator (44) ist, der im Kontakt mit dem Flüssigkeitsbad
platziert ist, sodass das Trägergas von dem Blasengenerator aus als Blasen durch das
Flüssigkeitsbad nach oben aufsteigen kann und dabei einen hydrostatischen Druck des
Flüssigkeitsbads überwindet, und wobei der Trägergasauslass mit einer Öffnung für
die Trägergasentnahme oberhalb des Flüssigkeitsbads platziert ist, wobei der Blasensäulen-Dampfgemisch-Kondensator
ferner eine Leitung (20) umfasst, die durch das Flüssigkeitsbad in der Kammer hindurch
verläuft und mit der Flüssigkeitsquelle und mit dem Flüssigkeitseinlass des Befeuchters
verbunden ist, damit die Flüssigkeit von der Quelle aus durch die Kammer des Kondensators,
wo die Flüssigkeit vorgewärmt werden kann, indem aus der Kondensation Energie gewonnen
wird, zum Befeuchter geführt wird; und
wobei das System ferner ein Gebläse oder einen Verdichter (34) umfasst, das bzw. der
so eingerichtet ist, dass es bzw. er das Trägergas folgendermaßen pumpt: vom Trägergasauslass
des Befeuchters zum Trägergaseinlass des Kondensators über eine Leitung (32'), und
durch den Blasengenerator, wodurch ermöglicht wird, dass das Trägergas als Blasen
durch das Flüssigkeitsbad nach oben aufsteigt.
2. Befeuchtungs-Enfeuchtungssystem (10) nach Anspruch 1, wobei der Blasensäulen-Dampfgemisch-Kondensator
(12) ferner eine zweite Stufe (14") umfasst, die ebenfalls einen Trägergaseinlass,
einen Trägergasauslass und eine Kammer aufweist, die so eingerichtet ist, dass sie
ein Flüssigkeitsbad (15) in Fluidverbindung mit dem Trägergaseinlass und dem Trägergasauslass
der zweiten Stufe enthält, wobei der Trägergasauslass der ersten Stufe mit dem Trägergaseinlass
der zweiten Stufe fluidverbunden ist, damit eine Strömung des Trägergases vom Befeuchter
(24) durch die Kammer der ersten Stufe und dann durch die Kammer der zweiten Stufe
ermöglicht wird, bevor es wieder zum Befeuchter zurückströmt.
3. Befeuchtungs-Entfeuchtungssystem (10) nach Anspruch 1, das ferner einen Blasengenerator
(44) umfasst, der mit dem Einlass jeder Stufe verbunden ist, damit er Blasen des Trägergases
in der Flüssigkeit erzeugt, wobei vorzugsweise der Blasengenerator aus (a) einer Siebplatte
und (b) einem radialen, ringförmigen, sternförmigen und radförmigen Begaser ausgewählt
ist.
4. Befeuchtungs-Entfeuchtungssystem (10) nach Anspruch 1, das ferner eine Zwischenaustauschleitung
(42) umfasst, die verbunden ist mit der Leitung (20) zwischen (a) der ersten Stufe
(14') und der zweiten Stufe (14") und (b) einer Zwischenebene (43', 43") in der Befeuchterkammer
in einer Zwischenstufe für einen Transport der Flüssigkeit dazwischen.
5. Befeuchtungs-Enfeuchtungssystem (10) nach Anspruch 1, wobei die Kammer, die die Flüssigkeit
enthält, ein Höhe-Durchmesser-Aspektverhältnis von unter 1 aufweist.
6. Befeuchtungs-Enfeuchtungssystem (10) nach Anspruch 1, wobei die Kammern, die die Flüssigkeit
enthalten, unter einem Winkel zur Senkrechten liegen.
7. Verfahren zum Kondensieren eines Fluids aus einem Trägergasstrom, umfassend:
Verwenden eines Gebläses oder Verdichters (34) zum Leiten eines Trägergasstroms durch
einen Befeuchter (24) und aus dem Befeuchter heraus über eine Leitung (32'), wobei
in dem Befeuchter ein kondensierbares Fluid in der Dampfphase dem Trägergasstrom in
einer Kammer zugeführt wird, indem eine Flüssigkeit durch einen Flüssigkeitseinlass
eingeleitet wird, wodurch sie mit einem Trägergas in Kontakt kommt, das ein kondensierbares
Fluid in der Dampfphase enthält und aus einem Trägergaseinlass in einer Gegenstromanordnung
eingeleitet wird, und in der ein Teil der Flüssigkeit in das Trägergas hinein verdampfen
kann;
Verwenden eines Blasengenerators (44) zum Leiten von Blasen des Trägergasstroms, der
das kondensierbare Fluid in der Dampfphase umfasst, durch ein erstes Bad des Fluids
(15) in der flüssigen Phase in einer ersten Stufe (14') eines Blasensäulen-Kondensators
(12), wobei der Trägergasstrom mit dem ersten Bad in Kontakt kommt, und wobei ein
Teil des Fluids in der Dampfphase in dem Trägergasstrom in das erste Bad hinein kondensiert;
Abführen des Trägergasstroms mit einem geringeren Gehalt an dem Fluid in der Dampfphase
aus der ersten Stufe des Blasensäulen-Kondensators und Leiten des Trägergasstroms
zurück durch den Befeuchter über eine Leitung (32""), wo, in dem Befeuchter, zusätzliches
Fluid in der Dampfphase dem Trägergasstrom zugeführt wird, nachdem der Trägergasstrom
aus der ersten Stufe (14') abgeführt ist; und
Leiten der Flüssigkeit als Kühlmittel durch eine Leitung (20), die durch das Fluid
in der flüssigen Phase in der ersten Stufe verläuft, um Energie aus der Kondensation
in dem Blasensäulen-Kondensator für die Flüssigkeit, die durch die Leitung strömt,
zu nutzen, bevor die Flüssigkeit durch den Flüssigkeitseinlass des Befeuchters eingeleitet
wird.
8. Verfahren nach Anspruch 7, ferner umfassend:
Verwenden des Gebläses oder Verdichters zum erneuten Einleiten des Trägergasstroms
in die erste Stufe des Blasensäulen-Kondensators (12) über die Leitung (32') und erneutes
Leiten des Trägergasstroms durch das erste Bad.
9. Verfahren nach Anspruch 7, ferner umfassend:
Leiten des Trägergasstroms aus der ersten Stufe (14') des Blasensäulen-Kondensators
(12) zu einer zweiten Stufe (14") des Blasensäulen-Kondensators;
Leiten von Blasen des Trägergasstroms durch ein zweites Bad des Fluids in der flüssigen
Phase in der zweiten Stufe des Blasensäulen-Kondensators, wobei der Trägergasstrom
mit dem zweiten Bad in Kontakt kommt, und wobei zumindest ein Teil des Fluids in der
Dampfphase in dem Trägergasstrom in das zweite Bad hinein kondensiert; und
Abführen des Trägergasstroms mit einem geringeren Gehalt an dem Fluid in der Dampfphase
aus der zweiten Stufe des Blasensäulen-Kondensators.
10. Verfahren nach Anspruch 9, wobei die Flüssigkeit in der ersten Stufe (14') mindestens
5 °C wärmer ist als die Flüssigkeit in der zweiten Stufe (14").
11. Verfahren nach Anspruch 7, wobei das Fluid Wasser ist.
12. Verfahren nach Anspruch 7, ferner umfassend Erzeugen des Wasserdampfs in dem Trägergasstrom
durch Verdampfen des Wassers aus einer Salzlösung.
13. Verfahren nach Anspruch 12, wobei die Salzlösung mit einer Solarheizung oder einer
Abwärmequelle erwärmt wird, bevor das Wasser aus der Salzlösung verdampft wird.
14. Verfahren nach Anspruch 12, ferner umfassend Leiten der Salzlösung durch die Leitung
in jeder der Stufen (14) des Blasensäulen-Kondensators (12) zum Vorwärmen der Salzlösung
zur Wasserverdampfung.
15. Verfahren nach Anspruch 7, ferner umfassend Entnehmen des Fluids in der flüssigen
Phase aus dem ersten Bad.
1. Système d'humidification-de déshumidification (10), comprenant :
un humidificateur (24) incluant une entrée de gaz porteur et une sortie de gaz porteur
;
une entrée de liquide et une sortie de liquide, dans lequel l'entrée de liquide est
accouplée à une source de liquide (16) ;
et une chambre dans laquelle un liquide introduit à partir de l'entrée de liquide
peut entrer en contact avec un gaz porteur contenant un fluide condensable en phase
vapeur qui est introduit à partir de l'entrée de gaz porteur dans un agencement de
contre-écoulement et dans laquelle une portion du liquide peut se vaporiser dans le
gaz porteur ;
un condenseur à mélange de vapeur à colonne à bulles (12) incluant au moins un premier
étage (14') incluant une entrée de gaz porteur, une sortie de gaz porteur et une chambre
qui contient un bain de liquide (15) en communication fluidique avec l'entrée de gaz
porteur et la sortie de gaz porteur, dans lequel l'entrée de gaz porteur du condenseur
est en communication fluidique avec la sortie de gaz porteur de l'humidificateur,
dans lequel la sortie de gaz porteur du condenseur est en communication fluidique
avec l'entrée de gaz porteur de l'humidificateur,
dans lequel l'entrée de gaz porteur du condenseur est un générateur de bulles (44)
positionné en contact avec le bain de liquide pour que le gaz porteur puisse bouillir
à travers le bain de liquide à partir du générateur de bulles, surmontant une charge
hydrostatique du bain de liquide, et dans lequel la sortie de gaz porteur est positionnée
avec une ouverture pour l'extraction de gaz porteur au-dessus du bain de liquide,
le condenseur à mélange de vapeur à colonne à bulles comprenant en outre un conduit
(20) s'étendant à travers le bain de liquide dans la chambre et étant accouplé à la
source de liquide et à l'entrée de liquide de l'humidificateur pour faire écouler
le liquide à partir de la source, à travers la chambre du condenseur, où le liquide
peut être préchauffé en récupérant de l'énergie à partir de la condensation, vers
l'humidificateur ; et
dans lequel le système comprend en outre une soufflante ou un compresseur (34) configuré
pour pomper le gaz porteur : à partir de la sortie de gaz porteur de l'humidificateur
vers l'entrée de gaz porteur du condenseur par l'intermédiaire d'un conduit (32'),
et à travers le générateur de bulles, ainsi permettant le gaz porteur de bouillir
à travers le bain de liquide.
2. Système d'humidification-de déshumidification (10) selon la revendication 1, dans
lequel le condenseur à mélange de vapeur à colonne à bulles (12) comprend en outre
un second étage (14") qui inclut également une entrée de gaz porteur, une sortie de
gaz porteur et une chambre configurée pour contenir un bain de liquide (15) en communication
fluidique avec l'entrée de gaz porteur et la sortie de gaz porteur du second étage,
dans lequel la sortie de gaz porteur du premier étage est en communication fluidique
avec l'entrée de gaz porteur du second étage pour faciliter l'écoulement du gaz porteur
à partir de l'humidificateur (24) à travers la chambre du premier étage et puis à
travers la chambre du second étage avant de retourner vers l'humidificateur.
3. Système d'humidification-de déshumidification (10) selon la revendication 1, comprenant
en outre un générateur de bulles (44) accouplé à l'entrée de chaque étage pour générer
des bulles du gaz porteur dans le liquide, de préférence dans lequel le générateur
de bulles est sélectionné à partir de : (a) une plaque tamis, et (b) un arroseur radial,
annulaire, en étoile et de type roue.
4. Système d'humidification-de déshumidification (10) selon la revendication 1, comprenant
en outre un conduit d'échange intermédiaire (42) accouplé au conduit (20) entre (a)
le premier étage (14') et le second étage (14") et (b) un plateau intermédiaire (43',
43") dans l'humidificateur chambre à un étage intermédiaire pour le transfert du liquide
entre ceux-ci.
5. Système d'humidification-de déshumidification (10) selon la revendication 1, dans
lequel la chambre contenant le liquide possède un rapport d'aspect hauteur-diamètre
inférieur à 1.
6. Système d'humidification-de déshumidification (10) selon la revendication 1, dans
lequel les chambres contenant le liquide sont à un angle par rapport à la verticale.
7. Procédé pour condenser un fluide à partir d'un courant de gaz porteur, comprenant
:
l'utilisation d'une soufflante ou d'un compresseur (34) pour faire passer un courant
de gaz porteur à travers un humidificateur (24) et hors de l'humidificateur par l'intermédiaire
d'un conduit (32'), où, dans l'humidificateur, un fluide condensable en phase vapeur
est ajouté au courant de gaz porteur dans une chambre en introduisant un liquide à
travers une entrée de liquide, ainsi entrant en contact avec un gaz porteur contenant
un fluide condensable en phase vapeur qui est introduit à partir d'une entrée de gaz
porteur dans un agencement de contre-écoulement et dans laquelle une portion du liquide
peut se vaporiser dans le gaz porteur ;
l'utilisation d'un générateur de bulles (44) pour faire bouillir le courant de gaz
porteur comprenant le fluide condensable en phase vapeur à travers un premier bain
du fluide (15) en phase liquide dans un premier étage (14') d'un condenseur à colonne
à bulles (12), dans lequel le courant de gaz porteur entre en contact avec le premier
bain, et dans lequel une certaine quantité du fluide en phase vapeur dans le courant
de gaz porteur se condense dans le premier bain ;
l'expulsion du courant de gaz porteur avec un contenu réduit du fluide en phase vapeur
à partir du premier étage du condenseur à colonne à bulles et le passage du courant
de gaz porteur en retour à travers l'humidificateur par l'intermédiaire d'un conduit
(32""), où, dans l'humidificateur, un fluide en phase vapeur supplémentaire est ajouté
au courant de gaz porteur après que le courant de gaz porteur est expulsé du premier
étage (14') ; et
le passage du liquide en tant que liquide de refroidissement à travers un conduit
(20) qui passe à travers le fluide en phase liquide dans le premier étage pour récupérer
de l'énergie à partir de la condensation dans le condenseur à colonne à bulles pour
le liquide passant à travers le conduit avant que le liquide soit introduit à travers
l'entrée de liquide de l'humidificateur.
8. Procédé selon la revendication 7, comprenant en outre :
l'utilisation de la soufflante ou du compresseur pour réintroduire le courant de gaz
porteur dans le premier étage du condenseur à colonne à bulles (12) par l'intermédiaire
du conduit (32') et le passage, à nouveau, du courant de gaz porteur à travers le
premier bain.
9. Procédé selon la revendication 7, comprenant en outre :
le passage du courant de gaz porteur à partir du premier étage (14') du condenseur
à colonne à bulles (12) vers un second étage (14") du condenseur à colonne à bulles
;
l'ébullition du courant de gaz porteur à travers un second bain du fluide en phase
liquide dans le second étage du condenseur à colonne à bulles, dans lequel le courant
de gaz porteur entre en contact avec le second bain, et dans lequel au moins une certaine
quantité du fluide en phase vapeur dans le courant de gaz porteur se condense dans
le second bain ; et
l'expulsion du courant de gaz porteur avec un contenu réduit du fluide en phase vapeur
à partir du second étage du condenseur à colonne à bulles.
10. Procédé selon la revendication 9, dans lequel le liquide dans le premier étage (14')
est au moins plus chaud de 5° C que le liquide dans le second étage (14").
11. Procédé selon la revendication 7, dans lequel le fluide est de l'eau.
12. Procédé selon la revendication 7, comprenant en outre la génération de la vapeur d'eau
dans le courant de gaz porteur en évaporant de l'eau d'une solution saline.
13. Procédé selon la revendication 12, dans lequel la solution saline est chauffée avec
un élément chauffant solaire ou une source de chaleur perdue avant que l'eau soit
évaporée de la solution saline.
14. Procédé selon la revendication 12, comprenant en outre le passage de la solution saline
à travers le conduit dans chacun des étages (14) du condenseur à colonne à bulles
(12) pour préchauffer la solution saline pour l'évaporation d'eau.
15. Procédé selon la revendication 7, comprenant en outre l'extraction du fluide en phase
liquide à partir du premier bain.