BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0001] The present invention is related to a light emitting diode module, and particularly
related to a light emitting diode module that uses a wireless device to control its
light emitting and integrates a power input control system into a main base board.
DESCRIPTION OF THE PRIOR ART
[0002] Compared with conventional white light, fluorescent light, or other light sources,
the light emitting diode has the advantages of low temperature, high luminescence
efficiency, low environmental impact, and long life time and has gradually become
the first option for various luminescence apparatuses.
[0003] Generally, a light emitting diode is disposed on a main base board and is then installed
in a tube or a light bulb. A power input control system is used (is capable of being
used) for controlling the light emitting diode to emit light. Conventional main base
boards are used for only disposing light emitting diodes, and power input control
systems and wireless devices are not integrated into the main base board. Therefore,
it is not convenient to assemble such devices, and there is a certain problem of heat
dissipation.
SUMMARY OF THE INVENTION
[0004] A major objective of the present invention is to provide a light emitting diode module
that can be controlled by a wireless device. In addition, a power input control system
is integrated on a main base board.
[0005] To achieve the objective, the light emitting diode module can receive a control signal
input by users. The light emitting diode module includes a main base board, a wireless
communication module, a plurality of light emitting diodes, a power output control
system and a control unit.
[0006] The wireless communication module is used (is capable of being used) for receiving
a control signal. The plurality of light emitting diodes are disposed on the main
base board. The plurality of light emitting diodes comprise light emitting diodes
having at least one color. The power output control system is electrically connected
to the plurality of light emitting diodes. The power output control system is used
(is capable of being used) for adjusting an amount of current flowing through each
of the light emitting diodes. By adjusting the amount of current, the plurality of
light emitting diodes are controlled such that the color or brightness of the light
emitted by the plurality of light emitting diodes can be varied. The control unit
is electrically connected to the wireless communication module and the power output
control system. The control unit controls the power output control system to adjust
the amount of current flowing through each light emitting diode.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The above and other objectives, features, and advantages of the present invention
are hereunder illustrated with specific embodiments in conjunction with the accompanying
drawings and therefore rendered distinctive and comprehensible, in which:
Fig. 1 illustrates a structure diagram of a light emitting diode module in a first
embodiment according to the present invention;
Fig. 2 illustrates a structure diagram of a light emitting diode module in a second
embodiment according to the present invention;
Fig. 3 illustrates a structure diagram of a light emitting diode module in a third
embodiment according to the present invention;
Fig. 4 illustrates a structure diagram of a light emitting diode module in a fourth
embodiment according to the present invention;
Fig. 5 illustrates a structure diagram of a light emitting diode module in a fifth
embodiment according to the present invention;
Fig. 6 illustrates a structure diagram of a light emitting diode module in a sixth
embodiment according to the present invention;
Fig. 7 illustrates a structure diagram of a light emitting diode module in a seventh
embodiment according to the present invention; and
Fig. 8 illustrates a structure diagram of a light emitting diode module in an eighth
embodiment according to the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION
[0008] Please refer to Fig. 1, which illustrates a structure diagram of a light emitting
diode according to a first embodiment of the present invention.
[0009] As illustrated in Fig. 1 in the first embodiment of the invention, the light emitting
module 1 includes a main base board 10, a wireless communication module 20, a plurality
of light emitting diodes 30, a power output control system 40 and a control unit 50.
The invention, however, is not limited to such configuration. For example, the wireless
communication module 20 and the control unit 50 may be combined to be a single unit.
[0010] In the first embodiment of the invention, the main base board 10 is made of aluminum
material and the main base board 10 has a circular plate shape. The invention, however,
is not limited to such configuration. For example, the shape of the main base board
10 can be designed as an irregular shape according design requirements.
[0011] In the first embodiment of the invention, the wireless communication module 20 is
disposed on the main base board 10. The wireless communication module 20 includes
an antenna 21 that extends to one side of the main base board 10 for preventing signals
from being blocked due to a shielding effect to the antenna 21. The wireless communication
module 20 is used (is capable of being used) for receiving a control signal of a user.
In the embodiment, the wireless communication module 20 is a Bluetooth device and
the antenna 21 is a Bluetooth antenna. The invention, however, is not limited to Bluetooth
devices, and may, for example, cover infrared transmission devices, wireless network
devices or voice control devices. For example, the wireless communication module 20
can be a voice control device, and the control signal can be a voice control signal.
[0012] In the first embodiment of the invention, the light emitting diodes 30 are disposed
on the main base board 10. The light emitting diodes include a red light emitting
diode 31, a green light emitting diode 32, a blue light emitting diode 33 and a white
light emitting diode 34. In the embodiment, the light emitting diodes 30 are integrated
in the same light ball. By adjusting the brightness of the light emitting diodes of
different colors 31, 32, 33 and 34, the light emitting diode as a whole emits light
of various colors; i.e., the light ball emits light of multiple colors, including
colors other than red, green, blue and white.
[0013] In the first embodiment of the invention, the power output control system 40 is disposed
on the main base board 10. The power output control system 40 includes a plurality
of power output controllers 40a, 40b, 40c and 40d, and each power output controller
40a, 40b, 40c and 40d is respectively electrically connected to the light emitting
diodes 31, 32, 33 and 34 having different colors. The power output control system
40 is used (is capable of being used) for receiving current input from the power source
90 and adjusts the amounts of current being output to each of the light emitting diodes
31, 32, 33 and 34. By adjustment of the amounts of current flowing through each of
the light emitting diodes 31, 32, 33 and 34, the color or brightness of the plurality
of light emitting diodes as a whole can be changed. For example, when the power output
control system 40 controls current of a certain ratio flowing through the red light
emitting diode 31 and the green light emitting diode 32 while no current is flowing
through the blue light emitting diode 33 and the white light emitting diode 34, the
plurality of light emitting diodes as a whole give out yellow light.
[0014] In the first embodiment of the invention, the control unit 50 is disposed on the
main base board 10 and is electrically connected to the wireless communication module
20 and the power output control system 40. The control unit 50 includes a memory module
51 and a timer 52. The memory module 51 is used (is capable of being used) for storing
a control parameter so that after the control unit 50 receives the control signal,
the power output control system 40 adjusts the input current flowing to each light
emitting diode 30 according to the control parameter. As such, the color, brightness
or timing of light emission of the plurality of light emitting diodes may be controlled.
In addition, the control unit 50 may individually be used for controlling the color,
brightness, or positive or negative light emission according to the control signal
input by users. The timer is used (is capable of being used) for counting time.
[0015] For example, users may set a time parameter of a timing switch of the light emitting
diode module 1 via a Bluetooth device of a mobile phone. For example, the light emitting
diode module 1 is set to emit light from 11 pm each evening to 8 am the next morning.
After the control parameter is input from a mobile phone to the light emitting diode
module 1, it is stored in the memory module 51 of the control unit 50. After users
program the timer to emit light from 11 pm every night to 8 am the next morning, i.e.,
inputting the control signal, the control unit 50 controls the light emitting diode
1 to emit light during the set time. On the other hand, when users want to cancel
the timing switch function of emitting light from 11 pm each night to 8 am the next
morning, users may use their Bluetooth devices to turn off the timing switch function.
After it is turned off, the control unit 50 no longer controls the light emitting
diode module 1 to emit or not to emit light according to the control parameter that
was set previously. In addition, users may use Bluetooth devices to delete or to reset
the control parameter or to add a new control parameter to the memory module 51. For
example, in addition to emitting light from 11 pm each night to 8 am the next morning,
the control unit 50 can be set such that light is automatically emitted from 5 pm
each evening to 8 pm at night.
[0016] For another example, users may use Bluetooth devices in their mobile phones to input
color parameters for changing the color of light emitted by the light emitting diode
module 1 during different times. For example, the light emitting diode module 1 may
be set to emit white light from 6 pm each evening to 11 pm at night, and to emit red
light from 11 pm at night to 6am the next morning. Similarly, these control parameters
are input to the light emitting diode module 1 and then are stored in the memory module
51 for users to request the control unit 50 to execute.
[0017] Next, please refer to Fig. 2, which illustrates a structure diagram of a light emitting
diode module according to a second embodiment.
[0018] As shown in Fig. 2, in a second embodiment of the present invention, the main base
board 10 has a breaking hole 11, and the antenna 21 is located at the position of
the breaking hole to prevent signals from being blocked due to shielding of the main
base board 10.
[0019] Please refer to Fig. 3, which illustrates a structure diagram of the light emitting
diode module in a third embodiment of the present invention.
[0020] As illustrated in Fig. 3, in a third embodiment of the present invention, the main
base board 10 has a communication area 12. The communication area 12 is made of plastic
material, and the antenna is located in the communication area 12 to prevent signals
from being blocked due to a shielding effect.
[0021] Please refer to Fig. 4, which illustrates a light emitting diode module in a fourth
embodiment of the present invention.
[0022] As illustrated in Fig. 4, in a fourth embodiment of the present invention, the wireless
communication module 20 and the antenna 21 of the light emitting diode module 1 are
located outside the main base board. In such a way, the shielding effect is also prevented.
[0023] Please refer to Fig. 5, which illustrates a structure diagram of a light emitting
diode module in a fifth embodiment of the present invention.
[0024] As illustrated in Fig. 5, in a fifth embodiment of the present invention, the light
emitting diode module 1 further includes a sub base board 60. The sub base board 60
is made of non-metal material. The wireless communication module 20 and the antenna
21 are disposed on the sub base board 60. Because the sub base board 60 is made of
non-metal material, it causes no shielding effect for the antenna 21, and thus such
approach also prevents blocking of the signals for the antenna 21 due to a shielding
effect.
[0025] Next, please refer to Fig. 6, which illustrates a structure diagram of a light emitting
diode module in a sixth embodiment of the present invention.
[0026] As illustrated in Fig. 6, in a sixth embodiment of the present invention, the shape
of the main base board 10 is not a circular plate shape but has a gap 13, and the
sub base board is disposed at the position of the gap 12. With such a design, the
material cost of manufacturing the main base board 10 and the sub base board 60 is
reduced, and the space occupied by the two components is also reduced so as to reduce
the size of the light emitting diode module 1. The invention, however, is not limited
to such configuration. The communication module 20 may also cross between the main
base board 10 and the sub base board 60, and the antenna may remain in the range of
the sub base board 60. As such, the manufacturing cost of connecting lines between
the main base board 10 and the sub base board 60 can be further reduced.
[0027] Next, please refer to Fig. 7, which illustrates a structure diagram of a light emitting
diode module in a seventh embodiment of the present invention.
[0028] As illustrated in Fig. 7, in the seventh embodiment of the present invention, the
difference between the seventh embodiment and the fifth embodiment is primarily that
the wireless communication module 20 and the antenna 21 are separately disposed. That
is, the wireless communication module 20 is disposed on the main base board 10, and
the antenna 21 is disposed on the sub base board 60. As such, the manufacturing cost
and the size of the sub base board 60 can be reduced. The present invention, however,
is not limited to such configuration. The antenna 21 can be electrically connected
to the wireless communication module 20, and there is no need for the sub base board
60 at all.
[0029] Finally, please refer to Fig. 8, which illustrates a structure diagram of a light
emitting diode module in an eighth embodiment of the present invention.
[0030] As illustrated in Fig. 8, in an eighth embodiment of the present invention, the difference
between the eighth embodiment and the fifth embodiment is primarily that the control
unit 50 is disposed on the sub base board 60 so as to reduce the size and manufacturing
cost of the main base board.
[0031] The foregoing descriptions of embodiments of the present invention have been presented
only for purposes of illustration and description. They are not intended to be exhaustive
or to limit the present invention to the forms disclosed. Accordingly, many modifications
and variations will be apparent to practitioners skilled in the art. Additionally,
the above disclosure is not intended to limit the present invention. The scope of
the present invention is defined by the appended claims.
1. A light emitting diode module (1) for receiving a control signal, the light emitting
diode module (1) comprising:
a main base board (10);
a wireless communication module (20) for receiving the control signal;
a plurality of light emitting diodes (30) disposed on the main base board (10), wherein
the plurality of light emitting diodes (30) comprise light emitting diodes (31,32,33,34)
having at least one color;
a power output control system (40) electrically connected to the plurality of light
emitting diodes (30), the power output control system (40) being used for adjusting
an amount of current flowing through each of the light emitting diodes (30) to control
the plurality of light emitting diodes (30) via adjustment of the amount of current
for changing the color or brightness of the plurality of light emitting diodes (30);
and
a control unit (50) electrically connected to the wireless communication module (20)
and the power output control system (40) for controlling the power output control
system (40) to adjust the amount of current flowing through each of the light emitting
diodes (30).
2. The light emitting diode module (1) of claim 1, wherein the wireless module (20),
the power output control system (40) and the control unit (50) are all disposed on
the main base board (10).
3. The light emitting diode module (1) of claim 2, wherein the wireless communication
module (20) comprises an antenna (21) disposed extending to one side of the main base
board (10).
4. The light emitting diode module (1) of claim 2, wherein the wireless communication
module (20) comprises an antenna (21), the main base board (10) has a breaking hole
(11), and the antenna (21) is disposed at the position of the breaking hole (11).
5. The light emitting diode module (1) of claim 2, wherein the wireless communication
module (20) comprises an antenna (21), the main base board (10) has a communication
area (12), and the antenna (20) is disposed at the position of the communication area
(12).
6. The light emitting diode module (1) of claim 2, wherein the wireless communication
module (20) comprises an antenna (21), and the wireless communication module (20)
and the antenna (21) are located outside the main base board (10).
7. The light emitting diode module (1) of claim 1, further comprising a sub base board
(60), the sub base board (60) being made of non-metal material; the wireless communication
module (20) comprises an antenna (21), and the antenna (21) is located in the sub
base board (60).
8. The light emitting diode module (1) of claim 7, wherein the main base board (10) has
a gap (13) and the sub base board (60) is located in the gap (13).
9. The light emitting diode module (1) of claims 1,2,3,4,5,6,7 or 8 wherein the control
unit (50) comprises a memory module (51) and a timer (52), wherein the memory module
(51) is capable of storing a control parameter.
10. The light emitting diode module (1) of claim 9, wherein after the control unit (50)
receives the control signal, the color, brightness or timing of light emission of
the plurality of light emitting diodes (30) is controlled according to the control
parameter.
11. The light emitting diode module (1) of claim 10, wherein the plurality of light emitting
diodes (30) comprise light emitting diodes (31,32,33) having different colors comprising
red, blue and green.
12. The light emitting diode module (1) of claim 11, wherein the plurality of light emitting
diodes (30) further comprises a light emitting diode (34) having white color.