| (19) | 
                             | 
                         
                     
                   
                | 
               (11) | 
               EP 2 765 237 B1 | 
            
         
            
               | (12) | 
               EUROPEAN PATENT SPECIFICATION | 
            
         
            
               
                  
                     
                        | (45) | 
                        Mention of the grant of the patent: | 
                      
                     
                         | 
                        23.11.2016 Bulletin 2016/47 | 
                      
                   
 
 
                     
                        | (22) | 
                        Date of filing: 06.02.2013 | 
                      
                   
                | 
               
                  
                     
                        | (51) | 
                        International Patent Classification (IPC): 
                           
                         | 
                      
                   
                | 
            
         
            
               | (54) | 
               
                   Method for producing a fiber web and production line for producing a fiber web 
                  Verfahren zur Herstellung einer Faserstoffbahn und Produktionslinie zum Herstellen
                     einer Faserstoffbahn 
                  Procédé de production d'une bande de fibres et ligne de fabrication d'une bande de
                     fibres 
                | 
            
         
            
               
                  
                     
                        | (84) | 
                        Designated Contracting States: | 
                      
                     
                         | 
                        AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
                           NO PL PT RO RS SE SI SK SM TR  | 
                      
                   
 
                     
                        | (43) | 
                        Date of publication of application: | 
                      
                     
                         | 
                        13.08.2014 Bulletin 2014/33 | 
                      
                   
 
                     
                        | (73) | 
                        Proprietor: Valmet Technologies, Inc. | 
                      
                     
                         | 
                        02150 Espoo (FI) | 
                      
                   
  | 
               
                  
                     
                        | (72) | 
                        Inventor: | 
                      
                     
                         | 
                        
                           
                              - Pietikäinen, Reijo
 FI-04420 Järvenpää (FI) 
                            
                         | 
                      
                   
 
                     
                        | (74) | 
                        Representative: Berggren Oy Ab  | 
                      
                     
                         | 
                        P.O. Box 16 
                           Eteläinen Rautatiekatu 10A 00101 Helsinki 00101 Helsinki (FI) | 
                      
                   
 
 
                     
                        | (56) | 
                        References cited: : 
                           
                              
                                 EP-A1- 1 486 610 WO-A1-00/17446 WO-A1-2005/042837
  | 
                                 EP-A1- 1 541 759 WO-A1-02/103109
  | 
                               
                            
                         | 
                      
                     
                        |   | 
                          | 
                      
                     
                         | 
                        
                           
                         | 
                      
                   
                | 
            
            
               |   | 
                 | 
            
         
         
            
               
                  | Note: Within nine months from the publication of the mention of the grant of the European
                     patent, any person may give notice to the European Patent Office of opposition to
                     the European patent
                     granted. Notice of opposition shall be filed in a written reasoned statement. It shall
                     not be deemed to
                     have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
                     Convention).
                      | 
               
            
          
         
            
            [0001] In general present invention relates to producing fiber webs in a fiber web production
               line. More especially the present invention relates to a method according to preamble
               part of claim 1 and to a production line according to preamble part of claim 6.
 
            [0002] As known from the prior art in fiber web producing processes typically comprise an
               assembly formed by a number of apparatuses arranged consecutively in the process line.
               A typical production and treatment line comprises a head box, a wire section and a
               press section as well as a subsequent drying section and a reel-up. The production
               and treatment line can further comprise other devices and/or sections for finishing
               the fiber web, for example a sizer, a pre-calender, a coating section, a final-calender
               and a reel-up. The production and treatment line also comprises at least one slitter-winder
               for forming customer rolls as well as a roll packaging apparatus. In this description
               and the following claims by fiber webs are meant for example a paper and board webs.
 
            [0003] Pre-calendering is typically used for creating required surface properties for further
               treatment, for example for coating and final-calendering, which are generally carried
               out in order to improve the properties, like smoothness and gloss, of a web-like material
               such as a paper or board web. In calendering the web is passed into a nip, i.e. calendering
               nip, formed between rolls that are pressed against each other, in which nip the web
               becomes deformed as by the action of temperature, moisture and nip pressure. In the
               calender the nips are formed between a smooth-surfaced press roll such as a metal
               roll and a roll coated with resilient material such as a polymer roll or between two
               smooth-surfaced rolls. The resilient-surfaced roll adjusts itself to the forms of
               the web surface and presses the opposite side of the web evenly against the smooth-surfaced
               press roll. The nips can be formed also by using instead one of roll a belt or a shoe
               as known from prior art. Many different kinds of calenders to be used as a pre-calender
               and/or as an final-calender are known, for example hard nip calenders, soft nip calenders,
               supercalenders, metal belt calenders, shoe calenders, long nip calenders, multinip
               calenders etc.
 
            [0004] One problem with calendering of fiber webs is to achieve required surface properties
               and simultaneously achieve required bulkiness i.e. relation of thickness of the web
               to its grammage (basis weight). When the fiber web has high bulkiness the basis weight
               can be reduced which results as considerable savings in raw material. Thus in recent
               times it has been one of the main focus points in developing calenders, mostly due
               to environmental and cost saving reasons.
 
            [0005] Typically the fiber web is guided from the drying section to a precalender, when
               the temperature of the fiber web is about 80 - 90 °C. In the thickness direction of
               the web the middle layers of the web are hot and near plastic state, whereby during
               calendering the fiber web will compact also in the middle layers, which leads to unnecessary
               bulk loss.
 
            [0006] It is known from prior art that bulkiness can be saved in calendering by cooling
               the fiber web before calendering, for example decreasing the temperature of middle
               layers of the fiber web by 10 °C. For example in 
DE 102005053968 is disclosed a method and an arrangement for calendering a paper or board or corresponding
               fiber web, in which the fiber web is guided through at least one heated calendering
               nip, where before the heated calendering nip the fiber web is guided via at least
               one cooling device. In this known method and arrangement the fiber web is cooled such
               that at least 50% of its thickness is under temperature of 30 °C and advantageously
               to even lower temperatures, even such that the fiber web is cooled to -10°C.
 
            [0007] In a reel-up of the fiber web production line as a continuous web produced fiber
               web is reeled up into the form of a roll, a parent (machine, jumbo) roll. In the production
               process of the fiber web, the reeling is generally a first process part, wherein a
               continuous process is discontinued to be continued in sequences. One problem in reeling
               after calendering is that the fiber web is still rather warm, typically in temperature
               range of 50 - 80 °C, and during reeling of warm fiber web reeling faults may occur,
               coating defects may be caused and brightness of the fiber web may reduce, which leads
               to the need of cooling devices located after calendering, for example as disclosed
               in 
WO publication 2006/000630.
 
            [0008] It is known that during drying of a fiber web a tendency of curl of the web may occur,
               in particularly when the drying is asymmetric i.e. drying of one side of the web has
               been more effective than the drying of the other side. Under these circumstances,
               the dried fiber web is usually curled and becomes concave towards the side of more
               effective drying and/or towards the latest dried side. It is also known from the prior
               art that the tendency of curl of fiber web is already affected in connection with
               the web formation, in particular at the formation stage by means of selection of the
               difference in speed between the slice jet and the wire, and by means of other running
               parameters. Further it is known from the prior art, for example, in the case of copying
               paper, by means of unequal-sidedness of drying in the after-dryer a suitable initial
               curl form is regulated for the web in order that the curl of the paper after one-sided
               or double-sided copying could be optimized. The reactivity of curl, i.e. the extent
               to which curl occurs per unit of change in moisture content, is influenced also by
               means of a multi-layer structure of the fiber web, which is produced in connection
               with the web formation in the wet end. From prior art are known many different ways
               to control curl during the drying of the fiber web. Typically the curl control is
               provided by controlling the temperature of a few last drying cylinder of the drying
               section, in some cases using the few last drying cylinders without heating, which
               then decreases the drying capacity of the drying section.
 
            [0009] In 
EP 1015689 a method is described for drying a surface-treated paper web or equivalent in an after-dryer
               of a paper machine as well as a dryer section of a paper machine for applying the
               method, wherein, in view of compensating for a tendency of curl of the paper web,
               in the after-dryer the paper web is dried in a dryer group/groups making use of a
               normal single-wire draw, and that, in connection with or after the drying, the paper
               web is treated by means of a device/devices in order to compensate for a tendency
               of curl of the paper web, which devices are, for example, a steam box, a blower unit,
               a moisturizing device, and/or a soft calender.
 
            [0010] In 
WO 98/27273 is disclosed a method for drying of paper, which method the paper web to be dried
               is passed from the press section into a pre-dryer section and from the forward dryer
               section the paper web is passed into a finishing section, in which the paper web is
               coated/surface-sized by means of a coating/surface-sizing equipment, dried in an after-dryer
               section, after which the paper web is calendered in a calender and passed to a reeling
               station. In the method the curl of the paper web is controlled by means of elements
               and/or by means of assemblies and combinations formed out of said elements at least
               in the area of the finishing section. In this known method is mentioned as one alternative
               of the element to control the curl a steam box located between the dryer section and
               a calender and that in order to intensify the condensation in connection with the
               steam feed a cooling cylinder with adjustable temperature is employed.
 
            [0011] In 
WO00/17446 is disclosed a method and apparatus for finishing paperboard to achieve improved
               smoothness and bulk, in which the web is finished by applying temperature and moisture
               gradients to the web and then smoothing the web surface using extended nip calendering.
 
            [0012] The object of the present invention is further development of the earlier solutions
               described above so that the curl of the fiber web can be controlled more efficiently
               with increased drying capacity and simultaneously provide a method for effectively
               calendering fiber webs in which high bulkiness is received with less raw stock and
               a production line for carrying out the method.
 
            [0013] A further object of the present invention is to approach the above problems from
               a new point of view and to suggest novel solutions contrary to conventional modes
               of thinking.
 
            [0014] A further object of the present invention is to create a compact way to combine curl
               control, web cooling and moisture control.
 
            [0015] To achieve the objects mentioned above and later the method according to the invention
               is mainly characterized by the features of the characterizing part of claim 1.
 
            [0016] The production line according to the invention is mainly characterized by the features
               of the characterizing part of claim 6.
 
            [0017] In accordance with the invention the curl of the fiber web is controlled by cooling
               the fiber web before calendering the fiber web in precalender and/or in another calender.
               The production line has a precalender and a final calender, wherein a cooling provided
               by additional cooling means is provided before the final calender. According to an
               advantageous feature the cooling is two sided i.e. cooling is effected on both sides
               of the web. According to the method the fiber web is cooled by cooling device before
               calendering of the fiber web in the precalender and before in another calender of
               the production line such that after cooling the fiber web is guided to the pre-calender
               or to the other calender and that dwell time between cooling and calendering, which
               is the time the fiber web run takes from the first point of the cooling or moistening
               device to the first calendering nip of the pre- or the other calender is at least
               200 ms, preferably 200 - 5000 ms.
 
            [0018] According to an advantageous feature of the invention the fiber web is moisturized
               during cooling in the cooling device for enhancing the cooling of the fiber web by
               evaporation.
 
            [0019] According to the invention in the method the fiber web is reeled in a reel-up after
               the calendering in final calender such that the temperature of the web is not higher
               than 55 °C, preferably in temperature in the range of 20 - 50 °C and that if necessary
               the fiber web is cooled before the calendering.
 
            [0020] According to advantageous feature the fiber web is cooled by contactless cooling
               effect by the cooling device. The cooling device is for example an air borne cooling
               device or impingement cooling device.
 
            [0021] According to advantageous feature the fiber web is cooled by contacting cooling effect
               by the cooling device.
 
            [0022] According to the invention the fiber web is cooled after drying before precalendering.
 
            [0023] According advantageous features of the invention the cooling device provides for
               blowing or creating a flow of cooled gas, for example air.
 
            [0024] In order to control the curl of the fiber web in accordance with the invention the
               amount of cooling is controlled on each or on one side of the fiber web, advantageously
               moisturizing amount is controlled on each or on one side of the fiber web.
 
            [0025] In the following the invention is further explained in detail with reference to the
               accompanying drawing in which:
               
               
In figure 1 is very schematically shown an example of a production line for producing
                  fiber web according to the prior art.
               In figure 2 is very schematically shown an example of a production line for producing
                  fiber web according to one example of the invention.
               In figures 3 - 6 is schematically shown examples of production lines for producing
                  fiber web according to some examples of the invention,
               In figure 7 is schematically shown various configurations for moisturizing and cooling
                  devices in a fiber web production line and
               In figures 8 - 10 is schematically shown further examples of configurations for moisturizing
                  and cooling devices in a fiber web production line according to some advantageous
                  examples of the invention.
 
            [0026] The examples according to figures 3 and 5 do not fall under the scope of the claims.
 
            [0027] In the figures and the description thereof same reference signs have been used for
               corresponding parts, part components and sections unless otherwise mentioned.
 
            [0028] In the very schematical example of a production line for producing fiber webs shown
               in figure 1 the production line according to prior art comprises a board or paper
               machine with dryer section 10, a sizer 20 with an after dryer 30, an optional moisturizer
               100, a precalender 40, a coater 50 with dryer 60, a calender 70, an optional web cooler
               150 and a reel-up 80. Typical speeds of fiber web production lines are for board 600
               - 1000 m/min, for liner 1000 - 1400 m/min and for paper 1200 - 2000 m/min. In prior
               art production lines the temperature of the web coming out from dryer section 10 is
               typically 90 - 150 °C, often about 95 °C and its solids content is 92 - 96%. In prior
               art production lines curl control is typically done at dryer section 10 by running
               one drying cylinder row at lower temperature, which results as more or less one-sided
               drying. This may mean a significant capacity loss, since drying potential is not fully
               in use, if for example 10 - 20 drying cylinders are used at low temperature. Hot fiber
               web is generally preferred in sizing, since it improves sizing agent penetration and
               rapid beginning of sizing agent drying. The web temperature after drying in after
               dryer 30 of the sizer 20 is typically 85 - 90 °C. The after dryer 30 of the sizer
               may optionally be followed by a moisturizer 100, where water spray is used in order
               to enhance gradient calendering in the precalender 40. Typically the amount of spray
               water added to the web is 1 - 3 g/m
2. When the fiber web enters the precalender its' temperature is typically 60 - 90
               °C. If in the precalendering short nip calendering is used it increases the web temperature
               only about 10 - 15 °C, thus the ingoing temperature of the web when entering the coater
               50 is 80 - 90 °C. After coating in the coater 50 the fiber web is dried in a dryer
               60, after which the temperature of the web is 70 - 120 °C. Before the reel-up 80 the
               web may optionally be cooled by a web cooler 150 in order to ensure low reeling temperature
               under 55 °C to ensure reeling quality. In the very schematical example of a production
               line for producing fiber webs in accordance with the invention shown in figure 2 the
               production line comprises a board or paper machine with dryer section 10, a sizer
               20 with an after dryer 30, a cooling device, for example a web cooler 200 with optional
               moisturizer 100, a precalender 40, a coater 50 with dryer 60, a cooling device, for
               example a web cooler 200, a calender 70 and a reel-up 80. The speeds of fiber web
               production line are for board 600 - 1000 m/min, for liner 1000 - 1400 m/min and for
               paper 1200 - 2000 m/min. In this example the temperature of the web coming out from
               dryer section 10 is 90 - 150 °C, preferably about 95 °C and the solids content of
               the fiber web is 92 - 96%. The curl control is done by the web cooler 200 located
               before the precalender 40 thus at dryer section 10 all drying cylinders may be run
               at high drying temperature and thus fully utilizing all drying cylinders. This means
               a significant capacity increase, since drying potential is fully in use. Hot fiber
               web preferred in sizing improves sizing agent penetration and rapid beginning of sizing
               agent drying. The web temperature after drying in after dryer 30 of the sizer 20 is
               typically 85 - 90 °C. The after dryer 30 of the sizer 20 is followed for curl control
               of the fiber web by a web cooler 200 with an optional moisturizer 100. By the web
               cooler 200, preferably by a flotation chill box, the fiber web is effectively cooled
               to temperature 35 - 55 °C. The cooling is preferably evaporative cooling, which enhances
               the cooling. Optionally a moisturizer 100 is used, in which water sprays further enhance
               cooling rate and to adjust web moisture before precalendering. Preferably the web
               chilling and spray moisturizing is done on both sides of the web and two-sidedness
               is adjusted to control the curling. Advantageously the cooling effect of the web cooler
               200 is 30 - 50 °C. Thus low ingoing temperature 30 - 50 °C to the precalender 40 is
               achieved, by which bulk savings are provided, in particular in case of short nip precalendering
               either hard or soft nip calendering. Advantageously web moisture is adjusted to suitable
               level, for example 6 - 10 %. In precalender 40 an effective moisture and temperature
               gradient precalendering takes place. In the precalendering used short nip calendering
               increases the web temperature only about 10 - 15 °C, thus the ingoing temperature
               of the web when entering the coater 50 is 45 - 60 °C. After coating in the coater
               50 the fiber web is dried in a dryer 60, after which the temperature of the web is
               70 - 120 °C. Before the calendering in the final calender 70, the fiber web is cooled
               by a cooling device, for example a web cooler 200. Preferably the web cooler 200 is
               a contact cooler or air flotation cooler. By the web cooler 200 the ingoing temperature
               of the fiber web is reduced to 30 - 55 °C and further bulk savings are achieved. Thus
               the temperature of the fiber web after calendering is also lower 50 - 55 °C and the
               low temperature needed in reeling in the reel-up 80 is provided without further cooling
               devices as the temperature of the fiber web is 50 - 55 °C after calendering.
 
            [0029] In figure 3 the fiber web W is guided from the paper or board machine with dryer
               section 10 prior to the calendering in a calender 70 to an optional moisturizing device
               100 and thereafter to cooling device 200, which is followed by an optional moisturizing
               device 100. From the calender 70 the fiber web is guided reeling in a reel-up 80.
               In this example the fiber web W to be produced is uncoated and the production line
               is provided with two sided cooling with the cooling device 200 and the curl control
               of the fiber web W is done two sided by the moisturizing sprays of the moisturizing
               devices 100 and chilling blows of the cooling device 200.
 
            [0030] In figure 4 the fiber web W is guided from the paper of board machine with dryer
               section 10 prior to the precalendering in a precalender 40 to an optional moisturizing
               device 100 and thereafter to cooling device 200. Precalendering is followed by coating
               of the fiber web W in a coater 50 with dryer 60. After coating the fiber web W is
               cooled by a cooling device 200 before the final calendering in a calender 70. The
               calendering of the fiber web W is followed by reeling in a reel-up 80. In this example
               the fiber web W to be produced is coated and the curl control of the fiber web W is
               done two sided by the optional moisturizing sprays of the moisturizing devices 100
               and by chilling blows of the cooling device 200.
 
            [0031] In figure 5 the fiber web W is guided from the paper of board machine with dryer
               section 10 to be sized in a sizer 20. After sizing the fiber web is dried in a dryer
               30 and prior to the calendering in a calender 70 the fiber web W is guided to an optional
               moisturizing device 100 and thereafter to cooling device 200. The calendering of the
               fiber web W is followed by reeling in a reel-up 80. In this example the fiber web
               W to be produced is uncoated and the curl control of the fiber web W is done two sided
               by the optional moisturizing sprays of the moisturizing devices 100 and by chilling
               blows of the cooling device 200.
 
            [0032] In figure 6 the fiber web W is guided from the paper of board machine with dryer
               section 10 to be sized in a sizer 20. After sizing the fiber web is dried in a dryer
               30 and prior to the precalendering in a precalender 40 the fiber web W is guided to
               an optional moisturizing device 100 and thereafter to cooling device 200. Precalendering
               is followed by coating of the fiber web W in a coater 50 with dryer 60. After coating
               the fiber web W is cooled by a cooling device 200 before the final calendering in
               a calender 70. The calendering of the fiber web W is followed by reeling in a reel-up
               80. In this example the fiber web W to be produced is coated and the curl control
               of the fiber web W is done two sided by the optional moisturizing sprays of the moisturizing
               devices 100 and by chilling blows of the cooling device 200.
 
            [0033] In figure 7 is schematically shown various configurations for moisturizing devices
               100 and cooling devices 200 in fiber web production line examples in accordance with
               advantageous examples of the invention. The moisturizing devices 100 are optional
               and can be located either separate from or in connection with the cooling devices
               200. The moisturizing devices 100 and the cooling devices 200 are located two sided
               in respect of the fiber web W so that the curl control, when needed, can be effected
               to both sides of the fiber web W.
 
            [0034] In figures 8 - 10 is schematically shown various configurations for moisturizing
               devices 100 and cooling devices 200 in fiber web production line examples in accordance
               with advantageous examples of the invention. The moisturizing devices 100 are optional
               and can be located either separate from or in connection with the cooling devices
               200. The moisturizing devices 100 and the cooling devices 200 are located two sided
               in respect of the fiber web W so that the curl control, when needed, can be effected
               to both sides of the fiber web W. In the examples of figures 8 - 10 is also shown
               some configurations to provide a long influencing time for the cooling before calendering
               40; 70.
 
            [0035] In figure 8 the fiber web is guided to an extended run by guide elements 125 that
               guide the fiber web W to an extended run via the basement level of the fiber web production
               hall. By dashed line F is indicated the floor lever of the main fiber web production
               hall. Along the extended run cooling devices 200 and optional moisturizing devices
               100 can be located.
 
            [0036] In figure 9 the fiber web is guided to an extended run by guide elements 125 that
               guide the fiber web W to an extended run via the upper parts above the main production
               line of the fiber web production hall. By dashed line F is indicated the floor lever
               of the main fiber web production hall. Along the extended run cooling devices 200
               and optional moisturizing devices 100 can be located.
 
            [0037] In figure 10 the fiber web is guided to an extended run by guide elements 125 that
               guide the fiber web W to an extended run meandering via the upper parts and lower
               parts of the main production line in the fiber web production hall. Along the extended
               run optional moisturizing devices 100 can be located. The cooling is provided by open
               web draws and optionally for example the first two guide elements 125 may be cooled
               rolls or turn elements. In this example the cooling devices may be located before
               or during the meandering extended run of the fiber web W before to the calender 40;
               70.
 
          
         
            
            1. Method for producing a fiber web (W), in which method the fiber web is produced in
               a production line comprising a board or paper machine with dryer section (10), a sizer
               (20) with an after dryer (30), a cooling device (200) with optional moisturizer (100),
               a precalender (40), a coater (50) with dryer (60), another cooling device (200), a
               final calender (70) and a reel-up (80), the fiber web (W) is calendered in the precalender
               and in the final calender (40; 70), in which method the fiber web (W) is cooled before
               calendering the fiber web (W) in the precalender (40) and in the final calender (70)
               and in which dwell time between cooling and calendering, which is the time the fiber
               web (W) run takes from the first point of the cooling device (200) or the moisturizer
               (100) to the first calendering nip of the precalender (40) or from the first point
               of the another cooling device (200) to the first calendering nip of the final calender
               (70), is at least 200 ms, preferably 200 - 5000 ms, characterized in that temperature of the web coming out from dryer section (10) is 90 - 150 °C, preferably
               about 95 °C, and solids content of the fiber web is 92 - 96%, that web temperature
               after drying in after dryer (30) of the sizer (20) is 85 - 90 °C, that the fiber web
               is cooled to temperature 35 - 55 °C by the web cooler (200) and optionally the moisturizer
               (100) is used, that low ingoing temperature 30 - 50 °C to the precalender (40) is
               achieved and advantageously web moisture is adjusted to 6 - 10 %, that in precalender
               (40) a moisture and temperature gradient pre-calendering takes place and in the precalendering
               used short nip calendering increases the web temperature 10 - 15 °C and ingoing temperature
               of the web when entering the coater (50) is 45 - 60 °C, that after coating in the
               coater (50) the fiber web is dried in the dryer (60), after which the temperature
               of the web is 70 - 120 °C, that before calendering in the final calender (70) the
               fiber web is cooled by the another cooling device (200), by which the ingoing temperature
               of the fiber web is reduced to 30 - 55 °C and the temperature of the fiber web after
               calendering is 50 - 55 °C and the low temperature needed in reeling in the reel-up
               (80) is provided without further cooling devices as the temperature of the fiber web
               is 50 - 55 °C after calendering.
 
            2. Method according to claims 1, characterized in that the cooling of the fiber web (W) is two sided i.e. cooling is effected on both sides
               of the fiber web (W).
 
            3. Method according to any of claims 1 or 2, characterized in that the temperature of the middle of the fiber web when entering the first calendering
               nip is 10 - 55 °C, preferably 20 - 50 °C.
 
            4. Method according to any of claims 1-3, characterized in that the fiber web (W) is moisturized by a moisturizer (100) before and/or after cooling
               in the cooling device (200) and/ or moisturized in the cooling device (200) for enhancing
               the cooling of the fiber web (W) by evaporation.
 
            5. Method according to claim 1, characterized in that to control the curl of the fiber web the amount of cooling is controlled on each
               or on one side of the fiber web and that advantageously moisturizing amount is controlled
               on each or on one side of the fiber web.
 
            6. Production line for producing a fiber web (W), which comprises a board or paper machine
               with dryer section (10), a sizer (20) with an after dryer (30), a cooling device (200)
               with optional moisturizer (100), a precalender (40), a coater (50) with dryer (60),
               another cooling device (200), a final calender (70) and a reel-up (80)), and in which
               the distance between the first point of the cooling device (200) and the entering
               point of the fiber web (W) to first calendering nip of the precalender (40) or the
               final calender (70) is such that dwell time between the cooling and the calendering,
               which is the time the fiber web (W) run takes from the first point of the cooling
               device (200) or moisturizer (100) to the first calendering nip of the precalender
               (40) or from the first point of the another cooling device (200) to the first calender
               nip of the final calender (70), is at least 200 ms, preferably 200 - 5000 ms, for
               carrying out the method according to any of claims 1 - 5, wherein temperature of the
               web coming out from dryer section (10) is 90 - 150 °C, preferably about 95 °C, and
               solids content of the fiber web is 92 - 96%, that web temperature after drying in
               after dryer (30) of the sizer (20) is 85 - 90 °C, that the fiber web is cooled to
               temperature 35 - 55 °C by the web cooler (200) and optionally the moisturizer (100)
               is used, that low ingoing temperature 30 - 50 °C to the precalender (40) is achieved
               and advantageously web moisture is adjusted to 6 - 10 %, that in precalender (40)
               a moisture and temperature gradient precalendering takes place and in the precalendering
               used short nip calendering increases the web temperature 10 - 15 °C and ingoing temperature
               of the web when entering the coater (50) is 45 - 60 °C, that after coating in the
               coater (50) the fiber web is dried in the dryer (60), after which the temperature
               of the web is 70 - 120 °C, that before calendering in the final calender (70) the
               fiber web is cooled by the another cooling device (200), by which the ingoing temperature
               of the fiber web is reduced to 30 - 55 °C and the temperature of the fiber web after
               calendering is 50 - 55 °C and the low temperature needed in reeling in the reel-up
               (80) is provided without further cooling devices as the temperature of the fiber web
               is 50 - 55 °C after calendering.
 
            7. Production line according to claim 6, characterized in that that the cooling device (200) comprises a moisturizer (100).
 
            8. Production line according to claim 6 or 7, characterized in that the cooling device (200) is provided on both sides of the web.
 
          
         
            
            1. Verfahren zur Herstellung einer Faserbahn (W), wobei in dem Verfahren die Faserbahn
               in einer Produktionslinie hergestellt wird, die eine Karton- oder Papiermaschine mit
               einer Trockenpartie (10), einer Leimpresse (20) mit einem Nachtrockner (30), einer
               Kühlvorrichtung (200) mit einem optionalen Befeuchter (100), einem Vorkalander (40),
               einem Beschichter (50) mit einem Trockner (60), einer weiteren Kühlvorrichtung (200),
               einem Endkalander (70) und einem Aufwickler (80) aufweist, wobei die Faserbahn (W)
               in dem Vorkalander und in dem Endkalander (40;70) kalandriert wird, wobei in dem Verfahren
               die Faserbahn (W) vor dem Kalandrieren der Faserbahn (W) in dem Vorkalander (40) und
               in dem Endkalander (70) gekühlt wird, und bei dem die Verweilzeit zwischen dem Kühlen
               und dem Kalandrieren, bei der es sich um die Zeit handelt, die der Lauf der Faserbahn
               (W) von dem ersten Punkt der Kühlvorrichtung (200) oder dem Befeuchter (100) zu dem
               ersten Kalandriernip des Vorkalanders (40) oder von dem ersten Punkt der weiteren
               Kühlvorrichtung (200) zu dem ersten Kalandriernip des Endkalanders (70) benötigt,
               wenigstens 200 ms, vorzugsweise 200 - 5.000 ms, beträgt,
               dadurch gekennzeichnet, dass
               die Temperatur der aus der Trockenpartie (10) austretenden Bahn 90 - 150 °C, vorzugsweise
               ungefähr 95 °C, und der Feststoffgehalt der Faserbahn 92 - 96 % beträgt, dass die
               Bahntemperatur nach dem Trocknen in dem Nachtrockner (30) der Leimpresse (20) 85 -
               90 °C beträgt, dass die Faserbahn durch den Bahnkühler (200) auf eine Temperatur von
               35 - 55 °C gekühlt wird und optional der Befeuchter (100) verwendet wird, dass eine
               niedrige Eintrittstemperatur von 30 - 50 °C zu dem Vorkalander (40) erreicht wird
               und vorzugsweise die Feuchtigkeit der Bahn auf 6 - 10 % eingestellt wird, dass in
               dem Vorkalander (40) eine Feuchtigkeits- und Temperaturgradientenvorkalandrierung
               stattfindet und das bei der Vorkalandrierung eingesetzte Kurznipkalandrieren die Bahntemperatur
               um 10 - 15 °C erhöht und die Eintrittstemperatur der Bahn, wenn sie in den Beschichter
               (50) eintritt, 45 - 60 °C beträgt, dass nach dem Beschichten in dem Beschichter (50)
               die Faserbahn in dem Trockner (60) getrocknet wird, wonach die Temperatur der Bahn
               70 - 120 °C beträgt, dass vor dem Kalandrieren in dem Endkalander (70) die Faserbahn
               durch die weitere Kühlvorrichtung (200) gekühlt wird, wodurch die Eintrittstemperatur
               der Faserbahn auf 30 - 55 °C reduziert wird und die Temperatur der Faserbahn nach
               dem Kalandrieren 50 - 55 °C beträgt, und die beim Aufwickeln in dem Aufwickler (80)
               benötigte niedrige Temperatur ohne weitere Kühlvorrichtungen erzeugt wird, da die
               Temperatur der Faserbahn nach dem Kalandrieren 50 - 55 °C beträgt.
 
            2. Verfahren nach Anspruch 1,
               dadurch gekennzeichnet, dass
               das Kühlen der Faserbahn (W) zweiseitig ist, d. h. dass das Kühlen auf beiden Seiten
               der Faserbahn (W) bewirkt wird.
 
            3. Verfahren nach einem der Ansprüche 1 oder 2,
               dadurch gekennzeichnet, dass
               die Temperatur der Mitte der Faserbahn, wenn sie in den ersten Kalandriernip eintritt,
               10 - 55 °C, vorzugsweise 20 - 50 °C, beträgt.
 
            4. Verfahren nach einem der Ansprüche 1 - 3,
               dadurch gekennzeichnet, dass
               die Faserbahn (W) mittels eines Befeuchters (100) vor und/oder nach dem Kühlen in
               der Kühlvorrichtung (200) befeuchtet wird und/oder in der Kühlvorrichtung (200) befeuchtet
               wird, um das Kühlen der Faserbahn (W) durch Verdampfung zu verbessern.
 
            5. Verfahren nach Anspruch 1,
               dadurch gekennzeichnet, dass
               zur Steuerung der Kräuselung der Faserbahn die Menge der Kühlung auf jeder oder auf
               einer Seite der Faserbahn gesteuert wird, und dass vorzugsweise die Kühlmenge auf
               jeder oder auf einer Seite der Faserbahn gesteuert wird.
 
            6. Herstellungslinie zur Herstellung einer Faserbahn (W), die eine Karton- oder Papiermaschine
               mit einer Trockenpartie (10), einer Leimpresse (20) mit einem Nachtrockner (30), einer
               Kühlvorrichtung (200) mit einem optionalen Befeuchter (100), einem Vorkalander (40),
               einem Beschichter (50) mit einem Trockner (60), einer weiteren Kühlvorrichtung (200),
               einem Endkalander (70) und einem Aufwickler (80) aufweist, und bei der der Abstand
               zwischen dem ersten Punkt der Kühlvorrichtung (200) und dem Eintrittspunkt der Faserbahn
               (W) in den ersten Kalandriernip des Vorkalanders (40) oder des Endkalanders (70) derart
               ist, dass die Verweildauer zwischen dem Kühlen und dem Kalandrieren, bei der es sich
               um die Zeit handelt, die der Lauf der Faserbahn (W) von dem ersten Punkt der Kühlvorrichtung
               (200) oder dem Befeuchter (100) zu dem ersten Kalandriernip des Vorkalanders (40)
               oder von dem ersten Punkt der weiteren Kühlvorrichtung (200) zu dem ersten Kalandriernip
               des Endkalanders (70) benötigt, wenigstens 200 ms, vorzugsweise 200 - 5.000 ms, beträgt,
               zur Durchführung des Verfahrens nach einem der Ansprüche 1 - 5, wobei die Temperatur
               der aus der Trockenpartie (10) austretenden Bahn 90 - 150 °C, vorzugsweise ungefähr
               95 °C, und der Feststoffgehalt der Faserbahn 92 - 96 % beträgt, dass die Bahntemperatur
               nach dem Trocknen in dem Nachtrockner (30) der Leimpresse (20) 85 - 90 °C beträgt,
               dass die Faserbahn durch den Bahnkühler (200) auf eine Temperatur von 35 - 55 °C gekühlt
               wird und optional der Befeuchter (100) verwendet wird, dass eine niedrige Eintrittstemperatur
               von 30 - 50 °C zu dem Vorkalander (40) erreicht wird und vorzugsweise die Feuchtigkeit
               der Bahn auf 6 - 10 % eingestellt wird, dass in dem Vorkalander (40) eine Feuchtigkeits-
               und Temperaturgradientenvorkalandrierung stattfindet und das bei der Vorkalandrierung
               eingesetzte Kurznipkalandrieren die Bahntemperatur um 10 - 15° erhöht und die Eintrittstemperatur
               der Bahn, wenn sie in den Beschichter (50) eintritt, 45 - 60 °C beträgt, dass nach
               dem Beschichten in dem Beschichter (50) die Faserbahn in dem Trockner (60) getrocknet
               wird, wonach die Temperatur der Bahn 70 - 120 °C beträgt, dass vor dem Kalandrieren
               in dem Endkalander (70) die Faserbahn durch die weitere Kühlvorrichtung (200) gekühlt
               wird, durch welche die Eintrittstemperatur der Faserbahn auf 30 - 55 °C reduziert
               wird und die Temperatur der Faserbahn nach dem Kalandrieren 50 - 55 °C beträgt und
               die beim Aufwickeln in dem Aufwickler (80) benötigte niedrige Temperatur ohne weitere
               Kühlvorrichtungen erzeugt wird, da die Temperatur der Faserbahn nach dem Kalandrieren
               50 - 55 °C beträgt.
 
            7. Herstellungslinie nach Anspruch 6,
               dadurch gekennzeichnet, dass
               die Kühlvorrichtung (200) einen Befeuchter (100) aufweist.
 
            8. Herstellungslinie nach Anspruch 6 oder 7,
               dadurch gekennzeichnet, dass
               die Kühlvorrichtung (200) auf beiden Seiten der Bahn vorgesehen ist.
 
          
         
            
            1. Procédé de production d'une nappe de fibres (W), dans lequel la nappe de fibres est
               produite dans une ligne de production comprenant une machine à panneaux ou à papier
               avec une section de séchoir (10), un calibreur (20) avec un post-séchoir (30), un
               dispositif de refroidissement (200) avec un humidificateur optionnel (100), une pré-calandreuse
               (40), une enduiseuse (50) avec un séchoir (60), un autre dispositif de refroidissement
               (200), une calandreuse finale (70) et une enrouleuse (80), la nappe de fibres (W)
               étant calandrée dans la pré-calandreuse et dans la calandreuse finale (40 ; 70), dans
               lequel la nappe de fibres (W) est refroidie avant le calandrage de la nappe de fibres
               (W) dans la pré-calandreuse (40) et dans la calandreuse finale (70), et dans lequel
               le temps de séjour entre le refroidissement et le calandrage, qui est le temps que
               dure le passage de la nappe de fibres (W) depuis le premier point du dispositif de
               refroidissement (200) ou de l'humidificateur (100) jusqu'au premier pincement de calandrage
               de la pré-calandreuse (40), ou depuis le premier point dudit autre dispositif de refroidissement
               (200) jusqu'au premier pincement de calandrage de la calandreuse finale (70), est
               d'au moins 200 ms, et de préférence de 200 à 5000 ms, caractérisé en ce que la température de la nappe sortant de la section de séchoir (10) est de 90 à 150
               °C, et de préférence d'environ 95 °C, et la teneur en solides de la nappe de fibres
               est de 92 à 96 %, la température de la nappe après séchage dans le post-séchoir (30)
               du calibreur (20) est de 85 à 90 °C, la nappe de fibres est refroidie à une température
               de 35 à 55 °C par le refroidisseur de nappe (200) et l'humidificateur (100) est éventuellement
               utilisé, une basse température entrante de 30 à 50 °C dans la pré-calandreuse (40)
               est atteinte et l'humidité de la nappe est avantageusement réglée entre 6 et 10 %,
               dans la pré-calandreuse (40) un gradient d'humidité et de température est établi avant
               le calandrage, et dans le précalandrage utilisé, un calandrage à pincement court augmente
               la température de la nappe de 10 à 15 °C et la température entrante de la nappe à
               l'entrée dans l'enduiseuse (50) est de 45 à 60 °C, après l'enduisage dans l'enduiseuse
               (50) la nappe de fibres est séchée dans le séchoir (60), après quoi la température
               de la nappe est de 70 à 120 °C, avant le calandrage dans la calandreuse finale (70)
               la nappe de fibres est refroidie par ledit autre dispositif de refroidissement (200),
               moyennant quoi la température entrante de la nappe de fibres est réduite à 30 à 55
               °C et la température de la nappe de fibres après calandrage est de 50 à 55 °C, et
               la basse température nécessaire pour l'enroulement dans l'enrouleuse (80) est pourvue
               sans dispositifs de refroidissement additionnels car la température de la nappe de
               fibres est de 50 à 55 °C après le calandrage.
 
            2. Procédé selon la revendication 1, caractérisé en ce que le refroidissement de la nappe de fibres (W) est bilatéral, c'est-à-dire que le refroidissement
               est effectué des deux côtés de la nappe de fibres (W).
 
            3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la température du milieu de la nappe de fibres lorsqu'elle entre dans le premier
               pincement de calandrage et de 10 à 55 °C, et de préférence de 20 à 50 °C.
 
            4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la nappe de fibres (W) est humidifiée par un humidificateur (100) avant et/ou après
               le refroidissement dans le dispositif de refroidissement (200) et/ou humidifiée dans
               le dispositif de refroidissement (200) pour améliorer le refroidissement de la nappe
               de fibres (W) par évaporation.
 
            5. Procédé selon la revendication 1, caractérisé en ce que, pour contrôler l'incurvation de la nappe de fibres, la quantité de refroidissement
               est contrôlée de chaque côté ou sur un seul côté de la nappe de fibres, et la quantité
               d'humidification est avantageusement contrôlée de chaque côté ou sur un seul côté
               de la nappe de fibres.
 
            6. Ligne de production pour la production d'une nappe de fibres (W) comprenant une machine
               à panneaux ou à papier avec une section de séchoir (10), un calibreur (20) avec un
               post-séchoir (30), un dispositif de refroidissement (200) avec un humidificateur optionnel
               (100), une pré-calandreuse (40), une enduiseuse (50) avec un séchoir (60), un autre
               dispositif de refroidissement (200), une calandreuse finale (70) et une enrouleuse
               (80), et dans laquelle la distance entre le premier point du dispositif de refroidissement
               (200) et le point d'entrée de la nappe de fibres (W) jusqu'au premier pincement de
               calandrage de la pré-calandreuse (40) ou de la calandreuse finale (70) est telle que
               le temps de séjour entre le refroidissement et le calandrage, qui est le temps que
               dure le passage de la nappe de fibres (W) depuis le premier point du dispositif de
               refroidissement (200) ou de l'humidificateur (100) jusqu'au premier pincement de calandrage
               de la pré-calandreuse (40), ou depuis le premier point dudit autre dispositif de refroidissement
               (200) jusqu'au premier pincement de calandrage de la calandreuse finale (70), est
               d'au moins 200 ms, et de préférence de 200 à 5000 ms, pour mettre en oeuvre le procédé
               selon l'une quelconque des revendications 1 à 5, dans laquelle la température de la
               nappe sortant de la section de séchoir (10) est de 90 à 150 °C, et de préférence d'environ
               95 °C, et la teneur en solides de la nappe de fibres est de 92 à 96 %, la température
               de la nappe après séchage dans le post-séchoir (30) du calibreur (20) est de 85 à
               90 °C, la nappe de fibres est refroidie à une température de 35 à 55 °C par le refroidisseur
               de nappe (200) et l'humidificateur (100) est éventuellement utilisé, une basse température
               entrante de 30 à 50 °C dans la pré-calandreuse (40) est atteinte et l'humidité de
               la nappe est avantageusement réglée entre 6 et 10 %, dans la pré-calandreuse (40)
               un gradient d'humidité et de température est établi avant le calandrage, et dans le
               précalandrage utilisé, un calandrage à pincement court augmente la température de
               la nappe de 10 à 15 °C et la température entrante de la nappe à l'entrée dans l'enduiseuse
               (50) est de 45 à 60 °C, après l'enduisage dans l'enduiseuse (50) la nappe de fibres
               est séchée dans le séchoir (60), après quoi la température de la nappe est de 70 à
               120 °C, avant le calandrage dans la calandreuse finale (70) la nappe de fibres est
               refroidie par ledit autre dispositif de refroidissement (200), moyennant quoi la température
               entrante de la nappe de fibres est réduite à 30 à 55 °C et la température de la nappe
               de fibres après calandrage est de 50 à 55 °C, et la basse température nécessaire pour
               l'enroulement dans l'enrouleuse (80) est pourvue sans dispositifs de refroidissement
               additionnels car la température de la nappe de fibres est de 50 à 55 °C après le calandrage.
 
            7. Ligne de production selon la revendication 6, caractérisée en ce que le dispositif de refroidissement (200) comprend un humidificateur (100).
 
            8. Ligne de production selon la revendication 6 ou 7, caractérisée en ce que le dispositif de refroidissement (200) est pourvu des deux côtés de la nappe.
 
          
            
            REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
            It does not form part of the European patent document. Even though great care has
            been taken in compiling the references, errors or omissions cannot be excluded and
            the EPO disclaims all liability in this regard.
Patent documents cited in the description