(19)
(11) EP 2 765 237 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.11.2016 Bulletin 2016/47

(21) Application number: 13154162.5

(22) Date of filing: 06.02.2013
(51) International Patent Classification (IPC): 
D21G 1/00(2006.01)
D21F 11/00(2006.01)

(54)

Method for producing a fiber web and production line for producing a fiber web

Verfahren zur Herstellung einer Faserstoffbahn und Produktionslinie zum Herstellen einer Faserstoffbahn

Procédé de production d'une bande de fibres et ligne de fabrication d'une bande de fibres


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
13.08.2014 Bulletin 2014/33

(73) Proprietor: Valmet Technologies, Inc.
02150 Espoo (FI)

(72) Inventor:
  • Pietikäinen, Reijo
    FI-04420 Järvenpää (FI)

(74) Representative: Berggren Oy Ab 
P.O. Box 16 Eteläinen Rautatiekatu 10A
00101 Helsinki
00101 Helsinki (FI)


(56) References cited: : 
EP-A1- 1 486 610
WO-A1-00/17446
WO-A1-2005/042837
EP-A1- 1 541 759
WO-A1-02/103109
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] In general present invention relates to producing fiber webs in a fiber web production line. More especially the present invention relates to a method according to preamble part of claim 1 and to a production line according to preamble part of claim 6.

    [0002] As known from the prior art in fiber web producing processes typically comprise an assembly formed by a number of apparatuses arranged consecutively in the process line. A typical production and treatment line comprises a head box, a wire section and a press section as well as a subsequent drying section and a reel-up. The production and treatment line can further comprise other devices and/or sections for finishing the fiber web, for example a sizer, a pre-calender, a coating section, a final-calender and a reel-up. The production and treatment line also comprises at least one slitter-winder for forming customer rolls as well as a roll packaging apparatus. In this description and the following claims by fiber webs are meant for example a paper and board webs.

    [0003] Pre-calendering is typically used for creating required surface properties for further treatment, for example for coating and final-calendering, which are generally carried out in order to improve the properties, like smoothness and gloss, of a web-like material such as a paper or board web. In calendering the web is passed into a nip, i.e. calendering nip, formed between rolls that are pressed against each other, in which nip the web becomes deformed as by the action of temperature, moisture and nip pressure. In the calender the nips are formed between a smooth-surfaced press roll such as a metal roll and a roll coated with resilient material such as a polymer roll or between two smooth-surfaced rolls. The resilient-surfaced roll adjusts itself to the forms of the web surface and presses the opposite side of the web evenly against the smooth-surfaced press roll. The nips can be formed also by using instead one of roll a belt or a shoe as known from prior art. Many different kinds of calenders to be used as a pre-calender and/or as an final-calender are known, for example hard nip calenders, soft nip calenders, supercalenders, metal belt calenders, shoe calenders, long nip calenders, multinip calenders etc.

    [0004] One problem with calendering of fiber webs is to achieve required surface properties and simultaneously achieve required bulkiness i.e. relation of thickness of the web to its grammage (basis weight). When the fiber web has high bulkiness the basis weight can be reduced which results as considerable savings in raw material. Thus in recent times it has been one of the main focus points in developing calenders, mostly due to environmental and cost saving reasons.

    [0005] Typically the fiber web is guided from the drying section to a precalender, when the temperature of the fiber web is about 80 - 90 °C. In the thickness direction of the web the middle layers of the web are hot and near plastic state, whereby during calendering the fiber web will compact also in the middle layers, which leads to unnecessary bulk loss.

    [0006] It is known from prior art that bulkiness can be saved in calendering by cooling the fiber web before calendering, for example decreasing the temperature of middle layers of the fiber web by 10 °C. For example in DE 102005053968 is disclosed a method and an arrangement for calendering a paper or board or corresponding fiber web, in which the fiber web is guided through at least one heated calendering nip, where before the heated calendering nip the fiber web is guided via at least one cooling device. In this known method and arrangement the fiber web is cooled such that at least 50% of its thickness is under temperature of 30 °C and advantageously to even lower temperatures, even such that the fiber web is cooled to -10°C.

    [0007] In a reel-up of the fiber web production line as a continuous web produced fiber web is reeled up into the form of a roll, a parent (machine, jumbo) roll. In the production process of the fiber web, the reeling is generally a first process part, wherein a continuous process is discontinued to be continued in sequences. One problem in reeling after calendering is that the fiber web is still rather warm, typically in temperature range of 50 - 80 °C, and during reeling of warm fiber web reeling faults may occur, coating defects may be caused and brightness of the fiber web may reduce, which leads to the need of cooling devices located after calendering, for example as disclosed in WO publication 2006/000630.

    [0008] It is known that during drying of a fiber web a tendency of curl of the web may occur, in particularly when the drying is asymmetric i.e. drying of one side of the web has been more effective than the drying of the other side. Under these circumstances, the dried fiber web is usually curled and becomes concave towards the side of more effective drying and/or towards the latest dried side. It is also known from the prior art that the tendency of curl of fiber web is already affected in connection with the web formation, in particular at the formation stage by means of selection of the difference in speed between the slice jet and the wire, and by means of other running parameters. Further it is known from the prior art, for example, in the case of copying paper, by means of unequal-sidedness of drying in the after-dryer a suitable initial curl form is regulated for the web in order that the curl of the paper after one-sided or double-sided copying could be optimized. The reactivity of curl, i.e. the extent to which curl occurs per unit of change in moisture content, is influenced also by means of a multi-layer structure of the fiber web, which is produced in connection with the web formation in the wet end. From prior art are known many different ways to control curl during the drying of the fiber web. Typically the curl control is provided by controlling the temperature of a few last drying cylinder of the drying section, in some cases using the few last drying cylinders without heating, which then decreases the drying capacity of the drying section.

    [0009] In EP 1015689 a method is described for drying a surface-treated paper web or equivalent in an after-dryer of a paper machine as well as a dryer section of a paper machine for applying the method, wherein, in view of compensating for a tendency of curl of the paper web, in the after-dryer the paper web is dried in a dryer group/groups making use of a normal single-wire draw, and that, in connection with or after the drying, the paper web is treated by means of a device/devices in order to compensate for a tendency of curl of the paper web, which devices are, for example, a steam box, a blower unit, a moisturizing device, and/or a soft calender.

    [0010] In WO 98/27273 is disclosed a method for drying of paper, which method the paper web to be dried is passed from the press section into a pre-dryer section and from the forward dryer section the paper web is passed into a finishing section, in which the paper web is coated/surface-sized by means of a coating/surface-sizing equipment, dried in an after-dryer section, after which the paper web is calendered in a calender and passed to a reeling station. In the method the curl of the paper web is controlled by means of elements and/or by means of assemblies and combinations formed out of said elements at least in the area of the finishing section. In this known method is mentioned as one alternative of the element to control the curl a steam box located between the dryer section and a calender and that in order to intensify the condensation in connection with the steam feed a cooling cylinder with adjustable temperature is employed.

    [0011] In WO00/17446 is disclosed a method and apparatus for finishing paperboard to achieve improved smoothness and bulk, in which the web is finished by applying temperature and moisture gradients to the web and then smoothing the web surface using extended nip calendering.

    [0012] The object of the present invention is further development of the earlier solutions described above so that the curl of the fiber web can be controlled more efficiently with increased drying capacity and simultaneously provide a method for effectively calendering fiber webs in which high bulkiness is received with less raw stock and a production line for carrying out the method.

    [0013] A further object of the present invention is to approach the above problems from a new point of view and to suggest novel solutions contrary to conventional modes of thinking.

    [0014] A further object of the present invention is to create a compact way to combine curl control, web cooling and moisture control.

    [0015] To achieve the objects mentioned above and later the method according to the invention is mainly characterized by the features of the characterizing part of claim 1.

    [0016] The production line according to the invention is mainly characterized by the features of the characterizing part of claim 6.

    [0017] In accordance with the invention the curl of the fiber web is controlled by cooling the fiber web before calendering the fiber web in precalender and/or in another calender. The production line has a precalender and a final calender, wherein a cooling provided by additional cooling means is provided before the final calender. According to an advantageous feature the cooling is two sided i.e. cooling is effected on both sides of the web. According to the method the fiber web is cooled by cooling device before calendering of the fiber web in the precalender and before in another calender of the production line such that after cooling the fiber web is guided to the pre-calender or to the other calender and that dwell time between cooling and calendering, which is the time the fiber web run takes from the first point of the cooling or moistening device to the first calendering nip of the pre- or the other calender is at least 200 ms, preferably 200 - 5000 ms.

    [0018] According to an advantageous feature of the invention the fiber web is moisturized during cooling in the cooling device for enhancing the cooling of the fiber web by evaporation.

    [0019] According to the invention in the method the fiber web is reeled in a reel-up after the calendering in final calender such that the temperature of the web is not higher than 55 °C, preferably in temperature in the range of 20 - 50 °C and that if necessary the fiber web is cooled before the calendering.

    [0020] According to advantageous feature the fiber web is cooled by contactless cooling effect by the cooling device. The cooling device is for example an air borne cooling device or impingement cooling device.

    [0021] According to advantageous feature the fiber web is cooled by contacting cooling effect by the cooling device.

    [0022] According to the invention the fiber web is cooled after drying before precalendering.

    [0023] According advantageous features of the invention the cooling device provides for blowing or creating a flow of cooled gas, for example air.

    [0024] In order to control the curl of the fiber web in accordance with the invention the amount of cooling is controlled on each or on one side of the fiber web, advantageously moisturizing amount is controlled on each or on one side of the fiber web.

    [0025] In the following the invention is further explained in detail with reference to the accompanying drawing in which:

    In figure 1 is very schematically shown an example of a production line for producing fiber web according to the prior art.

    In figure 2 is very schematically shown an example of a production line for producing fiber web according to one example of the invention.

    In figures 3 - 6 is schematically shown examples of production lines for producing fiber web according to some examples of the invention,

    In figure 7 is schematically shown various configurations for moisturizing and cooling devices in a fiber web production line and

    In figures 8 - 10 is schematically shown further examples of configurations for moisturizing and cooling devices in a fiber web production line according to some advantageous examples of the invention.



    [0026] The examples according to figures 3 and 5 do not fall under the scope of the claims.

    [0027] In the figures and the description thereof same reference signs have been used for corresponding parts, part components and sections unless otherwise mentioned.

    [0028] In the very schematical example of a production line for producing fiber webs shown in figure 1 the production line according to prior art comprises a board or paper machine with dryer section 10, a sizer 20 with an after dryer 30, an optional moisturizer 100, a precalender 40, a coater 50 with dryer 60, a calender 70, an optional web cooler 150 and a reel-up 80. Typical speeds of fiber web production lines are for board 600 - 1000 m/min, for liner 1000 - 1400 m/min and for paper 1200 - 2000 m/min. In prior art production lines the temperature of the web coming out from dryer section 10 is typically 90 - 150 °C, often about 95 °C and its solids content is 92 - 96%. In prior art production lines curl control is typically done at dryer section 10 by running one drying cylinder row at lower temperature, which results as more or less one-sided drying. This may mean a significant capacity loss, since drying potential is not fully in use, if for example 10 - 20 drying cylinders are used at low temperature. Hot fiber web is generally preferred in sizing, since it improves sizing agent penetration and rapid beginning of sizing agent drying. The web temperature after drying in after dryer 30 of the sizer 20 is typically 85 - 90 °C. The after dryer 30 of the sizer may optionally be followed by a moisturizer 100, where water spray is used in order to enhance gradient calendering in the precalender 40. Typically the amount of spray water added to the web is 1 - 3 g/m2. When the fiber web enters the precalender its' temperature is typically 60 - 90 °C. If in the precalendering short nip calendering is used it increases the web temperature only about 10 - 15 °C, thus the ingoing temperature of the web when entering the coater 50 is 80 - 90 °C. After coating in the coater 50 the fiber web is dried in a dryer 60, after which the temperature of the web is 70 - 120 °C. Before the reel-up 80 the web may optionally be cooled by a web cooler 150 in order to ensure low reeling temperature under 55 °C to ensure reeling quality. In the very schematical example of a production line for producing fiber webs in accordance with the invention shown in figure 2 the production line comprises a board or paper machine with dryer section 10, a sizer 20 with an after dryer 30, a cooling device, for example a web cooler 200 with optional moisturizer 100, a precalender 40, a coater 50 with dryer 60, a cooling device, for example a web cooler 200, a calender 70 and a reel-up 80. The speeds of fiber web production line are for board 600 - 1000 m/min, for liner 1000 - 1400 m/min and for paper 1200 - 2000 m/min. In this example the temperature of the web coming out from dryer section 10 is 90 - 150 °C, preferably about 95 °C and the solids content of the fiber web is 92 - 96%. The curl control is done by the web cooler 200 located before the precalender 40 thus at dryer section 10 all drying cylinders may be run at high drying temperature and thus fully utilizing all drying cylinders. This means a significant capacity increase, since drying potential is fully in use. Hot fiber web preferred in sizing improves sizing agent penetration and rapid beginning of sizing agent drying. The web temperature after drying in after dryer 30 of the sizer 20 is typically 85 - 90 °C. The after dryer 30 of the sizer 20 is followed for curl control of the fiber web by a web cooler 200 with an optional moisturizer 100. By the web cooler 200, preferably by a flotation chill box, the fiber web is effectively cooled to temperature 35 - 55 °C. The cooling is preferably evaporative cooling, which enhances the cooling. Optionally a moisturizer 100 is used, in which water sprays further enhance cooling rate and to adjust web moisture before precalendering. Preferably the web chilling and spray moisturizing is done on both sides of the web and two-sidedness is adjusted to control the curling. Advantageously the cooling effect of the web cooler 200 is 30 - 50 °C. Thus low ingoing temperature 30 - 50 °C to the precalender 40 is achieved, by which bulk savings are provided, in particular in case of short nip precalendering either hard or soft nip calendering. Advantageously web moisture is adjusted to suitable level, for example 6 - 10 %. In precalender 40 an effective moisture and temperature gradient precalendering takes place. In the precalendering used short nip calendering increases the web temperature only about 10 - 15 °C, thus the ingoing temperature of the web when entering the coater 50 is 45 - 60 °C. After coating in the coater 50 the fiber web is dried in a dryer 60, after which the temperature of the web is 70 - 120 °C. Before the calendering in the final calender 70, the fiber web is cooled by a cooling device, for example a web cooler 200. Preferably the web cooler 200 is a contact cooler or air flotation cooler. By the web cooler 200 the ingoing temperature of the fiber web is reduced to 30 - 55 °C and further bulk savings are achieved. Thus the temperature of the fiber web after calendering is also lower 50 - 55 °C and the low temperature needed in reeling in the reel-up 80 is provided without further cooling devices as the temperature of the fiber web is 50 - 55 °C after calendering.

    [0029] In figure 3 the fiber web W is guided from the paper or board machine with dryer section 10 prior to the calendering in a calender 70 to an optional moisturizing device 100 and thereafter to cooling device 200, which is followed by an optional moisturizing device 100. From the calender 70 the fiber web is guided reeling in a reel-up 80. In this example the fiber web W to be produced is uncoated and the production line is provided with two sided cooling with the cooling device 200 and the curl control of the fiber web W is done two sided by the moisturizing sprays of the moisturizing devices 100 and chilling blows of the cooling device 200.

    [0030] In figure 4 the fiber web W is guided from the paper of board machine with dryer section 10 prior to the precalendering in a precalender 40 to an optional moisturizing device 100 and thereafter to cooling device 200. Precalendering is followed by coating of the fiber web W in a coater 50 with dryer 60. After coating the fiber web W is cooled by a cooling device 200 before the final calendering in a calender 70. The calendering of the fiber web W is followed by reeling in a reel-up 80. In this example the fiber web W to be produced is coated and the curl control of the fiber web W is done two sided by the optional moisturizing sprays of the moisturizing devices 100 and by chilling blows of the cooling device 200.

    [0031] In figure 5 the fiber web W is guided from the paper of board machine with dryer section 10 to be sized in a sizer 20. After sizing the fiber web is dried in a dryer 30 and prior to the calendering in a calender 70 the fiber web W is guided to an optional moisturizing device 100 and thereafter to cooling device 200. The calendering of the fiber web W is followed by reeling in a reel-up 80. In this example the fiber web W to be produced is uncoated and the curl control of the fiber web W is done two sided by the optional moisturizing sprays of the moisturizing devices 100 and by chilling blows of the cooling device 200.

    [0032] In figure 6 the fiber web W is guided from the paper of board machine with dryer section 10 to be sized in a sizer 20. After sizing the fiber web is dried in a dryer 30 and prior to the precalendering in a precalender 40 the fiber web W is guided to an optional moisturizing device 100 and thereafter to cooling device 200. Precalendering is followed by coating of the fiber web W in a coater 50 with dryer 60. After coating the fiber web W is cooled by a cooling device 200 before the final calendering in a calender 70. The calendering of the fiber web W is followed by reeling in a reel-up 80. In this example the fiber web W to be produced is coated and the curl control of the fiber web W is done two sided by the optional moisturizing sprays of the moisturizing devices 100 and by chilling blows of the cooling device 200.

    [0033] In figure 7 is schematically shown various configurations for moisturizing devices 100 and cooling devices 200 in fiber web production line examples in accordance with advantageous examples of the invention. The moisturizing devices 100 are optional and can be located either separate from or in connection with the cooling devices 200. The moisturizing devices 100 and the cooling devices 200 are located two sided in respect of the fiber web W so that the curl control, when needed, can be effected to both sides of the fiber web W.

    [0034] In figures 8 - 10 is schematically shown various configurations for moisturizing devices 100 and cooling devices 200 in fiber web production line examples in accordance with advantageous examples of the invention. The moisturizing devices 100 are optional and can be located either separate from or in connection with the cooling devices 200. The moisturizing devices 100 and the cooling devices 200 are located two sided in respect of the fiber web W so that the curl control, when needed, can be effected to both sides of the fiber web W. In the examples of figures 8 - 10 is also shown some configurations to provide a long influencing time for the cooling before calendering 40; 70.

    [0035] In figure 8 the fiber web is guided to an extended run by guide elements 125 that guide the fiber web W to an extended run via the basement level of the fiber web production hall. By dashed line F is indicated the floor lever of the main fiber web production hall. Along the extended run cooling devices 200 and optional moisturizing devices 100 can be located.

    [0036] In figure 9 the fiber web is guided to an extended run by guide elements 125 that guide the fiber web W to an extended run via the upper parts above the main production line of the fiber web production hall. By dashed line F is indicated the floor lever of the main fiber web production hall. Along the extended run cooling devices 200 and optional moisturizing devices 100 can be located.

    [0037] In figure 10 the fiber web is guided to an extended run by guide elements 125 that guide the fiber web W to an extended run meandering via the upper parts and lower parts of the main production line in the fiber web production hall. Along the extended run optional moisturizing devices 100 can be located. The cooling is provided by open web draws and optionally for example the first two guide elements 125 may be cooled rolls or turn elements. In this example the cooling devices may be located before or during the meandering extended run of the fiber web W before to the calender 40; 70.


    Claims

    1. Method for producing a fiber web (W), in which method the fiber web is produced in a production line comprising a board or paper machine with dryer section (10), a sizer (20) with an after dryer (30), a cooling device (200) with optional moisturizer (100), a precalender (40), a coater (50) with dryer (60), another cooling device (200), a final calender (70) and a reel-up (80), the fiber web (W) is calendered in the precalender and in the final calender (40; 70), in which method the fiber web (W) is cooled before calendering the fiber web (W) in the precalender (40) and in the final calender (70) and in which dwell time between cooling and calendering, which is the time the fiber web (W) run takes from the first point of the cooling device (200) or the moisturizer (100) to the first calendering nip of the precalender (40) or from the first point of the another cooling device (200) to the first calendering nip of the final calender (70), is at least 200 ms, preferably 200 - 5000 ms, characterized in that temperature of the web coming out from dryer section (10) is 90 - 150 °C, preferably about 95 °C, and solids content of the fiber web is 92 - 96%, that web temperature after drying in after dryer (30) of the sizer (20) is 85 - 90 °C, that the fiber web is cooled to temperature 35 - 55 °C by the web cooler (200) and optionally the moisturizer (100) is used, that low ingoing temperature 30 - 50 °C to the precalender (40) is achieved and advantageously web moisture is adjusted to 6 - 10 %, that in precalender (40) a moisture and temperature gradient pre-calendering takes place and in the precalendering used short nip calendering increases the web temperature 10 - 15 °C and ingoing temperature of the web when entering the coater (50) is 45 - 60 °C, that after coating in the coater (50) the fiber web is dried in the dryer (60), after which the temperature of the web is 70 - 120 °C, that before calendering in the final calender (70) the fiber web is cooled by the another cooling device (200), by which the ingoing temperature of the fiber web is reduced to 30 - 55 °C and the temperature of the fiber web after calendering is 50 - 55 °C and the low temperature needed in reeling in the reel-up (80) is provided without further cooling devices as the temperature of the fiber web is 50 - 55 °C after calendering.
     
    2. Method according to claims 1, characterized in that the cooling of the fiber web (W) is two sided i.e. cooling is effected on both sides of the fiber web (W).
     
    3. Method according to any of claims 1 or 2, characterized in that the temperature of the middle of the fiber web when entering the first calendering nip is 10 - 55 °C, preferably 20 - 50 °C.
     
    4. Method according to any of claims 1-3, characterized in that the fiber web (W) is moisturized by a moisturizer (100) before and/or after cooling in the cooling device (200) and/ or moisturized in the cooling device (200) for enhancing the cooling of the fiber web (W) by evaporation.
     
    5. Method according to claim 1, characterized in that to control the curl of the fiber web the amount of cooling is controlled on each or on one side of the fiber web and that advantageously moisturizing amount is controlled on each or on one side of the fiber web.
     
    6. Production line for producing a fiber web (W), which comprises a board or paper machine with dryer section (10), a sizer (20) with an after dryer (30), a cooling device (200) with optional moisturizer (100), a precalender (40), a coater (50) with dryer (60), another cooling device (200), a final calender (70) and a reel-up (80)), and in which the distance between the first point of the cooling device (200) and the entering point of the fiber web (W) to first calendering nip of the precalender (40) or the final calender (70) is such that dwell time between the cooling and the calendering, which is the time the fiber web (W) run takes from the first point of the cooling device (200) or moisturizer (100) to the first calendering nip of the precalender (40) or from the first point of the another cooling device (200) to the first calender nip of the final calender (70), is at least 200 ms, preferably 200 - 5000 ms, for carrying out the method according to any of claims 1 - 5, wherein temperature of the web coming out from dryer section (10) is 90 - 150 °C, preferably about 95 °C, and solids content of the fiber web is 92 - 96%, that web temperature after drying in after dryer (30) of the sizer (20) is 85 - 90 °C, that the fiber web is cooled to temperature 35 - 55 °C by the web cooler (200) and optionally the moisturizer (100) is used, that low ingoing temperature 30 - 50 °C to the precalender (40) is achieved and advantageously web moisture is adjusted to 6 - 10 %, that in precalender (40) a moisture and temperature gradient precalendering takes place and in the precalendering used short nip calendering increases the web temperature 10 - 15 °C and ingoing temperature of the web when entering the coater (50) is 45 - 60 °C, that after coating in the coater (50) the fiber web is dried in the dryer (60), after which the temperature of the web is 70 - 120 °C, that before calendering in the final calender (70) the fiber web is cooled by the another cooling device (200), by which the ingoing temperature of the fiber web is reduced to 30 - 55 °C and the temperature of the fiber web after calendering is 50 - 55 °C and the low temperature needed in reeling in the reel-up (80) is provided without further cooling devices as the temperature of the fiber web is 50 - 55 °C after calendering.
     
    7. Production line according to claim 6, characterized in that that the cooling device (200) comprises a moisturizer (100).
     
    8. Production line according to claim 6 or 7, characterized in that the cooling device (200) is provided on both sides of the web.
     


    Ansprüche

    1. Verfahren zur Herstellung einer Faserbahn (W), wobei in dem Verfahren die Faserbahn in einer Produktionslinie hergestellt wird, die eine Karton- oder Papiermaschine mit einer Trockenpartie (10), einer Leimpresse (20) mit einem Nachtrockner (30), einer Kühlvorrichtung (200) mit einem optionalen Befeuchter (100), einem Vorkalander (40), einem Beschichter (50) mit einem Trockner (60), einer weiteren Kühlvorrichtung (200), einem Endkalander (70) und einem Aufwickler (80) aufweist, wobei die Faserbahn (W) in dem Vorkalander und in dem Endkalander (40;70) kalandriert wird, wobei in dem Verfahren die Faserbahn (W) vor dem Kalandrieren der Faserbahn (W) in dem Vorkalander (40) und in dem Endkalander (70) gekühlt wird, und bei dem die Verweilzeit zwischen dem Kühlen und dem Kalandrieren, bei der es sich um die Zeit handelt, die der Lauf der Faserbahn (W) von dem ersten Punkt der Kühlvorrichtung (200) oder dem Befeuchter (100) zu dem ersten Kalandriernip des Vorkalanders (40) oder von dem ersten Punkt der weiteren Kühlvorrichtung (200) zu dem ersten Kalandriernip des Endkalanders (70) benötigt, wenigstens 200 ms, vorzugsweise 200 - 5.000 ms, beträgt,
    dadurch gekennzeichnet, dass
    die Temperatur der aus der Trockenpartie (10) austretenden Bahn 90 - 150 °C, vorzugsweise ungefähr 95 °C, und der Feststoffgehalt der Faserbahn 92 - 96 % beträgt, dass die Bahntemperatur nach dem Trocknen in dem Nachtrockner (30) der Leimpresse (20) 85 - 90 °C beträgt, dass die Faserbahn durch den Bahnkühler (200) auf eine Temperatur von 35 - 55 °C gekühlt wird und optional der Befeuchter (100) verwendet wird, dass eine niedrige Eintrittstemperatur von 30 - 50 °C zu dem Vorkalander (40) erreicht wird und vorzugsweise die Feuchtigkeit der Bahn auf 6 - 10 % eingestellt wird, dass in dem Vorkalander (40) eine Feuchtigkeits- und Temperaturgradientenvorkalandrierung stattfindet und das bei der Vorkalandrierung eingesetzte Kurznipkalandrieren die Bahntemperatur um 10 - 15 °C erhöht und die Eintrittstemperatur der Bahn, wenn sie in den Beschichter (50) eintritt, 45 - 60 °C beträgt, dass nach dem Beschichten in dem Beschichter (50) die Faserbahn in dem Trockner (60) getrocknet wird, wonach die Temperatur der Bahn 70 - 120 °C beträgt, dass vor dem Kalandrieren in dem Endkalander (70) die Faserbahn durch die weitere Kühlvorrichtung (200) gekühlt wird, wodurch die Eintrittstemperatur der Faserbahn auf 30 - 55 °C reduziert wird und die Temperatur der Faserbahn nach dem Kalandrieren 50 - 55 °C beträgt, und die beim Aufwickeln in dem Aufwickler (80) benötigte niedrige Temperatur ohne weitere Kühlvorrichtungen erzeugt wird, da die Temperatur der Faserbahn nach dem Kalandrieren 50 - 55 °C beträgt.
     
    2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Kühlen der Faserbahn (W) zweiseitig ist, d. h. dass das Kühlen auf beiden Seiten der Faserbahn (W) bewirkt wird.
     
    3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass
    die Temperatur der Mitte der Faserbahn, wenn sie in den ersten Kalandriernip eintritt, 10 - 55 °C, vorzugsweise 20 - 50 °C, beträgt.
     
    4. Verfahren nach einem der Ansprüche 1 - 3,
    dadurch gekennzeichnet, dass
    die Faserbahn (W) mittels eines Befeuchters (100) vor und/oder nach dem Kühlen in der Kühlvorrichtung (200) befeuchtet wird und/oder in der Kühlvorrichtung (200) befeuchtet wird, um das Kühlen der Faserbahn (W) durch Verdampfung zu verbessern.
     
    5. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    zur Steuerung der Kräuselung der Faserbahn die Menge der Kühlung auf jeder oder auf einer Seite der Faserbahn gesteuert wird, und dass vorzugsweise die Kühlmenge auf jeder oder auf einer Seite der Faserbahn gesteuert wird.
     
    6. Herstellungslinie zur Herstellung einer Faserbahn (W), die eine Karton- oder Papiermaschine mit einer Trockenpartie (10), einer Leimpresse (20) mit einem Nachtrockner (30), einer Kühlvorrichtung (200) mit einem optionalen Befeuchter (100), einem Vorkalander (40), einem Beschichter (50) mit einem Trockner (60), einer weiteren Kühlvorrichtung (200), einem Endkalander (70) und einem Aufwickler (80) aufweist, und bei der der Abstand zwischen dem ersten Punkt der Kühlvorrichtung (200) und dem Eintrittspunkt der Faserbahn (W) in den ersten Kalandriernip des Vorkalanders (40) oder des Endkalanders (70) derart ist, dass die Verweildauer zwischen dem Kühlen und dem Kalandrieren, bei der es sich um die Zeit handelt, die der Lauf der Faserbahn (W) von dem ersten Punkt der Kühlvorrichtung (200) oder dem Befeuchter (100) zu dem ersten Kalandriernip des Vorkalanders (40) oder von dem ersten Punkt der weiteren Kühlvorrichtung (200) zu dem ersten Kalandriernip des Endkalanders (70) benötigt, wenigstens 200 ms, vorzugsweise 200 - 5.000 ms, beträgt, zur Durchführung des Verfahrens nach einem der Ansprüche 1 - 5, wobei die Temperatur der aus der Trockenpartie (10) austretenden Bahn 90 - 150 °C, vorzugsweise ungefähr 95 °C, und der Feststoffgehalt der Faserbahn 92 - 96 % beträgt, dass die Bahntemperatur nach dem Trocknen in dem Nachtrockner (30) der Leimpresse (20) 85 - 90 °C beträgt, dass die Faserbahn durch den Bahnkühler (200) auf eine Temperatur von 35 - 55 °C gekühlt wird und optional der Befeuchter (100) verwendet wird, dass eine niedrige Eintrittstemperatur von 30 - 50 °C zu dem Vorkalander (40) erreicht wird und vorzugsweise die Feuchtigkeit der Bahn auf 6 - 10 % eingestellt wird, dass in dem Vorkalander (40) eine Feuchtigkeits- und Temperaturgradientenvorkalandrierung stattfindet und das bei der Vorkalandrierung eingesetzte Kurznipkalandrieren die Bahntemperatur um 10 - 15° erhöht und die Eintrittstemperatur der Bahn, wenn sie in den Beschichter (50) eintritt, 45 - 60 °C beträgt, dass nach dem Beschichten in dem Beschichter (50) die Faserbahn in dem Trockner (60) getrocknet wird, wonach die Temperatur der Bahn 70 - 120 °C beträgt, dass vor dem Kalandrieren in dem Endkalander (70) die Faserbahn durch die weitere Kühlvorrichtung (200) gekühlt wird, durch welche die Eintrittstemperatur der Faserbahn auf 30 - 55 °C reduziert wird und die Temperatur der Faserbahn nach dem Kalandrieren 50 - 55 °C beträgt und die beim Aufwickeln in dem Aufwickler (80) benötigte niedrige Temperatur ohne weitere Kühlvorrichtungen erzeugt wird, da die Temperatur der Faserbahn nach dem Kalandrieren 50 - 55 °C beträgt.
     
    7. Herstellungslinie nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (200) einen Befeuchter (100) aufweist.
     
    8. Herstellungslinie nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (200) auf beiden Seiten der Bahn vorgesehen ist.
     


    Revendications

    1. Procédé de production d'une nappe de fibres (W), dans lequel la nappe de fibres est produite dans une ligne de production comprenant une machine à panneaux ou à papier avec une section de séchoir (10), un calibreur (20) avec un post-séchoir (30), un dispositif de refroidissement (200) avec un humidificateur optionnel (100), une pré-calandreuse (40), une enduiseuse (50) avec un séchoir (60), un autre dispositif de refroidissement (200), une calandreuse finale (70) et une enrouleuse (80), la nappe de fibres (W) étant calandrée dans la pré-calandreuse et dans la calandreuse finale (40 ; 70), dans lequel la nappe de fibres (W) est refroidie avant le calandrage de la nappe de fibres (W) dans la pré-calandreuse (40) et dans la calandreuse finale (70), et dans lequel le temps de séjour entre le refroidissement et le calandrage, qui est le temps que dure le passage de la nappe de fibres (W) depuis le premier point du dispositif de refroidissement (200) ou de l'humidificateur (100) jusqu'au premier pincement de calandrage de la pré-calandreuse (40), ou depuis le premier point dudit autre dispositif de refroidissement (200) jusqu'au premier pincement de calandrage de la calandreuse finale (70), est d'au moins 200 ms, et de préférence de 200 à 5000 ms, caractérisé en ce que la température de la nappe sortant de la section de séchoir (10) est de 90 à 150 °C, et de préférence d'environ 95 °C, et la teneur en solides de la nappe de fibres est de 92 à 96 %, la température de la nappe après séchage dans le post-séchoir (30) du calibreur (20) est de 85 à 90 °C, la nappe de fibres est refroidie à une température de 35 à 55 °C par le refroidisseur de nappe (200) et l'humidificateur (100) est éventuellement utilisé, une basse température entrante de 30 à 50 °C dans la pré-calandreuse (40) est atteinte et l'humidité de la nappe est avantageusement réglée entre 6 et 10 %, dans la pré-calandreuse (40) un gradient d'humidité et de température est établi avant le calandrage, et dans le précalandrage utilisé, un calandrage à pincement court augmente la température de la nappe de 10 à 15 °C et la température entrante de la nappe à l'entrée dans l'enduiseuse (50) est de 45 à 60 °C, après l'enduisage dans l'enduiseuse (50) la nappe de fibres est séchée dans le séchoir (60), après quoi la température de la nappe est de 70 à 120 °C, avant le calandrage dans la calandreuse finale (70) la nappe de fibres est refroidie par ledit autre dispositif de refroidissement (200), moyennant quoi la température entrante de la nappe de fibres est réduite à 30 à 55 °C et la température de la nappe de fibres après calandrage est de 50 à 55 °C, et la basse température nécessaire pour l'enroulement dans l'enrouleuse (80) est pourvue sans dispositifs de refroidissement additionnels car la température de la nappe de fibres est de 50 à 55 °C après le calandrage.
     
    2. Procédé selon la revendication 1, caractérisé en ce que le refroidissement de la nappe de fibres (W) est bilatéral, c'est-à-dire que le refroidissement est effectué des deux côtés de la nappe de fibres (W).
     
    3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la température du milieu de la nappe de fibres lorsqu'elle entre dans le premier pincement de calandrage et de 10 à 55 °C, et de préférence de 20 à 50 °C.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la nappe de fibres (W) est humidifiée par un humidificateur (100) avant et/ou après le refroidissement dans le dispositif de refroidissement (200) et/ou humidifiée dans le dispositif de refroidissement (200) pour améliorer le refroidissement de la nappe de fibres (W) par évaporation.
     
    5. Procédé selon la revendication 1, caractérisé en ce que, pour contrôler l'incurvation de la nappe de fibres, la quantité de refroidissement est contrôlée de chaque côté ou sur un seul côté de la nappe de fibres, et la quantité d'humidification est avantageusement contrôlée de chaque côté ou sur un seul côté de la nappe de fibres.
     
    6. Ligne de production pour la production d'une nappe de fibres (W) comprenant une machine à panneaux ou à papier avec une section de séchoir (10), un calibreur (20) avec un post-séchoir (30), un dispositif de refroidissement (200) avec un humidificateur optionnel (100), une pré-calandreuse (40), une enduiseuse (50) avec un séchoir (60), un autre dispositif de refroidissement (200), une calandreuse finale (70) et une enrouleuse (80), et dans laquelle la distance entre le premier point du dispositif de refroidissement (200) et le point d'entrée de la nappe de fibres (W) jusqu'au premier pincement de calandrage de la pré-calandreuse (40) ou de la calandreuse finale (70) est telle que le temps de séjour entre le refroidissement et le calandrage, qui est le temps que dure le passage de la nappe de fibres (W) depuis le premier point du dispositif de refroidissement (200) ou de l'humidificateur (100) jusqu'au premier pincement de calandrage de la pré-calandreuse (40), ou depuis le premier point dudit autre dispositif de refroidissement (200) jusqu'au premier pincement de calandrage de la calandreuse finale (70), est d'au moins 200 ms, et de préférence de 200 à 5000 ms, pour mettre en oeuvre le procédé selon l'une quelconque des revendications 1 à 5, dans laquelle la température de la nappe sortant de la section de séchoir (10) est de 90 à 150 °C, et de préférence d'environ 95 °C, et la teneur en solides de la nappe de fibres est de 92 à 96 %, la température de la nappe après séchage dans le post-séchoir (30) du calibreur (20) est de 85 à 90 °C, la nappe de fibres est refroidie à une température de 35 à 55 °C par le refroidisseur de nappe (200) et l'humidificateur (100) est éventuellement utilisé, une basse température entrante de 30 à 50 °C dans la pré-calandreuse (40) est atteinte et l'humidité de la nappe est avantageusement réglée entre 6 et 10 %, dans la pré-calandreuse (40) un gradient d'humidité et de température est établi avant le calandrage, et dans le précalandrage utilisé, un calandrage à pincement court augmente la température de la nappe de 10 à 15 °C et la température entrante de la nappe à l'entrée dans l'enduiseuse (50) est de 45 à 60 °C, après l'enduisage dans l'enduiseuse (50) la nappe de fibres est séchée dans le séchoir (60), après quoi la température de la nappe est de 70 à 120 °C, avant le calandrage dans la calandreuse finale (70) la nappe de fibres est refroidie par ledit autre dispositif de refroidissement (200), moyennant quoi la température entrante de la nappe de fibres est réduite à 30 à 55 °C et la température de la nappe de fibres après calandrage est de 50 à 55 °C, et la basse température nécessaire pour l'enroulement dans l'enrouleuse (80) est pourvue sans dispositifs de refroidissement additionnels car la température de la nappe de fibres est de 50 à 55 °C après le calandrage.
     
    7. Ligne de production selon la revendication 6, caractérisée en ce que le dispositif de refroidissement (200) comprend un humidificateur (100).
     
    8. Ligne de production selon la revendication 6 ou 7, caractérisée en ce que le dispositif de refroidissement (200) est pourvu des deux côtés de la nappe.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description