(11) EP 2 767 207 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

20.08.2014 Patentblatt 2014/34

(21) Anmeldenummer: 14000262.7

(22) Anmeldetag: 24.01.2014

(51) Int Cl.:

A47L 15/42 (2006.01) D06F 39/08 (2006.01) D06F 39/00 (2006.01)

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 15.02.2013 DE 102013002603

(71) Anmelder: AWECO Appliance Entwicklungs- und Engineering GmbH 88099 Neukirch (DE)

(72) Erfinder:

Dieter, Peter
42287 Wuppertal (DE)

 Eichholz, Heinz-Dieter 58642 Iserlohn (DE)

(74) Vertreter: Otten, Roth, Dobler & Partner Patentanwälte Grosstobeler Strasse 39 88276 Ravensburg / Berg (DE)

(54) Haushaltsmaschine

(57)Vorgeschlagen wird eine Haushaltsmaschine mit einer Flüssigkeit als Betriebsmittel, wobei wenigstens eine Kontrolleinheit zum Kontrollieren der Reinigungseinheit und/oder eines Betriebsmittels bzw. Betriebsmittelströme und/oder der Flüssigkeit bzw. Flüssigkeitsströme vorgesehen ist, wobei die Kontrolleinheit wenigstens einen elektronischen Mikrocontroller (3) auf einem Elektronikträger (2) wie eine elektrische Leiterplatte bzw. gedruckte Schaltung (PCB) umfasst, wobei ein Sensor (4, 5) zum Erfassen des Vorhandenseins oder Nichtvorhandenseins des Betriebsmittels und/oder der Flüssigkeit und/oder einer Füllhöhe des Betriebsmittels und/oder der Flüssigkeit in einem Speicher vorgesehen ist, die dadurch gekennzeichnet ist, dass der Sensor (4, 5) als der Mikrocontroller (3) der Kontrolleinheit ausgebildet ist, wobei der Mikrocontroller (3) mit einer elektrisch leitenden Sensorfläche verbunden ist.

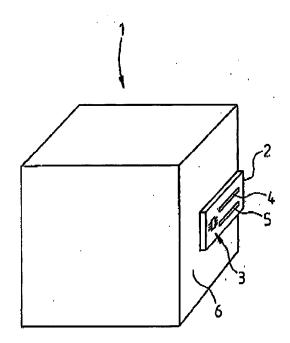


Fig. 1

EP 2 767 207 A2

Beschreibung

[0001] Die Erfindung betrifft eine Haushaltsmaschine nach dem Oberbegriff des Anspruchs 1.

[0002] Aus dem Stand der Technik sind beispielsweise durch die WO 2005/053503 A1 Geschirrspülmaschinen mit Trocknungsluftkreisläufen bekannt. In diese Trocknungsluftkreisläufe ist ein geschlossenes System aus einem Eiswasserbehälter und einem über eine Leitung mit dem Eiswasserbehälter verbundenen Vorratsbehälter, welcher Zeolith enthält, eingebracht. Dabei wird die Trocknungsluft über Kondensation an der Außenwand des Eiswasserbehälters entfeuchtet sowie an der Außenwand des Vorratsbehälters mit Zeolith erwärmt wird. [0003] Auch sind aus der DE 10 2010 047 058 A1 Haushaltsmaschinen mit einer Trocknung feuchter Gegenstände mit einem Primärkreislauf zum Entziehen von Feuchtigkeit aus Trocknungsluft und einem Sekundärkreislauf zum Trocknen feuchter Gegenstände mittels Trocknungsluft bekannt. Die Kreisläufe beinhalten einmal einen einphasigen, aus mindestens zwei Komponenten bestehenden Flüssigkeitskreislauf aus einem flüssigen Kältemittel und einem vollständig gelösten Feststoff, in der Regel vollständige dissoziierende salze, der Primärkreislauf, und zum anderen einen im Wesentlichen einphasigen Gas/Dampfkreislauf, der Sekundärkreislauf. Die Betriebsrichtung des Primär- und Sekundärkreislauf, in Abhängigkeit von den gewählten Prozesstemperaturen und Medienzuständen, stellt jeweils einen Strang eines thermodynamischen Zweistoffabsorptionskreislaufs dar, der aufgeschnitten betrieben wird. Eine Betriebsrichtung realisiert die Absorptionsphase des Kreisprozesses, die andere Betriebsrichtung beschreibt die Desorptions- oder Austreibungsphase des Kreisprozesses. In der Absorptionsphase wird die Zweikomponentenlösung mit der als Kältemittel fungierenden Komponente angereichert, in der Desorptions- oder Austreibungsphase wird die vorhandene Zweikomponentenlösung von Teilen des Kaltemittelventils befreit.

[0004] Weiterhin ist aus der DE 10 2010 047 058 A1 eine Haushaltsmaschine bekannt, wobei zum verbesserten Wärme- bzw. Energiemanagement der Primärkreislauf ein hygroskopisches Entzugsmittel zur exothermen Entziehung der Feuchtigkeit aus der Trocknungsluft umfasst und wobei die Erwärmungsvorrichtung im Sekundärkreislauf zur Erwärmung der Trocknungsluft mittels der bei der exothermen Entziehung der Feuchtigkeit freiwerdenden Wärmeenergie ausgebildet ist.

[0005] Zudem ist z.B. aus der Anmeldung DE 10 2011 117 734 der Anmelderin bereits eine Trocknung mit einer hygroskopischen Flüssigkeit, insb. einer LiCl-Lösung bekannt.

[0006] Nachteilig beim Stand der Technik ist jedoch, der immer noch vergleichsweise große energetische und somit auch der finanzielle Aufwand zum Betrieb derartiger Haushaltsmaschinen. Heutzutage steht jedoch die Energieeffizienz bzw. der Energieverbrauch immer stärker im Fokus des Verbrauchers bzw. bei der Beurteilung

von Haushaltsmaschinen.

Aufgabe der Erfindung

[0007] Aufgabe der vorliegenden Erfindung ist es, eine Haushaltsmaschine vorzuschlagen, die den energetischen und somit auch den finanzielle Aufwand zur Herstellung und/oder zum Betrieb derartiger Haushaltsmaschinen verringert.

[0008] Die Aufgabe wird, ausgehend von einer Haushaltsmaschine nach dem Oberbegriff des Anspruchs 1 durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Durch die in den abhängigen Ansprüchen genannten Maßnahmen sind vorteilhafte Ausführungen und Weiterbildungen der Erfindung möglich.

[0009] Dementsprechend zeichnet sich eine erfindungsgemäße Haushaltsmaschine dadurch aus, dass der Sensor als der Mikrocontroller der Kontrolleinheit ausgebildet ist, wobei der Mikrocontroller mit einer elektrisch leitenden Sensorfläche verbunden ist.

[0010] Gemäß der Erfindung kann in vorteilhafter Weise der bereits auf der Platine/Elektronikträger vorhandene Controller mit einem speziellen Bereich bzw. einer leitenden Sensorfläche auf der Platine (vorzugsweise reine Kupferbahnen) verbunden werden und trotz Systemtrennung nahe an einer Wandung sitzt, hinter der ein in diesem Fall Wasserfluss stattfindet, kann der Controller selbst als kapazitiver Nährungsschalter verwendet werden und ohne weiter Hardwareausrüstung die Anwesenheit des Wasserflusses detektieren.

Diese Eigenschaft des Controllers gepaart mit der entsprechenden Platinenfläche kann vorteilhafterweise auch zu einer Füllhöhenmessung von stehenden oder flüssigen Medien genutzt werden. Maßgeblich bei beiden Verfahren ist die empfindliche Reaktion auf veränderte Dieelektrizitätskonstanten in der Nähe der Kondensatorfläche.

[0011] Die erfindungsgemäße Eigenschaft kann in vorteilhafter Weise dazu genutzt werden, einen systemgetrennten Sensor (vorzugsweise komplett abgedichtet zum Medium/Flüsigkeit) aufzubauen. Diese Anwendung kann z.B. auch bei Kontrolleinheiten bzw. Leiterkarten von Kombidosiergeräten oder anderen Einrichtungen von Haushaltsmaschinen ausgeführt werden, um Flüssigkeits-/Medienanwesenheit oder Medienfluss zu detektieren.

[0012] In einer besonders bevorzugten Weiterbildung der Erfindung umfasst eine Trocknungseinheit der Haushaltsmaschine den Mikrocontroller bzw. Sensor gemäß der Erfindung Bei der erfindungsgemäßen Trocknung wird in vorteilhafter Weise die mit dem absorbierten Wasser aus der letzten Trocknung angereicherte Lösung bzw. hygroskopischen Flüssigkeit so lange ausgetrieben und/oder beheizt, bis in vorteilhafter Weise der ursprüngliche bzw. primäre Füllgrad (Niveau- oder Druckmessung) erreicht ist. Damit ist die Beheizung zum Austreiben gemäß der Erfindung nicht (pauschal) zeitgesteuert wie, sondern geregelt insbesondere von diesem detek-

15

20

tierten Niveaubezugspunkt. Das erfindungsgemäße System kann in vorteilhafter Weise auf unterschiedlich absorbierte Mengen Wasser bedarfsgerecht reagieren, was bei einem zeolithischen System gemäß dem Stand der Technik (in Ermangelung einer bezahlbaren tauglichen Sensorik) nicht möglich ist. Deswegen werden bisherige zeolithische Systeme ausschließlich zeitgesteu-

Beispielsweise im Fall, dass der letzte Spülgang und damit auch die Trocknung durchgeführt wurde, bei einer Haushaltsmaschine mit Teilbeladung, dann ist davon auszugehen, dass das entfernte bzw. absorbierte Wasservolumen kleiner als das normal anfallende Wasservolumen ist. Somit kann gemäß der Erfindung kürzer beheizt werden als im Vollbeladungszustand und es ist ein entscheidend kleinerer Energieeinsatz für die Austreibung notwendig.

[0013] Vorzugsweise umfasst ein Vorratsspeicher der hygroskopischen Flüssigkeit eine Heizeinheit zum Beheizen der hygroskopischen Flüssigkeit. Hiermit wird eine Aufkonzentration bzw. Regeneration der hygroskopischen Flüssigkeit nach der Aufnahme von Wasser aus der zu trocknenden Trocknungsluft erreicht. Auch könnte durchaus eine andere Regeneration der hygroskopischen Flüssigkeit vorgesehen werden, wie zum Beispiel mit Hilfe einer Zentrifuge und/oder einer semipermeablen Membrane zum Abtrennen des aufgenommenen Wassers.

[0014] In einer vorteilhaften Variante der Erfindung ist zumindest der Mikrocontroller mit der elektrischen leitenden Sensorfläche am Vorratsspeicher der hygroskopischen Flüssigkeit und/oder dessen Behälter-/Trennwand angeordnet. Vorzugsweise detektiert der Mikrokontroller gemäß der Erfindung den Füllstand des Vorratsspeichers, womit in vorteilhafter Weise die Trocknung und/oder Austreibung bzw. Aufkonzentration, insb. die Heizung, kontrolliert bzw. gesteuert wird.

[0015] Das Entzugsmittel bzw. die hygroskopische Flüssigkeit dient in vorteilhafter Weise der Entziehung von Feuchtigkeit aus der Trocknungsluft; es trocknet also die Trocknungsluft.

[0016] Der Primärkreislauf ist in vorteilhafter Weise zum Entziehen von Feuchtigkeit aus Trocknungsluft ausgebildet. Die Trocknungsluft selbst zirkuliert in vorteilhafter Weise in einem Sekundärkreislauf. Mit Hilfe der Trocknungsluft werden vorzugsweise feuchte Gegenstände in der Haushaltsmaschine getrocknet. Im Fall eines Geschirrspülers handelt es sich bei den feuchten Gegenständen beispielsweise um im Geschirrspüler zu reinigendes Geschirr, welches nach Beendigung des Reinigungsprogramms gemäß der Erfindung getrocknet wird, damit der Benutzer trockenes Geschirr der Haushaltsmaschine entnehmen und entweder sofort benutzen oder beispielsweise in einem Geschirrschrank lagern kann. Die Trocknungsluft wird dabei beispielsweise zu den feuchten Gegenständen geleitet oder aktiv geblasen, nimmt dort die Feuchtigkeit von diesen Gegenständen auf und kann/sollte anschließend gewissermaßen regeneriert werden, sofern sie noch einmal zum Trocknen verwendet werden soll.

[0017] Zur Regenerierung der Trocknungsluft wird dieser beispielsweise die Feuchtigkeit entzogen. Zudem kann die Trocknungsluft auch (anschließend) noch einmal erwärmt werden, da erwärmte Luft im Allgemeinen mehr Feuchtigkeit aufnehmen kann. Dieser Erwärmungsschritt kann beispielsweise dann erfolgen, bevor die Trocknungsluft auf die entsprechenden feuchten Gegenstände mittels des Gebläses geblasen wird. Dazu umfasst der Sekundärkreislauf eine Erwärmungsvorrichtung zur Erwärmung der Trocknungsluft.

[0018] Im Primärkreislauf ist ein hygroskopisches Entzugsmittel bzw. die hygroskopische Flüssigkeit in einem Vorratsspeicher bevorratet. Ein Stoff ist dann hygroskopisch, wenn er Feuchtigkeit aus der Umgebung binden kann, z.B. aus der ihn umgebenden Luft. Diese Entziehung der Feuchtigkeit kann ein exothermer Prozess sein, bei dem also Wärmeenergie frei wird. In der Thermodynamik spricht man von exothermen Prozessen, wenn eine (definitionsgemäß) negative Reaktionsenthalpie ΔH = $\Delta U + W < 0$ vorliegt, wobei ΔH die Reaktionsenthalpie, ΔU die innere, in den entsprechenden beteiligten Stoffen gespeicherte Energie und W die beim Prozess geleistete Arbeit ist. Erfindungsgemäß muss dabei die Trocknungsluft mit dem hygroskopischen Entzugsmittel direkt in Kontakt treten können.

[0019] Besonders vorteilhaft ist an der erfindungsgemäßen Haushaltsmaschine, dass die bei der exothermen Entziehung der Feuchtigkeit freiwerdende Wärmeenergie weiter verwendet wird und somit eine höhere Wärmeausnutzung ermöglicht. Die Erwärmungsvorrichtung zur Erwärmung der Trocknungsluft ist dazu ausgebildet, diese freiwerdende Wärme zu nutzen.

[0020] Damit die Trocknungsluft mit dem Entzugsmittel direkt in Kontakt treten kann, kann es vorteilhaft sein, dass Primärund Sekundärkreislauf eine gemeinsame Durchlaufstrecke aufweisen, also direkt miteinander gekoppelt sind.

40 [0021] Als Entzugsmittel können verschiedene Stoffe in Betracht kommen. Insbesondere kommen für Ausführungsbeispiele der Erfindung eine Reihe von Elektrolytlösungen in Betracht, also regelmäßig Lösungen, welche hygroskopische Eigenschaften aufweisen, mit dissoziierten lonen, etwa eines Salzes. Unter anderem kommt beispielsweise eine wässrige Lithiümchloridlösung als Entzugsmittel in Frage.

[0022] Grundsätzlich ist es jedoch auch denkbar, andere wässrige Lösungen, insbesondere wässrige Salzlösungen zu verwenden. Eine andere Möglichkeit besteht beispielsweise darin, eine Alkohollösung, insbesondere eine Methanollösung zu verwenden. Die Wahl des Entzugsmittels kann beispielsweise von Parametern der Haushaltsmaschine abhängen bzw. davon, welche Anforderungen an den entsprechenden Trocknungsvorgang zu richten sind. Entscheidend hierfür könnte z.B. die Wahl des Siedepunktes der Lösung, die Stärke der Hygroskopizität, die Frage, ob das Entzugsmittel z.B. aus

45

20

25

40

50

gesundheitlichen Aspekten für die entsprechende Anwendung zugelassen ist, usw. sein.

[0023] Ist das Entzugsmittel mit feuchter Trocknungsluft in Kontakt gekommen, ist also entsprechend Feuchtigkeit von der Trocknungsluft auf das Entzugsmittel übergegangen, kann dieses auch in vorteilhafter Weise wieder aufkonzentriert werden, damit es auch weiterhin zur Entfeuchtung der Trocknungsluft verwendet werden kann. Daher kann der Primärkreislauf eine Vorrichtung zur Erhöhung der Konzentration des Entzugsmittels bzw. der hygroskopischen Flüssigkeit umfassen.

[0024] Diese Vorrichtung zur Erhöhung der Konzentration des Entzugsmittels kann beispielsweise als Heizung ausgebildet sein. Durch die entsprechende Erwärmung kann dann Flüssigkeit, welche unter anderem von den feuchten Gegenständen stammt, aus dem Entzugsmittel verdampfen, wodurch sich die Konzentration des Entzugsmittels wieder erhöhen kann. Grundsätzlich ist es möglich, dafür eine eigene Heizvorrichtung innerhalb der Haushaltsmaschine zu verwenden.

[0025] Ferner ist es allerdings auch möglich, auszunutzen, dass andere Baueinheiten in der Haushaltsmaschine ohnehin bereits warm werden bzw. erwärmt werden müssen. Beispielsweise kann in vorteilhafter Weise die Vorrichtung zur Erhöhung der Konzentration des Entzugsmittels mit der Anheiz- bzw. Aufheizvorrichtung der Haushaltsmaschine gekoppelt sein. Dies kann den Vorteil besitzen, dass sonst ungenutzte Abwärme hier für die Funktion der Haushaltsmaschine genutzt wird und sich somit vor allem in Bezug zur gesamten Haushaltsmaschine positiv auf den Wirkungsgrad bzw. auf die Wärmeausnutzung auswirkt.

[0026] Grundsätzlich ist es auch möglich, die Vorrichtung zur Erhöhung der Konzentration dafür zu nutzen, Wärme aus anderen Bauteilen abzuführen und somit gewissermaßen eine Kühlung für diese Bauteile bereitzustellen. Gegebenenfalls kann also vorteilhafterweise auf bisher übliche Heiz- und/oder Kühlvorrichtungen verzichtet werden.

[0027] Weiterhin ist denkbar, auch andere Vorrichtungen bzw. Verfahren gemäß der Erfindung zu verwenden, insbesondere zur Erhöhung der Konzentration des Entzugsmittels, wie z.B. Zentrifugen, Verdampfung mit Unterdruck etc.

[0028] Bei einer starken Aufkonzentrierung der Elektrolytlösung bzw. der hygroskopischen Flüssigkeit kann gegebenenfalls eine Bildung von Salzkristallen realisiert werden. Dies kann beispielsweise für einen vorteilhaften Latentwärmespeicher genutzt werden, was ebenfalls einer höheren Wärmeausnutzung dient.

[0029] Höhere Wärmeausnutzungen bzw. ein verbesserter Wirkungsgrad können nicht nur dazu beitragen, dass eine erfindungsgemäße Haushaltsmaschine bzw. ein erfindungsgemäßes Trocknungsverfahren bzw. Ausführungen und Weiterbildungen davon noch umweltfreundlicher und ökologischer gestaltet werden, sondern auch zu einer Kostenreduktion im Betrieb der Maschine beitragen.

[0030] Wurde u.a. mit der Erwärmungsvorrichtung in vorteilhafter Weise Flüssigkeit aus dem Entzugsmittel herausgedampft, kann diese verdampfte Flüssigkeit in eine vorteilhafte Kondensationseinheit gebracht bzw. geleitet werden und dort kondensieren. Anschließend kann die Flüssigkeit z.B. gesammelt oder gegebenenfalls direkt zum Auslass aus der Haushaltsmaschine geleitet werden. Es kann somit verhindert werden, dass die Konzentration des Entzugsmittels abnimmt.

[0031] Grundsätzlich wird bei der Kondensation Kondensationswärme frei. Auch diese kann in vorteilhafter Weise im Rahmen des Betriebes der Haushaltsmaschine genutzt werden. Hierzu können beispielsweise entsprechende Wärmetauscher oder dergleichen vorgesehen werden. Beispielsweise ist es möglich, diese Wärme im Zusammenhang mit einer Flotten- und/oder Geschirrerwärmungsvorrichtung zu nutzen. Auch hierdurch kann eine höhere Wärmeausnutzung bzw. ein besserer Wirkungsgrad der Maschine erzielt werden.

[0032] Die feuchten Gegenstände sind in der Haushaltsmaschine in der Regel in einem Arbeits- oder Beschickungsraum untergebracht, beispielsweise bei einem Geschirrspüler in einem Arbeitsraum mit entsprechenden Geschirrkörben, in einem Waschtrockenautomat regelmäßig in einer entsprechenden Bevorratungstrommel. Damit die feuchten Gegenstände in vorteilhafter Weise getrocknet werden können, kann der Arbeitsraum innerhalb des Sekundärkreislaufes integriert und in vorteilhafter Weise von Trocknungsluft durchströmt werden.

[0033] Anschließend kann die mit Feuchtigkeit beladene Trocknungsluft nach Trocknung der feuchten Gegenstände infolge des Sekundärkreislaufes zum Beispiel über das Gebläse gleich wieder abgesaugt werden, sodass sie das Geschirr nicht wieder in umgekehrter Weise befeuchtet. Danach wird in vorteilhafter Weise die feuchte Trocknungsluft, wie bereits oben geschildert, regeneriert und gelangt beispielsweise wieder in den Arbeitsraum, wo sie die bereits teilweise getrockneten Gegenstände noch weiter trocknen kann usw. Auch kann die feuchte Trocknungsluft gegebenenfalls nicht mehr zurück in den Arbeitsraum, sondern aus der Haushaltsmaschine hinaus befördert werden.

[0034] Damit die Trocknungsluft im Sekundärkreislauf noch mehr Feuchtigkeit aufnehmen kann, ist es vorteilhaft, wenn diese vorher erwärmt wurde. So kann es besonders vorteilhaft sein, die entsprechende Erwärmungsvorrichtung im Sekundärkreislauf innerhalb der gemeinsamen Durchlaufstrecke bzw. im Kontaktraum und/oder zwischen der gemeinsamen Durchlaufstrecke und dem Arbeitsraum anzuordnen, so dass die Trocknungsluft möglichst unmittelbar nach ihrer Erwärmung mit den zu trocknenden Gegenständen in Kontakt gerät. [0035] Grundsätzlich kann es sich bei den in Frage kommenden Haushaltsmaschinen unter anderem um Geschirrspüler, Wäschetrockner oder beispielsweise auch kombinierte Wasch-Trocken-Automaten, sog. Waschtrockner, bzw. Waschvollautomaten handeln. Es

15

20

25

kommen allerdings auch andere Haushaltsmaschinen in Betracht, welche derartige Trocknungsvorgänge einsetzen können. Im Fall von Wäschetrocknen oder kombinierten Wasch-Trocken-Automaten handelt es sich bei den feuchten Gegenstanden in der Regel um Wäschebzw. Kleidungsstücke, bei Geschirrspülern regelmäßig entsprechend um Teller, Töpfe, Pfannen, Besteck oder sonstiges Geschirr. Denkbar ist auch der Einsatz in Getränkemaschinen.

[0036] Trocknungsluft im Sinn der Erfindung ist ein Gas, insbesondere Luft, welches zum Trocknen der feuchten Gegenstände benutzt wird und demzufolge während des Trocknungsvorganges Feuchtigkeit aufnimmt. Vor dem Trocknungsvorgang ist die Trocknungsluft in der Regel also relativ trocken, danach relativ feucht.

Ausführungsbeispiel

[0037] Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und nachfolgend näher erläutert. [0038] In Figur 1 ist schematisch ein Flüssigkeitsbehälter 1 dargestellt, der u.a. eine Seitenwand 6 bzw. Trennwand 6 aufweist, wobei in diesem eine Flüssigkeit einer Haushaltsmaschine, insb. deren Trocknungseinheit, zu speichern ist.

[0039] Außen an der Seitenwand 6 ist eine Platine 2 bzw. Elektronikträger 2 angeordnet. Diese Platine umfasst einen Mikrocontroller 3 und zwei in unterschiedlicher Höhe angeordnete Sensorflächen 4, 5 bzw. Kupferbahnen 4, 5. Hiermit kann gemäß der Erfindung der Füllstand bzw. das Flüssigkeitsniveau des Speichers 1 ermittelt werden. So kann gemäß der Erfindung die Beheizung zum Austreiben bis zu diesem Füllstand kontrollier bzw. gesteuert werden.

Patentansprüche

1. Haushaltsmaschine mit einer Flüssigkeit als Betriebsmittel, wobei wenigstens eine Kontrolleinheit zum Kontrollieren der Reinigungseinheit und/oder eines Betriebsmittels bzw. Betriebsmittelströme und/oder der Flüssigkeit bzw. Flüssigkeitsströme vorgesehen ist, wobei die Kontrolleinheit wenigstens einen elektronischen Mikrocontroller auf einem Elektronikträger wie eine elektrische Leiterplatte bzw. gedruckte Schaltung (PCB) umfasst, wobei ein Sensor zum Erfassen des Vorhandenseins oder Nichtvorhandenseins des Betriebsmittels und/oder der Flüssigkeit und/oder einer Füllhöhe des Betriebsmittels und/oder der Flüssigkeit in einem Speicher vorgesehen ist.

dadurch gekennzeichnet, dass der Sensor als der Mikrocontroller der Kontrolleinheit ausgebildet ist, wobei der Mikrocontroller mit einer elektrisch leitenden Sensorfläche verbunden ist.

2. Haushaltsmaschine nach Anspruch 1, dadurch ge-

kennzeichnet, dass der Elektronikträger des Mikrocontroller wenigstens die elektrisch leitende Sensorfläche umfasst.

- Haushaltsmaschine nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass wenigstens eine Trennwand zwischen dem Mikrocontroller mit Sensorfläche und dem Betriebsmittel bzw. der Flüssigkeit angeordnet ist.
- 4. Haushaltsmaschine nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass mittels der Trennwand eine hermetische Abtrennung des Mikrocontrollers mit Sensorfläche vom Betriebsmittel bzw. von der Flüssigkeit realisiert ist.
- 5. Haushaltsmaschine nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Sensorfläche des Elektronikträgers bzw. der Leiterplatte als Kupferbahn ausgebildet ist.
- 6. Haushaltsmaschine nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass wenigstens eine den elektronischen Mikrocontroller umfassende Trocknungseinheit zum Trocknen von Haushaltsgegenständen wie Geschirr und/oder Wäsche vorgesehen ist.
- 7. Haushaltsmaschine nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der elektronische Mikrocontroller und/oder die elektrisch leitende Sensorfläche an einem Flüssigkeitsspeicher der Trocknungseinheit angeordnet ist.
- 35 8. Haushaltsmaschine nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der elektronische Mikrocontroller und/oder die elektrisch leitende Sensorfläche an einem Wasserspeicher zum Speichern von Wasser für eine Getränkezubereitung von Kaffee und/oder Tee oder dergleichen angeordnet ist.
- 9. Haushaltsmaschine nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass wenigstens eine die den elektronischen Mikrocontroller umfassende Kontrolleinheit aufweisende Dosiervorrichtung zum Dosieren von Reinigungsmittel und/oder Waschmittel vorgesehen ist.
 - 10. Haushaltsmaschine nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass eine separate, autarke elektronische Dosiereinheit zum Dosieren von Reinigungsmittel und/oder Waschmittel wenigstens die den elektronischen Mikrocontroller umfassende Kontrolleinheit aufweist.

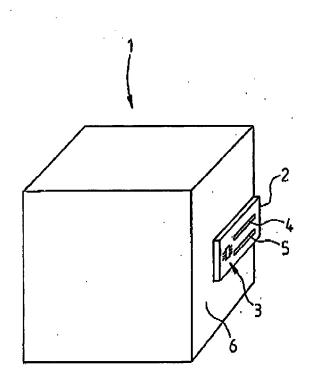


Fig. 1

EP 2 767 207 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- WO 2005053503 A1 [0002]
- DE 102010047058 A1 [0003] [0004]
- DE 102011117734 [0005]