BACKGROUND
[0001] The present disclosure relates to a mixing device for admixing gas or vapor and liquid
in a vessel where a vapor phase and a liquid phase are flowing concurrently. The purpose
of the device is to equilibrate the temperature and chemical composition of the outlet
mixture exiting the device. The disclosure is suited for, but not limited to, the
application of admixing hot hydrogen-rich treatgas and hot hydrocarbon liquid with
a cold quench stream between two adjacent beds of catalyst in a hydroprocessing reactor,
such as a hydrotreating or hydrocracking reactor.
[0002] A large number of mixing devices for two-phase concurrent vessels have been described
in literature and patents. The majority of these devices belong to one of the six
types given below:
Type 1: Vortex mixers with inlet chutes or channels provided in a collection tray
[0003] An example of such a design is given in
U.S. Patent 3,541,000. The mixer comprises a horizontal collection tray plate 6. The collection tray plate
is provided with a plurality of sloped chutes 32/34. The entire process stream of
vapor and liquid from the catalyst bed above passes through these inlet chutes at
high velocity. Below the collection tray is a swirl box 8. The exit jets from the
chutes have tangential components and result in a swirling fluid motion inside the
swirl box. The fluids then pass over an internal weir 12 and downward through a center
opening 10. At the outlet of the opening 10, the cold quench fluid is added through
perforated distributor pipes in a spider arrangement 30. A distribution tray 14 is
located below the mixer for rough distribution of the liquid. The tray 14 also serves
as an impingement plate for the high velocity fluids exiting the opening 10. A distribution
tray 4 is located below the rough distribution tray for final distribution of the
liquid.
[0004] U.S. Patent 4,836,989 describes a mixer similar to the mixer in
U.S. Patent 3,541,000. However, for improved mixing of the quench fluid with vapor and liquid from the
catalyst bed above, the quench fluid is added through perforated pipe distributors
13 upstream the collection tray 12 instead of downstream.
Type 2: Swirl box mixers with radial inlet flow
[0006] An example of such a design is given in
U.S. Patent 3,353,924. The mixer comprises a collection plate 6. The cold quench medium is added through
a perforated pipe ring 11 above the collection plate. The vapor and liquid from the
catalyst bed 3 above the mixer and the quench fluid enter the swirl box 7 through
a plurality of inlet ports 8. Unlike the vortex mixer designs mentioned above, the
flow through the inlet ports to the swirl box in this type of mixer is mainly in the
horizontal/radial direction. The inlet ports are provided with vanes 9 which introduce
a swirling motion to the fluids inside the swirl box 7. The fluid exits the swirl
box through a center opening 13a. A perforated impingement plate 14 with vertical
baffles 16 is provided below the center opening.
[0007] Other examples of swirl box mixers with radial inlet flow are given here:
U.S. Patent 3,787,189 describes a swirl box mixer similar to the mixer in
U.S. Patent 3,353,924. However, the inlet openings and vanes to the swirl box have a different design,
and the impingement plate 23 below the center opening 20 is not perforated. Vanes
22 introducing a swirling motion to the fluids exiting the mixer below the collection
plate 18 replace the radial arranged vertical baffles at the mixer outlet.
[0008] U.S. Patent 5,462,719 describes a swirl box mixer similar to the mixer in
U.S. Patent 3,353,924. The vapor and liquid are first passed through radial perforations in cylindrical
baffle 24, then through vanes 22, which results in swirling fluid motions inside the
swirl box. The fluids exit the swirl box through the central opening 21 and enter
a second mixing box located below the collection plate 20. In the second mixing box,
the fluids flow radially outwards and exit the mixer through the radial perforations
in cylindrical wall 26.
[0009] U.S. Patent 5,534,233 describes another swirl box mixer. Liquid is collected on tray 101, and the vapor
and liquid enter the swirl box in a radial direction. Vertical guide plates 105 are
used to create a swirling flow before the fluids exit the mixer through the center
opening 7. An impingement plate 13 below the center opening, breaks down the high
velocity of the stream.
Type 3: Bubble cap like mixers
[0010] A bubble cap mixer design is disclosed in
U.S. Patent 5,152,967. The mixer comprises a collection plate 16 and a cap 18, 19 overlaying a downcomer
17. The cap and downcomer define the first mixing swirl chamber. The sidewalls of
the cap 19 are provided with angled openings. The angled openings cause the vapor
and liquid entering the first swirl chamber, to move in a swirling motion. The fluids
first flow upward, over the upper edge of downcomer 17, and then downward through
the downcomer and a central opening in the plate 16. The mixer is also provided with
a second swirl chamber located below the first swirl chamber with inward radial flow.
[0011] Other examples of bubble cap like mixers are given here:
U.S. Patent 6,183,702 describes another bubble cap like mixer. The mixer consists of a collection plate
1125, which holds a certain liquid level. The collection plate is provided with vertical
baffles 1130, which promote a swirling motion of the liquid on the plate 1125. The
swirling motion is further intensified by quench fluid jets exiting from pipes 1140.
On the collection tray, a bubble cap like mixer, comprising a slotted cylindrical
cap 1150 overlaying a cylindrical downcomer 1165, is mounted over a central opening
in plate 1125. The annular space between the cap and the downcomer is provided with
semi spiral shaped baffles 1155. The vapor enters the annular space through the slots
in the cylindrical wall of cap 1150. The vapor "lifts" the liquid up into the annular
space and the vapor and liquid flow upwards through the annular space. Baffles 1155
cause a swirling motion in the annular space. The vapor and liquid flow down through
the downcomer and through the opening in the collection plate 1125.
[0012] U.S. Patent 8,017,095 describes another bubble cap like mixing device. The mixing device consists of a
large bubble cap 85, similar to the bubble cap used in
U.S. Patent no. 6,183,702, located on an annular collection tray 30. Upstream, the bubble cap 85 is a swirl
chamber consisting of side walls 42 and 48, inlets 50 and 55, top wall of inlets 46
and 47 and top wall 49.
Type 4: Mixers with separate mixing of vapor and liquid
[0014] U.S. Patent no. 5,635,145 discloses a mixer with separate mixing of vapor and liquid. The mixer comprises a
collection plate 6 with a center opening. Above the center opening, a vapor swirl
box 8 for mixing the vapors is located. The vapor swirl box is provided with apertures
14. The collection plate is provided with other openings with guiding channels 7 to
direct the liquid towards the centerline of the reactor. A pre-distribution tray/impingement
plate 15 is located below the mixer.
[0015] During normal operation, the collection plate 6 holds a certain liquid level and
the vapor enters the vapor swirl box 8 and exits through the center opening. The liquid
bypasses the swirl box through the parallel liquid channels 7.
[0016] U.S. Patent 5,772,970 is another example of a mixing device with separate mixing of vapor and liquid. The
mixer consists of collection tray 12 provided with a cylindrical swirl baffle 13,
a center opening 14, and vapor chimneys 17. A cylindrical weir 15 is provided at the
rim of outlet opening 14. During operation, liquid will collect on the collection
tray 12 and the liquid level will build up to at least the height of weir 15. A swirling
motion between the swirl baffle 13 and the weir 15 is caused by the tangential liquid
inlets 13a and 13b. The liquid overflows the weir 15 and exits through center opening
14. The vapor largely bypasses the liquid through vapor chimneys 17. Part of the vapor
may flow through center opening 14 together with the overflowing liquid.
Type 5: Baffled box mixers with vertical flow
[0018] U.S. Patent 4,233,269 describes such a design. The mixer consists of an inlet feed duct 12, where the vapor
and liquid enter the mixer. From the inlet feed duct, the fluids are passed through
two circular mixing orifices formed by doughnut plates 32 and 36 and through one annular
flow restriction formed by the disc 34.
Type 6: Baffled box mixers with horizontal flow
[0019] U.S. Patent 7,276,215 describes a baffled box mixer with horizontal flow. The mixer comprises a collection
tray 13, a bottom plate 14 with a center opening 25, two-phase inlets 16, and vertical
flow baffles 18, 19, and 20, forming a series of contractions and expansions, or a
series of mixing orifices. The entire process stream is forced to flow through each
mixing orifice at high velocity. A dispersed two-phase flow regime is achieved in
each mixing orifice in order to maximize the interphase area between the vapor and
the liquid, and thus maximize the heat and mass transfer between the phases. Downstream
from each mixing orifice, the expansion results in turbulence and additional residence
time. The mixer has a symmetric fluid approach to the outlet opening 25 for improved
spread of the liquid to the distribution tray 11, located below the mixer.
[0020] U.S. Patent 5,690,896 describes a second example of this type of mixer. The mixer is built as an integral
part of the catalyst support system. The mixer collects vapor and liquid in the annular
collecting trough 24. Quench fluid is added to the annular collection trough through
quench pipes 22 and 23. The vapor and liquid flow through the annular collection trough
to the mixing box 30, located between the support beams 14 and 15. The entire process
stream enters the mixing box at the inlet 36. The mixing box comprises a single flow
channel with 360° turn in the flow direction. After the 360° turn in the mixing box
the fluid exits through the center opening 37.
[0021] U.S. Patent Application Publication
US 2011/0123410 describes a third example of this type of mixer. The mixer comprises collection tray
5 with inlet opening 6, an annular mixing channel 9, and a perforated predistribution
tray 11 with a chimney 13. The vapor and liquid pass through inlet opening 6 and annular
mixing channel 9, and exit to the perforated pre-distribution tray 11.
[0022] U.S. Patent 3,705,016 describes a fourth example. This mixer consists of a screen 11/12 located on a collection
and catalyst support plate 8. The screen is covered by inert support material 7. Quench
fluid is injected in the catalyst bed above the plate 8. The screen 11/12 allows the
vapor and liquid to pass through, while retaining the inert material. After passing
through the screen, the vapor and liquid flow vertically through the center opening
in collection plate 8. A horizontal mixing box, consisting of a horizontal bottom
plate 16 and vertical baffles 20, 21, 22, and 23, is located below the collection
plate. The fluids exiting the center opening are first divided into two horizontal
streams. Then each of the two streams is again divided into two streams, resulting
in a total of four streams. At the mixer exit, two of these four streams are recombined
and sent to one side of the reactor cross section, while the remaining two streams
are recombined and sent to the other side of the reactor cross section. Finally, the
vapor and liquid are distributed through a perforated tray 25.
[0023] A last example of a baffled box mixer with horizontal flow is described in
U.S. Patent 3,977,834. This patent describes a mixer consisting of a plurality of parallel mixing boxes
13. Each of the mixing boxes is located between a pair of catalyst support beams 7.
Quench fluid is added through pipes 11 between the beams upstream from the mixing
boxes.
[0024] Pressure drop is typically the driving force for mixing in conventional mixer designs.
However, in hydrotreating and hydrocracking process units, increased pressure drop
in the mixer results in significant additional costs. Examples of this are the increased
initial cost of the recycle gas compressor, and increased operating cost in terms
of additional shaft power required for the recycle gas compressor. For two-phase mixing,
the following general criteria for achieving good mixing and an equilibrated outlet
mixture for a given pressure drop have been established:
The mixer needs to have flow restrictions or mixing orifices with high flow velocity
and dispersion of the liquid into droplets in order to provide a large interphase
area for heat and mass transfer between the phases and to generate turbulence.
[0025] The entire process stream needs to be brought together/contacted. It is insufficient
to have parallel paths through the mixer, since the parallel streams are not contacted,
and an equilibrated temperature and composition of the parallel streams can therefore
not be achieved.
[0026] The mixer needs areas with lower flow velocity downstream from the mixing orifices
to create turbulent flow conditions in the transition from high flow velocity to lower
flow velocity and to allow for some hold-up time. Hold-up time is needed for heat
and mass transfer. Turbulent flow conditions are needed to mix the phases.
[0027] A reasonable distribution or spread of liquid across the reactor cross section must
be achieved at the exit or outlet of the mixer. Even if a distribution tray is located
below the mixer, a certain liquid spread over the cross section of the reactor is
needed at the mixer exit or outlet to prevent excessive liquid level gradients on
the distribution tray. For instance, a mixer design exiting all liquid to one side
of the reactor would not be acceptable.
[0028] Furthermore, the overall mixer height is important. The mixer should be as compact
as possible to reduce the height requirement of the reactor/vessel. In a hydrotreating
or hydrocracking reactor, room taken up by the mixer cannot be utilized for the active
catalyst. A given total volume of catalyst is required in order to convert the reactants
into the desired products. Therefore the space occupied by the mixer adds to the required
reactor size/height. Hydrocracking reactors are designed for operation up to 200 bar
and 450°C, with high partial pressures of both hydrogen and hydrogen sulfide. Typically,
the reactors are designed with internal diameters up to 5 meters. Due to the severe
design conditions, the hydrocracking reactor has a thick shell, which is typically
constructed of 2.25 Cr 1.0 Mo steel, with an internal lining of austenitic stainless
steel such as 347 SS. The cost of one meter of reactor straight side is therefore
high, and there is a large potential savings from more compact mixer designs.
[0029] The type 1 mixers with inlet chutes are among the most commonly used mixer designs
in commercial hydrotreating and hydrocracking applications today. These mixers typically
employ sloped inlet chutes, and the major part of the mixer pressure drop occurs in
the inlet chutes. If properly designed, high flow velocity and a dispersed flow regime
will exist in the inlet chutes. The dispersed flow results in a large interphase area
available for heat and mass transfer between the liquid phase and the vapor phase.
The high velocity also results in a high degree of turbulence downstream from the
inlet chutes, which again results in good mixing. Further, the high velocity results
in high mass transfer and heat transfer coefficients for heat and mass transfer between
the liquid and vapor phases.
[0030] The inlet chutes represent parallel flow paths, and the entire process stream is
not contacted in the inlet chutes. Therefore, the swirl box of the mixer must be sized
to allow for a sufficient number of fluid rotations in order to mix the streams from
the different inlet chutes with each other.
[0031] The fluid entrance angle α between the flow direction of the fluids entering the
swirl box from the inlet chutes and the tangential direction is defined in figure
2C. The larger α is, the lower momentum that is available to establish the swirling
motion inside the swirl box, and the lower number of fluid rotations that is achieved
in the swirl box. For many vortex mixer designs of the prior art, the angle α is excessive,
and this reduces the number of fluid rotations in the swirl box to the detriment of
the mixing performance of the device. See, for instance,
U.S. Patent No. 5,837,208, where the use of a vertical section 27 in spillways 26 increases the angle α significantly.
This is illustrated in figure 2C.
[0032] The diameter D
i of the circle of the inlet chutes is defined in figure 2B. The diameter D
o of the outlet opening is also defined in figure 2B. The number of fluid rotations
in the vortex mixer, and thus the mixing performance, strongly depends upon the ratio
of D
i/D
o. For many vortex mixers of the prior art, D
i is too low. This reduces the diameter ratio D
i/D
o and thus the number of fluid rotations in the swirl box, and thereby diminishing
the mixing performance of the vortex mixer.
[0033] The mixing box height H
s is defined in figure 2A. In order to ensure a sufficient number of rotations in the
swirl box, a larger mixing box height, H
s, will have to be used to compensate for a large α and/or a low D
i/D
o ratio. As a result, the inter-bed mixer will occupy a larger volume of the reactor,
and the size of the reactor vessel will have to be increased, resulting in significant
additional costs.
[0034] The vortex mixers are characterized by having a good spread of the liquid exiting
the mixer due to the high angular velocity of the exiting liquid. The vortex mixer
has good turn down capability, since even small vapor and liquid flow rates are normally
sufficient to establish the swirling motion in the swirl box.
[0035] In the Type 2 mixers with radial inlet flow, the swirl box is characterized by a
radial/horizontal inlet flow. The inlet to the swirl box cause a major part of the
pressure drop. If properly designed, the inlets will disperse the liquid to generate
a large interphase area for heat and mass transfer between the phases. Again, the
inlets represent parallel flow paths, and the number of fluid rotations in the swirl
box will have to be sufficient to mix the streams entering through the different inlets
with each other.
[0036] In the Type 3 mixers, the vapor and the liquid take different paths through slots
in the cap. The vapor follows a path in the upper portion of the slots, while the
liquid takes a path in the lower portion of the slots. The two phases are not contacted
efficiently in these inlets/slots. Also, the pressure drop in the inlets/slots corresponds
to the pressure drop of the two-phase column inside the upflow channel. This pressure
drop is insufficient for dispersing the liquid into droplets. The slots/inlets represent
parallel flow paths and the streams from these parallel flow paths will have to be
mixed with each other in the upflow channel. The only way to achieve this is if significant
swirling motions are introduced in the upflow channel. But due to the low velocity
in the inlets, and due to insufficient size of the upflow channel, it is normally
not possible to achieve significant swirling motions in the upflow channel. The only
location where the entire process stream is contacted is thus in the downcomer of
the bubble cap, which is insufficient for equilibration of the temperature and composition.
[0037] In the Type 4 mixers with separate mixing of vapor and liquid, all or part of the
entire mixer pressure drop is used in parallel mixers for mixing the vapor and liquid
separately. Single phase mixing is widely used in the industry in spite of the fact
that the controlling step in two-phase mixing is heat and mass transfer between the
vapor and the liquid phases.
[0038] Each single phase mixer in itself also consists of parallel flow paths like parallel
inlet chutes or vanes. In the mixer disclosed in
U.S. Patent No. 5,635,145, there is no two phase mixing orifice. As a consequence, the two-phase mixing performance
of this type of mixer is poor.
[0039] The Type 5 baffled box mixers with vertical flow, exemplified by
U.S. Patent No. 4,223,269, provide good mixing performance and fulfill all the criteria for a proper mixer
given above. However, this type of mixer requires very large mixer heights, and thus
undesirably large reactor/vessel volumes.
[0040] The Type 6 baffled box mixers with horizontal flow, as disclosed in
U.S. Patent No. 3,705,016 and
U.S. Patent No. 3,977,834, represent mixer designs with more parallel fluid paths. In the mixer of
U.S. Patent No. 3,977,834, the entire process stream is never contracted in one mixing orifice. In addition,
the liquid exit pattern from the mixer of
U.S. Patent No. 3,705,016 is uneven. The type 6 mixer disclosed in
U.S. Patent No. 5,690,896, is a reasonable good mixer, but it does not have expanded flow area sections to
generate turbulence in the expansion and to provide hold up time for heat and mass
transfer. Also, the fluids approach the center orifice from only one side. The resulting
liquid spread at the mixer exit is uneven.
U.S. Patent No. 7,276, 215 represents a very good and compact mixer design and fulfills all the criteria for
proper mixing performance given above. However, the turn down capability of all the
type 6 mixers is lower than that of the above-described vortex mixers.
US 5,756,055 also discloses a baffle type mixer.
SUMMARY
[0041] This disclosure relates broadly to a mixing device of the vortex type, for admixing
gas or vapor and liquid in a vessel with concurrently flowing vapor and liquid.
[0042] The invention is defined in the claims.
[0043] The variables α, D
i, D
o and H
s have been defined for the disclosure in figures 5A, 5B, and 5C.
[0044] One of the main objects of the disclosure is to provide good mixing with a relatively
small loss of reactor volume and with relatively low energy requirements. These advantages
have been obtained by ensuring a large number of fluid rotations inside the swirl
box to allow for equilibration of temperature and composition of the fluids entering
the swirl box through the inlets. For a given mixer height and pressure drop, the
number of fluid rotations in the swirl box has been maximized by use of the following
four principles for proper design of a vortex mixer:
- 1) Entering the two-phase stream into the swirl box in a direction close to the tangential
direction (α ≈ 0)
- 2) Letting the ratio Di/Do be as large as possible
- 3) Entering the two-phase stream into the swirl box through the inlets at a high flow
velocity.
- 4) Avoiding flow obstructions inside the swirl box, such as support beams and structures,
flange assemblies, bolts and nuts.
[0045] The disclosure includes a flow-obstructing mixing box located between the walls of
a cylindrical reactor. The mixing box has one or more inlet openings for essentially
vertical fluid flow into the mixer. The mixing box comprises a horizontal circular
top wall, a horizontal circular bottom wall, and a vertical cylindrical wall, which
may be a segment of the inner wall of the reactor. The horizontal circular bottom
wall is provided with an outlet opening. A cylindrical weir extends up above the rim
of the outlet opening. In order to maximize D
i/D
o and in order to minimize the height of the mixing box, the diameter of the mixing
box is preferably close to or identical to the inner diameter of the reactor. Inside
the mixing box, curved baffles are located to form tangential inlet orifices, generating
a two-phase stream characterized by having a high flow velocity and a substantially
pure tangential flow direction of the fluids entering the swirl box.
[0046] In the tangential inlet orifices, the liquid is dispersed into the vapor stream to
provide a large interphase area for heat and mass transfer. The high flow velocity
in the mixing orifices also results in high heat and mass transfer coefficients and
in turbulent conditions upon the expansion of the flow into the swirl box, which provides
mixing.
[0047] When more than one tangential inlet is used, these inlets represent parallel mixing
orifices, and the entire process stream is not contacted at this location. However,
the swirl box is sized based on the above-mentioned four principles for proper design
of a vortex mixer to allow for a sufficient number of fluid rotations inside the swirl
box in order to equilibrate temperature and composition of the streams entering through
the tangential inlets.
[0048] After having passed through the swirl box, the fluids exit in a vertical direction
through the outlet opening in the bottom wall. The liquid still has a significant
angular velocity at the exit or outlet of the mixer. The swirling velocity of the
liquid results in uniform liquid spread beneath the mixer. Below the opening in the
bottom wall, an impingement plate is located to break down the high velocity of the
two-phase jet and to further spread the liquid over the cross section of the reactor.
Quench fluid may be added upstream from the tangential inlet orifices, either above
the top wall, or between the top and bottom walls.
[0049] While conventional vortex mixers do not fulfill the four principles listed above
for proper design of a vortex mixer, a vortex mixer in accordance with the present
disclosure does. Compared to the conventional vortex mixer types, vortex mixers in
accordance with the present disclosure have improved mixing performance in terms of
achieving an outlet stream from the mixer, which is equilibrated regarding temperature
and composition. Further, obeying the four principles of proper design of a vortex
mixer results in a significantly reduced height requirement compared to conventional
vortex mixers.
BRIEF DESCRIPTION OF THE DRAWINGS
[0050]
Figure 1A is a simplified longitudinal cross-sectional view showing a typical layout
of catalyst and internals in a hydroprocessing reactor with two beds of solid catalyst
particles, with a mixing device located between two adjacent catalyst beds inside
the reactor.
Figure 1B is an enlarged, detailed view of the structure within the broken outline
of Figure 1A.
Figure 2A is a simplified side sectional view of a reactor vessel with a vortex mixer
of the prior art, showing the variable dimension Hs.
Figure 2B is a simplified overhead view along line A-A of Figure 2A of the swirl box
of the vortex mixer of Figure 2A, showing the variable dimensions Di and Do.
Figure 2C is a cross-sectional view of the inlet chutes taken along line B-B in Figure
2B, showing the angle α.
Figures 3A and 3B are graphs showing the average number of swirl box fluid rotations
as a function of Hs and Di/Do for two different values of α.
Figures 4A, 5A, and 6A are overhead plan views of alternative embodiments of the present
disclosure.
Figures 4B, 5B, and 6B are the corresponding cross-sectional views taken along the
lines A-A of Figures 4A, 5A, and 6A, respectively.
Figures 4C, 5C, and 6C are the corresponding cross-sectional views taken along the
lines B-B in Figures 4A, 5A, and 6A, respectively.
[0051] Alternative embodiments of the present disclosure include, but are not limited to,
the designs shown in the figures.
DETAILED DESCRIPTION
[0052] The reactions taking place in hydroprocessing reactors are exothermic. Heat is therefore
released during reaction, causing the temperature to rise when the reactants are converted
to products in the presence of a hydroprocessing catalyst at elevated temperature
and pressure.
[0053] In commercial hydroprocessing reactors, the two-phase mixture of reactants flows
through a bed of solid catalyst particles. The ideal flow pattern in such a reactor
is a plug flow where liquid is flowing downwards with the same velocity (based on
an empty reactor) at all points of the reactor cross-section. In the ideal plug flow
case, the same is true for the vapor phase: The vapor is flowing downwards with identical
velocity (based on an empty reactor) at all points of the reactor cross-section.
[0054] In commercial reactors, plug flow is never achieved due to non-ideal distribution
trays, uneven catalyst loading, and/or the presence of deposits/coke in the void space
between the catalyst particles. Therefore, in some areas of the catalyst bed, the
liquid flow velocity is higher than average, and the vapor velocity is lower than
average. Due to the high heat capacity of the liquid relative to the vapor, the temperature
rise in °C per meter of flow path is low in these areas. Similarly, in other areas
of the catalyst bed, the liquid flow velocity is lower than average and the vapor
velocity is higher than average. Again, due to the high heat capacity of the liquid
relative to the vapor, the temperature rise in °C per meter of flow path is high in
these areas.
[0055] As a result, even though the reactant mixture has a uniform temperature at the reactor
inlet, some areas of the catalyst bed get hotter than others as the fluids pass through
the bed. Further, since the rate of reaction is increasing with increased temperature,
this effect tends to accelerate. The hot areas of the catalyst bed have a high rate
of reaction, and even more heat is released in these areas than in the cold areas.
[0056] Due to the difference in rate of reaction between the hot areas and cold areas of
the catalyst bed, the fluids develop differences in their chemical compositions.
[0057] The non-uniformity in temperature and chemical composition in a horizontal plane
has several negative effects:
All hydroprocessing catalysts deactivate during operation. In order to compensate
for the decline in activity of the catalyst, the average bed temperature is increased
during the run. At some point in time, at end-of-run, the peak temperature in the
catalyst bed reaches its maximum allowable value. At this point, the entire process
unit needs to be shut down, and the catalyst must be regenerated or replaced. If there
is non-uniformity in temperature in the horizontal plane, the end-of-run will occur
at an earlier stage and at a lower average bed temperature. The higher frequency of
shut-downs caused by non-uniform temperatures adds significant cost to the refiner
in terms of lost production, catalyst consumption and additional labor.
[0058] Another effect of the non-uniformities is that the degree of chemical conversion
is uneven. A fraction of the reactants will be converted to a high extent while the
remaining fraction of the reactants is converted to a lower extent. The result is
often lower overall product quality.
[0059] A first example is a diesel hydrotreating reactor where sulfur containing hydrocarbon
components (organic sulfur components) and H
2 are converted to sulfur free hydrocarbon components and H
2S. If non-uniform temperatures exist, then a fraction of the feed oil is reacted at
higher temperature and maybe also at lower space velocity due to lower liquid velocity
as discussed above. Another fraction of the feed oil is reacted at lower temperature
and maybe also higher space velocity due to higher liquid velocity. The result is
that the organic sulfur components tend to "by-pass" the catalyst bed through the
areas with low temperature and high space velocity. This bypass significantly increases
the content of organic sulfur components in the overall product. In order to meet
the product specification on organic sulfur content, the refiner needs to reduce the
feed rate or increase the reactor operating temperature to compensate for the non-uniform
temperatures and composition. Reducing the feed rate has a significant cost in terms
of lost production. Increasing the reactor temperature results in increased energy
consumption and reduced run length with increased frequency of shutdowns for catalyst
generation/replacement. As discussed above, the increased frequency of shutdowns has
significant costs.
[0060] A second example is a hydrocracking reactor where heavier hydrocarbon components
and H
2 are converted to lighter hydrocarbon components. Again if non-uniform temperatures
exist then a fraction of the feed oil is reacted at higher temperature and maybe also
at lower space velocity due to lower liquid velocity. Another fraction of the feed
oil is reacted at lower temperature and maybe also higher space velocity due to higher
liquid velocity. The result is that part of the heavy feed oil is "overcracked", so
that the production of unwanted C
1-C
4 gasses and light naphtha components is significantly increased while another part
of the heavy feed oil is only converted to a low extent. The selectivity of the hydrocracking
unit towards the desired product is thus reduced, and the overall conversion of the
heavy feed components to lighter product components is also reduced. Both effects
are associated with significant costs to the refiner.
[0061] Non-uniformities in temperature and chemical composition in the horizontal plane
of a catalyst bed are unavoidable in commercial hydroprocessing reactors. However,
the non-uniformities can be minimized by installing suitable reactor internals.
[0062] For the first catalyst bed, which the feed/reactants first enters, a good inlet distributor
needs to be provided to ensure equal distribution of the liquid and vapor over the
cross section of the reactor. The fluids entering this distributor need to be properly
mixed upstream from the distributor to ensure that compositional and thermal equilibrium
has been achieved. Sufficient mixing of the fluids is most often provided in the piping
routing the reactants to the reactor.
[0063] For any subsequent catalyst bed(s), a good distributor is also needed to ensure uniform
distribution of the liquid and vapor over the cross section of the reactor. However,
the inlet stream to a subsequent catalyst bed is the outlet stream from an upstream
catalyst bed where a non-uniform temperature and chemical composition will exist at
the bed outlet. Therefore, it is essential to have a mixing device located between
the upstream catalyst bed and the distributor. Otherwise, the non-uniformity in temperature
and chemical composition may proceed from one bed to the next and worsen. The purpose
of the mixing device is to produce an outlet stream that is equilibrated regarding
temperature and composition.
[0064] A quench fluid, which is colder than the fluids inside the reactor, is often injected
into the hydroprocessing reactor between two adjacent catalyst beds in order to cool
down the hot effluent from one catalyst bed before the fluids enter the next bed.
This allows for operation of the reactor closer to isothermal conditions, which has
several benefits in terms of increased run length and improved product quality. A
further objective of the mixing device in this case is to mix the cold quench stream
with the effluent from one catalyst bed to achieve thermal and compositional equilibrium
before the stream enters the next catalyst bed.
[0065] Referring now to the drawings, Figures 1A and 1B show a typical hydroprocessing reactor
1 with a side wall 14 and with first and second beds of catalyst particles 2 and 3,
respectively. Figure 1A is intended to define the typical location of the mixing device
relative to the catalyst beds and to other reactor internals. The reactants enter
the reactor through an inlet nozzle 4. The fluids then enter a first or top distribution
tray 5, which distributes the vapor and liquid evenly over the cross section of the
reactor before the fluids enter the first or upper catalyst bed 2 which rests on a
screen or catalyst support grid 6, as shown in FIG. 1B. Large forces are normally
acting on the catalyst screen or support grid 6 due to the large weight of the catalyst
and due to the forces introduced by the fluid flow through the catalyst bed. Therefore,
support beams 7 are normally required to absorb these forces. A mixing device 8 is
located below the catalyst support system 6, 7. Quench fluid may be added through
a quench nozzle 9 and a quench distributor 10. An impingement device or plate 11,
for spreading the liquid and for breaking down the high velocity of the jet exiting
the mixing device 8 is located below the mixing device 8. A second or bottom distribution
tray 12, located beneath the mixing device 8, distributes the vapor and liquid evenly
over the cross section of the reactor before the fluids enter the second or lower
catalyst bed 3. The product from the reactor exits through an outlet nozzle 13.
[0066] More than two catalyst beds may also be used. The number of mixing devices 8 is typically
N-1 where N is the number of catalyst beds in the reactor.
[0067] Figure 2A is a simplified side sectional view of a reactor vessel with a conventional
vortex mixer 20 of the prior art. An overhead view A-A of the swirl box of this vortex
mixer is shown in figure 2B and a side sectional view of an inlet chutes taken along
segment B-B in figure 2B is shown in figure 2C. The reactor vessel has walls 21, and
a collection tray 22 is installed in the reactor. The collection tray 22 forces the
vapor and liquid to flow through a plurality of inlet chutes 23. The vortex mixer
has a cylindrical side wall 24, a bottom wall 25 with an outlet opening 26, and a
cylindrical weir 27. Together with collection tray 22, these walls form a swirl box
28. An impingement plate 29 is located below the outlet opening 26. The height H
s shown in figure 2A is the free height between the collection tray 22 and the bottom
wall 25. The center of the inlet chutes 23 forms a circle, and D
i, shown in figure 2B, is the diameter of this circle. D
o, shown in figure 2B, is the diameter of the outlet opening 26. The angle α is defined
in figure 2C as the angle between the flow path of the fluids exiting the inlet chute
23 and the tangential direction, which may be defined as the direction parallel to
the bottom wall 25.
[0068] The influence of α, D
i, D
o and H
s on the number of fluid rotations in the swirl box is now demonstrated for a mixer
in a commercial hydrocracking reactor. The data for the commercial mixer is given
in table 1.
Table 1: Example of data for commercial mixer
| Reactor type |
Hydrocracking |
| Reactor inner diameter, mm |
5000 |
| Liquid flow to mixer, actual m3/h |
630 |
| Liquid density, kg/m3 |
460 |
| Liquid viscosity, cP |
0.15 |
| Liquid surface tension, dynes/cm |
7.5 |
| Vapor flow to mixer, actual m3/h |
6200 |
| Vapor density, kg/m3 |
18.5 |
| Vapor viscosity, cP |
0.021 |
[0069] In figures 3A and 3B, the simulated average number of fluid rotations in the swirl
box of the commercial mixer sized for the data in table 1 is shown as a function of
H
s and D
i/D
o for α=50° and α=0° respectively. In all cases, the mixer has been sized to obtain
a total pressure drop of 2 psi. As can be seen from figures 3A and 3B, the number
of fluid rotations in the swirl box strongly depends on both α and D
i/D
o. Design of mixers with D
i/D
o of about 2 and α of about 50°, as seen in many prior art commercial designs, only
result in about one half rotation (at H
s as high as 500 mm) in the swirl box. This is clearly insufficient to mix the streams
entering the swirl box from the different inlet chutes with each other. D
i/D
o must be maximized and α must be minimized in order to maximize the number of fluid
rotations for a given mixer height and a given mixer pressure drop.
[0070] The flow velocity in the inlets to the swirl box must be sufficiently high to disperse
the liquid into droplets. For the normal operating conditions in hydrotreating and
hydrocracking reactors, the dispersed flow regime will be entered when the superficial
vapor velocity is larger than roughly:

Where: V
vDispersed is superficial vapor flow velocity resulting in dispersed flow, and ρ
L is the actual liquid density in kg/m
3 , and
ρ
v is the actual vapor density in kg/m
3
[0071] The superficial vapor flow velocity is defined as the actual volumetric vapor flow
rate through the flow channel divided by the cross sectional area of the flow channel.
[0072] The present disclosure relates to a vortex type mixer where D
i/D
o has been maximized, and α approaches 0°. In addition, the flow velocity in the tangential
inlets of the mixer is high enough for dispersion of the liquid into droplets, according
to above equation (a), and the mixer is constructed to avoid flow obstructions in
the swirl box, such as support beams and structures, flange assemblies, bolts and
nuts.
[0073] Figures 4A, 5A, and 6A represent alternative structures of the mixing device according
to the present disclosure. The figures are presented only to characterize the disclosure
and alternatives. They are not intended to limit the scope of the concepts disclosed
herein or to serve as working drawings. They should not be construed as setting limits
on the scope of the inventive concept. The relative dimensions shown by the drawings
should not be considered equal or proportional to commercial embodiments.
[0074] Figure 4A is an overhead view of a mixing box 30. Figure 4B is a sectional view along
line A-A in Figure 4A, and Figure 4C is a sectional view along line B-B in Figure
4A. The mixing box 30 comprises a horizontal circular top wall 31, a horizontal circular
or annular bottom wall 32, and a vertical cylindrical side wall 33. The vertical cylindrical
side wall 33 is preferably constituted by a section of the reactor wall 14, in order
to maximize the diameter of a swirl box or chamber 40 defined by the top wall 31,
the bottom wall 32, and the side wall 33. The top wall 31 is provided with inlet openings
34, preferably two in number. Inside the mixing box 30, curved baffles 35 are located
to form two (preferably) tangential inlet orifices 36. The bottom wall 32 is provided
with a central outlet opening 37 and a vertical cylindrical weir 38. Below the outlet
opening 37 an impingement plate 39 is located.
[0075] The intended flow through the mixing device 30 is indicated by arrows in figures
4A, 4B, and 4C. During operation, the vapor and liquid exiting the first or upper
catalyst bed 2 will flow through the inlet openings 34. These fluids will then take
a 90° turn and pass through the tangential inlet orifices 36 and into the swirl box
40. Cold quench fluid may be added between the first or upper catalyst bed 2 and the
inlet openings 34. The flow velocity in the tangential inlet orifices 36 is high,
and the liquid is dispersed into the vapor. The stream from the tangential inlet orifices
36 enters the swirl box 40 in a pure (or nearly pure) tangential direction (α=0°),
and the high momentum of the stream is utilized to generate a violent swirling flow
in the swirl box 40, where the streams from the tangential inlet orifices are efficiently
mixed with each other. After having swirled in the swirl box 40, the fluids flow over
the weir 38 and down through the outlet opening 37. The liquid still has a significant
angular velocity while leaving the outlet opening 37. This angular velocity improves
the spread of liquid onto the bottom distribution tray 12. The impingement plate 39
ensures that the fluids exit the mixer 30 in an outward radial direction. The impingement
plate 39 prevents the mixer 30 from sending a high velocity jet directly towards the
bottom distributor tray 12. Such a jet would disturb the liquid level on the bottom
distribution tray 12, and it would entrain the liquid. The impingement plate 39 will
further improve the spread of liquid across the cross section of the reactor before
the fluids encounter the bottom distribution tray 12.
[0076] The baffles 35 in the mixing device 30 can have many different shapes. They can be
semicircular, oval, straight, curved, angled etc. The baffles do not need to be purely
vertical, but it is sufficient that the baffles have a vertical component. The inlet
and outlet openings 34 and 37 may also have different shapes, such as ellipsoidal,
circular, rectangular, triangular etc. There may be one or more inlet openings and
outlet openings respectively. The horizontal cross section of the mixing device 30
itself can have any shape. It can be circular as for the mixer in Figure 4A. It can
also be ellipsoidal, triangular, rectangular, polygonal etc. A circular or polygonal
shape with many sides is preferred in order to minimize the flow resistance for the
swirling fluid motion and thus maximize the number of fluid rotations in the swirl
box.
[0077] The vertical cylindrical weir 38 in Figure 4A may have different shapes, such as
ellipsoidal, circular, rectangular, triangular, polygonal etc., and it may be provided
with perforations or apertures. The upper rim of the weir 38 does need to be straight,
and it may be provided with holes, slots, notches etc. The use of a weir 38 normally
improves the turndown capability of the mixer, but the weir 38 may be excluded in
order to simplify the design.
[0078] As mentioned, quench fluid may be injected upstream from the inlet openings 34. However,
in order to reduce the overall reactor height, the quench fluid can also be injected
downstream from the inlet openings, between the top plate 31 and the bottom plate
32.
[0079] An example of a mixer, according to the present disclosure, with one tangential inlet
orifice, with quench fluid injection between the top and the bottom plates, with angled
baffles, and with no vertical cylindrical weir at the outlet opening, is shown in
Figures 5A, 5B, and 5C. Figure 5A is an overhead view of a mixing device 50. Figure
5B is a sectional view along line A-A in figure 5A and Figure 5C is a sectional view
along line B-B in figure 5A. The mixing device 50 comprises a horizontal circular
top wall 51, a horizontal circular bottom wall 52, and a vertical cylindrical side
wall 53. The vertical cylindrical side wall 53 is preferably constituted by a section
of the reactor wall 14, in order to maximize the diameter of a swirl box or chamber
59 defined by the top wall 51, the bottom wall, 52, and the side wall 53. The top
wall 51 is provided with an inlet opening 54. Inside the mixing device 50, angled
baffles 55 are located to form a single tangential inlet orifice 56. A perforated
quench fluid distributor 60 is located between the top wall 51 and the bottom wall
52 upstream the tangential inlet orifice 56. The bottom wall is provided with a central
outlet opening 57. An impingement plate 58 is located below the outlet opening 57.
[0080] The benefit of using only one tangential inlet orifice 56 is that the entire process
stream is contacted in this inlet orifice. Differences in temperature and chemical
composition can thus be equilibrated much more efficiently than in mixers with several
parallel inlet orifices, where the entire process stream is not contacted in the inlet
orifice, but only later in the swirl box.
[0081] The intended flow through the device 50 is indicated by arrows in figures 5A, 5B,
and 5C. During operation, the vapor and liquid exiting the first or upper catalyst
bed 2 will flow through the inlet opening 54. The fluids will then take a 90° turn.
Cold quench fluid is injected through a quench fluid distributor 60. After the cold
quench fluid has been added, the entire process stream will flow through the tangential
inlet orifice 56 and into the swirl box 59 at high velocity and with dispersion of
the liquid into droplets. The stream from the tangential inlet orifice 56 enters the
swirl box 59 in an almost tangential direction (α≈0°), and the high momentum of the
stream is utilized to generate a violent swirling flow in the swirl box 59. After
having swirled in the swirl box, the fluids flow through the outlet opening 57. The
liquid still has a significant angular velocity while leaving the outlet opening 57.
This angular velocity improves the spread of liquid onto the bottom distribution tray
12. The impingement plate 58 ensures that the fluids exit the mixer in an outward
radial direction. The impingement plate 58 prevents the mixer from sending a high
velocity jet directly towards the bottom distribution tray 12. Such a jet would disturb
the liquid level on the bottom distribution tray 12, and it would entrain the liquid.
The impingement plate 58 will further improve the spread of liquid across the cross
section of the reactor before the fluids encounter the bottom distribution tray 12.
[0082] The impingement plate 39, 58 is shown as a solid plate in Figures 4B and 5B, respectively.
The impingement plate may have any shape, such as circular, ellipsoidal, rectangular,
polygonal etc. The impingement plate does not need to be plane. A non-planar impingement
plate may be used. The plate may be provided with perforations, apertures, chimneys
and/or weirs for rough distribution of the liquid to the bottom distribution tray
12, as long as the impingement plate effectively brakes the high velocity of the fluids
exiting the mixer. A concave impingement plate may often reduce the required height
between the mixing device 8 and bottom distribution tray 12 in figure 1B. The reason
is that for a given height between mixing device 8 and bottom distribution tray 12,
a concave impingement plate can provide larger flow area for outwards radial flow
below the rim of the outlet opening, and at the same time larger flow area for inwards
radial flow below the rim of the impingement plate. Large flow areas are required
at these locations in order to minimize the pressure differences in the vapor space
above bottom distribution tray 12, and to allow for separation of the vapor and liquid
on the bottom distribution tray 12.
[0083] The shapes of the tangential inlet orifices 36 in Figure 4C and 56 in Figure 5C are
shown as rectangular. The tangential inlet orifices may have many different shapes,
such as ellipsoidal, circular, rectangular, triangular, polygonal etc. Also the tangential
inlet orifice does not need to take up the entire height between the top plate 31,
51 and the bottom plate 32, 52.
[0084] An example of a mixer, according to the present disclosure, where the tangential
inlet orifices do not take up the entire height between the top plate and the bottom
plate is shown in Figures 6A, 6B, and 6C. Figure 6A is an overhead view of a mixing
device 70. Figure 6B is a sectional view along line A-A in Figure 6A, and Figure 6C
is a sectional view along line B-B in figure 6A. The mixing device 70 comprises a
horizontal circular top wall 71, a horizontal circular bottom wall 72, and a vertical
cylindrical side wall 73. The vertical cylindrical side wall 73 is preferably constituted
by a section of the reactor wall 14, in order to maximize the diameter of a swirl
box or chamber 82 defined by the top wall 71, the bottom wall 72, and the side wall
73. The top wall 71 is provided with four inlet openings 74. Inside the mixing device
70, curved walls 75, lower walls 76, and sloped walls 77 are located to form four
tangential inlet orifices 78. The bottom wall 72 is provided with a central outlet
opening 79 and a vertical cylindrical weir 80. A concave and perforated impingement
plate 81 is located below the outlet opening 79.
[0085] The intended flow through the device 70 is indicated by arrows in Figures 6A, 6B,
and 6C. During operation, the vapor and liquid exiting the first or top catalyst bed
2 flows through the inlet openings 74. The fluids then take a 90° turn and pass through
the tangential inlet orifices 78 and into the swirl box 82. Cold quench fluid may
be added between the first or upper catalyst bed 2 and the inlet openings 74. The
flow velocity in the tangential inlet orifices 78 is high, and the liquid is dispersed
into the vapor. The stream from the tangential inlet orifices 78 enters the swirl
box 82 in a pure (or nearly pure) tangential direction (α=0°), and the high momentum
of the stream is utilized to generate a violent swirling flow in the swirl box 82,
where the streams from the tangential inlet orifices 78 are efficiently mixed with
each other. After having swirled in the swirl box 82, the fluids flow over the weir
80 and down through the outlet opening 79. The liquid still has a significant angular
velocity while leaving the outlet opening 79. This angular velocity improves the spread
of liquid onto bottom distribution tray 12. The impingement plate 81 ensures that
the fluids exit the mixer 70 in an outward radial direction. The impingement plate
81 prevents the mixer 70 from sending a high velocity jet directly towards the bottom
distribution tray 12. Such a jet would disturb the liquid level on the bottom distribution
tray 12, and it would entrain the liquid. The impingement plate 81 will further improve
the spread of liquid across the cross section of the reactor before the fluids encounter
the bottom distribution tray 12.
[0086] Referring again to Figures 1A and 1B, the catalyst support system comprises the catalyst
screen 6 and the support beams 7. The catalyst support system and the mixing device
8 are shown to be separate structures. However, the mixing device 8 of the present
disclosure may be built as an integral part of the catalyst support system 6, 7.
[0087] The mixing box itself normally requires support beams or other structures to absorb
the forces caused by the pressure drop across the mixing box. These support beams
or structures are not shown in any of the figures, but may be located above or below
the mixing box, or they may be an integral part of the mixing box and flow baffles.
[0088] For any of the embodiments of the present disclosure, low capacity drain holes may
be provided.
[0089] The metal plates that are used to fabricate the mixers 30, 50, and 70 may be unitary,
but they are normally assembled of several plate sections to allow for passage of
the parts through the inlet nozzle 4. Normally, the mixer will comprise several removable
sections for easy access during inspection and cleaning procedures, and to provide
human access through the mixing box 30, 50, and 70.
[0090] The mixing boxes 30, 50, and 70 are typically close to horizontal, meaning that the
overall slope of the mixing boxes from one side of the reactor 1 to another is small.
The diameter of the mixing boxes 30, 50, and 70 is typically between 50% and 100%
of the inner diameter of the reactor 1, preferably as large as possible and preferably
100%. The combined cross sectional area of the tangential inlet orifices is selected
to obtain a superficial vapor flow velocity exceeding V
vDispersed defined in the above equation (a). The angle α between the flow direction in the
inlet orifice and the tangential direction is typically less than 25° and preferably
close to 0°. The ratio of the inlet diameter to the outlet opening diameter D
i/D
o is typically larger than 2, and preferably larger than 3. The height of the swirl
box H
s is selected to achieve at least one full average fluid rotation in the swirl box
(360°), and preferably at least 1.5 average fluid rotations (540°). The height of
the swirl box H
s may vary from below 100 mm for small diameter reactors to above 500 mm or large diameter
reactors.
1. A method for admixing vapor and liquid flowing concurrently in a catalytic reactor
(1) between an upper catalyst bed (2) and a lower catalyst bed (3) thereof, the method
comprising the steps of:
providing a swirl box (40, 59, 82) comprising of a top wall (31, 51, 71), a side wall
(14, 33, 53, 73) and a bottom wall (32, 52, 72) with an outlet opening (37, 57, 79);
and
providing one or more passageways for conducting the concurrent flow of said vapor
and liquid in said reactor (1) from the space above said swirl box (40, 59, 82) and
into said swirl box (40, 59, 82); and
providing one or more tangential inlet orifices (36, 56, 78) located in said passageways
for said vapor and liquid to enter into said swirl box (40, 59, 82); and
passing said vapor and liquid from the space above said swirl box (40, 59, 82) through
said one or more tangential inlet orifice(s) (36, 56, 78) and into said swirl box
(40, 59, 82) at said side wall (14, 33, 53, 73) and in a direction close to the flow
direction of the swirling fluids inside the swirl box (40, 59, 82) adjacent the tangential
inlet orifice(s) (36, 56, 78); where the angle between the flow velocity vector in
said tangential inlet orifice(s) (36, 56, 78) and the flow direction of the swirling
fluids inside the swirl box (40, 59, 82) adjacent the tangential inlet orifice(s)
(36, 56, 78) is defined as α and where α<25°, and
where the distance from the center of said tangential inlet orifice(s) (36, 56, 78)
to the center of said outlet opening (37, 57, 79) is larger than two times the distance
from the center of said outlet opening (37, 57, 79) to the rim of said outlet opening
(37, 57, 79), and
where said tangential inlet orifice(s) (36, 56, 78) has such a flow-through area relative
to the flow rate of said vapor that the superficial vapor flow velocity in the tangential
inlet orifice(s) (36, 56, 78) exceeds VvDispersed as defined in equation (a)

where: VvDispersed is the superficial vapor flow velocity resulting in dispersed flow, and
ρL is the actual liquid density in kg/m3 , and
ρv is the actual vapor density in kg/m3
during at least one operational phase of said reactor (1), for dispersion of the liquid
into the vapor and/or the vapor into the liquid and for introducing a swirling flow
inside said swirl box (40, 59, 82), and
allowing said vapor and liquid to rotate around said outlet opening (37, 57, 79) for
obtaining said admixing; and
passing said vapor and liquid from said swirl box (40, 59, 82) through said outlet
opening (37, 57, 79) to the space below said swirl box (40, 59, 82).
2. A method according to claim 1 where said side wall (14, 33, 53, 73) and said tangential
inlet orifices (36, 56, 78) are located at the outer wall (14) of said catalytic reactor
(1) to maximize the distance from said tangential inlet orifice (36, 56, 78) to said
outlet opening (37, 57, 79) in order to increase the number of fluid rotations in
said swirl box (40, 59, 82).
3. A method according to claim 1 or claim 2 where said side wall (14, 33, 53, 73) is
a section of the outer wall (14) of said catalytic reactor (1) and said tangential
inlet orifice(s) (36, 56, 78) are located adjacent to said outer wall (14) of said
catalytic reactor (1) in order to increase the number of fluid rotations in said swirl
box (40, 59, 82).
4. A method according to any of the claims 1-3 where said swirl box (40, 59, 82) is sized
to allow said vapor and liquid to rotate at least 360° on average around said outlet
opening (37, 57, 79) before said vapor and liquid exit said swirl box (40, 59, 82)
through said outlet opening (37, 57, 79) in order to mix the vapor and liquid entering
said swirl box (40, 59, 82) through different tangential inlet orifices (36, 56, 78)
with each other, and preferably where said swirl box (40, 59, 82) is sized to allow
said vapor and liquid to rotate at least 540°.
5. A method according to any of the claims 1-4 where a vertical weir (38, 80) is attached
to the rim of said outlet opening (37, 57, 79) and is extending up into said swirl
box (40, 59, 82).
6. A method according to any of the claims 1-5 where said top wall (31, 51, 71) and said
bottom wall (32, 52, 72) are horizontal and said side wall (14, 33, 53, 73) is vertical.
7. A method according to any of the claims 1-6 where an impingement plate (39, 58, 81)
is located underneath said outlet opening (37, 57, 79) to break down the high velocity
of the vapor and liquid stream exiting said swirl box (40, 59, 82) through said outlet
opening (37, 57, 79), and preferably where said impingement plate (39, 58, 81) is
provided with perforations, apertures, chimneys and/or weirs to improve the rough
distribution of liquid to the final distributor tray (12), and further preferably
alternatively where said impingent plate (81) is concave in order to increase the
area for outwards radial flow of said vapor and liquid below the rim of said outlet
opening (79) and in order to increase the area for inwards radial flow of said vapor
and liquid below the rim of said impingement plate (81).
8. A method according to any of the claims 1-7 where α<15°, and preferably where α<10°
and still further preferably where α<5°.
9. A catalytic reactor (1) comprising a mixing device (8, 30, 50, 70) arranged between
an upper catalyst bed (2) and a lower catalyst bed (3) thereof for admixing vapor
and liquid flowing concurrently inside said reactor (1) through said mutually superimposed
catalyst beds (2, 3), said mixing device (8, 30, 50, 70) comprising:
a swirl box (40, 59, 82) comprising a top wall (31, 51, 71), a side wall (14, 33,
53, 73) and a bottom (32, 52, 72) wall; and
one or more passageways for conducting the concurrent flow of said vapor and liquid
in said reactor (1) from the space above said swirl box (40, 59, 82) and into said
swirl box (40, 59, 82); and
one or more tangential inlet orifices (36, 56, 78) located in said passageways at
the side wall for high velocity injection of said vapor and liquid into said swirl
box (40, 59, 82); said tangential inlet orifice(s) (36, 56, 78) having such a flow-through
area relative to the flow rate of said vapor that the superficial vapor flow velocity
in said tangential inlet orifice(s) (36, 56, 78) exceeds VvDispersed as defined in equation (a)

where: VvDispersed is the superficial vapor flow velocity resulting in dispersed flow, and
ρL is the actual liquid density in kg/m3 , and
ρv is the actual vapor density in kg/m3
during at least one operational phase of said reactor (1), for dispersion of the liquid
into the vapor and/or the vapor into the liquid, and for introducing a swirling flow
inside said swirl box (40, 59, 82) the flow velocity vector of said vapor and liquid
in said tangential inlet orifices (35, 56, 78) at said side wall having a direction
close to the flow direction of the swirling fluids inside the swirl box adjacent the
tangential inlet orifice (36, 56, 78); where the angle between said flow velocity
vector in said tangential inlet orifice(s) (36, 56, 78) and the flow direction of
the fluids inside the swirl box (40, 59, 82) is defined as α and where α<25°, and
an outlet opening (37, 57, 79) in said bottom wall (32, 52, 72) for conducting the
concurrent flow of said vapor and liquid in said reactor (1) from said swirl box (40,
59, 82) to the space below said swirl box (40, 59, 82); and
where the distance from the center of said tangential inlet orifice(s) (36, 56, 78)
to the center of said outlet opening (37, 57, 79) is larger than two times the distance
from the center of said outlet opening (37, 57, 79) to the rim of said outlet opening
(37, 57, 79).
10. A catalytic reactor (1) according to claim 9 where the distance from the center of
said tangential inlet orifice(s) (36, 56, 78) to the center of said outlet opening
(37, 57, 79) is larger than two and a half times the distance from the center of said
outlet opening (37, 57, 79) to the rim of said outlet opening (37, 57, 79), and further
preferably where the distance from the center of said tangential inlet orifice(s)
(36, 56, 78) to the center of said outlet opening (37, 57, 79) is larger than three
times the distance from the center of said outlet opening (37, 57, 79) to the rim
of said outlet opening (37, 57, 79).
11. A catalytic reactor (1) according to any of the claims 9-10 where a vertical weir
(38, 80) is attached to the rim of the outlet opening (37, 57, 79) and are extending
up and into said swirl box (40, 59, 82).
12. A catalytic reactor (1) according to any of the claims 9-11 where said top wall (31,
51, 71) and said bottom wall (32, 52, 72) are horizontal and said side wall (14, 33,
53, 73) is vertical.
13. A catalytic reactor (1) according to any of the claims 9-12 where said outlet opening
(37, 57, 79) is circular.
14. A catalytic reactor (1)according to any of the claims 9-13 where said top wall (31,
51, 71) and said bottom wall (32, 52, 72) are circular.
15. A catalytic reactor (1) according to any of the claims 9-14 where said side wall (14,
33, 53, 73) is cylindrical.
16. A catalytic reactor (1) according to any of the claims 9-15 where said side wall (14,
33, 53, 73) is a section of the outer wall of said reactor (1).
17. A catalytic reactor (1) according to claim 13 where the tangential inlet orifice(s)
(36, 56, 78) are located on a circle of a diameter, Di, and where the circular outlet opening (37, 57, 79) has a diameter Do and where the ratio Di/Do is larger than 2, and preferably where the tangential inlet orifice(s) (36, 56, 78)
are located on a circle of a diameter, Di, and where the circular outlet opening (37, 57, 79) has a diameter Do and where the ratio Di/Do is larger than 2.5, and further preferably where the tangential inlet orifice(s)
(36, 56, 78) are located on a circle of a diameter, Di, and where the circular outlet opening (37, 57, 79) has a diameter Do and where the ratio Di/Do is larger than 3.
18. A catalytic reactor (1) according to claims 9-17 comprising an impingement plate (39,
58, 81) below said outlet opening (37, 57, 79) to break down the high velocity of
the mixer exit stream, and preferably where said impingement plate (39, 58, 81) is
provided with perforations, apertures, chimneys and/or weirs to improve the rough
distribution of liquid to the final distributor tray (12), and further preferably
or alternatively where said impingent plate (39, 58, 81) is concave in order to increase
the area for outwards radial flow of said vapor and liquid below the rim of said outlet
opening (37, 57, 79) and in order to increase the area for inwards radial flow of
said vapor and liquid below the rim of said impingement plate (39, 58, 81).
19. A catalytic reactor (1) according to any of the claims 9-18, wherein said catalytic
reactor (1) is a vertical hydroprocessing reactor with a downwards concurrent flow
of vapor and liquid in which hydrocarbons are reacted with hydrogen rich gas in presence
of a hydroprocessing catalyst.
20. A catalytic reactor (1) according to any of the claims 9-19 where α<15°, and preferably
where α<10° and still further preferably where α<5°.
1. Verfahren zum Beimischen von in einem katalytischen Reaktor (1) zwischen einem oberen
Katalysatorbett (2) und einem unteren Katalysatorbett (3) gleichzeitig fliessendem
Dampf und Flüssigkeit, wobei das Verfahren die Schitte umfasst:
Bereitstellen einer Drallbox (40, 59, 82), die eine obere Wand (31, 51, 71), eine
Seitenwand (14, 33, 53, 73) und eine untere Wand (32, 52, 72) mit einer Auslassöffnung
(37, 57, 79) umfasst; und
Bereitstellen von einem oder mehr Durchgängen zum Leiten des gleichzeitigen Fliessens
von Dampf und Flüssigkeit im Reaktor (1) von dem Raum oberhalb der Drallbox (40, 59,
82) und in die Drallbox (40, 59, 82); und
Bereitstellen von einer oder mehr in den Durchgängen ansässigen tangentialen Einlassöffnungen
(36, 56, 78) wodurch der Dampf und die Flüssigkeit in die Drallbox (40, 59, 82) hereinkommen
können; und
den Dampf und Flüssigkeit passieren lassen vom Raum oberhalb der Drallbox (40, 59,
82) durch eine oder mehr von den tangentialen Einlassöffnung(en) (36, 56, 78) und
in die Drallbox (40, 59, 82) an der Seitenwand (14, 33, 53, 73) und in eine Richtung
nah an der Fliessrichtung der drallenden Flüssigkeiten in der Drallbox (40, 59, 82)
neben den tangentialen Einlassöffnung(en) (36, 56, 78); wobei der Winkel zwischen
dem Strömungsgeschwindigkeitsvektor in den tangentialen Einlassöffnung(en) (36, 56,
78) und die Fliessrichtung der drallenden Flüssigkeiten in der Drallbox (40, 59, 82)
neben den tangentialen Einlassöffnung(en) (36, 56, 78) als α definiert ist, und wobei
α<25°, und
wobei der Abstand von der Mitte der tangentialen Einlassöffnung(en) (36, 56, 78) zur
Mitte der Auslassöffnung (37, 57, 79) grösser ist als zweimal des Abstands von der
Mitte der Auslassöffnung (37, 57, 79) bis zum Rand der Auslassöffnung (37, 57, 79),
und
wobei die tangentialen Einlassöffnung(en) (36, 56, 78) einen solchen Durchflussbereich
aufweisen, der relativ zur Fliessfrequenz des Dampfes ist, so dass die oberflächliche
Dampfströmungsgeschwindigkeit in den tangentialen Einlassöffnung(en) (36, 56, 78)
VvDispergiert überschreitet, als in der Gleichung (a) definiert,

wobei: VvDispergiert die oberflächliche Dampfströmungsgeschwindigkeit ist, die in dispergiertem Fliessen
resultiert, und
ρL die tatsächliche Flüssigkeitsdichte in kg/m3 ist, und
ρv die tatsächliche Dampfdichte in kg/m3 ist,
bei wenigstens einer Betriebsphase des Reaktors (1), für Dispersion der Flüssigkeit
in den Dampf und/oder des Dampfes in die Flüssigkeit und für die Einführung eines
drallenden Fliessens in der Drallbox (40, 59, 82), und
es zu ermöglichen, dass der Dampf und die Flüssigkeit um die Auslassöffnung (37, 57,
79) rotieren um das Beimischen zu erzielen; und
den Dampf und Flüssigkeit passieren lassen von der Drallbox (40, 59, 82) durch die
Auslassöffnung (37, 57, 79) in den Raum unter der Drallbox (40, 59, 82).
2. Verfahren nach Anspruch 1 wobei die Seitenwand (14, 33, 53, 73) und die tangentialen
Einlassöffnungen (36, 56, 78) sich an der Aussenwand (14) des katalytischen Reaktors
(1) befinden um den Abstand von der tangentialen Einlassöffnung (36, 56, 78) bis zur
Auslassöffnung (37, 57, 79) zu maximieren um die Anzahl der Flüssigkeitsrotationen
in der Drallbox (40, 59, 82) zu erhöhen.
3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei die Seitenwand (14, 33, 53, 73) ein
Teil der Aussenwand (14) des katalytischen Reaktors (1) ist, und die tangentialen
Einlassöffnung(en) (36, 56, 78) sich neben der Aussenwand (14) des katalytischen Reaktors
(1) befindet um die Anzahl der Flüssigkeitsrotationen in der Drallbox (40, 59, 82)
zu maximieren.
4. Verfahren nach einem jeglichen der Anspüche 1-3 wobei die Drallbox (40, 59, 82) eine
Grösse aufweist, die es ermöglicht, dass der Dampf und die Flüssigkeit wenigstens
360° durchschnittlich um die Auslassöffnung (37, 57, 79) rotieren können bevor der
Dampf und die Flüssigkeit die Drallbox (40, 59, 82) durch die Auslassöffnung (37,
57, 79) verlassen, um den Dampf und die Flüssigkeit, die in die Drallbox (40, 59,
82) durch verschiedene tangentialen Einlassöffnungen (36, 56, 78) hineinkommen, mit
einander zu mischen, und vorzugsweise wobei die Drallbox (40, 59, 82) eine Grösse
aufweist, die es ermöglicht, dass der Dampf und die Flüssigkeit wenigstens 540° rotieren.
5. Verfahren nach einem jeglichen der Anspüche 1-4 wobei ein vertikales Wehr (38, 80)
am Rand der Auslassöffnung (37, 57, 79) angeordnet ist und sich in die Drallbox (40,
59, 82) hinauf erstreckt.
6. Verfahren nach einem jeglichen der Anspüche 1-5 wobei die obere Wand (31, 51, 71)
und die untere Wand (32, 52, 72) horizontal sind und die Seitenwand (14, 33, 53, 73)
vertical ist.
7. Verfahren nach einem jeglichen der Anspüche 1-6 wobei eine Prallplatte (39, 58, 81)
unter der Auslassöffnung (37, 57, 79) angeordnet ist um die hohe Geschwindigkeit der
Dampf- und Flüssigkeitsströmung, die die Drallbox (40, 59, 82) durch die Auslassöffnung
(37, 57, 79) verlässt, abzubrechen, und vorzugsweise wobei die Prallplatte (39, 58,
81) mit Perforationen, Öffnungen, Abzügen und/oder Wehren versehen ist, um die grobe
Verteilung von Flüssigkeit an die abschliessende Verteilerwanne (12) zu verbessern,
und ferner vorzugsweise anderenfalls wobei die Prallplatte (81) konkav ist um den
Bereich für die auswärts gehende Radialströmung des Dampfs und der Flüssigkeit unter
dem Rand der Auslassöffnung (79) zu vergrössern und um den Bereich für die einwärts
gehende Radialströmung des Dampfs und der Flüssigkeit unter dem Rand der Prallplatte
(81) zu vergrössern.
8. Verfahren nach einem jeglichen der Anspüche 1-7 wobei α<15°, und vorzugsweise wobei
a<10° und noch mehr vorzugsweise wobei α<5°.
9. Katalytischer Reaktor (1) umfassend eine zwischen einem oberen Katalysatorbett (2)
und einem unteren Katalysatorbett (3) angeordnete Mischvorrichtung (8, 30, 50, 70)
für das Beimischen von Dampf und Flüssigkeit, die gleichzeitig im Reaktor (1) durch
die gegensitig überlagerten Katalysatorbetten (2, 3) fliessen, wobei die Mischvorrichtung
(8, 30, 50, 70) umfasst:
eine Drallbox (40, 59, 82) umfassend eine obere Wand (31, 51, 71), eine Seitenwand
(14, 33, 53, 73) und eine untere Wand (32, 52, 72); und
einen oder mehr Durchgänge zum Leiten des gleichzeitigen Fliessens von Dampf und Flüssigkeit
im Reaktor (1) von dem Raum oberhalb der Drallbox (40, 59, 82) und in die Drallbox
(40, 59, 82); und
eine oder mehr in den Durchgängen an der Seitenwand ansässigen tangentialen Einlassöffnungen
(36, 56, 78) für eine Hochgeschwindigkeitseinpressung des Dampfs und der Flüssigkeit
in die Drallbox (40, 59, 82); wobei die tangentialen Einlassöffnung(en) (36, 56, 78)
einen solchen Durchflussbereich aufweisen, der relativ zur Fliessfrequenz des Dampfes
ist, so dass die oberflächliche Dampfströmungsgeschwindigkeit in den tangentialen
Einlassöffnung(en) (36, 56, 78) VvDispergiert überschreitet, als in der Gleichung (a) definiert,

wobei: VvDispergiert die oberflächliche Dampfströmungsgeschwindigkeit ist, die in dispergiertem Fliessen
resultiert, und
ρL die tatsächliche Flüssigkeitsdichte in kg/m3 ist, und
ρv die tatsächliche Dampfdichte in kg/m3 ist, bei wenigstens einer Betriebsphase des Reaktors (1), für Dispersion der Flüssigkeit
in den Dampf und/oder des Dampfes in die Flüssigkeit und für die Einführung eines
drallenden Fliessens in der Drallbox (40, 59, 82), wobei der Strömungsgeschwindigkeitsvektor
des Dampfs und der Flüssigkeit in den tangentialen Einlassöffnungen (35, 56, 78) an
der Seitenwand eine Richtung nah an der Fliessrichtung der drallenden Flüssigkeiten
aufweist in der Drallbox neben der tangentialen Einlassöffnung (36, 56, 78); wobei
der Winkel zwischen dem Strömungsgeschwindigkeitsvektor in den tangentialen Einlassöffnung(en)
(36, 56, 78) und die Fliessrichtung der Flüssigkeiten in der Drallbox (40, 59, 82)
als α definiert sind, und wobei α<25°, und
eine Auslassöffnung (37, 57, 79) in der unteren Wand (32, 52, 72) zum Leiten des gleichzeitigen
Fliessens von dem Dampf und der Flüssigkeit im Reaktor (1) von der Drallbox (40, 59,
82) bis zum Raum unter der Drallbox (40, 59, 82); und
wobei der Abstand von der Mitte der tangentialen Einlassöffnung(en) (36, 56, 78) zur
Mitte der Auslassöffnung (37, 57, 79) grösser ist als zweimal des Abstands von der
Mitte der Auslassöffnung (37, 57, 79) zum Rand der Auslassöffnung (37, 57, 79).
10. Katalytischer Reaktor (1) nach Anspruch 9, wobei der Abstand von der Mitte der tangentialen
Einlassöffnung(en) (36, 56, 78) zur Mitte der Auslassöffnung (37, 57, 79) grösser
ist als zweieinhalbmal des Abstands von der Mitte der Auslassöffnung (37, 57, 79)
zum Rand der Auslassöffnung (37, 57, 79), und ferner vorzugsweise wobei der Abstand
von der Mitte der tangentialen Einlassöffnung(en) (36, 56, 78) zur Mitte der Auslassöffnung
(37, 57, 79) grösser ist als dreimal des Abstands von der Mitte der Auslassöffnung
(37, 57, 79) bis zum Rand der Auslassöffnung (37, 57, 79).
11. Katalytischer Reaktor (1) nach einem jeglichen der Anspüche 9-10 wobei ein vertikales
Wehr (38, 80) am Rand der Auslassöffnung (37, 57, 79) angeordnet ist und sich nach
oben und in die Drallbox (40, 59, 82) hinein erstreckt.
12. Katalytischer Reaktor (1) nach einem jeglichen der Anspüche 9-11 wobei die obere Wand
(31, 51, 71) und die untere Wand (32, 52, 72) horizontal sind, und die Seitenwand
(14, 33, 53, 73) vertical ist.
13. Katalytischer Reaktor (1) nach einem jeglichen der Anspüche 9-12 wobei die Auslassöffnung
(37, 57, 79) zirkulär ist.
14. Katalytischer Reaktor (1) nach einem jeglichen der Anspüche 9-13 wobei die obere Wand
(31, 51, 71) und die untere Wand (32, 52, 72) zirkulär sind.
15. Katalytischer Reaktor (1) nach einem jeglichen der Anspüche 9-14 wobei die Seitenwand
(14, 33, 53, 73) zylindrisch ist.
16. Katalytischer Reaktor (1) nach einem jeglichen der Anspüche 9-15 wobei die Seitenwand
(14, 33, 53, 73) ein Teil der Aussenwand des Reaktors (1) ist.
17. Katalytischer Reaktor (1) nach Anspruch 13 wobei die tangentialen Einlassöffnung(en)
(36, 56, 78) auf einem Kreis von einem Durchmesser, Di, angeordnet sind, und wobei die zirkuläre Auslassöffnung (37, 57, 79) einen Durchmesser
Do aufweist und wobei das Verhältnis Di/Do grösser ist als 2, und vorzugsweise wobei die tangentialen Einlassöffnung(en) (36,
56, 78) auf einem Kreis von einem Durchmesser, Di, angeordnet sind, und wobei die zirkuläre Auslassöffnung (37, 57, 79) einen Durchmesser
Do aufweist, und wobei das Verhältnis Di/Do grösser ist als 2,5, und ferner vorzugsweise wobei die tangentialen Einlassöffnung(en)
(36, 56, 78) auf einem Kreis von einem Durchmesser, Di, angeordnet sind, und wobei die zirkuläre Auslassöffnung (37, 57, 79) einen Durchmesser
Do aufweist, und wobei das Verhältnis Di/Do grösser ist als 3.
18. Katalytischer Reaktor (1) nach den Ansprüchen 9-17 umfassend eine Prallplatte (39,
58, 81) unter der Auslassöffnung (37, 57, 79) um die hohe Geschwindigkeit der Mischerausgangsströmung
abzubrechen, und vorzugsweise wobei die Prallplatte (39, 58, 81) mit Perforationen,
Öffnungen, Abzügen und/oder Wehren versehen ist um die grobe Verteilung von Flüssigkeit
an die abschliessende Verteilerwanne (12) zu verbessern, und ferner vorzugsweise oder
anderenfalls wobei die Prallplatte (39, 58, 81) konkav ist um den Bereich für die
auswärts gehende Radialströmung des Dampfs und der Flüssigkeit unter dem Rand der
Auslassöffnung (37, 57, 79) zu vergrössern, und um den Bereich für die einwärts gehende
Radialströmung des Dampfs und der Flüssigkeit unter dem Rand der Prallplatte (39,
58, 81) zu vergrössern.
19. Katalytischer Reaktor (1) nach einem jeglichen der Anspüche 9-18, wobei der katalytischer
Reaktor (1) ein vertikaler Hydroprozessreaktor mit einem abwärts gleichzeitigen Fliessen
von Dampf und Flüssigkeit ist, worin Kohlenwasserstoffe in eine Reaktion eingehen
mit wasserstoffreichem Gas in Anwesenheit von einem Hydroprozesskatalysator.
20. Katalytischer Reaktor (1) nach einem jeglichen der Anspüche 9-19 wobei α<15°, und
vorzugsweise wobei a<10° und noch mehr vorzugsweise wobei α<5°.
1. Procédé pour mélanger de la vapeur et du liquide coulant concurremment dans un réacteur
catalytique (1) entre un lit de catalyseur supérieur (2) et un lit de catalyseur inférieur
(3) de celui-ci, le procédé comprenant les étapes de:
fournir un caisson de tourbillon (40, 59, 82) comprenant une paroi supérieure (31,
51, 71), une paroi latérale (14, 33, 53, 73) et une paroi inférieure (32, 52, 72)
avec une ouverture de sortie (37, 57, 79); et
fournir au moins un passage pour conduire l'écoulement concurrent de ladite vapeur
et ledit liquide dans ledit réacteur (1) de l'espace au-dessus ledit caisson de tourbillon
(40, 59, 82) et dans ledit caisson de tourbillon (40, 59, 82); et
fournir au moins un orifice d'entrée tangentiel (36, 56, 78) placé dans lesdits passages
afin que ladite vapeur et ledit liquide puissent entrer dans ledit caisson de tourbillon
(40, 59, 82); et
passer ladite vapeur et ledit liquid de l'espace au-dessus ledit caisson de tourbillon
(40, 59, 82) par ledit au moins un orifice d'entrée tangentiel (36, 56, 78) et dans
ledit caisson de tourbillon (40, 59, 82) à ladite paroi latérale (14, 33, 53, 73)
et dans une direction près de la direction d'écoulement des fluides tourbillonnant
à l'intérieur dudit caisson de tourbillon (40, 59, 82) adjacente à l'orifice/aux orifices
d'entrée tangentiel(s) (36, 56, 78); où l'angle entre le vecteur de vitesse d'écoulement
dans ledit orifice/lesdits orifices d'entrée tangentiel(s) (36, 56, 78) et la direction
d'écoulement desdits fluides tourbillonnants à l'intérieur dudit caisson de tourbillon
(40, 59, 82) adjacente à l'orifice/aux orifices d'entrée tangentiel(s) (36, 56, 78)
est définie comme α et où α<25°, et
où la distance du centre dudit orifice/desdits orifices d'entrée tangentiel(s) (36,
56, 78) au centre de ladite ouverture de sortie (37, 57, 79) excède deux fois la distance
du centre de ladite ouverture de sortie (37, 57, 79) au bord de ladite ouverture de
sortie (37, 57, 79), et
où ledit orifice/lesdits orifices d'entrée tangentiel(s) (36, 56, 78) a/ont une telle
zone de passage d'écoulement par rapport au débit de ladite vapeur que la vitesse
d'écoulement de vapeur superficielle dans l'orifice/les orifices d'entrée tangentiel(s)
(36, 56, 78) excède VvDispersed comme défini dans l'équation (a)

où: VvDispersed est la vitesse d'écoulement de vapeur superficielle qui résulte en un écoulement
dispersé, et
ρL est la densité de liquid réelle en kg/m3, et
ρv est la densité de vapeur réelle en kg/m3
pendant au moins une phase opérationnelle dudit reacteur (1), pour la dispersion dudit
liquide dans la vapeur et/ou la vapeur dans le liquide et pour introduire un écoulement
tourbillonnant dans ledit caisson de tourbillon (40, 59, 82), et
permettant à ladite vapeur et audit liquide de tourner autour de ladite ouverture
de sortie (37, 57, 79) pour obtenir ledit mélange; and
passant ladite vapeur et ledit liquid dudit caisson de tourbillon (40, 59, 82) par
ladite ouverture de sortie (37, 57, 79) à l'espace au-dessous ledit caisson de tourbillon
(40, 59, 82).
2. Procédé selon la revendication 1, où ladite paroi latérale (14, 33, 53, 73) et lesdits
orifices d'entrée tangentiels (36, 56, 78) sont placés à la paroi extérieure (14)
dudit réacteur catalytique (1) afin de maximiser la distance dudit orifice d'entrée
tangentiel (36, 56, 78) à ladite ouverture de sortie (37, 57, 79) de manière à augmenter
le nombre de rotations de fluide dans ledit caisson de tourbillon (40, 59, 82).
3. Procédé selon la revendication 1 ou la revendication 2, où ladite paroi latérale (14,
33, 53, 73) est une section de la paroi extérieure (14) dudit réacteur catalytique
(1) et ledit orifice/lesdits orifices d'entrée tangentiels (36, 56, 78) (36, 56, 78)
est/sont placé(s) adjacent à ladite paroi extérieure (14) dudit réacteur catalytique
(1) de manière à augmenter le nombre de rotations fluides dans ledit caisson de tourbillon
(40, 59, 82).
4. Procédé selon l'une quelconque des revendications 1 à 3, où ledit caisson de tourbillon
(40, 59, 82) est dimensionné pour permettre à ladite vapeur est audit liquid de tourner
au moins 360° en moyenne autour de ladite ouverture de sortie (37, 57, 79) avant que
ladite vapeur et ledit liquid sortent dudit caisson de tourbillon (40, 59, 82) par
ladite ouverture de sortie (37, 57, 79) de manière à mélanger la vapeur et le liquide
qui entrent dans ledit caisson de tourbillon (40, 59, 82) par des orifices d'entrée
tangentiels (36, 56, 78) l'un avec l'autre, et préférablement là où ledit caisson
de tourbillon (40, 59, 82) est dimensionné pour permettre à ladite vapeur est audit
liquide de tourner au moins 540°.
5. Procédé selon l'une quelconque des revendications 1 à 4, où un déversoir vertical
(38, 80) est fixé au bord de ladite ouverture de sortie (37, 57, 79) et s'étend vers
le haut dans ledit caisson de tourbillon (40, 59, 82).
6. Procédé selon l'une quelconque des revendications 1 à 5, où ladite paroi supérieure
(31, 51, 71) et ladite paroi inférieure (32, 52, 72) sont horizontales et ladite paroi
latérale (14, 33, 53, 73) is verticale.
7. Procédé selon l'une quelconque des revendications 1 à 6, où une plaque d'impact (39,
58, 81) est placée sous ladite ouverture de sortie (37, 57, 79) afin de ralentir la
haute vitesse de l'écoulement de la vapeur et du liquid sortant dudit caisson de tourbillon
(40, 59, 82) par ladite ouverture de sortie (37, 57, 79), et préférablement où ladite
plaque d'impact (39, 58, 81) est fournie de perforations, d'orifices, de cheminées
et/ou de déversoirs pour améliorer la distribution du liquide au plateau distributeur
final (12), et plus préférablement ou alternativement où ladite plaque d'impact (81)
est concave de manière à augmenter la zone d'écoulement radial vers l'extérieur de
ladite vapeur et dudit liquide sous le bord de ladite ouverture de sortie (79), et
de manière à augmenter la zone d'écoulement radial vers l'intérieur de ladite vapeur
et dudit liquide sous le bord de ladite plaque d'impact (81).
8. Procédé selon l'une quelconque des revendications 1 à 7, où α<15°, et préférablement
où α<10°, et encore plus préférablement où α<5°.
9. Réacteur catalytique (1) comprenant un dispositif de mélange (8, 30, 50, 70) dispose
entre un lit de catalyseur supérieur (2) et un lit de catalyseur inférieur (3) de
celui-ci pour mélanger de la vapeur et du liquide coulant concurrement à l'intérieur
dudit réacteur (1) par/à travers lesdits lits de catalyseur mutuellement superposés
(2, 3), ledit dispositif de mélange (8, 30, 50, 70) comprenant:
un caisson de tourbillon (40, 59, 82) comprenant une paroi supérieure (31, 51, 71),
une paroi latérale (14, 33, 53, 73) et une paroi inférieure (32, 52, 72); et
au moins un passage pour conduire l'écoulement concurrent de ladite vapeur et dudit
liquide dans ledit réacteur (1) de l'espace au-dessus ledit caisson de tourbillon
(40, 59, 82) et dans ledit caisson de tourbillon (40, 59, 82); et
au moins un orifice d'entrée tangentiel (36, 56, 78) placé dans lesdits passages à
la paroi latérale pour injection à grande vitesse de ladite vapeur et ledit liquid
dans ledit caisson de tourbillon (40, 59, 82); ledit orifice/lesdits orifices d'entrée
tangentiels (36, 56, 78) ayant une telle zone de passage d'écoulement par rapport
au débit de ladite vapeur que la vitesse d'écoulement de vapeur superficielle dans
ledit orifice/lesdits orifices d'entrée tangentiel(s) (36, 56, 78) excède VvDispersed comme défini dans l'équation (a)

où: VvDispersed est la vitesse d'écoulement de vapeur superficielle qui résulte en un écoulement
dispersé, et
ρL est la densité de liquid réelle en kg/m3, et
ρv est la densité de vapeur réelle en kg/m3
pendant au moins une phase opérationnelle dudit reacteur (1), pour la dispersion du
liquide dans la vapeur et/ou la vapeur dans le liquide, et pour introduire un écoulement
tourbillonnant à l'intérieur dudit caisson de tourbillon (40, 59, 82), le vecteur
de vitesse d'écoulement de ladite vapeur et ledit liquide dans lesdits orifices d'entrée
tangentiels (36, 56, 78) à ladite paroi latérale ayant une direction près de la direction
d'écoulement des fluides à l'intérieur dudit caisson de tourbillon (40, 59, 82) adjacente
à l'orifice d'entrée tangentiel (36, 56, 78); où l'angle entre ledit vecteur de vitesse
d'écoulement dans lesdits orifices d'entrée tangentiels (36, 56, 78) et la direction
d'écoulement des fluides à l'intérieur dudit caisson de tourbillon (40, 59, 82) est
définie comme
α et où α<25°, et
une ouverture de sortie (37, 57, 79) dans ladite paroi inférieure (32, 52, 72) pour
conduire l'écoulement concurrent de ladite vapeur et dudit liquid dans ledit réacteur
(1) dudit caisson de tourbillon (40, 59, 82) à l'espace sous ledit caisson de tourbillon
(40, 59, 82); et
où la distance du centre dudit orifice/desdits orifices d'entrée tangentiel(s) (36,
56, 78) au centre de ladite ouverture de sortie (37, 57, 79) excède deux fois la distance
du centre de ladite ouverture de sortie (37, 57, 79) au bord de ladite ouverture de
sortie (37, 57, 79).
10. Réacteur catalytique (1) selon la revendication 9, où la distance du centre dudit
orifice/desdits orifices tangentiel(s) (36, 56, 78) au centre de ladite ouverture
de sortie (37, 57, 79) est plus large que deux fois et demie la distance du centre
de ladite ouverture de sortie (37, 57, 79) au bord de ladite ouverture de sortie (37,
57, 79), et encore préférablement, où la distance du centre dudit orifice/desdits
orifice(s) tangentiel(s) (36, 56, 78) au centre de ladite ouverture de sortie (37,
57, 79) est plus large que trois fois la distance du centre de ladite ouverture de
sortie (37, 57, 79) au bord de ladite ouverture de sortie (37, 57, 79).
11. Réacteur catalytique (1) selon l'une quelconque des revendications 9 à 10, où un déversoir
vertical (38, 80) est fixé au bord de l'ouverture de sortie (37, 57, 79) et s'étend
vers le haut et dedans ledit caisson de tourbillon (40, 59, 82).
12. Réacteur catalytique (1) selon l'une quelconque des revendications 9 à 11, où ladite
paroi supérieure (31, 51, 71) et ladite paroi inférieure (32, 52, 72) sont horizontales
et ladite paroi latérale (14, 33, 53, 73) est verticale.
13. Réacteur catalytique (1) selon l'une quelconque des revendications 9 à 12, où ladite
ouverture de sortie (37, 57, 79) est circulaire.
14. Réacteur catalytique (1) selon l'une quelconque des revendications 9 à 13, où ladite
paroi supérieure (31, 51, 71) et ladite paroi inférieure (32, 52, 72) sont circulaires.
15. Réacteur catalytique (1) selon l'une quelconque des revendications 9 à 14, où ladite
paroi latérale (14, 33, 53, 73) est cylindrique.
16. Réacteur catalytique (1) selon l'une quelconque des revendications 9 à 15, où ladite
paroi latérale (14, 33, 53, 73) est une section de la paroi extérieure dudit réacteur
(1).
17. Réacteur catalytique (1) selon la revendication 13, où l'orifice/les orifices d'entrée
tangentiel(s) (36, 56, 78) est/sont placé(s) sur un cercle d'un diamètre, Di, et où l'ouverture de sortie circulaire (37, 57, 79) a un diamètre Do et où le ratio Di/Do est supérieur à 2, et préférablement où l'orifice/les orifices d'entrée tangentiel(s)
(36, 56, 78) est/sont placé(s) sur un cercle d'un diamètre, Di, et où l'ouverture de sortie circulaire (37, 57, 79) a un diamètre Do et où le ratio Di/Do est supérieur à 2.5, et encore plus préférablement où l'orifice/les orifices d'entrée
tangentiel(s) (36, 56, 78) est/sont placé(s) sur un cercle d'un diamètre, Di, et où l'ouverture de sortie circulaire (37, 57, 79) a un diamètre Do et où le ratio Di/Do est supérieur à 3.
18. Réacteur catalytique (1) selon les revendications 9 à 17 comprenant une plaque d'impact
(39, 58, 81) sous ladite ouverture de sortie (37, 57, 79) pour ralentir la grande
vitesse du courant de sortie du mélangeur, et préférablement où ladite plaque d'impact
(39, 58, 81) est fournie de perforations, d'orifices, de cheminées et/ou de déversoirs
pour améliorer la distribution du liquide au plateau distributeur final (12), et où
encore plus préférablement ou alternativement, où ladite plaque d'impact (39, 58,
81) est concave de manière à augmenter la zone d'écoulement radial vers l'extérieur
de ladite vapeur et dudit liquide sous ledit bord de ladite ouverture de sortie (37,
57, 79) et de manière à augmenter la zone d'écoulement radiale vers l'intérieur de
ladite vapeur et dudit liquide sous le bord de ladite plaque d'impact (39, 58, 81).
19. Réacteur catalytique (1) selon les revendications 9 à 18, où ledit réacteur catalytique
(1) est un réacteur d'hydrotraitement vertical hydroprocessing avec un écoulement
concurrent descendant de vapeur et de liquide, dans lequel des hydrocarbures réagissent
avec du gaz riche en hydrogène en présence d'un catalyseur d'hydrotraitement.
20. Réacteur catalytique (1) selon l'une quelconque des revendications 9 à 19, où α<15°,
et préférablement où α<10°, et encore plus préférablement, où α<5°.