

(11) EP 2 770 182 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

27.08.2014 Bulletin 2014/35

(51) Int Cl.: F02C 7/224 (2006.01) F02C 9/40 (2006.01)

F02C 9/00 (2006.01) G01N 33/22 (2006.01)

(21) Application number: 13156508.7

(22) Date of filing: 25.02.2013

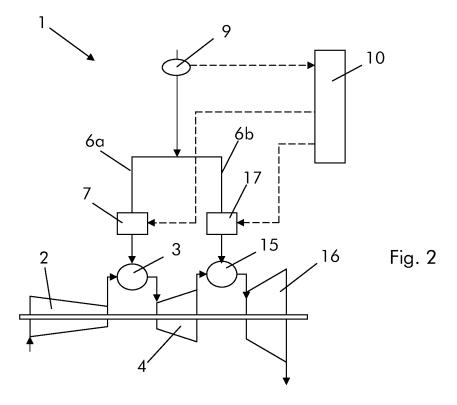
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(71) Applicant: Alstom Technology Ltd 5400 Baden (CH)


(72) Inventors:

- Knapp, Klaus
 5412 Gebenstorf (CH)
- Marx, Peter
 5413 Birmenstorf (CH)
- Reyser, Karl 79790 Kuessaberg (DE)
- Gasser-Pagani, Maria-Belen 5400 Baden (CH)

(54) Method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine

(57) The method for adjusting a natural gas temperature for a fuel supply line (6) of a gas turbine engine (1) comprises measuring by infrared analysis the natural gas percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2), calculating the nitrogen (N2) percentage content as the

complement to 100 of the measured percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2), calculating an index indicative of the natural gas energy content, adjusting the natural gas temperature on the basis of the index.

EP 2 770 182 A1

Description

TECHNICAL FIELD

⁵ **[0001]** The present disclosure relates to a method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine and to a gas turbine engine.

BACKGROUND

15

20

25

30

35

45

50

55

[0002] Combined cycle power plants have a gas turbine engine and a steam turbine engine. The gas turbine engine can be supplied with natural gas that is pre-heated (i.e. its temperature is adjusted before it is injected into the combustion chamber of the gas turbine engine) to optimize efficiency; usually pre-heating is achieved by heating the natural gas to a maximum allowable temperature using steam or feedwater from the steam cycle.

[0003] Flexibility with regards to the natural gas composition is an important feature for those combined cycle power plants that are supplied from different natural gas pipelines, from a LNG harbour or from a pipeline where additionally a natural gas treatment plant is installed.

[0004] In general when the natural gas source is changed, the natural gas composition is also changed. Change in natural gas composition can cause a change in the behavior of the combustion process. For example, a natural gas with high inert contents and hence a lower heating value requires an increased supply pressure; this may lead to changes in gas reactivity and mixing quality.

[0005] For this reason the composition of the natural gas supplied to a combined cycle power plant (in particular to a gas turbine of such a plant) is measured.

[0006] In order to measure the composition of the natural gas, different devices are known, namely:

- Infrared analyzers, these devices allow measurement of the hydro carbons; in addition they have the advantage that their response is quite fast; this is useful because the natural gas supply (and thus the natural gas composition) can be changed on a weekly, daily or hourly basis or even much faster if for example in a LNP plant the higher hydro carbon trips according to the fuel supply conditions). Infrared analyzers have the disadvantage that they are not able to measure the natural gas content of nitrogen (N2, the N2 amount can be quite large in natural gas), because this compound does not respond to infrared radiation.
 - Chromatography analyzers, these devices can measure the hydro carbon content and also the nitrogen (N2) content
 of the natural gas. The disadvantage of chromatography analyzers is that their response is very slow, because it
 can take minutes for them to analyze the natural gas composition. Such a slow response can lead to instability of
 the combustion in the gas turbine engine.

[0007] The changes in natural gas composition could happen slowly if the switch of gas line is planned (usually around 5-30 minutes) or they could happen quickly if an unplanned event triggers a change of natural gas (usually around 30 seconds).

40 SUMMARY

[0008] An aspect of the disclosure includes providing a method for adjusting the temperature of the natural gas (preheating temperature) to optimize reliability and efficiency.

[0009] Advantageously, for continuous reliable operation of a combined cycle power plant with fluctuating gas compositions at optimum combined cycle efficiency the actual gas composition is measured and a maximum allowable fuel gas temperature is defined and controlled for the fuel supply line or different fuel supply lines.

[0010] Advantageously, the method allows a fast response of the gas turbine engine operation to changes in composition of the natural.

[0011] These and further aspects are attained by providing a method and gas turbine in accordance with the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Further characteristics and advantages will be more apparent from the description of a preferred but non-exclusive embodiment of the method and gas turbine engine, illustrated by way of non-limiting example in the accompanying drawings, in which:

Figures 1 and 2 are schematic views of different gas turbine engines.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0013] The method for adjusting the natural gas temperature for a fuel supply line of a gas turbine engine comprises the following steps:

- measuring by infrared analysis the natural gas percentage content (preferably molar or volumetric percentage but also mass percentage) of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2),

- calculating the nitrogen (N2) percentage content as the complement to 100 of the measured percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2); in other words:

The largest part of the natural gas content is defined by methane, ethane, propane, butane, carbon dioxide and nitrogen, thus even if additional components such as argon are contained in the natural gas, they do not negatively affect the measure of nitrogen as for the precision required. In addition, since the hydro carbon content is measured by infrared analysis and the nitrogen content is calculated, the composition of the natural gas can be monitored with a fast response. Further steps of the method include:

calculating an index indicative of the natural gas energy content, and

- adjusting the natural gas temperature on the basis of the index.

[0014] For example, adjusting the natural gas temperature includes defining a plurality of ranges for the index, associating one maximum temperature to each range, and maintaining the natural gas temperature below or at the maximum temperature corresponding to the range into which the calculated index falls. This can be advantageously done by means of look up tables. The look up tables can be prepared during the validation tests of the gas turbine engine.

[0015] In order to take into account the natural gas composition, the index can be calculated by:

- calculating the lower heat value of a mixture including the measured amount of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2) and the calculated amount of nitrogen (N2)

- calculating the molecular weight of the mixture including the measured amount of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2) and the calculated amount of nitrogen (N2). This can be done by summing the molecular weight of each component in view of its percentage in the mixture.

[0016] The index NGI (Natural Gas Interchange) is calculated by:

$$NGI = (LHVng/LHVch4) * (Mng/Mch4)^{1/2}$$

wherein

5

10

15

20

30

35

40

50

55

LHVng is the calculated lower heat value of the mixture

LHVch4 is the lower heat value of methane

Mng is the molecular weight of the mixture

Mch4 is the molecular weight of methane.

In this case the reference for the index is a fuel being methane.

Alternatively, the index can be calculated with reference to the design conditions for the gas turbine engine.

In this case the index IGN is calculated as follows:

$$NGI = (LHVng/LHVdes) * (Mng/Mdes)^{1/2}$$

wherein

LHVng is the calculated lower heat value of the mixture

LHVdes is the design lower heat value

Mng is the molecular weight of the mixture

Mdes is the design molecular weight.

[0017] If the gas turbine engine has a plurality of fuel supply lines for different combustion chambers and/or different stages of a combustion chamber the natural gas temperature of at least one fuel supply line can be adjusted independently of the natural gas temperature of another fuel supply line.

[0018] The method above described can be implemented in a gas turbine engine 1 comprising a compressor 2, a combustion chamber 3 and a turbine 4.

[0019] The combustion chamber 3 has a fuel supply line 6 with a heat exchanger 7 for adjusting a natural gas temperature (i.e. to pre-heat the natural gas that is supplied through the line 6 to the combustion chamber 3 of the gas turbine 1).

[0020] The heat exchangers can be of different types and can be supplied with different warm fluids such as for example steam, warm air from the cooling air cooler or warm water.

[0021] In addition, the gas turbine engine 1 has a sensor 9 for measuring by infrared analysis the natural gas percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2); since infrared analysis is used this measure is very fast (seconds).

[0022] The sensor 9 is connected to a controller 10 for calculating the percentage content of nitrogen (N2) as the complement to 100 of the measured percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2).

[0023] In addition, the controller 10 also calculates an index indicative of the natural gas energy content and on the basis of this index the controller 10 drives actuators for the heat exchanger to adjust the natural gas temperature.

[0024] The actuators are usually defined by valves that regulate the steam flow or warm air flow or warm water flow. Other kinds of actuators are possible.

[0025] When the method is implemented in a gas turbine engine like the one described, look up tables can be used.

[0026] Thus, if the calculated NGI is for example 0.75, the maximum temperature for the natural gas to be injected into the combustion chamber 3 of the gas turbine engine of figure 1 is a given temperature according to the look up table. The natural gas will be pre-heated at this given temperature or at a temperature lower than this given temperature.

[0027] The method can also be used in gas turbine engine with sequential combustion.

30

35

40

45

50

55

[0028] Figure 2 shows a gas turbine engine with sequential combustion; in figure 2 like reference numbers as in figure 1 indicates the same or similar components, i.e. the gas turbine engine 1 has the compressor 2, the combustion chamber 3, the turbine 4, the heat exchanger 7, the sensor 9 and the controller 10.

[0029] In addition, the gas turbine engine 1 includes a sequential combustion chamber 15 that is supplied with the flue gases from the turbine 4 and a second turbine 16 to expand hot gases generated in the sequential combustion chamber 15.

[0030] In this example, the fuel supply line of the combustion chamber 3 is indicated by the reference 6a and the fuel supply line of the sequential combustion chamber is indicated by the reference 6b.

[0031] The fuel supply line 6b has a heat exchanger 17 for adjusting the natural gas temperature.

[0032] The controller 10 drives the actuators of the heat exchanger 7 of the fuel supply line 6a of the combustion chamber 3 independently of the actuators of the heat exchanger 17 of the fuel supply line 6b of the sequential combustion chamber 15.

[0033] When the method is implemented in a gas turbine engine like the one described, look up tables can be used.

[0034] Thus, if the calculated NGI is for example 0.75, the maximum temperature for the natural gas to be injected into the combustion chamber 3 is a given temperature and the maximum temperature for the natural gas to be injected into the combustion chamber 15 is this given temperature.

[0035] The operation of the gas turbine engine is apparent from that described and illustrated and is substantially the following (with reference to figure 2).

[0036] Air is compressed in the compressor 2 and supplied into the combustion chamber 3 in which also natural gas is supplied. The natural gas is combusted generating hot gas that is expanded in the turbine 4. The exhaust gas from the turbine 4 is supplied into the sequential combustion chamber 15 where additional natural gas is provided and combusted generating hot gas. This hot gas is expanded in the second turbine 16 and is then discharged.

[0037] A common line supplies fuel to the fuel supply lines 6a and 6b. The sensor 9 measures the content (percentage) of methane, ethane, propane, butane, carbon dioxide; this measure is very fast (seconds). The information on the percentage content of methane, ethane, propane, butane, carbon dioxide is provided to the controller 10 that calculates the content (percentage) of nitrogen and the molecular weight of a mixture having the measured percentage of methane, ethane, propane, butane, carbon dioxide and the calculated percentage of nitrogen. The total amount will not be exactly 100%, but this does not affect the adjustment.

[0038] Then the index NGI is calculated and for example on the basis of look up tables the maximum temperature for the natural gas supplied to the combustion chamber 3 and sequential combustion chamber 15 is found (these temperature are in general different but could also be the same).

[0039] The temperature of the natural gas must not be higher than the maximum temperature found, i.e. the temperature of the natural gas can be lower than the maximum temperature, but for efficiency reasons, preferably the temperature

of the natural gas (pre-heating) is adjusted to the maximum temperature or to a value close to it.

[0040] Naturally the features described may be independently provided from one another.

1 2 3

4

[0041] In practice the materials used and the dimensions can be chosen at will according to requirements and to the state of the art.

REFERENCE NUMBERS

gas turbine engine
compressor
combustion chamber
turbine
fuel supply line

6 fuel supply line 6a, 6b fuel supply line 7 heat exchanger 9 sensor

10 controller

15 sequential combustion chamber

second turbineheat exchanger

Claims

5

10

15

20

25

30

35

40

45

50

55

1. A method for adjusting a natural gas temperature for a fuel supply line (6) of a gas turbine engine (1), the method comprising:

measuring by infrared analysis the natural gas percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2), calculating the nitrogen (N2) percentage content as the complement to 100 of the measured percentage content

of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2), calculating an index indicative of the natural gas energy content, adjusting the natural gas temperature on the basis of the index.

2. The method of claim 1, characterised in that adjusting the natural gas temperature includes:

defining a plurality of ranges for the index, associating one maximum temperature to each range,

maintaining the natural gas temperature below or at the maximum temperature corresponding to the range into which the calculated index falls.

3. The method of claim 1, characterised in that the index is calculated by:

calculating the lower heat value of a mixture including the measured amount of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2) and the calculated amount of nitrogen (N2), calculating the molecular weight of the mixture including the measured amount of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2) and the calculated amount of nitrogen (N2)

calculating the index either by

 $NGI = (LHVng/LHVch4) * (Mng/Mch4)^{1/2}$

or

 $NGI = (LHVng/LHVdes) * (Mng/Mdes)^{1/2}$

wherein
LHVng is the calculated lower heat value of the mixture,
LHVch4 is the lower heat value of methane,
LHVdes is the design lower heat value,
Mng is the molecular weight of the mixture,

Mch4 is the molecular weight of methane,

Mdes is the design molecular weight.

4. The method of claim 1, characterised in that:

5

10

15

20

25

30

35

40

45

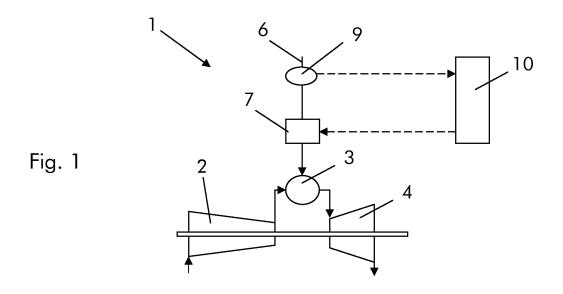
50

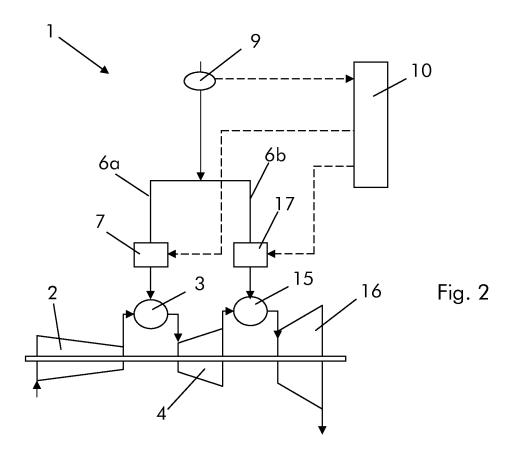
55

the gas turbine engine (1) has a plurality of fuel supply lines (6a, 6b) for different combustion chambers (3, 15) and/or different stages of a combustion chamber,

the natural gas temperature of at least one fuel supply line (6a) is adjusted independently of the natural gas temperature of another fuel supply line (6b).

5. A gas turbine engine (1) comprising a compressor (2), a combustion chamber (3) and a turbine (4), the combustion chamber (3) having a fuel supply line (6) with a heat exchanger (7) for adjusting a natural gas temperature, the gas turbine engine (1) further including:


at least a sensor (9) for measuring by infrared analysis the natural gas percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2), and a controller (10) for calculating the percentage content of nitrogen (N2) as the complement to 100 of the measured percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2), the controller (10) for further calculating an index indicative of the natural gas energy content and on the basis thereof drive actuators for the heat exchanger (7) to adjust the natural gas temperature on the basis of the index.


6. The gas turbine engine of claim 5, characterised by including:

a sequential combustion chamber (15) that is supplied with the flue gases from the turbine (4), and a second turbine (16) to expand hot gases generated in the sequential combustion chamber (15), wherein the sequential combustion chamber (15) has a fuel supply line (6b) with a heat exchanger (17) for adjusting the natural gas temperature, and

the controller (10) drives the actuators of the heat exchanger (7) of the fuel supply line (6a) of the combustion chamber (3) independently of the actuators of the heat exchanger (17) of the fuel supply line (6b) of the sequential combustion chamber (15).

6

EUROPEAN SEARCH REPORT

Application Number EP 13 15 6508

Category	Citation of document with indic of relevant passage		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)		
Υ	EP 2 557 297 A1 (ALST [CH]) 13 February 201 * paragraphs [0002], [0030], [0038] *	13 (2013-02-13)	1,5	INV. F02C7/224 F02C9/00 F02C9/40 G01N33/22		
Υ	EP 2 204 561 A2 (GEN 7 July 2010 (2010-07- * paragraphs [0025], [0032], [0035] *	-07)	1,5	u01N33722		
А	US 6 082 092 A (VANDE [US]) 4 July 2000 (20 * column 1, lines 45- * column 3, lines 2-1 * column 5, lines 12-	000-07-04) -61 * .6,24-38 *	1,5			
A	US 2008/115482 A1 (LA ET AL) 22 May 2008 (2 * paragraphs [0026], claim 1 *	2008-05-22)	1-6	TECHNICAL FIELDS		
А	DE 103 02 487 A1 (ALS [CH]) 31 July 2003 (2 * the whole document	2003-07-31)	1-6	F02C G01N		
	The present search report has been place of search The Hague	on drawn up for all claims Date of completion of the search 16 October 2013	St	Examiner einhauser, Udo		
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category nological background written disclosure mediate document	T: theory or prinoi E: earlier patent d after the filing d D: document oitec L: document oited &: member of the document	ocument, but pub ate I in the application for other reasons	lished on, or		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 13 15 6508

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

16-10-2013

1	()	
•	•	

15		
20		

30

25

35

40

45

50

55

	Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP	2557297	A1	13-02-2013	CN EP US	102953821 2557297 2013036744	A1	06-03-2013 13-02-2013 14-02-2013
EP	2204561	A2	07-07-2010	CN EP JP US	101793196 2204561 2010156324 2010162678	A2 A	04-08-2010 07-07-2010 15-07-2010 01-07-2010
US	6082092	Α	04-07-2000	JP JP TW US	3022882 H11324727 487795 6082092	A B	21-03-2000 26-11-1999 21-05-2002 04-07-2000
US	2008115482	A1	22-05-2008	NONE			
DE	10302487	A1	31-07-2003	CN DE EP JP US WO	1623031 10302487 1472447 4495971 2005515358 2005028530 03062618	A1 A1 B2 A A1	01-06-2005 31-07-2003 03-11-2004 07-07-2010 26-05-2005 10-02-2005 31-07-2003
P0459							
For more de	ails about this annex	see Of	fficial Journal of the Euro	oean Pat	ent Office, No. 12/8	2	