(11) **EP 2 781 746 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

24.09.2014 Bulletin 2014/39

(51) Int Cl.:

F04B 39/00 (2006.01)

F04B 53/00 (2006.01)

(21) Application number: 14158837.6

(22) Date of filing: 11.03.2014

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

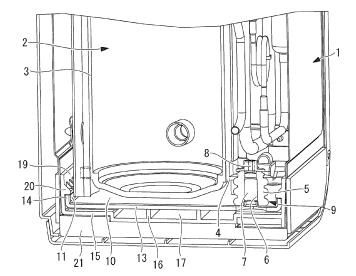
Designated Extension States:

BA ME

(30) Priority: 22.03.2013 JP 2013060234

(71) Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD. Tokyo 108-8215 (JP)

- (72) Inventors:
 - Nunome, Yoshinori TOKYO, 108-8215 (JP)


- Miyazawa, Kenichi TOKYO, 108-8215 (JP)
- Okada, Yuji
 TOKYO, 108-8215 (JP)
- Kuwayama, Hironobu TOKYO, 108-8215 (JP)
- (74) Representative: Intès, Didier Gérard André et al Cabinet Beau de Loménie
 158, rue de l'Université
 75340 Paris Cedex 07 (FR)

(54) Vibration-reducing support structure for compressor

(57) This is a vibration-reducing support structure for a compressor, in which a compressor (2) is supported in a vibration-reducing manner on a fixing plate (10) through a vibration-reducing member (5), and the fixing plate (10) is installed on a fixing base (15) through a sheet-like vibration-reducing member (13). The fixing plate (10) is installed on the sheet-like vibration-reducing member

(13) by being stacked thereon or integrally joined therewith, and both of the fixing plate (10) and the sheet-like vibration-reducing member (13) are fixedly installed on the fixing base (15) through a fixing means which fixes both while isolating vibrations travelling from the fixing plate (10) to the fixing base (15).

EP 2 781 746 A1

20

30

1

Description

Technical Field

[0001] The present invention relates to a vibration-reducing support structure for supporting a compressor in a vibration-reducing manner on a fixing base of a unit main body of an air conditioner, a chiller, and the like.

{Background Art}

[0002] A compressor includes multiple leg parts on the outer circumference of its housing, and its leg parts are commonly mounted in a vibration-reducing manner on a fixing base of a unit main body through a rubber vibration isolator or a spring, etc. In such a vibration-reducing support structure for a compressor, a single system of a rubber vibration isolator or a spring alone cannot always sufficiently absorb vibrations, and the vibrations failing to be absorbed travel to a unit main body, which can contribute to vibrations of the unit, or cause repetitive stress on refrigerant pipes connected to the compressor. [0003] To address this problem, PTL 1 shows a structure in which a compressor is supported on a sheet-metal fixing plate through a vibration-reducing member composed of a rubber or a spring, etc., and the fixing plate is installed on a fixing base of a unit through a cushioning member such as a rubber sheet, while PTL 2 shows a structure in which a compressor, an accumulator, an oil separator, and the like are fixed on a common fixing plate and the fixing plate is fixed with bolts to a fixing base through a sheet-like rubber vibration isolator.

{Citation List}

{Patent Literature}

[0004]

{PTL 1}

Japanese Unexamined Patent Application, Publication No. H3-286193

{PTL 2}

Japanese Unexamined Patent Application, Publication No. 2004-293856

{Summary of Invention}

{Technical Problem}

[0005] The aforementioned PTL 1 discloses the structure in which the rubber cushioning member is integrally bonded with an adhesive to the sheet-metal fixing plate supporting the compressor in a vibration-reducing manner, and the fixing plate is installed on the fixing base. it is not clearly specified how to fixedly install the fixing plate and the cushioning member on the fixing base. When a fixing plate with a compressor installed thereon

is fixedly installed on a fixing base through a sheet-like rubber vibration isolator, a common practice is, as shown in PTL 2, to fasten and fix the fixing plate with bolts to the fixing base.

[0006] However, if such a configuration as described above is adopted, in which the fixing plate with the compressor installed thereon is fixedly installed, together with the sheet-like rubber vibration isolator, on the fixing base with a fixing means such as a bolt, despite the rubber vibration isolator interposed between the fixing plate and the fixing base, vibrations can travel to the fixing base via the fixing means, so that the sufficient effect of isolating vibrations cannot always be obtained. For this reason, when the configuration is adopted, in which the fixing plate with the compressor supported thereon in a vibration-reducing manner is installed on a fixing base through a sheet-like vibration-reducing member, there has been a need of a vibration-reducing support structure which can more reliably block the vibrations travelling from the fixing plate to the fixing base by means of a vibrationreducing member.

[0007] The present invention has been made in view of this situation, and an object thereof is to provide a vibration-reducing support structure for a compressor which can reliably block the vibrations travelling from the compressor to the fixing base, and thereby reducing vibrations of the unit.

{Solution to Problem}

[0008] In order to solve the above problem, the vibration-reducing support structure of a compressor of the present invention has adopted the following solutions.

[0009] According to a first aspect of the present invention, there is provided a vibration-reducing support structure for a compressor including a compressor supported in a vibration-reducing manner on a fixing plate through a vibration-reducing member, the fixing plate being installed on a fixing base through a sheet-like vibration-reducing member, wherein the fixing plate is installed on the sheet-like vibration-reducing member by being stacked thereon or integrally joined therewith, and both of the fixing plate and the sheet-like vibration-reducing member are fixedly installed on the fixing base through fixing means while reducing vibrations travelling from the fixing plate to the fixing base.

[0010] According to the first aspect of the present invention, in the vibration-reducing support structure for a compressor, in which the fixing plate supporting the compressor in a vibration-reducing manner by means of the vibration-reducing member is installed on the fixing base through the sheet-like vibration-reducing member, the fixing plate is installed on the sheet-like vibration-reducing member by being stacked thereon or integrally joined therewith, and both of the fixing plate and the sheet-like vibration-reducing member are fixedly installed on a fixing base surface through the fixing means which fixes both while reducing the vibrations travelling from the fix-

20

30

40

50

ing plate to the fixing base. This configuration makes it possible to absorb the vibrations of the compressor, which fail to be absorbed by the vibration-reducing member and travel to the fixing plate, by means of the sheetlike vibration-reducing member interposed between the fixing plate and the fixing base, and thereby blocking the vibrations travelling through the fixing base to a unit main body. At the same time, since both of the fixing plate and the sheet-like vibration-reducing member are fixedly installed through the fixing means so that the vibrations travelling from the fixing plate to the fixing base are reduced, the vibrations travelling from the fixing plate to the fixing base via the fixing means can be reduced. Accordingly, vibrations of the unit can be reduced, and lift, etc. of the fixing plate during transportation or due to fall of the unit can be prevented.

[0011] According to a second aspect of the present invention, in the vibration-reducing support structure for a compressor of the first aspect, the fixing plate and the sheet-like vibration-reducing member are provided with a drain hole for discharging drain water onto the fixing base, and a surface of the fixing base is provided with drain grooves for collecting the drain water and discharging the drain water to a predetermined position.

[0012] According to the second aspect of the present invention, the fixing plate and the sheet-like vibrationreducing member are provided with the drain hole for discharging the drain water onto the fixing base, and the fixing base surface is provided with the drain groove for collecting the drain water and discharging the drain water to a specific position. Due to this configuration, even when dew is formed on surfaces of refrigerant pipes or components disposed in a space above the compressor, etc. and drips onto the fixing plate, this drain water is discharged onto the fixing base through the drain hole provided in the fixing plate and the sheet-like vibrationreducing member, and is introduced through the drain groove provided in the fixing base surface to a specific drain position for treatment. Thus, the drain water can be reliably discharged to a specific position for treatment, even in the configuration where the compressor is supported in a vibration-reducing manner on the fixing plate and the fixing plate is fixedly installed on the fixing base through the sheet-like vibration-reducing member.

[0013] According to a third aspect of the present invention, in the above-mentioned vibration-reducing support structure for a compressor of the first or second aspect, the fixing plate is provided with flange parts which are formed by bending the fixing plate upward at left and right ends thereof, the flange parts are fitted between upright walls provided on left and right sides of the fixing base so that the fixing plate and the sheet-like vibration-reducing member are installed on the fixing base, and the fixing means is a claw part which engages with the flange parts of the fixing plate and prevents the fixing plate and the sheet-like vibration-reducing member being uplifted.

[0014] According to the third aspect of the present invention, the fixing plate is provided with the flange parts

at the left and right ends, these flange parts being fitted between the upright walls on the left and right sides of the fixing base so that the fixing plate and the sheet-like vibration-reducing member are installed on the fixing base, and the fixing means is the claw part which engage with the flange parts of the fixing plate and prevent uplift of the fixing plate and the sheet-like vibration-reducing member. This configuration makes it possible to fixedly install on the fixing base the fixing plate supporting the compressor in a vibration-reducing manner, and the sheet-like vibration-reducing member interposed between the fixing plate and the fixing base, without using fastening means such as a screw. Accordingly, the fixing plate and the sheet-like vibration-reducing member can be reliably fixed on the fixing base without using expensive fixing means such as a bolt with a rubber vibration isolator which isolates vibrations.

[0015] According to a fourth aspect of the present invention, in the vibration-reducing support structure for a compressor of the third aspect, the sheet-like vibration-reducing member is formed with upward bent parts at left and right ends thereof, and the bent parts are inserted between the upright walls of the fixing base and the flange parts of the fixing plate.

[0016] According to the fourth aspect of the present invention, the sheet-like vibration-reducing member is formed with the upward bent parts at the left and right ends thereof, and these bent parts are inserted between the upright walls of the fixing base and the flange parts of the fixing plate. This configuration makes it possible to block the vibration transmission, caused by direct contact between the flange parts of the fixing plate and the upright walls of the fixing base, by means of the bent parts provided in the sheet-like vibration-reducing member. Accordingly, the vibrations travelling from the fixing plate to the fixing base can be further reduced and the effect of reducing vibrations of the unit main body can be further enhanced.

[0017] According to a fifth aspect of the present invention, in the vibration-reducing support structures for a compressor of the first or second aspect, the fixing plate and the sheet-like vibration-reducing member are integrally bonded with an adhesive, and the fixing means is a fixing screw which passes through a hole of the fixing plate and fixes only the sheet-like vibration-reducing member to the fixing base.

[0018] According to the fifth aspect of the present invention, the fixing plate and the sheet-like vibration-reducing member are integrally bonded with an adhesive, and the fixing means is the fixing screw which passes through the hole of the fixing plate and fixes only the sheet-like vibration-reducing member to the fixing base. This configuration makes it possible to fixedly install both of the fixing plate and the sheet-like vibration-reducing member on the fixing base through the fixing screw, while the vibrations travelling from the fixing plate to the fixing base is reduced, by fastening and fixing the sheet-like vibration-reducing member, which is integrally bonded

15

20

25

with the fixing plate with an adhesive, to the fixing base through the fixing screw passing through the hole of the fixing plate. Thus, even in the configuration where the sheet-like vibration-reducing member is fixed to the fixing base with the usual screw, vibrations of the unit main body can be reliably reduced by blocking the vibrations travelling from the fixing plate to the fixing base via the fixing means.

{Advantageous Effects of Invention}

[0019] According to the present invention, it is possible to absorb vibrations of the compressor, which fail to be absorbed by the vibration-reducing member and travel to the fixing plate, with the sheet-like vibration-reducing member interposed between the fixing plate and the fixing base, and thereby blocking the vibrations travelling through the fixing base to the unit main body. Furthermore, since both of the fixing plate and the sheet-like vibration-reducing member are fixedly installed on the fixing base through the fixing means so that the vibrations travelling from the fixing plate to the fixing base are reduced, the vibrations travelling from the fixing plate to the fixing base via the fixing means can be reduced. Accordingly, vibrations of the unit can be reduced, and lift, etc. of the fixing plate during transportation or due to fall of the unit can be prevented.

{Brief Description of Drawings}

[0020]

{Fig. 1}

Fig. 1 is a perspective longitudinal cross-sectional view of a portion of a unit main body where a compressor is installed, Fig. 1 shows a vibration-reducing support structure of a compressor according to a first embodiment of the present invention.

{Fig. 2}

Fig. 2 is a perspective view of only the vibration-reducing support structure part shown in Fig. 1.

{Fig. 3}

Fig. 3 is a perspective view of the above-mentioned vibration-reducing support structure with the compressor removed.

{Fig. 4}

Fig. 4 is a perspective view of only a fixing base part of the above-mentioned vibration-reducing support structure.

{Fig. 5}

Fig. 5 is a front view of the above-mentioned vibration-reducing support structure.

{Fig. 6}

Fig. 6 is a front view, whose view direction is corresponding to Fig. 5, of a modified example of the above-mentioned vibration-reducing support structure.

{Fig. 7}

Fig. 7 is a cross-sectional view of only major parts of a vibration-reducing support structure according to a second embodiment of the present invention.

{Description of Embodiments}

[0021] Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

(First Embodiment)

[0022] A first embodiment of the present invention will be described in the following using Fig. 1 to Fig. 5.

[0023] Fig. 1 shows a perspective longitudinal cross-sectional view of a portion of a unit main body where a compressor is installed, Fig. 1 shows a vibration-reducing support structure of a compressor according to the first embodiment, Fig. 2 is a perspective view of only the vibration-reducing support structure part shown in Fig. 1, Fig. 3 is a perspective view of the above-mentioned vibration-reducing support structure with the compressor removed, Fig. 4 is a perspective view of only a fixing base part of the above-mentioned vibration-reducing support structure, and Fig. 5 is a front view of the above-mentioned vibration-reducing support structure.

[0024] A unit main body 1 of an air conditioner, a chiller, or various heat pumps, etc. has a compressor 2 supported in a vibration-reducing manner on a bottom surface of the unit main body. The compressor 2 includes multiple leg parts 4 in a lower portion of the outer circumference of a closed vessel 3.

[0025] This compressor 2 is supported on a fixing plate 10 in a vibration-reducing manner at multiple positions of the outer circumference of the compressor through a vibration-reducing support device 9. The vibration-reducing support device 9 has a configuration in which the leg parts 4 are fitted to the outer circumference of rubber vibration isolators (vibration-reducing member) 5, bolts 7 fixedly installed on the fixing plate 10 are inserted into through-holes 6 provided at the center of the rubber vibration isolators 5, and the compressor is fastened and fixed with nuts 8. The rubber vibration isolator 5 may be substituted with a spring, etc.

[0026] The fixing plate 10 is a rectangular sheet-metal plate member, and is provided with flange parts 11, formed by being bent upward, at left and right ends. In addition, the bolts 7 for the above-described vibration-reducing support device 9 are fixedly installed at multiple positions (usually, at three to four positions) of the fixing plate 10, and besides, as shown in Fig. 3, the fixing plate is provided with draining/positioning holes (draining holes) 12 for discharging drain water dripping onto the fixing plate 10.

[0027] A sheet-like vibration-reducing member 13 is integrally joined with a lower surface of the fixing plate 10 with an adhesive, a bolt, or caulking, etc. This sheet-like vibration-reducing member 13 is constituted of a rec-

20

25

40

45

tangular rubber sheet, etc. having predetermined thickness and hardness, and serves to absorb vibrations which fail to be absorbed by the vibration-reducing support device 9 and travel to the fixing plate 10. The sheet-like vibration-reducing member 13 is provided with holes corresponding to the multiple draining/positioning holes (draining holes) 12 of the fixing plate 10 at corresponding positions. It is not essential that the fixing plate 10 and the sheet-like vibration-reducing member 13 are integrally joined, and the fixing plate may instead just be stacked on the sheet-like vibration-reducing member.

[0028] The sheet-like vibration-reducing member 13 is provided with bent parts 14, formed by being bent upward along the outer surface of the flange parts 11 of the fixing plate 10, at left and right ends, and these bent parts 14 are inserted between upright walls 19 of a fixing base 15, which is described later, and the flange parts 11 of the fixing plate 10. The sheet-like vibration-reducing member 13 is placed on an upper surface of the fixing base 15 which is fixedly installed on a seat 21 constituting the bottom surface of the unit main body 1.

[0029] The upper surface of the fixing base 15 is provided with many ribs 16, and multiple draining grooves 17 are formed between these ribs 16, so that the drain water can be guided and discharged to a specific position. In addition, the upper surface of the fixing base 15 is provided with protruding parts 18 protruding upward at multiple positions, which are fitted to the draining/positioning holes 12 provided in the sheet-like vibration-reducing member 13 and the fixing plate 10.

[0030] The fixing base 15 is provided with vertical upright walls 19 on left and right sides, to which the flange parts 11 of the fixing plate 10 and the bent parts 14 of the sheet-like vibration-reducing member 13 are fitted. Furthermore, the upright walls 19 on the left and right sides are each provided with a claw part (fixing means) 20 extending in the width direction over a predetermined area, which engages with the flange part 11 of the fixing plate 10 and the upward bent part 14 of the sheet-like vibration-reducing member 13, and fixes the fixing plate 10 and the sheet-like vibration-reducing member 13 so as not to be lifted upward.

[0031] According to this embodiment, the following effects can be obtained by the configuration described above.

[0032] Various vibrations are caused by operation of the compressor 2. As these vibrations are firstly absorbed by the vibration-reducing support device 9 supporting the compressor 2 in a vibration-reducing manner, the vibrations travelling to the fixing plate 10 are blocked. However, the vibration-reducing support by a single system of the rubber vibration isolator 5 alone cannot always sufficiently absorb the vibrations. Therefore, by installing the fixing plate 10 on the fixing base 15 through the sheet-like vibration-reducing member 13 constituted of a rubber sheet member, etc. and absorbing the vibrations, which fail to be absorbed by the vibration-reducing support device 9, by means of the sheet-like vibration-reducing

member 13, the vibrations travelling through the fixing base 15 to the unit main body 1 are blocked and thereby vibrations of the unit are reduced.

[0033] Further, in this embodiment, both of the fixing plate 10 and the sheet-like vibration-reducing member 13 are not directly fixed by being fastened with fixing means such as a bolt, etc., but the fixing plate 10 and the sheet-like vibration-reducing member 13 are fixedly installed on the fixing base 15 through fixing means which fixes both while isolating the vibrations travelling from the fixing plate 10 to the fixing base 15. This configuration makes it possible to reduce the vibrations travelling from the fixing plate 10 to the fixing base 15 via the fixing means, and thereby reliably reducing vibrations of the unit as well as preventing lift, etc. of the fixing plate 10 during transportation or due to fall of the unit.

[0034] In this embodiment, the fixing plate 10 is provided with the flange parts 11 at the left and right ends, and these flange parts 11 are fitted to the upright walls 19 on the left and right sides of the fixing base 15, thereby the fixing plate 10 and the sheet-like vibration-reducing member 13 are installed on the fixing base 15. In addition, the fixing means for fixing the fixing plate and the sheet-like vibration-reducing member is the claw parts (fixing means) 20 which engage with the flange parts 11 of the fixing plate 10 and prevent the fixing plate 10 and the sheet-like vibration-reducing member 13 from being uplifted

[0035] This configuration makes it possible to fixedly install, on the fixing base 15, the fixing plate 10 supporting the compressor 2 in a vibration-reducing manner, and the sheet-like vibration-reducing member 13 interposed between the fixing plate 10 and the fixing base 15, without using fastening means such as a screw. Accordingly, the fixing plate 10 and the sheet-like vibration-reducing member 13 can be reliably fixed on the fixing base 15 without using expensive fixing means such as a bolt with a rubber vibration isolator to isolate vibrations.

[0036] In particular, the upward bent parts 14 are formed at the left and right ends of the sheet-like vibration-reducing member 13, and these bent parts 14 are inserted between the upright walls 19 of the fixing base 15 and the flange parts 11 of the fixing plate 10. This configuration makes it possible to block the vibration transmission, caused by direct contact between the flange parts 11 of the fixing plate 10 and the upright walls 19 of the fixing base 15, by the bent parts 14 provided in the sheet-like vibration-reducing member 13. Thus, the vibrations travelling from the fixing plate 10 to the fixing base 15 can be further reduced, and the effect of reducing vibrations of the unit main body 1 can be further enhanced.

[0037] In this embodiment, the fixing plate 10 and the sheet-like vibration-reducing member 13 are provided with the draining/positioning holes (draining holes) 12 for discharging the drain water onto the fixing base 15 so that the drain water is discharged to the surface of the fixing base 15 through these draining holes 12 and dis-

20

25

charged through the draining grooves 17 to a specific position. Due to this configuration, even when dew is formed on surfaces of refrigerant pipes or components disposed in a space above the compressor 2, etc. and drips onto the fixing plate 10, the drain water can be discharged onto the fixing base 15 through the draining holes 12 provided in the fixing plate 10 and the sheet-like vibration-reducing member 13, and be guided through the draining grooves 17 provided in the surface of the fixing base 15 to a specific draining position for appropriate treatment.

[0038] Accordingly, even in the configuration where the compressor 2 is supported in a vibration-reducing manner on the fixing plate 10 and this fixing plate 10 is fixedly installed on the fixing base 15 through the sheet-like vibration-reducing member 13, the drain water can be reliably discharged to a specific position.

[0039] In the above embodiment, the upward bent parts 14 are formed at the left and right ends of the sheet-like vibration-reducing member 13, and the bent parts 14 are inserted between the upright walls 19 of the fixing base 15 and the flange parts 11 of the fixing plate 10. However, as shown in Fig. 6, the bent parts 14 may be omitted.

[0040] Also in this configuration, it is possible to fixedly install both of the fixing plate 10 and the sheet-like vibration-reducing member 13 on the fixing base 15 by the claw parts 20, without directly fixing both with fixing means such as a bolt, while the vibrations travelling from the fixing plate 10 to the fixing base 15 are isolated. Thus, it is possible to reduce the vibrations travelling from the fixing plate 10 to the fixing base 15 via the fixing means, and thereby reducing vibrations of the unit main body 1 as well as preventing lift, etc. of the fixing plate 10 during transportation or due to fall of the unit.

(Second Embodiment)

[0041] Next, a second embodiment of the present invention will be described using Fig. 7.

[0042] This embodiment differs from the above-described first embodiment in the fixing structure of the fixing plate 10 and the sheet-like vibration-reducing member 13. Other features, which are the same as in the first embodiment, will not be described.

[0043] This embodiment has a configuration in which, after the flange parts 11, the bent parts 14, and the claw parts 20 are removed, as shown in Fig. 7, the fixing plate 10 and the sheet-like vibration-reducing member 13 to be installed on the fixing base 15 are integrally bonded with an adhesive. In addition, only the sheet-like vibration-reducing member 13 is fastened and fixed with a fixing screw (fixing means) 22, which passes through a hole part 10A provided in the fixing plate 10, to a screw boss part 15A provided in the fixing base 15.

[0044] As described above, the fixing plate 10 and the sheet-like vibration-reducing member 13 are integrally bonded with an adhesive, and the fixing screw 22 as the

fixing means passes through the hole part 10A of the fixing plate 10 to fasten and fix only the sheet-like vibration-reducing member 13 to the fixing base 15. This configuration makes it possible to fixedly install both of the fixing plate 10 and the sheet-like vibration-reducing member 13 on the fixing base 15 through the fixing screw 22, while the vibrations travelling from the fixing plate 10 to the fixing base 15 are isolated, by fastening and fixing the sheet-like vibration-reducing member 13, which is integrally bonded to the fixing plate 10 with an adhesive, to the fixing base 15 through the fixing screw 22 passing through the hole part 10A of the fixing plate 10.

[0045] Accordingly, also by this embodiment, even in the configuration where the sheet-like vibration-reducing member 13 is fastened and fixed to the fixing base 15 with the usual fixing screw 22, the vibrations travelling from the fixing plate 10 to the fixing base 15 via the fixing means can be blocked, and thereby vibrations of the unit main body 1 can be reliably reduced.

[0046] The present invention is not limited to the invention according to the above-described embodiments, but modifications can be made appropriately within the scope of the invention. For example, in the description of the above embodiments, the vibration-reducing support device 9 for supporting the compressor 2 in a vibration-reducing manner on the fixing plate 10 has a configuration, as an example, where the leg parts 4 of the compressor 2 are fitted to the outer circumference of the rubber vibration isolators 5, the bolts 7 fixedly installed on the fixing plate 10 are inserted into the through-holes 6 provided at the center of the rubber vibration isolators 5, and the compressor is fastened and fixed with the nuts 8. However, the vibration-reducing support device 9 may be arbitrarily configured.

[0047] Although in the above embodiments, the draining/positioning holes (draining holes) 12 serve as a draining hole as well as a positioning hole, these holes may, of course, be separately provided. Furthermore, in the description of the above embodiments, the upper surface of the fixing base 15 is provided with the draining grooves 17 for discharging the drain water. Needless to say, the groove shape and the like of the draining groove 17 can be changed appropriately. In addition, the present invention is not limited to structures that include the draining groove 17, but can be readily applied to those that do not include the draining groove 17 as well.

{Reference Signs List}

[0048]

- I Unit main body
- 2 Compressor
- 5 Rubber vibration isolator (vibration-reducing member)

10

15

20

25

40

45

- 9 Vibration-reducing support device
- 10 Fixing plate
- 10A Hole part
- 11 Flange part
- 12 Draining/positioning hole (draining hole)
- 13 Sheet-like vibration-reducing member
- 14 Bent part
- 15 Fixing base
- 17 Drain groove
- 19 Upright wall
- 20 Claw part (fixing means)
- 22 Fixing screw (fixing means)

Claims

- 1. A vibration-reducing support structure for a compressor including a compressor (2) supported in a vibration-reducing manner on a fixing plate (10) through a vibration-reducing member (5), the fixing plate (10) being installed on a fixing base (15) through a sheet-like vibration-reducing member (13), **characterized in that** the fixing plate (10) is installed on the sheet-like vibration-reducing member (13) by being stacked thereon or integrally joined therewith, and both of the fixing plate (10) and the sheet-like vibration-reducing member (13) are fixedly installed on the fixing base (15) through fixing means (20,22) while reducing vibrations travelling from the fixing plate (10) to the fixing base (15).
- 2. The vibration-reducing support structure for a compressor according to claim 1, wherein the fixing plate (10) and the sheet-like vibration-reducing member (13) are provided with a drain hole (12) for discharging drain water onto the fixing base (15), and a surface of the fixing base (15) is provided with drain grooves (17) for collecting the drain water and discharging the drain water to a predetermined position.
- 3. The vibration-reducing support structure for a compressor according to claim 1 or 2, wherein the fixing plate (10) is provided with flange parts (11) which are formed by bending the fixing plate (10) upward at left and right ends thereof,

the flange parts (11) are fitted between upright walls (19) provided on left and right sides of the fixing base (15) so that the fixing plate (10) and the sheet-like vibration-reducing member (13) are installed on the fixing base (15), and the fixing means is a claw part (20) which engages with the flange parts (11) of the fixing plate (10) and

the fixing means is a claw part (20) which engages with the flange parts (11) of the fixing plate (10) and prevents the fixing plate (10) and the sheet-like vibration-reducing member (13) being uplifted.

- 4. The vibration-reducing support structure for a compressor according to claim 3, wherein the sheet-like vibration-reducing member (13) is formed with upward bent parts (14) at left and right ends thereof, and the bent parts (14) are inserted between the upright walls (19) of the fixing base (15) and the flange parts (11) of the fixing plate (10).
- 5. The vibration-reducing support structure for a compressor according to claim 1 or 2, wherein the fixing plate (10) and the sheet-like vibration-reducing member (13) are integrally bonded with an adhesive, and the fixing means is a fixing screw (22) which passes through a hole (10A) of the fixing plate (10) and fixes only the sheet-like vibration-reducing member (13) to the fixing base (15).

FIG. 1

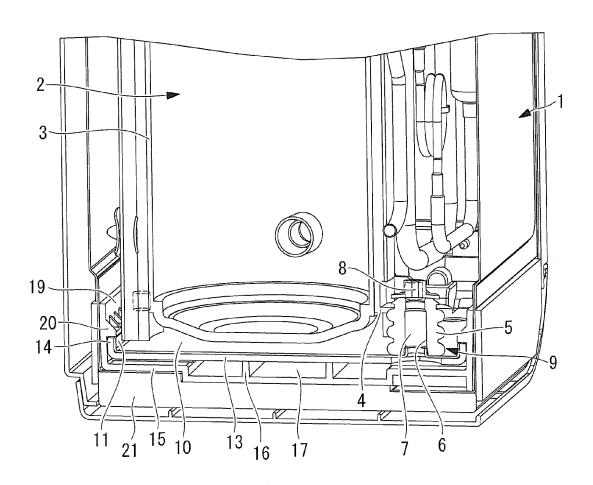
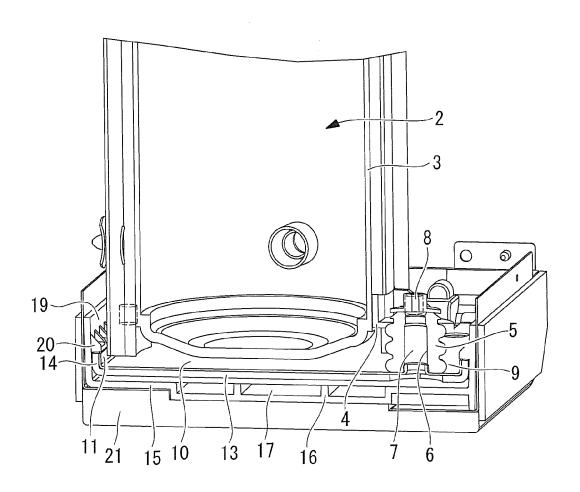
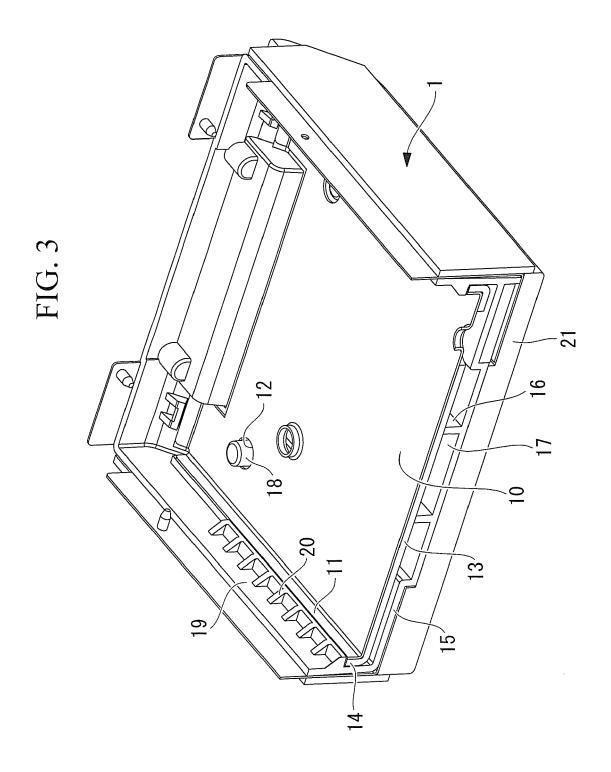
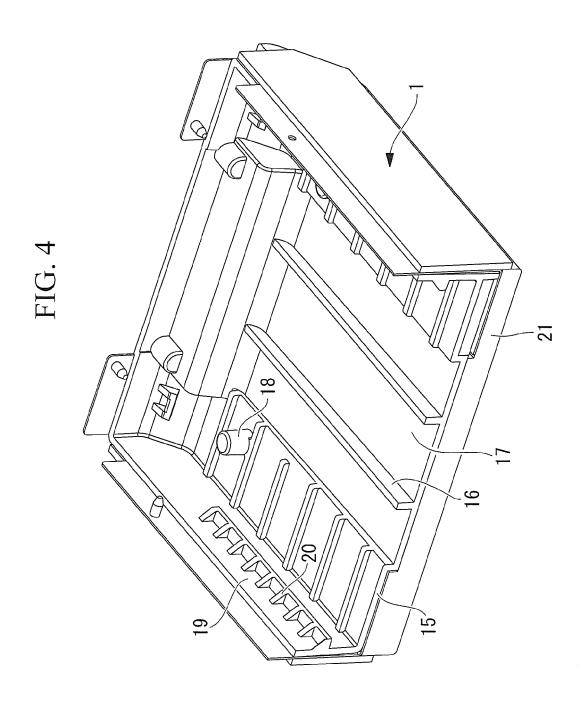
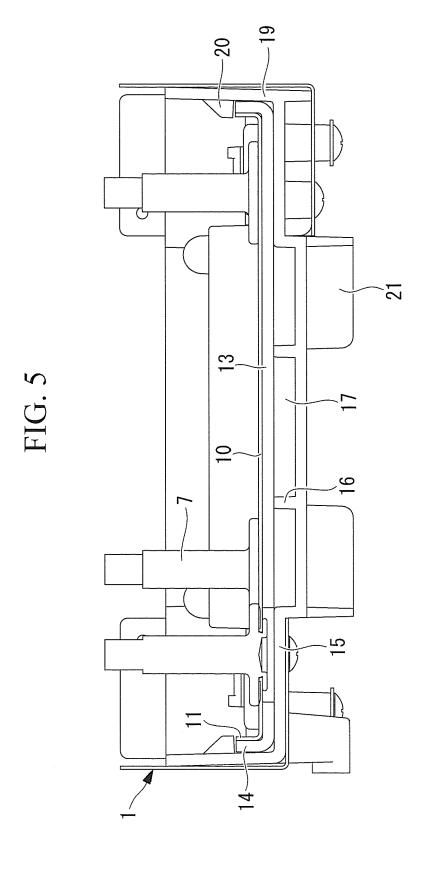






FIG. 2

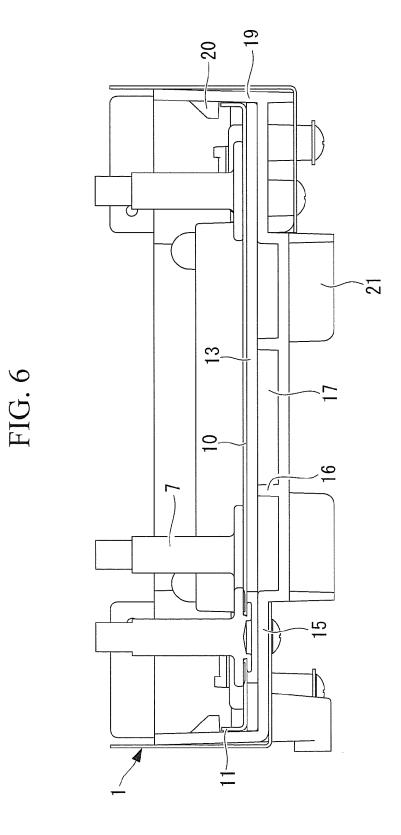
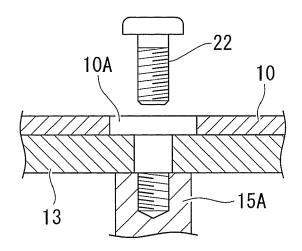



FIG. 7

EUROPEAN SEARCH REPORT

Application Number EP 14 15 8837

Category	Citation of document with indic of relevant passage			evant laim	CLASSIFICATION OF THE APPLICATION (IPC)	
X,D A	JP H03 286193 A (MATS 17 December 1991 (199 * abstract * * figure 1 *	SUSHITA SEIKO KK) 11-12-17)	1,4 2,3		INV. F04B39/00 F04B53/00	
X A	DE 10 2008 042626 A1 [DE]) 3 December 2009 * figures 6-7 * * paragraph [0036] -	(2009-12-03)	1 5			
A,D	JP 2004 293856 A (SAN 21 October 2004 (2004 * paragraph [0018] * * paragraph [0044] - * claims 1-3 * * figures 3-4 *	I-10-21)	1-5			
Α	US 2008/028783 A1 (IMAL) 7 February 2008 (* figure 3 * * paragraph [0008] * * paragraph [0011] * * paragraph [0012] * * paragraph [0025] -	(2008-02-07)	1-5		TECHNICAL FIELDS SEARCHED (IPC) F04B F24F	
А	JP S58 41280 A (MATSULTD) 10 March 1983 (1 * abstract * * figure (abstract) *	.983-03-10)	0 1-5			
Α	GB 1 486 434 A (DANFO 21 September 1977 (19 * page 1, line 32 - 1 * page 3, line 36 - 1 * claims 1,5-7 * * figures 1-2 *	977-09 ⁻ 21)	1-5			
	The present search report has been Place of search	n drawn up for all claims Date of completion of the search	1		Examiner	
		24 July 2014		Ricci, Saverio		
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another iment of the same category inological background -written disclosure rmediate document	T: theory or prino E: earlier patent after the filing D: document cite L: document cite &: member of the document	document, date d in the app d for other	but publication reasons	shed on, or	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 14 15 8837

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

24-07-2014

1	0	

	Patent document cited in search report		Publication date	Patent family member(s)	Publication date
	JP H03286193	Α	17-12-1991	NONE	
	DE 102008042626	A1	03-12-2009	DE 102008042626 A1 WO 2009144126 A1	03-12-2009 03-12-2009
	JP 2004293856	Α	21-10-2004	NONE	
	JS 2008028783	A1	07-02-2008	BR PI0701269 A2 CN 101060233 A DE 102006020506 A1 FR 2903764 A1 JP 4768664 B2 JP 2007292073 A KR 20070104239 A TW 200801420 A US 2008028783 A1	31-08-2010 24-10-2007 25-10-2007 18-01-2008 07-09-2011 08-11-2007 25-10-2007 01-01-2008 07-02-2008
	JP S5841280	Α	10-03-1983	NONE	
	GB 1486434	Α	21-09-1977	BR 7409154 A CA 1014761 A1 DE 2354897 A1 DK 531574 A ES 431541 A1 FR 2250083 A1 FR 2284840 A1 GB 1486434 A IT 1024694 B JP S558698 B2 JP S5074804 A SE 410347 B US 3937598 A	11-05-1976 02-08-1977 15-05-1975 07-07-1975 16-10-1976 30-05-1975 09-04-1976 21-09-1977 20-07-1978 05-03-1980 19-06-1975 08-10-1979 10-02-1976
OPIM PO459					

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 2 781 746 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

JP H3286193 B [0004]

• JP 2004293856 A [0004]