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(54) Method for object recognition

(57) A method for object recognition is capable to
greatly increase the processing speed of object recogni-
tion methods, at the same time increasing the accuracy
thereof, and comprises the steps of: obtaining a digital
image defined through data in a spatial domain; trans-
ferring the image data to the frequency domain; applying
to the transformed frequency domain one or more sparse
zone covering together a fraction of the frequency do-
main, and a filtering kernel at least partially overlapping
said sparse zones; performing a multiplication between
the transformed frequency data within each sparse zone
and said kernel, combining the results in single values,
each representing a corresponding extracted feature; in-
putting the extracted features in a classifier, therefore
obtaining the object recognition; and varying the param-
eters of said sparse zones and/or the kernel, repeating
the process of multiplication and extraction until a pre-
determined accuracy is achieved.
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Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention is related to a method for
the recognition of object, intended to be used on any kind
of device provided with suitable means for digitalizing
images, possibly but not exclusively in a digital video
stream.

2. Description of the prior art

[0002] Many methods of this kind are disclosed in the
computer vision literature for object recognition and ob-
ject tracking techniques.
[0003] In object recognition, all described methods use
several kind of features extracted from the digital images,
based on a plurality of methods for extracting these fea-
tures, which are the roots of the object recognition tech-
niques. Different ways are also known for using such
selected features: in most cases, the features are used
either for training a classifier or for being correlated be-
tween sets of known features in a classifier.
[0004] Many methods, such as Viola-Jones, involve
the sums within rectangular areas of pixel level informa-
tion in the spatial domain, which are usually converted
to grey-scale to render less heavy the foreseen compu-
tations. Taking into consideration the so called weak clas-
sifiers, such methods involve a great number of features
required to obtain acceptable levels of accuracy, and this
large number of features implies the use of numerous
search boxes and multiple repetitions of the calculations.
Tree-like cascade techniques, such as AdaBoost, are
used attempting to speed up the classification, but such
methods will remain inherently unsuitable for real-time
uses.
[0005] Other methods, such as SIFT method (Scale
Invariant Feature Transform) do not just use rectangular
areas of pixel information to extract features, like Viola-
Jones, but vary the shape of the areas in different steps
of the method. Such methods are commonly used to rec-
ognize objects with varying zooms and changes in points
of view. A series of computations are required to map
features of the same object to the features of the object
seen from different views. Since the features are extract-
ed from the spatial domain, such object recognition cal-
culations are usually computationally very intensive.
[0006] Other methods, often used for the recognition
of the head orientation or the capturing of emotion on a
face, extract geometrical points from a digitalized frame.
They rely on the correlation or on the correspondence
between these points and a predetermined 3D shape
model. Examples of these methods are known such as
the Active Shape models and the Active Appearance
models. Such feature points are usually extracted within
the spatial domain, for example by enhancing contrasts

within the image. To extract such point, a first step is
provided using classifiers. For example, in case of face
recognition, classifiers will be likely required for both the
face and the eyes. Once these features have been clas-
sified, and the position of facial features are estimated
with a reasonable confidence as well, in a next step the
geometric points can be extracted from the image, and
then in turn correlated to a 3D shape model. It can be
easily understood that these methods also inherently re-
quire heavy calculations, not suitable for real-time appli-
cations.
[0007] In conclusion, all the above methods, which only
use the spatial domain image information, can have just
a little scope for substantial speed improvements.
[0008] Methods for the object recognition belonging to
the prior art may also use the so called filtering kernels,
shortly kernels, in the frequency domain to first accentu-
ate characteristics of the object to be classified and then
recognized. Then, the features that are extracted after
the use of a kernel can either be the results of the sums
of pixels in the transformed image or the sums of cells in
the frequency domain.
[0009] Said kernels operated as filters in the frequency
domain will be hereinafter explained and detailed.
[0010] Most of such methods use a pre-defined series
of kernels evenly distributed in the frequency domain. An
example of this technique is represented by the use of
Gabor banks. Each kernel setting results in a different
transformed image. The features extracted in such meth-
ods are typically the values of coordinates within the
transformed image. These coordinates are those of the
pixels in the spatial domain of the transformed image,
which have the highest value of pixel intensity. Typically,
around forty different Gabor filters are used in such meth-
ods. Since the full frequency domain calculations are per-
formed, and a transformation is required each time from
spatial domain to frequency domain and then back again
from frequency domain to spatial domain, such methods
also require a large number of calculations.
[0011] Further, such methods often use variations of
the Fast Fourier Transformation (FFT), which requires
the input images to be re-sampled.
[0012] Methods for the object tracking are usually
based on a first step of object recognition using a method
similar to the ones mentioned above. Then, the dynamics
of the movement of the object on the screen can, after
the object recognition, be modeled and followed by com-
monly used methods such as for example Hidden Markov
Models.
[0013] However, it is also possible to track objects on
a screen without classification or object recognition. For
example, object tracking can be done with template
matching in the spatial domain or with a kernel trained
to accentuate the chosen object in the frequency domain.
[0014] Another disadvantage in commonly used meth-
ods is that their designers have no control of or an insight
to the logic of how the features and classifiers are created
and how to improve the results. The designer cannot ba-
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sically know which features are helping classification and
which of them have to be considered noise for the clas-
sifier. Simply adding extra images to the training set, or
adding extra features from each image, not only the cal-
culations are even more slowed down, but also the prob-
lem of an over-fitting may arise, with the accuracy of the
classifiers for recognizing objects worsening by these ex-
tra features instead of being improving. Such methods
hardly succeed to adapt, to follow and to take advantage
of the latest hardware developments such as multi-core
processing or advances in GPU technology.

SUMMARY OF THE INVENTION

[0015] Nowadays, object recognition techniques in im-
age processing are being widely applied in various con-
texts. By way of example and with no limitative purpose,
this recognition is utilized in face tagging technology on
social networks, software for the recognition of hand ges-
tures, software for the recognition of body movements,
face recognition technology for augmented reality, inter-
faces which use head orientation tracking, object tracking
technology for security systems and gaze tracking tech-
nology.
[0016] Mostly, there are still specific hardware solu-
tions for such object recognition products; for example
gaze tracking and the recognition of gestures are tech-
nologies that often require either integrated infrared pro-
jectors or extra cameras for stereo vision to obtain the
required accuracy.
[0017] Such object recognition solutions are often also
characterized by heavy algorithms, which require huge
amounts of processing power.
[0018] There is a clear future trend of all these object
recognition technologies migrating onto the next gener-
ation of interactive interfaces and operating systems.
Such novel devices can be represented by smartphones,
tablets, wearable hardware such as interactive glasses,
but also any kind of interactive objects in future homes,
offices or public places. These devices can be provided
for special uses such as interactive television or intelli-
gent homes, and they can also be used in automotive
safety and assisted driving systems, next to many other
possible uses.
[0019] The implementation of such technology is not
limited to mobile devices, but it can be basically integrat-
ed in any device or network connected device, where re-
programmable hardware is used with algorithms on them
and where video camera inputs can be added.
[0020] Adding extra hardware to devices, purely to help
the functioning of object recognition algorithms, implies
higher costs and extra battery drain. Plus, there are high
research and development costs required to create the
miniature hardware, with current state-of-the-art hard-
ware still being too large to be integrated into mobile or
other small devices.
[0021] Beside the hardware costs, to a large degree,
what is hindering the mass scale use of object recognition

technology on, for example, mobile hardware platforms
is that the required object recognition calculations are
too slow and use too much of the available processing
power.
[0022] Therefore, before implementation on the next
generation of operating systems and devices become
feasible in mass volumes, such object recognition tech-
nology first will require software-only solutions able to
process images much faster than in the current state of
the art.
[0023] This migration towards software-only solutions
is also being facilitated by continuous camera technology
improvements, which bring increasingly higher frame
rates, better motion processing, better color highlighting,
better adaptation to contrasts, better adaptation to light
changes and increasingly higher screen resolutions.
[0024] This trend will only increase the effectiveness
of software-only solutions for the object recognition, thus
making it possible to remove the need for infrared pro-
jectors or extra cameras for stereo vision.
[0025] However, the current object recognition algo-
rithms implemented in software-only solutions still will
lead to limited implementation in object recognition meth-
ods and products in the state of the art.
[0026] The need for object recognition to use as little
processing power as possible is intended for both saving
battery life as well as for the requirement for real-time
use. Real-time algorithms, such as face recognition and
eye tracking, should produce more user friendly and nat-
ural devices. While running in real-time, object recogni-
tion algorithms also need to run in the background without
limiting the main processes running in the foreground.
[0027] Further, it should be noted that the required
amount of calculations may exponentially grow as the
input image size increases. A rise in video frame rate
would also mean that there would be less time for the
object recognition algorithms to finish the calculations
before the next video input frame arrives.
[0028] Therefore, a side effect of the increasingly high
video frame rates and growing input image quality is that
current common object recognition algorithms, which al-
ready often need to down-sample input images to
achieve acceptable processing speeds, will need to in-
creasingly down-sample input images.
[0029] Such down-sampling thereby negates a large
part of the advantages of having such high definition im-
ages in input for object recognition.
[0030] In addition, object recognition methods are re-
quired in a full mobility environment, meaning that they
can be used in everyday situations without the need for
constant calibrations and without the requirement for rel-
atively little movement between the user to the camera.
This full mobility use accentuates the need for object rec-
ognition solutions which are fully software based, which
can run in real-time and which do not down-sample the
input video stream.
[0031] As mentioned above, to achieve object recog-
nition applications desirable to the users, they need to
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work in real-time. For example, there is a great difference
in subjective feeling between a gaze tracking or head
tracking application running at 2 Hz or at 30 Hz. Only
after having brought the processing speeds of object rec-
ognition algorithms to real time speed, such technology
will be able to receiving a large acceptance by users and
to be feasible as a standard feature in the next generation
of operating systems.
[0032] It is also not acceptable to count on the contin-
ued improvement of processing power, since battery
power needs to be saved in any case and for all applica-
tions, e.g. for games, scale to use the maximum of
processing power, therefore always leaving a minimal
amount for algorithms such as standard image process-
ing to run in the background.
[0033] Another reason for the need of fast algorithms
is that object recognition solutions must account for a
future developments race in computer vision, which will
be to have increasing layers of algorithms with adapta-
tion, learning and memory. Practically, all computer vi-
sion current methods are passive, with no reasoning. To
reach such added layers of adaptive algorithms, the only
solution is the base algorithms to be as fast as possible.
[0034] The object recognition algorithms will also need
to be fast enough to recognize several objects simulta-
neously.
[0035] Therefore, the only realistic option to obtain the
required acceleration in object recognition processing
speed in image processing calculations on a mobile de-
vice or other devices, using a fully software solution is
with the use of sparse zones for the frequency domain
calculations.
[0036] This invention is applicable where kernels are
used in the frequency domain. It is not applicable to meth-
ods that are based on the analysis of pixel information in
the spatial domain without transforming the image data
into frequency domain.
[0037] Generically, the method of the present invention
can have three applications:

1) Classification of objects using features extracted
in the spatial domain, which have been obtained by
transforming the original image into the frequency
domain, multiplying this transformed image informa-
tion by a kernel in the frequency domain and then
transforming the result of the multiplication back to
the spatial domain.

2) Classification of objects using features extracted
in the frequency domain, which have been obtained
by transforming the original image to the frequency
domain and multiplying this transformed image in-
formation by a kernel in the frequency domain.

3) Tracking of objects using information in the spatial
domain which have been obtained by transforming
the original image to the frequency domain, multiply-
ing this transformed image information by a kernel

in the frequency domain and then transforming the
result of the multiplication back to the spatial domain.

[0038] Here, it is directly intended that the simple track-
ing of an object in a wide environment with the use of a
correlation filter need not the filtering kind of kernel use
intended hereinafter, while the true object tracking, where
in each frame the object is classified and then for each
frame the position of the recognized objected is tracked,
leads to application of this invention in the first two cases
for accelerating calculations.
[0039] It will be clear to a man skilled in the art of object
recognition that the three applications of the invention
are not necessarily separate, however they can overlap
themselves and then to be used for more accelerations
of calculations at the same time.
[0040] For example, if to classify an object should be
necessary, such as a face in a video stream, after using
a kernel to get an initial estimation of its position on the
screen, in this case an acceleration can be achieved in
the calculations for both the object tracking and the face
recognition.
[0041] Another example might be represented by an
object in a video stream needing to be tracked, generi-
cally classified in the frequency domain and then classi-
fied in more detail within the spatial domain with higher
accuracy. An implementation of this example could be a
security system tracking and estimating the position of a
face on a video input stream, and then using a classifier
to extracts facial features and then another classifier to
extract eye details for identification of the person cap-
tured by the video stream.
[0042] All above three applications for accelerating ob-
ject recognition calculations share the use of kernels in
the frequency domain, since the acceleration in calcula-
tion speed is obtained within the frequency domain cal-
culations.
[0043] This method is especially applicable in situa-
tions where specific object in an image need to be rec-
ognized and followed. Examples of this could be face
recognition, the tracking of the direction of eye gaze and
the recognition of gestures.
[0044] Summarizing, there is a felt need for full mobil-
ity, software-based object recognition solutions which
can continuously run in real-time on mobile devices, or
network connected device where re-programmable hard-
ware is used with algorithms on them, and where video
camera inputs can be added.
[0045] The technical problem at the root of the present
invention is to provide an object recognition method apt
to satisfy the needs related to the above explained draw-
backs recognizable in the state of the art.
[0046] This problem is solved by a method for object
recognition as above specified, comprising the steps of:

• obtaining a digital image defined through data in a
spatial domain;
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• transferring the image data to the frequency domain;

• applying to the transformed frequency domain one
or more sparse zone covering together a fraction of
the frequency domain, and a filtering kernel at least
partially overlapping said sparse zones;

• performing a multiplication between the transformed
frequency data within each sparse zone and said
kernel, combining the results in single values, each
representing a corresponding extracted feature;

• inputting the extracted features in a classifier, there-
fore obtaining the object recognition; and

• varying the parameters of said sparse zones and/or
the kernel, repeating the process of multiplication
and extraction until a predetermined accuracy is
achieved.

[0047] Further features of the method, leading to ad-
ditional advantages, are defined in the dependent claims.
[0048] The present method is hence capable to greatly
increase the processing speed of object recognition
methods, at the same time increasing the accuracy there-
of.
[0049] As above explained, a huge need is felt for new
methods able to increase the speed of object recognition
techniques in image processing. This speed increase
should render the object recognition fast enough to work
in the background inside the latest generation of mobile
devices and other similar devices, for example wearable
computing such as interactive glasses or watches.
[0050] Apart from use on the latest generation of mo-
bile devices, in anticipation for future trends such as
wearable hardware, the algorithms need to be able to
work outside of the main personal computer operating
systems and mobile operating systems and thus be pro-
grammable on processors and re-programmable hard-
ware such as field-programmable gate arrays. The meth-
ods also need to be built up of algorithms, which can take
advantage of the latest hardware developments on per-
sonal computers and mobile devices such as multi-cores
and powerful graphical processing units (GPU’s).
[0051] In this connection, the use of calculations in the
frequency domain naturally lends itself to respond to the
need for faster calculations for several reasons.
[0052] Among these reasons, working with images in
the frequency domain involves that every pixel in the im-
age within the spatial domain contributes to each single
value in the frequency domain. Therefore, a sparse area
in the frequency domain contains a relatively large
amount of information compared to a similar sized zone
within the image in the spatial domain.
[0053] This means that in the frequency domain the
amount of features required for classification, if well cho-
sen, is lower than would relatively be the case in the
spatial domain.

[0054] Working in the frequency domain also allows
for much easier calculations as multiplications with filters,
and other similar calculations with matrices are of the
cell-by-cell kind, unlike the spatial domain, where each
row of a matrix must be multiplied with all the columns
of the matrix.
[0055] Therefore, in the frequency domain it is easy to
use a sparse, small, part of the frequency domain infor-
mation for object recognition. The acceleration in calcu-
lations in frequency domain is directly proportional to how
small the sparse zone is made. For example, using a
sparse zone that contains 1/100 of the frequency domain
information results in object recognition calculations,
which are 100 times faster in that part of the frequency
domain calculations.
[0056] Sparse zones, as well as the kernels operated
as filters in the frequency domain, will be hereinafter ex-
plained and detailed.
[0057] Working fully in the frequency domain without
requiring the calculations to transform the image back to
the spatial domain after the frequency domain calculation
also allows an added flexibility in the choice of the math-
ematics that perform the transformation into the frequen-
cy domain. For example, the use of a 2D variant of the
Görtzel algorithm becomes a realistic option. This gives
an extra possible acceleration in calculations, next to the
acceleration in calculations given when using the sparse
zones.

BRIEF DESCRIPTION OF THE DRAWINGS

[0058] Further features and advantages of the present
method will become more apparent by the following de-
scription of a preferred embodiment thereof, given by ref-
erence to the annexed drawings wherein:

• Figure 1 shows a flow diagram illustrating the initial-
ization of the method according to the present inven-
tion;

• Figures 2a and 2b show together a flow diagram
wherein an accelerated sparse calculation is illus-
trated;

• Figure 3 show the same method for acceleration in
calculations in the frequency of Figures 2a and 2b,
which can be used for different applications;

• Figure 4 show another flow diagram where the meth-
od according to the invention is illustrated with no
limit to the amount of classes to define for the accel-
eration of calculations in the frequency domain;

• Figure 5 shows an outline illustrating an off-line
learning of the present method, wherein classes are
created for the acceleration of calculations in the fre-
quency domain;
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• Figure 6 shows a flow diagram illustrating an optimi-
zation loop for a single class of eye images;

• Figures 7a and 7b show together a real-time re-train-
ing process for object recognition; and

• Figures 8a and 8b show together a real-time re-train-
ing process for object tracking.

DESCRIPTION OF THE EMBODIMENTS

[0059] In the following, an embodiment of the method
as defined above will be detailed with reference to the
accompanying figures.
[0060] The high-level initialization of an accelerated
sparse calculation in the frequency domain follows the
general outline of Figure 1, where an input video stream
containing the object that needs to be tracked, for exam-
ple a face or an eye, is represented.
[0061] At the beginning, the whole frequency spectrum
is used to get a first recognition of the object. Once the
object has been recognized, a number of pre-defined
classes are tested in parallel. The most appropriate of
this multitude of classes is chosen for the object. This
most appropriate class allows for accelerated calcula-
tions without a loss of accuracy for the object.
[0062] With class is meant a set, a collection or group,
or a configuration containing elements regarded as hav-
ing certain attributes or traits in common, i.e. a kind or
category.
[0063] These classes are primarily defined in an offline
phase. For eye tracking or head tracking, such states for
example can be defined by a combination of lighting con-
ditions, the orientation relative to the camera or the eth-
nicity characterizing the eye or face to be tracked.
[0064] The chosen class defines the ranges of a
number of parameters used for accelerating the calcula-
tions, such as the sparse frequency zone, the chosen
features, the kernel values and the internal classifier set-
tings.
[0065] At this point the slower, generic, recognition and
classification is replaced by the chosen accelerated cal-
culations.
[0066] In real-time used with video, there can be nu-
merous external variables, for example changing light-
ing, therefore there is a check if the chosen class is still
the most appropriate. The class is followed and adapted
when necessary. This following and adapting of states
need not be done at the frame rate of the video stream.
Neither all the states need to be checked again after the
initialization. For example, in the use of eye tracking, the
type of eye might be considered a constant and it is only
checked if the state, which defines the lighting conditions
changes.
[0067] For the changing classes due to variations in
lighting, note that they are largely defined by the image
sensor in the video camera used for the image stream.
Common current image sensors are for example digital

charge-coupled device (CCD) or complementary metal-
oxide-semiconductor (CMOS) active pixel sensors. Each
design of image sensors reacts in a number of pre-de-
fined ways to changing light conditions such as contrast,
low light, bright sunlight and so forth. Thus, the classes,
which define light changes, are mainly linked to the way
the image sensors react to light changes.
[0068] Converting an image to the frequency domain
is well established, being a discrete rather than a contin-
uous 2-dimensional Fourier transformation. The Fourier
Transform is used in a wide range of applications, such
as image analysis, image filtering, image reconstruction
and image compression, text orientation finding and
more.
[0069] The main principle is described by Discrete Fou-
rier Transformation (DFT). Since the DFT requires a
great number of calculation, there are many other types
of transformations which seek to speed up the process.
The Fast Fourier Transformations (FFT) is the most es-
tablished of these, being an efficient algorithm to com-
pute the discrete Fourier transform (DFT) and its inverse.
However there are a number of variations of the FFT.
The FFT also has its limitations in image processing. For
example, the sides of the image used in input for the FFT
need to have lengths in pixels which are a power of two,
and the full FFT needs to be calculated before results for
a certain frequency can be given. This places certain
requirements on memory with the FFT. The FFT cannot
be converted for sparse calculations, since the entire FFT
must be calculated before the value for a single frequency
can be obtained. The complex structure of the FFT does
not allow for easy coding implementations on re-pro-
grammable hardware and multi-core processors. In ad-
dition, since the entire FFT first needs to be calculated
to obtain single results it also requires higher use of mem-
ory on the device.
[0070] Methods such as pruned Fast Fourier Transfor-
mations exist but they require a great deal of complex
code for a minimal gain in speed and memory use.
[0071] In the frequency domain of an image, each point
represents a particular frequency contained in the spatial
domain image.
[0072] The frequency spectrum is a plot of the energy
against spatial frequencies, where the spatial frequen-
cies relate to the spatial relations of intensities in the im-
age.
[0073] The Discrete Fourier Transformation (DFT) is
the sampled Fourier Transform and therefore does not
contain all frequencies forming an image, but only a set
of samples that is large enough to fully describe the spa-
tial domain image. The number of frequencies corre-
sponds to the number of pixels in the spatial domain im-
age, i.e. the images in the spatial and Fourier domain are
of the same size.
[0074] The Fourier Transform produces a complex
number valued output image which can be displayed with
two images, either with the real and imaginary part or
with magnitude and phase. In image processing, often
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only the magnitude of the Fourier Transform is displayed,
as it contains most of the information of the geometric
structure of the spatial domain image. However, to re-
transform the Fourier image into the correct spatial do-
main after some processing in the frequency domain,
one must preserve both magnitude and phase of the Fou-
rier image.
[0075] In the spatial domain, the values are usually the
light intensity of the grey scale pixels, which range from
0 to 255. The Fourier domain image values have a much
greater range than the image in the spatial domain.
Hence, to be sufficiently accurate, the values in the fre-
quency domain are usually calculated and stored as float
values.
[0076] When classifying objects using the information
in the frequency domain, without the need to return to
the spatial domain, there are several advantages.
[0077] First, the lack of an extra step back to the spatial
domain from the frequency domain speeds up the calcu-
lations.
[0078] Second, since the frequency domain values
need not to be converted back to a correct spatial domain
image, smaller sparse zone can be used. This is because
it is not required to have the minimum amount of frequen-
cy domain data that will allow for the image data to be
converted back to the spatial domain without a large loss
of image quality and information. Sparse zones in the
frequency domain by themselves do not necessarily con-
tain enough frequency domain information to recreate
the spatial image. But they do contain enough information
for image classification and gaze direction information.
[0079] Here and in the following description, a sparse
zone is meant to be one or a group of zones, i.e. one or
more, covering a fraction of a frequency domain. Each
zone should be seen as a frequency interval, possibly
defined through intervals on the axis of abscissae and of
the ordinates (see Figure 3) if the sparse zone is squared
or rectangular, but a zone of many other shapes may be
used, i.e. defined by a closed line in the frequency do-
main.
[0080] The assembly of the sparse zones covers a
part, i.e. a fraction of the overall frequency domain re-
sulting from the transformation of the spatial domain.
Each of the sparse zone encircles frequency data trans-
ferred from the spatial domain.
[0081] Conveniently, the sparse zones may be
grouped together, either possibly partially overlapping
each other or placed side-to-side, to increase the local
resolution. Calculations on frequency values derived
from said sparse zone are indicated as sparse calcula-
tions.
[0082] Third, since it is not required to convert the im-
age back to the spatial domain, it opens to the possibility
to use other methods besides DFT or FFT to convert the
image into the spatial domain, since it is not necessary
to have the full real and imaginary information in the fre-
quency domain, but the magnitude can suffice. Hence,
the transformation may be carried out using further meth-

ods such as a two-dimensional version of the Görtzel
algorithm, which can be set up sparse, more flexible for
use on re-programmable processors, using a minimal
amount of memory, more flexible to code for parallel use
on multiple processor cores.
[0083] With reference to Figures 2a and 2b, it can be
seen in more detail how such an accelerated sparse cal-
culation might be done for each single frame of a real-
time video stream.
[0084] The example in Figures 2a and 2b applies in
the case of accelerated calculations using classification
of objects with features extracted in the frequency do-
main.
[0085] In the example of Figures 2a and 2b, the frame
of the input image and the kernel each are 64x64 in size
in the frequency domain.
[0086] The values of the kernel are a magnitude for
each cell depending on the calculated real and imaginary
components of the kernel in the frequency domain. Tak-
ing the magnitude of these complex numbers, multiplied
with the magnitudes resulting from the image trans-
formed into the frequency domain, then together gives
the shown 64x64 grid of values.
[0087] Kernel is meant to be any kind of filter in fre-
quency domain, to be applied to the sparse zones as
defined above.
[0088] Such filter can be an edge detection linear filter,
a Gabor filter (mixed Gaussian and Sinusoid), a Gaus-
sian filter, an intensity enhancing filter, a lowpass filter,
a Sobel edge detection filter, another edge operator like
Canny, Canny-Deriche, Differential Sobel, Prewitt, Rob-
erts, Cross, a corner detection operator like Harris oper-
ator, Shi and Tomasi, Level curve curvature, SUSAN,
FAST and many others.
[0089] In the following, a Gabor filter by way of exam-
ple.
[0090] The example in Figures 2a and 2b is done for
an eye, but it will be clear that the same principle can be
used with other objects.
[0091] As described in Figure 1, after the class of the
object has been determined, the parameters for accel-
erating the calculations in the frequency domain have
been set. These parameters, among others, are the
sparse areas in the frequency domain, the chosen kernel
weights, the chosen features and the settings for the clas-
sifiers.
[0092] In the example, only two sparse ranges with fea-
tures are used for extracting such features. An example
of a chosen kernel can also be seen. A zoom between
Figures 2a and 2b figure shows in more detail the area
of the sparse calculations.
[0093] It will be clear to a man skilled in the art that in
the case of full cell-by-cell multiplications between the
image in frequency domain and the kernel that
64*64=4096 calculations are required.
[0094] Here, cell is intended to be the frequency value
of the sparse zone resulting from the corresponding spa-
tial domain through said transformation.
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[0095] In the example, the calculation for five of the
features is seen. The numbers in the cells are the results
in the frequency domain of the multiplication between the
magnitude at that frequency of the image converted into
the frequency domain and the kernel magnitude at that
same frequency. The value for a single feature is the sum
of the values in the feature zones.
[0096] Repeating this for each feature zone results in
twenty features. These features are then the input for the
classifiers, for recognition of the original object.
[0097] It will be clear to an expert in the field of fre-
quency domain calculations that if only the calculations
within the feature zones are required, only a small part
of the calculations are required and that the gain in speed
is proportional to the size feature sparse zones. In other
words, if only 1% of the frequencies are required, there
will be a 100-fold speed increase in these frequency do-
main calculations.
[0098] It will also be clear to experts in the field of fre-
quency domain calculations that taking the sum of the
values in the feature zones using a single kernel is just
one of many options for creating features to use as an
input for classifiers.
[0099] A multitude of combinations of features, ker-
nels, classification settings and such are possible. Fig-
ures 2a and 2b only shows two features zones and a
single kernel as an illustrative example, to highlight the
manner in which the acceleration in calculations in the
frequency domain is obtained.
[0100] The key is to find the best trade-off with a com-
binations of features, kernels, classification settings that
will give both classification accuracy and classification
speed.
[0101] In any case, in each application of the method,
even if the optimal trade-off for both calculation speed
and accuracy is found, the acceleration of the calcula-
tions will be obtained.
[0102] In view of the above, in the method for object
recognition, in order to have it accelerated, a multiplica-
tion is performed between the transformed frequency da-
ta within each sparse zone and said kernel Then the var-
ious results thereby obtained are combined in single val-
ues, each representing a corresponding extracted fea-
ture.
[0103] The extracted figures are hence inputted in a
classifier, obtaining the object recognition therethrough
in a direct manner. After the parameters of said sparse
zones and/or the kernel are varied
repeating the process of multiplication and extraction un-
til a predetermined accuracy is achieved for the above
features.
[0104] Figure 3 continues with the example of Figures
2a and 2b, considering that the underlying principle can
be used for any object. First, it is possible to see that, for
a different type of eye in Figures 2a and 2b, a different
class of eye is chosen for accelerating the calculations.
Compared to the class eye in Figures 2a and 2b, there
are different sparse zones, different features and a dif-

ferent kernel for each class. As previously mentioned,
there are also other parameters that can be chosen dif-
ferently such as the classifier settings.
[0105] In Figures 2a and 2b an example was given for
using the method for accelerating calculations in the fre-
quency domain when extracting features in the frequency
domain.
[0106] Instead, in Figure 3, it is shown how the same
method for acceleration in calculations in the frequency
domain can be used for the above cited three different
applications, i.e. classification using features extracted
in the frequency domain, features extracted in the spatial
domain after passing through frequency domain kernels
and object tracking in the spatial domain after passing
through frequency domain kernels.
[0107] For the present method, the greatest potential
gain is obtained in the accelerating the computing in the
frequency domain using features extracted in the fre-
quency domain, since there is not only the advantage of
the acceleration due to the use of sparse zones. Howev-
er, the step back calculation to the spatial domain is
avoided. Thus, faster and more flexible methods for
transferring an image than FFT and DFT maybe used
too. The use of dynamic sparse zones, which accelerate
the calculations, achieves the requested accuracy avoid-
ing to return to the spatial domain. For example, the
speed of the calculations allows for multiple checks to
avoid false positives and allows for real-time re-training
of the classifiers. The speed of the calculations also al-
lows for features to be taken dynamically with respect to
the time, so that the features are taken over for their clas-
sification a only for a number of frames, instead of frame
by frame.
[0108] With reference to Figure 4, it is illustrated how
there is no limit to the amount of classes, which can be
defined for the acceleration of the calculations in the fre-
quency domain. For each generic type of eye a class can
be defined and also for the same type of eye, e.g. for a
different lighting thereof. More classes do not slow down
calculations in real-time uses, since after choosing the
initial class only the parameters from a single class are
used for accelerating the calculations in the frequency
domain. With a fast calculations for each class it is also
possible to have several classes checked in parallel dur-
ing the initialization phase or a regular intervals during
real-time running. In addition, with real-time object rec-
ognition at a high frame rate, using the acceleration in
calculations an extra robustness in object recognition can
be achieved since, the dynamics of the object recognition
results can be followed instead of individually analyzing
each frame of the video.
[0109] In connection with Figure 5 an off-line learning
is outlined, to create the classes for the acceleration of
calculations in the frequency domain.
[0110] It is apparent that the offline learning step starts
with the creation of a database of the type of images to
be classified or tracked, in this case eyes. The images
in the database are then divided into the separate class-
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es, for example on the basis of lighting conditions or eth-
nicity of the eye. Each of these classes are now the input
for separate optimization loops.
[0111] A plurality of parameters in each optimization
for each class are now varied until, for each classes, an
acceptable compromise is found, i.e. a predetermined
accuracy. These parameters can be related to the sparse
zones, the features extracted, the kernel settings and
amount of kernels used, and the classifier settings. The
optimization seeks a compromise within multiple targets,
among those the classification percentage, the achieved
acceleration in the frequency domain and no overlapping
in classification results between the classes.
[0112] It is noted that the diagram of Figure 5 is given
for the application of the acceleration when using the
extraction of features in the frequency domain. The same
generic principle can also be used when optimizing the
settings for the classes either when using the method to
accelerate the extraction of features in the spatial domain
when passing through a kernel or when the tracking of
the object in the spatial domain after passing through a
kernel in the frequency domain. What will change in these
cases is that there will be a different parameters chosen
to optimize and a different compromise chosen, for ex-
ample in the compromise also the loss of data when con-
verting back to the spatial domain might become an op-
timization parameter.
[0113] From Figure 5 it will also be clear that this meth-
od allows for engineering flexibility and transparent de-
signs of object recognition solutions. For example, if there
is a class that shows worse performance in object rec-
ognition or object tracking, then the optimization only for
this class needs to be re-done without affecting the other
classes. Alternatively, if there is a new type of class, such
as for example a different type of eye with glasses on in
a particular light, then only the optimization needs to be
performed for this new class so that the latter can finally
join the other classes that are checked during the initial-
ization for the accelerated calculations.
[0114] The described offline optimization loop in Figure
5 for creating the classes, which define the acceleration
in the frequency domain, is given in more detail in Figure
6. The optimization loop is described for a single class
of eye images. The same type of optimization loop will
also be used be the multiple of classes shown for exam-
ple in Figure 4 and Figure 5 or other classes that can be
defined in a similar way.
[0115] The optimization starts with the training set,
which is extracted from the database of images, as de-
scribed at the top of Figure 5.
[0116] In the next steps, the parameters to be opti-
mized are chosen and initialized, and the ranges for the
parameters are set. In the example of Figure 6, the pa-
rameters shown are the values of the kernel, the sparse
zones, the extracted features and the classifier settings;
the choice of these settings depends on the type of ac-
celeration sought in the frequency domain.
[0117] Further, it is apparent that there are also higher

order design options for the parameters. For example,
the sparse zones can be set square or rectangular or
event of a different shape; as for the kernel, the kernel
parameters could be changed using a filter described
with a mathematical formula, such as a Gabor filter or a
multiple of Gaussian filters. Such parameter could for
example be wavelength, phase and orientation. Alterna-
tively, the individual kernel values within the sparse
zones can be directly varied although these values are
the output of a mathematically defined filter.
[0118] It should be noted that a number of combina-
tions between kernels and features are possible, and that
the chosen features and kernels can overlap each other.
It is also clear that the kernels, whose result from this
optimization are not pre-defined such as in methods sim-
ilar to Gabor banks, will be different for each class for
accelerating calculations.
[0119] Then, with such sparse calculations there is a
minimal extra cost when using different kernels for dif-
ferent sets of features within the defined sparse zones.
Next, the optimization loop begins with the chosen pa-
rameters being varied within the set ranges.
[0120] The ideal result is not necessarily the accuracy
of the final object classification or object tracking, but a
trade-off that is set for the optimization. For example, it
would be desirable to achieve high levels of classification
which using the smallest possible sparse zones and min-
imal amount of features. In other words, the desired
trade-off achieves an accurate classification and object
tracking while also achieving the highest possible accel-
eration of calculations, all while maintaining a solution
that allows a real-time adaptation. Other trade-offs can
be defined for the same generic structure of Figure 6. It
will also be clear that all parameters of the optimization
need not necessarily to be used to achieve acceptable
results. It will also be clear that the whole optimization
need not be repeated every time. For example, the set-
tings of a previous class could be the starting point for
the optimization of a new class, or when a class is up-
dated with new images in the training set, only part of the
optimization will need to be rerun, starting from the pre-
vious optimization results.
[0121] Figure 5 and Figure 6 describe the offline learn-
ing process for creating the classes to accelerate calcu-
lations in the frequency domain. And Figure 1, Figure 2,
Figure 3 and Figure 4 describe the online process to ac-
celerate calculations using the created classes. Mixed
uses are also possible, where the classes are trained in
an offline phase but there is also partly re-training in real-
time.
[0122] In Figure 7, a real-time re-training for object rec-
ognition is shown, and in Figure 8 a real-time re-training
for object tracking is shown.
[0123] In both Figures 7 and 8, the most appropriate
class is determined for accelerating calculations for the
chosen object. Then, in each case the possibility is given
to re-train the class for the specific object.
[0124] It might be the case that correctly the generic
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class of Asian eyes in partial sunlight has been chosen
for the specific eye. To make the class more specific for
the chosen eyes, one can then add frames from real-time
and re-train the classifier.
[0125] The classifier is just one of the parameters to
accelerate the calculations, next to the kernel values,
sparse zones, chosen features, classifier settings and
more. It will be clear that the whole offline optimization
process cannot be repeated in real-time. Anyway, well
chosen features resulting from the offline optimization
mean that a limited number of features suffice for the
classifier, and the classifier settings themselves need not
be too complex. In this case, re-training the classifier,
using the original training set augmented with extra
frames extracted in real-time from the actual eye, be-
comes feasible in real-time, as shown in Figure 7.
[0126] The same principle can also be used to re-train
in real-time the kernel used for estimation and tracking,
as shown in Figure 8.
[0127] Summarizing, the method according to the in-
vention is performed with calculations in the frequency
domain using only use a small, sparse, part of the fre-
quency domain. The initialization phase is carried out
with a number of classes in parallel, to determine the
most appropriated class and from this the most appro-
priated parameters such sparse zones, kernels, classifier
settings and features for accelerating the calculations in
the frequency domain while maintaining the accuracy.
[0128] Different parameters are dinamically used for
accelerating calculations in the frequency domain ac-
cording to changes in the class of the object being
tracked. These classes can for example by defined by
shapes, type of eyes or facial features. These classes
can also be defined by other factors such as light inten-
sity, zoom and so forth.

Claims

1. Method for object recognition, comprising the steps
of:

• obtaining a digital image defined through data
in a spatial domain;
• transferring the image data to the frequency
domain;
• applying to the transformed frequency domain
one or more sparse zone covering together a
fraction of the frequency domain, and a filtering
kernel at least partially overlapping said sparse
zones;
• performing a multiplication between the trans-
formed frequency data within each sparse zone
and said kernel, combining the results in single
values, each representing a corresponding ex-
tracted feature; and
• inputting the extracted features in a classifier,
therefore obtaining the object recognition; and

• varying the parameters of said sparse zones
and/or the kernel, repeating the process of mul-
tiplication and extraction until a predetermined
accuracy is achieved.

2. Method according to claim 1, wherein, the extracted
features are varied within the classifier, to update
the features in the classifier.

3. Method according to claim 2, wherein the classifier
is varied, to update the classifier.

4. Method according to claim 1, wherein the step of
transferring the image data to the frequency domain
is performed by a Discrete Fourier Transformation.

5. Method according to claim 1, wherein the step of
transferring the image data to the frequency domain
is performed by a Fast Fourier Transformation.

6. Method according to claim 1, wherein the step of
transferring the image data to the frequency domain
is performed by a Görtzel algorithm.

7. Method according to claim 1, wherein the single val-
ues are sum of values within a sparse zone.

8. Method according to claim 1, wherein, having a plu-
rality of given sparse frequency zones, kernels, fea-
tures and classifiers, the related calculations are
done in parallel.

9. Method according to claim 1, wherein said kernel
comprises a two dimension filter, e.g. a Gabor filter

10. Method according to claim 1, wherein the digital im-
age is the frame of a video stream.
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