

(11) **EP 2 799 352 A1**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

05.11.2014 Patentblatt 2014/45

(21) Anmeldenummer: 14164846.9

(22) Anmeldetag: 16.04.2014

(51) Int Cl.:

B65B 53/06 (2006.01) F27B 9/40 (2006.01) B65B 57/00 (2006.01) F27D 1/18 (2006.01)

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 30.04.2013 DE 102013104417

- (71) Anmelder: Krones Aktiengesellschaft 93073 Neutraubling (DE)
- (72) Erfinder: Napravnik, Christian 93073 Neutraubling (DE)
- (74) Vertreter: Benninger, Johannes Benninger Patentanwaltskanzlei Dr.-Leo-Ritter-Strasse 5 93049 Regensburg (DE)
- (54) Verfahren zum Überführen eines Schrumpftunnels in einen Produktionsmodus und Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus in einen Stillstand-Modus

(57) Die Erfindung betrifft ein Verfahren zum Überführen eines Schrumpftunnels in einen Produktionsmodus (PM), wobei das Verfahren mindestens das Öffnen eines Schrumpftunneleingangsbereichs und / oder das Öffnen eines Schrumpftunnelausgangsbereichs umfasst. Weiterhin umfasst das Verfahren wenigstens einen der nachfolgenden Schritte: a) Erhöhen der Schrumpftunnelinnenraumtemperatur auf einen vordefinierten Sollwert (Ti-PM); b) Einschalten des Fördermittels oder Erhöhen der Geschwindigkeit des Fördermittels auf einen vorgegebenen Sollwert (V(F)-PM); c) Einschalten oder Steigerung der Kettenkühlleistung auf einen vorge-

gebenen Sollwert (P(F)-PM); d) Einschalten oder Steigerung der Gebindekühlleistung auf einen vorgegebenen Sollwert (P(G)-PM). Erfindungsgemäß erfolgt das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs frühestens mit einem der Schritte a), b), c) und / oder d).

Die Erfindung betrifft weiterhin ein Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus in einen Stillstand- Modus, wobei das Verfahren mindestens das Schließen eines Schrumpftunneleingangsbereichs und / oder das Schließen eines Schrumpftunnelausgangsbereichs umfasst.

Fig. 1

Verschließen von Eingangs-

und Ausgangsbereich UND aa) u/o bb) u/o cc) u/o dd) u/o ee) ff) <u>PM</u> <u>SB</u> <u>s</u> Ti-PM Ti-SB < Ti-PM Ti-S < Ti-SB V(F)-PM V(F)-SB < V(F)-PM und Ti-S ≥ RT P(F)-SB < P(F)-PM P(F)-PM V(F)-S=0P(G)-PM P(G)-SB < P(G)-PM P(G)-S=0f) P(F)-S=0Öffnen von Eingangsund Ausgangsbereich UND a) u/o b) u/o c) u/o d) u/o e)

EP 2 799 352 A1

35

40

45

Beschreibung

[0001] Die vorliegende Erfindung bezieht sich auf Verfahren zum Betrieb eines Schrumpftunnels gemäß den Ansprüchen 1 und 9. Insbesondere bezieht sich die Erfindung auf ein Verfahren zum Überführen eines Schrumpftunnels in einen Produktionsmodus und auf ein Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus in einen Stillstand- Modus.

[0002] In Abfüll- und Verpackungsanlagen ist es be-

kannt, dass Gegenstände, insbesondere Flaschen, Dosen, Getränkekartons oder dgl. mittels einer Folie umwickelt werden und anschließend durch einen Schrumpftunnel hindurchtransportiert werden. Bei den mit Folie umwickelten Gegenständen spricht man in der Getränkeindustrie bevorzugt von sogenannten Gebinden. Bei der Folie handelt es sich in diesem Fall um eine wärmeschrumpfende Folie, dem Fachmann auch geläufig als LDPE, LLDPE - Kunststofffolie. Die mit einer solchen Folie umwickelten Gegenstände werden also im Anschluss nach deren Umwicklung in einer Verpackungsmaschine durch einen Schrumpftunnel befördert und dort mit Heißluft beaufschlagt, so dass die Folie schrumpft und sich an die Gegenstände anlegt. Ein unmittelbar an den Schrumpftunnel anschließender Abkühlbereich mit Ventilatoren sorgt für eine rasche Abkühlung der Gebinde, wodurch diese ihre transportfähige Festigkeit erhalten. [0003] Ein solcher Schrumpftunnel besteht nun im Wesentlichen aus einem umlaufenden Endlos-Fördermittel, welches über eine Teilstrecke mit einer Einhausung (Tunnel) überdacht ist, die den Tunnel bildet. Weiter besteht ein Schrumpftunnel aus meist mehreren Heizelementen und auch Ventilatoren bzw. Gebläsen, um die benötigte Heißluft zu erzeugen und anschließend im Tunnelinnenraum zu verteilen. Um eine besonders gleichmäßige Verteilung der Heißluft zu erreichen, wird die Heißluft nach deren Erzeugung mittels geeigneter Heißluftführungen teils in sogenannte Schachtwände geleitet und teils in eine Kammer, welche sich direkt unterhalb dem Fördermittel des Schrumpftunnels befindet. Somit werden die Gebinde bevorzugt von zumindest drei Seiten aktiv mit heißer Luft beaufschlagt. Der grundsätzliche Aufbau eines Schrumpftunnels sei an dieser Stelle nur in groben Abrissen erklärt. Ein Fachmann aus der Verpackungsindustrie kennt den Aufbau solcher

müssen.

[0004] Wie eingangs schon erwähnt benötigt ein solcher Schrumpftunnel zum Schrumpfen der Folie ein heißes gasförmiges Medium, meist Heißluft. Diese Heißluft wird durch die Heizmittel, welche Bestandteil eines Schrumpftunnels sind, erzeugt. Die erzeugte Heißluft bzw. die von den Heizmitteln erzeugte Heißluft wird dabei bevorzugt mit elektrischer Energie erzeugt. Mittlerweile ist man auch dazu übergegangen, die benötigte Heißluft mittels beispielsweise eines sogenannten Gasbrenners zu erzeugen. Leider ist das benötigte Gas vielerorts nicht

Schrumpftunnel zur genüge, so dass hier an dieser Stelle

keine weiteren Detailausführungen genannt werden

so ohne weiteres verfügbar, weshalb dann wiederum elektrisch beheizte Schrumpftunnel zum Einsatz kommen.

[0005] Solche elektrisch beheizten Schrumpftunnel haben einen hohen Bedarf an elektrischer Energie, wodurch nicht unerhebliche Kosten für den Betreiber anfallen. Insbesondere die Generierung der Heißluft stellt sich als größter Energieverbraucher bei einem Schrumpftunnel dar. Nun hat man festgestellt, dass der Verbrauch von elektrischer Energie bei einem Schrumpftunnel gesenkt werden kann, in dem man bei gewissen Betriebszuständen bzw. Betriebsmodi, in denen der Schrumpftunnel nicht für die Produktion benötigt wird, diesen in einen so genannten Stand-By Modus versetzt. Dabei werden ein oder mehrere Verbraucher des Schrumpftunnels in deren Leistung reduziert und somit der Energieverbrauch gegenüber dem Produktionsbetrieb gesenkt. [0006] Ein solcher Schrumpftunnel bzw. ein solches Verfahren zum Betrieb eines Schrumpftunnels geht beispielsweise aus der DE102010011640 A1 hervor. Hier wird ein Schrumpftunnel beschrieben, welcher neben dem herkömmlichen Produktionsmodus einen weiteren sogenannten Stand-By Modus aufweist, wobei mittels dieses Stand-By Modus der Schrumpftunnel mit einer gegenüber dem Produktionsmodus reduzierter Leistung betrieben wird. Der Wechsel zwischen dem herkömmlichen Produktionsmodus und dem weiteren Stand-By Modus erfolgt dabei zeit- und oder signalgesteuert. Bei dem Wechsel auf den Stand-By Modus erfolgen dabei einige Maßnahmen, welche zur Reduzierung des Energiebedarfs des Schrumpftunnels führen. Eine Maßnahme wäre beispielsweise, dass die vorhandene Soll-Temperatur auf eine gegenüber der Soll-Temperatur reduzierte Stand-By Temperatur einstellbar ist, was zur Folge hat, dass weniger Heizleistung erforderlich ist. Eine weitere Maßnahme wäre z.B. das Reduzieren der Transportgeschwindigkeit des schrumpftunnelseitigen Transporteurs, um den Energieaustrag, respektive den Wärmeaustrag, aus dem Tunnel zu minimieren. Wiederum geht hervor, dass auch die Abschaltung einer Kühlung des schrumpftunnelseitigen Transporteurs und auch die Kühlung der Gebinde, welche aus dem Schrumpftunnel herausfahren, Maßnahmen zur Reduzierung des Energiebedarfs wären. Auch das Abschalten eines Gebläses der Heizmittel je Tunnelzone, sofern jeder Tunnelzone mindestens zwei elektrisch betriebene Gebläse zugeordnet sind, bewirkt einen reduzierten Energiebedarf.

[0007] Weiterhin ist bekannt, dass der sogenannte Stand-By Modus eine weitere Maßnahme mit sich bringt, wobei die beiden Öffnungen im Eingangs- und Ausgangsbereich des Schrumpftunnels zumindest teilweise verschlossen werden. Der Schrumpftunneleingangsbereich und der Schrumpftunnelausgangsbereich sind logischerweise in einem herkömmlichen Produktionsmodus so weit geöffnet, so dass die Gebinde ungehindert in den Schrumpftunnel ein- und auslaufen können. Der Schrumpftunneleingangsbereich und der Schrumpftunnelausgangsbereich werden dabei bei einem Wechsel

zwischen den jeweiligen Betriebsmodi, d.h. zwischen dem Produktionsmodus und dem Stand-By Modus, entweder geöffnet oder geschlossen. Der Wechsel zwischen den beiden Betriebsmodi wird dabei ebenfalls zeitund/oder signalgesteuert ausgelöst. Eine solche Steuerung zum Betrieb eines Schrumpftunnels und ein solcher Schrumpftunnel selbst gehen beispielsweise aus der DE 102010020957 A1 hervor.

[0008] Der oben genannte Stand der Technik offenbart somit bereits einen Schrumpftunnel bzw. ein Verfahren zum Steuern eines Schrumpftunnels welches zeit- und / oder signalgesteuert zwischen zwei Betriebsmodi wechselt, bei denen jeweils ein unterschiedlicher Energiebedarf anfällt. Weiterhin offenbart das Dokument einen Schrumpftunnel bzw. ein Verfahren zum Steuern eines Schrumpftunnels, welcher zusätzlich bei einem Wechsel zwischen zwei Betriebsmodi die Schrumpftunnelöffnungen im Eingangs- und Ausgangsbereich des Schrumpftunnels öffnet oder verschließt.

[0009] Die Aufgabe der vorliegenden Erfindung ist nunmehr, den genannten Stand der Technik dahingehend zu optimieren, dass der Energiebedarf des Schrumpftunnels in einem Stillstand-Modus, beispielsweise im Stand-By Modus, bzw. beim Umschalten zwischen dem Produktionsmodus und einem Stillstand-Modus, beispielsweise dem Stand-By Modus, weiter optimiert und insbesondere minimiert wird.

[0010] Die Aufgabe wird gelöst durch ein Verfahren zum Überführen eines Schrumpftunnels in einen Produktionsmodus und durch ein Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus in einen Stillstand-Modus gemäß den Ansprüchen 1 und / oder 9.

[0011] Es hat sich gezeigt, dass nach dem zeit- und / oder signalgesteuertem Wechsel zwischen den am Stand der Technik bekannten einzelnen Betriebsmodi eine definierte Schrittfolge einzelner zuvor genannter Maßnahmen für den Betrieb bzw. zur Steuerung eines Schrumpftunnels zu dem Ergebnis führt, dass der Energiebedarf unmittelbar nach dem Wechsel bis hin zum Erreichen der Vorgaben des jeweiligen Betriebsmodi nochmals weiter reduziert werden kann.

[0012] So zeigt die Erfindung ein erstes Verfahren zum Überführen eines Schrumpftunnels mit einem Fördermittel in einen Produktionsmodus auf, welches mindestens das Öffnen einer eines Schrumpftunneleingangsbereichs und / oder das Öffnen eines Schrumpftunnelausgangsbereichs umfasst. Dieses Verfahren kann insbesondere eine Erstinbetriebnahme eines Schrumpftunnels oder die Überführung eines Schrumpftunnels von einem Stand-By Modus in einen Produktionsmodus betreffen. Weiterhin kann ein Schrumpftunnel, bei dem aufgrund einer längeren Stillstandzeit alle Energieverbraucher ausgeschaltet worden sind, und der sich somit in einem so genannten Stop-Modus befindet, in den Produktionsmodus überführt werden. Der wesentliche Unterschied zwischen dem Stand-By Modus und dem Stop-Modus besteht darin, dass der Schrumpftunnel im StandBy Modus, so wie aus dem Stand der Technik bekannt, auf einer niedrigeren zweiten Soll-Temperatur gehalten wird. Durch das Abschalten aller Energieverbraucher im Stop-Modus kann das Innere des Schrumpftunnels in Abhängigkeit von der Dauer der Stillstandzeit bis auf die Umgebungstemperatur abkühlen. Soll der Schrumpftunnel wieder in den Produktionsmodus hochgefahren werden, so ist die Ist-Tunneltemperatur nicht vorbekannt.

[0013] Das Verfahren umfasst wenigstens einen der Schritte, a) Erhöhen der Schrumpftunnelinnenraumtemperatur auf einen vordefinierten Sollwert; b) Einschalten des Fördermittels oder Erhöhen der Geschwindigkeit des Fördermittels auf einen vorgegebenen Sollwert; c) Steigerung der Kettenkühlleistung zur Kühlung des Fördermittels auf einen vorgegebenen Sollwert; d) Steigerung der Gebindekühlleistung auf einen vorgegebenen Sollwert. Erfindungsgemäß erfolgt das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs frühestens mit einem der Schritte a), b), c) und / oder d). Vorzugsweise handelt es sich bei den Sollwerten bereits um die Produktionswerte.

[0014] An dieser Stelle soll nochmal etwas detailliert auf die Bestandteile eines für die erfindungsgemäßen Verfahren benötigten Schrumpftunnel eingegangen werden, die im späteren Verlauf wesentlich für die erfindungsgemäßen Verfahren sind.

[0015] Ein für die erfindungsgemäßen Verfahren erfindungsgemäßer Schrumpftunnel besteht dabei aus den zumindest nachfolgend beschriebenen Bauteilen. Ein solcher Schrumpftunnel weist ein elektromotorisch angetriebenes Fördermittel und ein oder mehrere auch in Kombination wirkende Aggregate (z.B. Heißluftgebläse in Form von Ventilatoren, Heizregister, Sensoren), die für die notwendige Heißlufterzeugung und somit für das Einstellen der Schrumpftunnelinnenraumtemperatur, respektive zum Erreichen eines vordefinierten Sollwerts. z.B. Temperatur in °C, notwendig sind. Insbesondere können im Innenraum des Schrumpftunnels Sensoren vorgesehen sein, die die Ist-Temperatur ermitteln und den Wert an eine Steuerungseinheit weitergeben. Die Ist-Temperatur wird mit der Soll-Temperatur verglichen und die Heißluftgebläse und / oder Heizregister werden daraufhin so nachreguliert, dass die Soll-Temperatur im Innenraum des Schrumpftunnels eingestellt wird. Weiterhin weist ein für das erfindungsgemäße Verfahren verwendeter erfindungsgemäßer Schrumpftunnel eine sogenannte elektrische Kettenkühlung auf, die beispielsweise aus ein oder mehreren auch in Kombination wirkenden Aggregaten wie Ventilatoren und gegebenenfalls Sensoren besteht, welche außerhalb des Tunnelinnenraums, bevorzugt unterhalb des umlaufenden Fördermittels, angeordnet sind. Die Kühlaggregate dienen der Kühlung des Fördermittels, welches z.B. eine Netzgittergliederbandkette oder eine sogenannte Stabröllchenkette ist. Das Fördermittel heizt sich beim Durchlaufen des Schrumpftunnels auf. Bevor es den Schrumpftunnel erneut durchläuft, muss es bei der Rückführung herunter-

40

25

35

40

45

gekühlt werden, da ansonsten die Gefahr besteht, dass das Verpackungsmittel und / oder die nachfolgend geförderten Artikel zumindest teilweise schmelzen und am Fördermittel kleben bleiben. Des Weiteren weist ein für das erfindungsgemäße Verfahren verwendeter erfindungsgemäßer Schrumpftunnel mindestens ein oder mehrere auch in Kombination wirkende Aggregate, wie z.B. Axial-Ventilatoren oder Querstromventilatoren auf, die meist unmittelbar nach dem Schrumpftunnelinnenraum, also außerhalb und oberhalb und / oder seitlich des Fördermittels angeordnet sind, welche für die Abkühlung der Gebinde und somit für die notwendige Kühlleistung von Bedarf sind. Weiter ist für das erfindungsgemäße Verfahren vorgesehen, dass im Bereich der bei-Tunnelöffnungen des erfindungsgemäßen Schrumpftunnels Türen oder andere geeignete Verschlusselemente angeordnet sind, die sich bei Bedarf automatisch schließen oder öffnen, wobei in einem geschlossenen Zustand der Türen bzw. Verschlusselemente der Wärmeaustritt aus dem Schrumpftunnel reduziert wird. Um alle die genannten Verbraucher in einer definierten Art und Weise, besonders in einer definierten Schrittfolge zu betreiben, umfasst der Schrumpftunnel weiter eine eigene Steuerung, mittels welcher die erfindungsgemäßen Verfahren durchführbar sind. In dieser Steuerung sind die für die erfindungsgemäßen Verfahren notwendigen Daten hinterlegt. Bevorzugt ist der für das erfindungsgemäße Verfahren benötigte Schrumpftunnel noch mit mindestens einer Sensorik (z.B. Lichtschranke) an der Einlaufseite des Tunnels und mindestens einer weiteren Sensorik (z.B. Lichtschranke) an der Auslaufseite des Tunnels bestückt. Weiterhin ist für das erfindungsgemäße Verfahren wichtig, dass die eigene Steuerungseinheit des Schrumpftunnels eine Schnittstelle zu einer unmittelbar vor den Schrumpftunnel vorgeordneten Verpackungsmaschine bzw. der Steuerungseinheit der Verpackungsmaschine hat und dass diese gegenseitig miteinander kommunizieren können. Die Kommunikationsschnittstelle zum Kommunizieren des Schrumpftunnels mit der vorgeordneten Verpackungsmaschine kann dabei beispielsweise über ein sogenanntes Ethernet-Netz erfolgen.

[0016] Da einzelne Maßnahmen bzw. Schritte, welche für den erfindungsgemäßen Betrieb eines Schrumpftunnels notwendig sind, einerseits einen unterschiedlichen Energiebedarf und andererseits in Abhängigkeit von bestimmten Parametern unterschiedliche Zeit beanspruchen, ist es von Vorteil, diese einzelnen Maßnahmen bzw. Schritte in eine definierte Reihenfolge zu bringen. [0017] Durch eine definierte Reihenfolge einzelner Schritte ist es möglich, den Energiebedarf während bestimmter Maßnahmen nochmals zu senken. Ausgehend von einem Produktionsmodus und einem Stand-By Modus hat jeder der beiden Betriebsmodi somit zunächst einige Schritte zu durchlaufen, welche wiederum definierten Sollwerten als Vorgabe zu Grund liegen. Um diese Sollwerte zu erreichen, erfolgt somit mit jedem Wechsel von einem Betriebsmodus zu einem anderen Betriebsmodus das Einleiten bestimmter Maßnahmen bzw. Schritte. Es hat sich gezeigt, dass wenn die einzelnen Schritte bzw. Maßnahmen in einer definierten Reihenfolge durchgeführt werden, durch diese definierte Reihenfolge der Energiebedarf während des Ausführens einzelner oder mehrerer Schritte nochmals reduziert werden kann.

[0018] Bei den erfindungsgemäßen Verfahren ist somit in erster Linie entscheidend, wann ein einzelner oder mehrere Schritte durchgeführt werden und weiterhin auch wie hoch die Zeitdauer eines Schrittes oder mehrerer Schritte ist, um diese vollständig durchzuführen. [0019] Nachfolgend sollen anhand einer detaillierten Beschreibung das erfindungsgemäße Verfahren und weitere Ausführungsformen bzw. Weiterbildungen des erfindungsgemäßen Verfahrens beschrieben werden. [0020] Das erfindungsgemäße Verfahren zum Betrieb eines Schrumpftunnels, bei dem der Schrumpftunnel in den Produktionsmodus überführt werden soll, umfasst dabei mindestens das Öffnen eines Schrumpftunneleingangsbereichs und / oder das Öffnen eines Schrumpftunnelausgangsbereichs. Dieses Verfahren wird angewendet, wenn der Schrumpftunnel anfangs in einem Stand-By Modus vorliegt oder aber wenn sich der Schrumpftunnel vorher komplett ausgeschaltet in einem Stop-Modus befindet, wie es beispielsweise bei der Erstinbetriebnahme der Fall ist. Weiter umfasst das erfindungsgemäße Verfahren auch mindestens den Schritt a) Erhöhen der Schrumpftunnelinnenraumtemperatur auf einen vordefinierten Sollwert und / oder den Schritt b) Einschalten des Fördermittels oder Erhöhen der Geschwindigkeit des Fördermittels auf einen vorgegebenen Sollwert und / oder den Schritt c) Steigerung der Kettenkühlleistung auf einen vorgegebenen Sollwert und / oder den Schritt d) Steigerung der Gebindekühlleistung auf einen vorgegebenen Sollwert. Dadurch, dass das Öffnen eines Schrumpftunneleingangsbereichs und / oder das

rens gesenkt.

[0021] Eine weitere erfindungsgemäße Verfahrensvariante schlägt vor, dass das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs zeitgleich mit oder spätestens nach einem der Schritte a) bis d) erfolgt.

Öffnen eines Schrumpftunnelausgangsbereichs frühes-

tens mit einem der vorgenannten Schritte a) bis d) erfolgt,

wird der Energiebedarf des erfindungsgemäßen Verfah-

[0022] So ist es besonders von Vorteil, ein Verfahren zum Betrieb eines Schrumpftunnels zu verwenden, wobei das Öffnen eines Schrumpftunneleingangsbereichs und / oder das Öffnen eines Schrumpftunnelausgangsbereichs frühestens dann erfolgt, wenn die Schrumpftunnelinnenraumtemperatur den vorgegebenen Sollwert erreicht. Es wird somit verhindert, dass während des Aufheizvorganges des Schrumpftunnelinnenraums, welcher mittels mehrerer elektrischer, energieverbrauchender, einzeln oder auch in Kombination wirkender Aggregate, der Schrumpftunneleingangsbereich und/oder der Schrumpftunnelausgangsbereich vorzeitig geöffnet

sind. Die für den Aufheizvorgang notwendigen Aggregate wie z.B. Heizregister, Heizgebläse, Gebläse können somit möglichst effizient betrieben werden, da sich der Schrumpftunneleingangsbereich und / oder der Schrumpftunnelausgangsbereich in einem geschlossenen Zustand befinden. Sind während dem Aufheizvorgang beide Schrumpftunneleingangs- und -ausgangsbereiche verschlossen, so verkürzt sich dadurch auch die Zeitdauer des Aufheizvorganges, insbesondere verkürzt sich die Zeitdauer des Schrittes a) Erhöhen der Schrumpftunnelinnenraumtemperatur auf den vorgegebenen Sollwert. Durch das früheste Öffnen des Schrumpftunneleingangsbereichs und / oder des Schrumpftunnelausgangsbereichs wenn der vordefinierte Soll-Wert des Schrittes a) Erhöhen der Schrumpftunnelinnenraumtemperatur erreicht ist, wird die Aufheizdauer reduziert und weiterhin der Wärmeverlust minimiert, wodurch sich der daraus resultierende anfallende Energiebedarf für den Schritt a) absenkt. Weiterhin wird mit dem frühesten Öffnen des Schrumpftunneleingangsbereichs und des Schrumpftunnelausgangsbereichs, das erst erfolgt, wenn der Sollwert des Schrittes a) erreicht ist, bedingt durch die verkürzte Aufheizdauer, die Bereitstellungsdauer eines für die Produktion notwendigen Sollzustands des Schrumpftunnels verkürzt.

[0023] In einer weiteren besonderen Ausführungsform erfolgen die Schritte "Öffnen des Schrumpftunneleingangsbereichs und / oder Öffnen des Schrumpftunnelausgangsbereichs" in Abhängigkeit des Fortschritts des Schrittes a) Erhöhen der Schrumpftunnelinnenraumtemperatur auf einen vordefinierten Sollwert. So kann, um eine Stauwärmebildung im Schrumpftunnelinnenraum kurz vor Erreichen des vordefinierten Sollwerts für die Schrumpftunnelinnenraumtemperatur zu verhindern, das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs bereits erfolgen, wenn eine vordefinierte Temperatur erreicht ist, die unterhalb des Sollwertes für den Produktionsmodus liegt. Dadurch wird eine mögliche Stauwärmebildung innerhalb des Schrumpftunnels vermieden, welche dazu führen kann, dass die ersten, durch den Schrumpftunnel beförderten, Gebinde überhitzt werden. Mit anderen Worten, bedingt durch das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs bei Erreichen einer definierten Soll-Temperatur, die beispielsweise 90 -95% des vordefinierten Sollwerts der Schrumpftunnelinnenraumtemperatur entspricht, kann eine Stauwärmebildung innerhalb des Schrumpftunnels vermieden werden, wodurch die ersten, nach Fertigstellung des Schritt a) Erhöhen der Schrumpftunnelinnenraumtemperatur auf einen vordefinierten Sollwert, hindurch beförderten Gebinde keine Überhitzung bzw. Beschädigung erfahren. Dies bewirkt eine Verbesserung der Qualität der ersten im Schrumpftunnel verarbeiteten Gebinde, die ansonsten gegebenenfalls verworfen werden müssten.

[0024] Eine weitere besondere Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, dass der

Schritt b), d.h. das Einschalten des Fördermittels bzw. das Erhöhen der Geschwindigkeit des Fördermittels in Abhängigkeit des Fortschritts des Aufheizens des Schrumpftunnels auf eine vordefinierte Solltemperatur erfolgt. Beispielsweise kann vorgesehen sein, das Fördermittel erst einzuschalten, wenn die Temperatur im Innenraum des Schrumpftunnels ca. 90% des Sollwertes erreicht hat. Das Fördermittel benötigt für den Produktionsmodus ebenfalls eine bestimmte Solltemperatur. Ist das Fördermittel zu kalt, so beeinflusst dies die Qualität des Schrumpfergebnisses im Bodenbereich der Gebinde negativ. Ist das Fördermittel im Stand-By Modus ausgeschaltet, dann erhitzt sich beim Aufheizen des Schrumpftunnelinnenraumes im Wesentlichen nur der Transportbereich innerhalb des Schrumpftunnels. Der Rückführbereich des Fördermittels bleibt hingegen je nach Anordnung kalt. Der Zeitpunkt an dem das Fördermittel eingeschaltet wird bzw. zu dem die Geschwindigkeit des Fördermittels erhöht wird, ist dabei so gewählt, dass beim Durchlaufen des Schrumpftunnels während der Zeit, die benötigt wird, um den Schrumpftunnel auf den endgültigen Sollwert der benötigten Schrumpftunnelinnentemperatur aufzuheizen, alle Bereiche des Fördermittels ausreichend erwärmt werden, so dass dieses allumfas-25 send auf die notwendige Produktionstemperatur aufgeheizt wird.

[0025] Gleichzeitig kann es notwendig sein, die Kettenkühlmittel anzuschalten bzw. die Kettenkühlleistung zu erhöhen, damit die Temperatur des Fördermittels, insbesondere im Schrumpftunneleingangsbereich, die gewünschte Temperatur hat.

[0026] Eine weitere besondere Ausführungsform des erfindungsgemäßen Verfahrens sieht deshalb vor, dass die Steigerung der Kettenkühlleistung auf einen vordefinierten Sollwert in Abhängigkeit einer ermittelten Kettentemperatur erfolgt. Bei einem Schrumpftunnel wird das Fördermittel, z.B. Netzgitterbandgliederkette, Stabröllchenkette, in einem normalen Produktionsmodus stetig gekühlt, um zu verhindern, dass es sich zu stark erhitzt. Ein zu stark erhitztes Fördermittel würde zu einem Schmelzen von Verpackungsmittel und gegebenenfalls auch zu einem teilweisen Schmelzen der Artikel führen. Dies führt zu einer Verschmutzung des Fördermittels mit Kunststoffrückständen und behindert den weiteren Transport. Zudem kann dies zu starken Qualitätseinbußen am fertig geschrumpften Gebinde führen. Nun sieht das erfindungsgemäße Verfahren vor, dass zusätzlich zum Öffnen des Schrumpftunneleingangsbereichs und / oder Öffnen des Schrumpftunnelausgangsbereichs, die frühestens mit einem der Schritte a), b) c) oder d) erfolgen, während des Schrittes c), d.h. während der Steigerung der Kühlleistung zur Kühlung des Fördermittels, eine Steigerung der Kettenkühlleistung in Abhängigkeit einer ermittelten Fördermitteltemperatur erfolgt. Durch die Steigerung der Kühlleistung in Abhängigkeit der ermittelten Temperatur des Fördermittels wird diese nur gesteigert, wenn es auch wirklich notwendig ist. Somit kann gezielt und effizient der Energiebedarf weiter reduziert

35

40

25

40

45

werden. Die Temperatur des Fördermittels wird insbesondere im oder anschließend an den Schrumpftunnelausgangbereich durch eine sensorische Messung der Temperatur ermittelt und mit einem vordefinierten Sollwert abgeglichen. Dieser Sollwert entspricht einem Temperaturwert, den das Fördermittel im Schrumpftunneleingangsbereich aufweisen soll. Bei der Rückführung des Fördermittels zwischen Schrumpftunnelausgangbereich und Schrumpftunneleingangsbereich erfolgt eine angepasste Kühlung des Fördermittels. Der Erfolg der Kühlung kann durch einen zweiten, im Rückführbereich angeordneten Temperatursensor überprüft werden und gegebenenfalls kann daraufhin die Kettenkühlleistung nochmalig angepasst werden.

[0027] Weiter hat sich gezeigt, dass es sinnvoll sein kann, wenn die Schrumpftunneltüren bzw. Verschlusselemente nicht nur in Abhängigkeit der Schrumpftunnelinnenraumtemperatur geöffnet werden, sondern auch in Abhängigkeit der Gebinde, welche von der vorgeordneten Verpackungsmaschine erzeugt und über das Fördermittel durch den Schrumpftunnel transportiert werden. Es kann somit hier ebenfalls ein Energieverlust bedingt durch ein zu frühzeitiges Öffnen der Schrumpftunneltüren bzw. Verschlusselemente vermieden werden. So kann beispielsweise beim Start der Verpackungsmaschine die Zeit genutzt werden, welche die Verpackungsmaschine benötigt, um ein erstes Gebinde mit Folie zu umwickeln, welches im Anschluss an den Schrumpftunnel übergeben wird. Diese Zeit ist nicht unerheblich. Bedingt durch den Wiederanlauf der Verpackungsmaschine und der zuerst durchzuführenden einzelnen Schritte wie Einteilen einzelner Artikel zu einer Gebindeformation, Weitertransportieren der Gebindeformation in ein Folieneinschlagmodul, Umwickeln der Gebindeformation mit schrumpfbarer Folie, Abtransport der umwickelten Foliengebinde und Übergabe auf das Fördermittel, verstreicht eine gewisse Zeit, bis der Schrumpftunnel für seine herkömmliche Produktionsaufgabe, das Schrumpfen von Gebinden, benötigt wird. So wäre denkbar, dass der Schrumpftunneleingangsbereich erst dann geöffnet wird, wenn die Verpackungsmaschine bereits mit der Herstellung der Foliengebinde und dessen Umwicklung begonnen hat. Besonders bevorzugt öffnet sich der Schrumpftunneleingangsbereich erst mit der Fertigstellung eines ersten mit Schrumpffolie umwickelten Gebindes. Der Schrumpftunnelausgangsbereich kann entweder unter gleichen Bedingungen geöffnet werden, oder aber erst dann, wenn vorher, in Abhängigkeit der Geschwindigkeit des Fördermittels, eine bestimmte Zeit verstrichen ist. Anhand der Fertigstellung des umwickelten Foliengebindes und dessen Übergabe auf das Fördermittel und anhand der vorbekannten Fördergeschwindigkeit des Fördermittels kann sehr genau ermittelt werden, wie lange der Transport des ersten Gebindes benötigt, um am Schrumpftunnelausgangsbereich anzukommen. Der Schrumpftunnelausgangsbereich wird somit rechtzeitig geöffnet, bevor das Gebinde diesen erreicht.

[0028] Eine weitere besondere Art und Weise, die die

Steuerung der Schrumpftunneltüren noch effizienter gestaltet und weniger komplizierte Programmiertätigkeiten erfordert, wäre, dass der Schrumpftunneleingangsbereich und der Schrumpftunnelausgangsbereich jeweils über eine eigene Sensorik verfügen. Eine Ausgestaltung der Sensorik sieht dabei zumindest vor dem Schrumpftunneleingangsbereich eine erste Lichtschranke vor. In Abhängigkeit von Belegung und einem vorgegebenen Zeitintervall steuert diese Lichtschrankenanordnung den Öffnungszeitpunkt der beiden Schrumpftunneltüren, wobei der Schrumpftunneleingangsbereich als erstes geöffnet wird und der Schrumpftunnelausgangsbereich erst nach Ablauf eines anschließenden, vorgegebenen Zeitintervalls. Alternativ kann der Schrumpftunnelausgangsbereich auch gleichzeitig mit dem Öffnen des Schrumpftunneleingangsbereichs geöffnet werden. Diese Art der Öffnungssteuerung der beiden Schrumpftunneltüren bzw. Verschlusselemente erscheint als besonders bevorzugt und gleichzeitig als einfachste und direkteste Art und Weise, um möglichst genau dann die Schrumpftunneltüren bzw. Verschlusselemente zu öffnen, wenn dies notwendig ist, d.h. insbesondere dann, wenn die Gebinde in den Schrumpftunnel einlaufen bzw. sich kurz vor dem Schrumpftunneleingangsbereich befinden bzw. wenn sich die Gebinde im Schrumpftunnel kurz vor dem Schrumpftunnelausgangsbereich befinden.

[0029] Es sei am Rande bemerkt, dass diese Art und Weise, die Steuerung der Schrumpftunneltüren über eine Lichtschrankenanordnung, auch dazu verwendet werden kann, um den Schrumpftunneleingangsbereich und den Schrumpftunnelausgangsbereich möglichst direkt und schnell zu schließen. Hierfür kann vorgesehen sein, dass vor dem Schrumpftunneleingangsbereich und unmittelbar nach dem Schrumpftunnelausgangsbereich jeweils eine Lichtschranke angeordnet ist.

[0030] Weiterhin kann bei der Reaktivierungsmaßnahme, bei der der Schrumpftunnel komplett angefahren oder aus einem Stand-By Modus in den Produktionsmodus hochgefahren wird, das Fördermittel vor oder bei Übergabe der ersten Gebinde auf das Fördermittel kurzzeitig mit einer erhöhten Transportgeschwindigkeit betrieben werden. Dieser zusätzliche Verfahrensschritt trägt nur indirekt zur Optimierung des Energiebedarfs bzw. Energieverbrauchs bei. Beim Reaktivieren und Öffnen der Tunneltüren erst mit oder kurz vor dem Erreichen der notwendigen Sollbetriebstemperatur im Innenraum des Schrumpftunnels, bildet sich bedingt durch die zuvor geschlossenen Türen eine sogenannte Stauwärme im Schrumpftunnel. Werden nun die ersten Gebinde unmittelbar nach dem Öffnen der Türen in den Schrumpftunnel hinein bzw. hindurchgefahren, so unterliegen diese Gebinde der zuvor erwähnten Stauwärme. Dies kann dazu führen, dass die ersten in den Schrumpftunnel einfahrenden Gebinde eventuell mit zu viel Wärmeenergie beaufschlagt werden. Aus diesem Grund kann es erforderlich sein, dass nach dem späten Öffnen der Schrumpftunneltüren, die Transportgeschwindigkeit des Förder-

30

35

40

45

mittels kurzfristig über der regulären Transportgeschwindigkeit liegt, die für den normalen Produktionsbetrieb erforderlich ist. Es wirkt somit im Verhältnis gesehen, bedingt durch die kurzfristige Erhöhung der Transportgeschwindigkeit, die gleiche Wärmeenergie auf die ersten durchlaufenden Gebinde, wie bei den nachlaufenden weiteren Gebinden, welche unter den normalen Produktionsbedingungen mit normaler Transportgeschwindigkeit durch den Schrumpftunnel befördert werden. Um hier Klarheit darüber zu schaffen, welches die ersten Gebinde sind, die mit erhöhter Transportgeschwindigkeit durch den Schrumpftunnel transportiert werden und welches die nachfolgenden Gebinde sind, die unter den normalen Produktionsbedingungen durch den Schrumpftunnel gefahren werden, sei an dieser Stelle vermerkt, dass die ersten Gebinde eine Anzahl von mindestens fünf Gebinden, maximal jedoch 25 Gebinden umfasst. Würde man noch weitere Gebinde mit einer erhöhten Transportgeschwindigkeit durch den Schrumpftunnel befördern, so wäre bedingt durch die fehlende Stauwärme das optimale Schrumpfergebnis nicht mehr gewährleistet. Die kurzfristige Erhöhung der Transportgeschwindigkeit kann zeitlich mit ca. ein bis drei Minuten definiert werden.

[0031] Wie bereits beschrieben, kann der Schrumpftunnel in einem Stop-Modus vorliegen, bei dem alle Energieverbraucher komplett abgeschaltet sind. Oder aber der Schrumpftunnel liegt in einem Stand-By Modus vor, bei dem die Leistung der Energieverbraucher zumindest teilweise reduziert ist. Ein Teil der Energieverbraucher, beispielsweise ein Teil der Heizmittel kann dabei auch komplett abgeschaltet sein. Im Wesentlichen kann der Schrumpftunnel aus dem Stand-By Modus relativ schnell wieder in den Produktionsmodus zurückversetzt werden. Beim Stop-Modus sind dagegen alle Energieverbraucher abgeschaltet, so dass der Schrumpftunnel in Abhängigkeit von der Dauer der Stillstandzeit sogar bis auf Raumtemperatur abkühlen kann. Insbesondere wird der Stop-Modus des Schrumpftunnels dadurch eingeleitet, dass nach dem Ausführen aller Verfahrensschritte a) bis e) die Steuerungseinheit in einen Stop-Modus versetzt wird, wodurch ein Abschalten aller Energieverbraucher bewirkt wird. Um den Schrumpftunnel wieder in den Produktionsmodus zu versetzen, kann deshalb in einem weiteren Verfahrensschritt f) vorgesehen sein, dass die Steuerungseinheit und somit der Schrumpftunnel zuerst aus dem Stop-Modus aufgeweckt und in einen so genannten Run-Modus überführt werden, bei dem beispielsweise alle Heizmittel des Schrumpftunnels mit maximaler Leistung betrieben werden. Wird anschließend eine Schrumpftunnelinnentemperatur erreicht, die in etwa der Soll-Innentemperatur beim Stand-By Modus oder ca. 85-90% der Soll-Innentemperatur beim Stand-By Modus entspricht, so wird die Leistung der Heizmittel wieder reduziert und die Verfahrensschritte zum Überführen des Schrumpftunnels aus dem Stand-By Modus in den Produktionsmodus werden eingeleitet.

[0032] Die Erfindung betrifft weiterhin ein Verfahren

zum Überführen eines Schrumpftunnels in einen Produktionsmodus, wobei das Verfahren mindestens das Öffnen eines Schrumpftunneleingangsbereichs und / oder das Öffnen eines Schrumpftunnelausgangsbereichs umfasst. Hierbei ist vorgesehen, dass der Schrumpftunneleingangsbereichs und / oder der Schrumpftunnelausgangsbereichs des Schrumpftunnels zuerst einmal verschlossen vorliegen. Zuerst wird der Schrumpftunnel in einen Betriebsmodus versetzt. Dies erfolgt durch Einschalten oder Hochsetzen der Leistung mindestens eines Verbrauchers innerhalb des Schrumpftunnels. Das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs erfolgt frühestens mit dem Einschalten oder Hochsetzen der Leistung des mindestens einen Verbrauchers innerhalb des Schrumpftunnels. Insbesondere ist vorgesehen, dass das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs erst erfolgt, wenn eine Mindesttemperatur im Innenraum des Schrumpftunnels erreicht ist. Dies wird beispielsweise über einen mit einer Steuerungseinheit gekoppelten Temperatursensor kontrolliert und gesteuert. Anschließend wird die Leistung weiterer Verbraucher auf die Produktionsleistung erhöht, wodurch der Produktionsmodus des Schrumpftunnels eingestellt wird.

[0033] Die Erfindung betrifft weiterhin ein Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus in einen Stillstand-Modus. Unter Stillstand-Modus kann ein Stand-By Modus verstanden werden, bei dem der Schrumpftunnel mit einer reduzierten Leistung betrieben wird. Unter Stillstand-Modus kann aber auch ein Stop-Modus verstanden werden, bei dem alle Energieverbraucher des Schrumpftunnels komplett abgeschaltet sind. Das Verfahren umfasst mindestens das Schließen eines Schrumpftunneleingangsbereichs und / oder das Schließen eines Schrumpftunnelausgangsbereichs. Weiterhin umfasst das Verfahren mindestens einen der nachfolgend genannten Schritte: aa) Absenken der Schrumpftunnelinnenraumtemperatur auf einen vordefinierten Sollwert; bb) Verringern der Geschwindigkeit des Fördermittels auf einen vorgegebenen Sollwert; cc) Reduzieren der Kettenkühlleistung auf einen vorgegebenen Sollwert; dd) Reduzieren der Gebindekühlleistung auf einen vorgegebenen Sollwert. Erfindungsgemäß ist vorgesehen, dass das Schließen des Schrumpftunneleingangsbereichs und / oder das Schließen des Schrumpftunnelausgangsbereichs spätestens mit einem der Schritte aa), bb), cc) oder dd) erfolgt.

[0034] Weiterhin kann vorgesehen sein, dass das Schließen des Schrumpftunneleingangsbereichs und / oder das Schließen des Schrumpftunnelausgangsbereichs frühestens vor einem der Schritte aa), bb), cc) oder dd) erfolgt. Besonders bevorzugt erfolgt das Schließen des Schrumpftunneleingangsbereichs und / oder das Schließen des Schrumpftunnelausgangsbereichs als erster Schritt bevor einer der Schritte aa), bb), cc) oder dd) durchgeführt wird. Insbesondere können die Schritte

aa), bb), cc) oder dd) in beliebiger Reihenfolge oder zeitgleich vorgenommen werden.

[0035] Gemäß einer Ausführungsform der Erfindung erfolgt das Verringern der Geschwindigkeit des Fördermittels spätestens mit dem Absenken der Schrumpftunnelinnenraumtemperatur. Durch die stetige Bewegung des Fördermittels wird beim Beheizen des Schrumpftunnels immer gewährleistet, dass dem Fördermittel nicht kontinuierlich Wärme zugeführt wird. Insbesondere im Rückführbereich erfolgt keine Wärmezufuhr, so dass das Fördermittel immer jeweils bereichsweise herunterkühlen kann. Würde die Transportgeschwindigkeit des Fördermittels bereits vor dem Absenken der Temperatur im Innenraum des Schrumpftunnels abgesenkt oder das Fördermittel komplett gestoppt werden, so könnte es lokal im Innenraum des Schrumpftunnels zu einer starken Überhitzung des Fördermittels kommen, was auch zu Schäden am Fördermittel oder an weiteren Bestandteilen innerhalb des Schrumpftunnels führen könnte. Wie bereits beschrieben, muss das Fördermittel aus diesem Grund im normalen Produktionsbetrieb in der Regel auch gekühlt werden, um eine Überhitzung des Fördermittels und dadurch bedingte Schäden an den zu verarbeitenden Gebinden zu vermeiden.

[0036] Gemäß einer Ausführungsform der Erfindung erfolgt ein Reduzieren der Kettenkühlleistung spätestens mit dem Verringern der Geschwindigkeit des Fördermittels. In Kombination mit dem oben gesagten ergibt sich, dass vorzugsweise das Absenken der Schrumpftunnelinnenraumtemperatur, die Reduzierung der Transportgeschwindigkeit des Fördermittels und das Reduzieren der Kettenkühlleistung zeitgleich erfolgen.

[0037] Das Verfahren kann weiterhin einen zusätzlichen Schritt ee) umfassen, mit welchem die Position der auf dem Fördermittel beförderten Gebinde ermittelt wird und in Abhängigkeit der ermittelten Position das Schließen des Schrumpftunneleingangsbereichs und / oder des Schrumpftunnelausgangsbereichs erfolgt.

[0038] Wenn das Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus in einen Stillstand-Modus durchgeführt werden soll, werden dem Schrumpftunnel keine zu verarbeitenden Gebinde mehr zugeführt. Allerdings sollen während des StillstandModus keine Gebinde im Schrumpftunnel verbleiben. Somit könnte der Schrumpftunneleingangsbereich bereits verschlossen werden, nachdem das letzte Gebinde in den Schrumpftunnel eingefahren ist, während der Schrumpftunnelausgangsbereichs erst verschlossen werden kann, wenn das letzte Gebinde den Schrumpftunnel verlassen hat. Da sich in diesem Fall jedoch Stauwärme bilden könnte, werden vorzugsweise beide Bereiche gleichzeitig verschlossen, nachdem alle Gebinde den Schrumpftunnel verlassen haben.

[0039] Gemäß einer weiteren Ausführungsform kann bei absehbar längeren Stillstandzeiten auch vorgesehen sein, dass die Sollwerte der Verfahrensschritte aa), bb), cc) und / oder dd) gleich Null sind. Insbesondere ist in einem so genannten Stop-Modus vorgesehen, dass alle

Energieverbraucher des Schrumpftunnels ausgeschaltet sind. In diesem Fall erfolgt auch keine Überwachung der Schrumpftunnelinnentemperatur, so dass dieser im Extremfall auf eine Temperatur, die in etwa der vorherrschenden Umgebungstemperatur entspricht, herunterkühlen kann.

[0040] Insbesondere kann spätestens nach Ausführen aller Schritte aa) bis ee) ein weiterer Schritt ff) vorgesehen sein, der die Steuerungseinheit des Schrumpftunnels in einen Stop-Modus versetzt. Das Ausführen aller Schritte aa) bis ee) deutet insbesondere auf eine längere Stillstandzeit hin und dient somit als Signal für die Steuerungseinheit, alle Energieverbraucher komplett abzuschalten.

[0041] Die Erfindung betrifft weiterhin ein Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus in einen Stillstand-Modus, wobei das Verfahren mindestens das Schließen eines Schrumpftunneleingangsbereichs und / oder das Schließen eines Schrumpftunnelausgangsbereichs umfasst. Im Produktionsmodus sind der Schrumpftunneleingangsbereichs und der Schrumpftunnelausgangsbereichs zumindest teilweise geöffnet, um einen Durchtritt der Artikel oder Artikelzusammenstellungen durch den Schrumpftunneleingangsbereichs in den Schrumpftunnel hinein und durch den Schrumpftunnelausgangsbereichs aus dem Schrumpftunnel hinaus zu gewähren. Der Schrumpftunnel wird durch Ausschalten oder Herabsetzen der Leistung mindestens eines Verbrauchers innerhalb des Schrumpftunnels zuerst in einen Betriebsmodus versetzt. Erfindungsgemäß erfolgt das Schließen des Schrumpftunneleingangsbereichs und / oder das Schließen des Schrumpftunnelausgangsbereichs frühestens mit dem Ausschalten oder Herabsetzen der Leistung des mindestens einen Verbrauchers innerhalb Schrumpftunnels. Insbesondere ist vorgesehen, den Schrumpftunneleingangsbereich und den Schrumpftunnelausgangsbereich zeitgleich mit dem Ausschalten oder Herabsetzen der Leistung des mindestens einen Verbrauchers zu verschließen. Somit wird die vorhandene Wärme weitgehend im Innenraum des Schrumpftunnels zurückgehalten und dieser kühlt weniger schnell aus. Anschließend kann der Schrumpftunnel durch Abschalten oder Herabsetzen der Leistung weiterer Verbraucher in einen Stillstand-Modus, insbesondere in den Stand-By Modus oder sogar in den Stop-Modus versetzt werden. Soll der Schrumpftunnel für eine neue Produktion nun wieder in den Produktionsmodus versetzt werden, erfolgt dies beispielsweise über den Zwischenschritt des Betriebsmodus. In Abhängigkeit von der gegebenen Ist-Temperatur im Innenraum des Schrumpftunnels im Stillstand-Modus muss gegebenenfalls weniger Energie aufgebracht werden, um den Betriebsmodus und anschließend den Produktionsmodus zu erreichen.

[0042] Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern.

40

20

Figur 1 zeigt einen schematischen Überblick über ein Verfahren zum Überführen eines Schrumpftunnels in verschiedene Betriebsmodi.

Figur 2 zeigt eine bevorzugte Ausführungsform eines Verfahrens zum Überführen eines Schrumpftunnels von einem Produktionsmodus in einen Stand-By Modus und anschließend in einen Stop-Modus.

Figur 3 zeigt einen schematischen Überblick über ein Verfahren zum Überführen eines Schrumpftunnels zwischen einem Produktionsmodus und einem Stillstandmodus über einen Zwischen-Betriebsmodus.

[0043] Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die erfindungsgemäßen Verfahren ausgestaltet sein können und stellen keine abschließende Begrenzung dar.

[0044] Figur 1 zeigt einen schematischen Überblick über ein Verfahren zum Überführen eines Schrumpftunnels in verschiedene Betriebsmodi. Im Produktionsmodus PM weist der Schrumpftunnel weitgehend eine für den normalen Schrumpfbetrieb notwendige definierte Innentemperatur Ti-PM auf. Diese liegt unter der Schmelztemperatur des Verpackungsmaterials und der Artikel. Beispielsweise liegt die Innentemperatur Ti-PM im Produktionsmodus PM bei ca. 200°C. Das Fördermittel, mit dem die mit Verpackungsmittel umhüllten Artikel oder Artikelzusammenstellungen durch den Schrumpftunnel befördert werden, bewegt sich mit einer vordefinierten Produktionsgeschwindigkeit V(F)-PM. Bei dem Fördermittel handelt es sich insbesondere um ein kontinuierlich bewegtes Endlosfördermittel. Dieses erwärmt sich beim Durchlaufen des Schrumpftunnels und wird bei der Rückführung zwischen dem Schrumpftunneleingangsbereich und dem Schrumpftunnelausgangsbereich über erste Gebläse oder andere erste Kühlmittelversorger zumindest teilweise wieder herunter gekühlt. Im Produktionsmodus arbeiten die ersten Kühlmittelversorger mit einer Kühlleistung P(F)-PM. Weiterhin werden die Gebinde nach Verlassen des Schrumpftunnels mittels zweiter Gebläse oder anderer zweiter Kühlmittelversorger heruntergekühlt, bevor sie weiteren Bearbeitungsvorrichtungen zugeführt werden. Im Produktionsmodus PM arbeiten die zweiten Kühlmittelversorger mit einer Kühlleistung P(G)-PM.

[0045] Um den Energiebedarf des Schrumpftunnels während produktions- oder reparaturbedingter Stillstandzeiten zu reduzieren, kann der Schrumpftunnel in einen ersten Stand-By Modus SB versetzt werden. Insbesondere werden folgende Maßnahmen einzeln oder in beliebiger Kombination durchgeführt:

aa) Die Schrumpftunnelinnenraumtemperatur wird auf einen vordefinierten Sollwert Ti-SB abgesenkt, der beispielweise zwischen 50°C bis 80°C unterhalb der Schrumpftunnelinnenraumtemperatur Ti-PM im Produktionsmodus liegt.

bb) Weiterhin wird die Geschwindigkeit des Fördermittels auf einen vorgegebenen Sollwert V(F)-SB reduziert, der unterhalb der Geschwindigkeit V(F)-PM des Fördermittels im Produktionsbetrieb bzw. Produktionsmodus PM liegt.

cc) Die Kettenkühlleistung wird auf einen vorgegebenen Sollwert P(F)-SB reduziert, der unterhalb der Kettenkühlleistung P(F)-PM im Produktionsbetrieb bzw. Produktionsmodus PM liegt.

dd) Die Gebindekühlleistung wird auf einen vorgegebenen Sollwert P(G)-SB reduziert, der unterhalb der Gebindekühlleistung P(G)-PM im Produktionsbetrieb bzw. Produktionsmodus PM liegt.

[0046] Weiterhin werden der Schrumpftunneleingangsbereich und der Schrumpftunnelausgangsbereich spätestens mit einem der Schritte aa), bb), cc) oder dd) über Türen oder andere geeignete Verschlusselemente verschlossen.

[0047] Vorzugsweise wird in einem Verfahrensschritt ee) die Position der auf dem Fördermittel beförderten Gebinde ermittelt. Das Schließen des Schrumpftunneleingangsbereichs und / oder des Schrumpftunnelausgangsbereichs erfolgt in Abhängigkeit der ermittelten Position der Gebinde. Insbesondere wird der Schrumpftunneleingangsbereich erst verschlossen, wenn sich keine Gebinde in einem Zulaufbereich zum Schrumpftunnel befinden. Weiterhin wird der Schrumpftunnelausgangsbereich erst verschlossen, wenn sich keine Gebinde mehr im Inneren des Schrumpftunnels befinden.

[0048] Nachdem der Schrumpftunnel den Stand-By Modus SB erreicht hat, kann insbesondere bei längeren Stillstandzeiten die Steuerungseinheit in einem Verfahrensschritt ff) in einen Stop-Modus versetzt werden. Dadurch wird ein komplettes Abschalten aller Energieverbraucher des Schrumpftunnels eingeleitet und der Schrumpftunnel wird in einen Stop-Modus S versetzt. Im Stop Modus S entspricht der Sollwert der Verfahrensschritte aa) bis dd) jeweils einem Wert gleich Null. Insbesondere werden die Heizmittel abgeschaltet, so dass der Innenraum des Schrumpftunnels unkontrolliert auskühlt und je nach Dauer der Stillstandzeit sich weitgehend an die Umgebungstemperatur RT anpasst. Weiterhin werden das Fördermittel an sich sowie die Kettenkühlmittel und die Gebindekühlmittel komplett abgeschaltet.

[0049] Um den Schrumpftunnel aus dem Stand-By Modus SB wieder in den Produktionsmodus PM zu überführen, werden folgende Maßnahmen einzeln oder in beliebiger Kombination durchgeführt:

25

35

40

45

- a) Die Schrumpftunnelinnenraumtemperatur wird auf einen vordefinierten Sollwert der Schrumpftunnelinnenraumtemperatur Ti-PM für den Produktionsmodus PM aufgeheizt.
- b) Die Geschwindigkeit des Fördermittels wird auf eine Geschwindigkeit V(F)-PM des Fördermittels im Produktionsbetrieb erhöht.
- c) Die Kettenkühlleistung wird auf die Kettenkühlleistung P(F)-PM im Produktionsbetrieb erhöht.
- d) Die Gebindekühlleistung wird die Gebindekühlleistung P(G)-PM im Produktionsbetrieb erhöht.

[0050] Weiterhin werden die Türen oder Verschlusselemente im Schrumpftunneleingangsbereich und im Schrumpftunnelausgangsbereich spätestens mit einem der Schritte a), b), c) oder d) geöffnet.

[0051] Um den Schrumpftunnel aus dem Stop-Modus S wieder in den Produktionsmodus PM zu überführen, gibt es im Wesentlichen zwei Möglichkeiten. Bei der ersten Möglichkeit wird die Steuerungseinheit von dem Stop-Modus in einen Aktivierungs-Modus versetzt. Dabei werden die Energieverbraucher des Schrumpftunnels zumindest teilweise angeschaltet, so dass der Schrumpftunnel in den Stand-By Modus mit einer definierten Schrumpftunnelinnentemperatur Ti-SB, einer reduzierten Geschwindigkeit V(F)-SB des Fördermittels, einer reduzierten Kettenkühlleistung P(F)-SB und / oder einer reduzierten Gebindekühlleistung P(G)-SB versetzt wird. Anschließend erfolgt die endgültige Anpassung der Tunnelleistung an den Produktionsmodus PM und das Öffnen des Eingangs- und / oder Ausgangsbereiches des Schrumpftunnels.

[0052] Alternativ kann die Steuerungseinheit vom Stop-Modus in einen Run- Modus versetzt werden. Dieser wird verwendet, um den Produktionsmodus PM des Schrumpftunnels innerhalb kürzester Zeit herzustellen, indem zumindest ein Teil der Energieverbraucher kurzzeitig mit erhöhter Leistung betrieben werden. Insbesondere kann vorgesehen sein, die Heizmittel kurzzeitig mit maximaler Leistung zu betreiben. Die Temperatur im Innenraum des Schrumpftunnels wird dabei sensorisch überwacht. Übersteigt die Schrumpftunnelinnentemperatur dabei einen definierten Wert, der zwischen 85-95% der Schrumpftunnelinnentemperatur Ti-PM im Produktionsmodus PM festgelegt ist, dann wird die Leistung der Heizmittel auf normale Produktionsleistung geschaltet. Durch den Run-Modus gemäß Verfahrensschritt f) wird einerseits ein schnelles Aufheizen des Innenraums bewirkt, wobei andererseits durch das rechtzeitige Herunterregulieren ein Überhitzen des Schrumpftunnelinnenraums vermieden wird.

[0053] Vorzugsweise werden der Eingangs- und Ausgangsbereich erst geöffnet, wenn die notwendige Schrumpftunnelinnentemperatur eingestellt ist. Weiterhin kann vorgesehen sein, dass der Eingangsbereich

erst geöffnet wird, wenn sich zu bearbeitende Gebinde im Zulaufbereich zum Schrumpftunnel befinden. Weiterhin kann der Ausgangsbereich auch erst geöffnet werden, wenn sich die ersten Gebinde bereits im Schrumpftunnel befinden. Zudem kann das Fördermittel vor oder bei Übergabe der ersten Gebinde auf das Fördermittel kurzzeitig mit einer erhöhten Transportgeschwindigkeit betrieben werden. Dies verhindert, dass die Qualität der Schrumpfverpackung aufgrund von Stauwärme im Schrumpftunnel leidet. Durch die kurzfristige Erhöhung der Transportgeschwindigkeit für einen Zeitraum zwischen ein bis drei Minuten wirkt die gleiche Wärmeenergie auf die ersten durchlaufenden Gebinde, wie bei den nachlaufenden weiteren Gebinden, welche unter den normalen Produktionsbedingungen mit normaler Transportgeschwindigkeit durch den Schrumpftunnel befördert werden. Dies ist insbesondere notwendig, wenn das Aufheizen des Schrumpftunnels nicht sensorisch überwacht wird.

[0054] Gemäß einer besonders bevorzugten und in Figur 2 dargestellten Ausführungsform eines Verfahrens zum Überführen eines Schrumpftunnels von einem Produktionsmodus PM in einen Stand-By Modus SB und anschließend in einen Stop-Modus S werden zuerst der Schrumpftunneleingangsbereich und der Schrumpftunnelausgangsbereich verschlossen. In einem anschließenden weiteren Schritt wird die Leistung der unter aa) bis dd) genannten Energieverbraucher reduziert. Dies passiert vorzugsweise weitgehend zeitgleich. Das Verschließen des Schrumpftunnels bewirkt insbesondere, dass die Hitze weitgehend im Schrumpftunnel gespeichert wird und weniger Energie notwendig ist, um den Stand-By Temperatur Sollwert Ti-SB im Inneren des Schrumpftunnels zu halten. Wie im Zusammenhang mit Figur 1 beschrieben, kann über die Steuerungseinheit ein komplettes Abschalten des Schrumpftunnels bewirkt und dieser in einen Stop-Modus S versetzt werden.

[0055] Figur 3 zeigt einen schematischen Überblick über eine Ausführungsform eines Verfahrens zum Überführen eines Schrumpftunnels zwischen einem Produktionsmodus PM und einem Stillstandmodus, insbesondere einem Stand-By Modus SB oder einem Stop-Modus S, über einen Zwischen-Betriebsmodus BM.

[0056] Im Produktionsmodus PM sind der Schrumpftunneleingangsbereichs und der Schrumpftunnelausgangsbereichs zumindest teilweise geöffnet, um einen Durchtritt der Artikel oder Artikelzusammenstellungen zu ermöglichen. Beim Abschalten wird der Schrumpftunnel durch Ausschalten oder Herabsetzen der Leistung eines Verbrauchers innerhalb des Schrumpftunnels zuerst in einen Betriebsmodus BM versetzt. Dabei erfolgt das Schließen des Schrumpftunneleingangsbereichs und / oder das Schließen des Schrumpftunnelausgangsbereichs bei der dargestellten Ausführungsform zeitgleich mit dem Ausschalten oder Herabsetzen der Leistung des einen Verbrauchers innerhalb des Schrumpftunnels, wodurch die im Inneren des Schrumpftunnels vorhandene Wärme weitgehend zurückgehalten wird. Anschließend

20

25

40

45

50

55

kann der Schrumpftunnel durch Abschalten oder Herab-

setzen der Leistung weiterer Verbraucher gemäß einem der im Zusammenhang mit den Figuren 1 und 2 beschriebenen Verfahrensschritte aa) und / oder bb) und / oder cc) und / oder dd) und / oder ee) und / oder ff) in einen Stillstand-Modus, insbesondere in den Stand-By Modus SB oder sogar in den Stop-Modus S, versetzt werden.

[0057] Soll der Schrumpftunnel für eine neue Produktion nun wieder aus dem Stillstand-Modus SB oder S in den Produktionsmodus PM versetzt werden, erfolgt dies ebenfalls über den Zwischenschritt des Betriebsmodus BM. In Abhängigkeit von der gegebenen Ist-Temperatur im Innenraum des Schrumpftunnels im Stillstand-Modus SB oder S muss gegebenenfalls weniger Energie aufgebracht werden, um den Betriebsmodus BM und anschließend den Produktionsmodus PM zu erreichen. Der

ebenfalls über den Zwischenschritt des Betriebsmodus BM. In Abhängigkeit von der gegebenen Ist-Temperatur im Innenraum des Schrumpftunnels im Stillstand-Modus SB oder S muss gegebenenfalls weniger Energie aufgebracht werden, um den Betriebsmodus BM und anschließend den Produktionsmodus PM zu erreichen. Der Schrumpftunneleingangsbereichs und der Schrumpftunnelausgangsbereichs des Schrumpftunnels liegen im Stillstand-Modus SB oder S verschlossen vor. Zuerst wird die Leistung eines Verbrauchers innerhalb des Schrumpftunnels durch Einschalten oder Hochsetzen erhöht. Das Öffnen des Schrumpftunneleingangsbereichs und das Öffnen des Schrumpftunnelausgangsbereichs erfolgt frühestens mit dem Einschalten oder Hochsetzen der Leistung des Verbrauchers innerhalb des Schrumpftunnels. Gemäß der dargestellten Ausführungsform erfolgt das Öffnen des Schrumpftunneleingangsbereichs und das Öffnen des Schrumpftunnelausgangsbereichs erst, nachdem der Betriebsmodus BM erreicht wurde. Der Betriebsmodus ist erreicht, wenn beispielsweise eine vordefinierte Temperatur im Innenraum des Schrumpftunnels vorliegt. Im gezeigten Ausführungsbeispiel erfolgt das Öffnen des Schrumpftunneleingangsbereichs und das Öffnen des Schrumpftunnelausgangsbereichs insbesondere erst mit einem der im Zusammenhang mit den Figuren 1 und 2 beschriebenen Verfahrensschritten a) und / oder b) und / oder c) und / oder d) und / oder e) und / oder f).

[0058] Die Erfindung wurde unter Bezugnahme auf eine bevorzugte Ausführungsform beschrieben. Es ist jedoch für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.

Patentansprüche

- Verfahren zum Überführen eines Schrumpftunnels in einen Produktionsmodus (PM), wobei das Verfahren mindestens das Öffnen eines Schrumpftunneleingangsbereichs und/ oder das Öffnen eines Schrumpftunnelausgangsbereichs umfasst; sowie wenigstens einen der nachfolgenden Schritte
 - a) Erhöhen der Schrumpftunnelinnenraumtemperatur auf einen vordefinierten Sollwert (Ti-PM);

- b) Einschalten des Fördermittels oder Erhöhen der Geschwindigkeit des Fördermittels auf einen vorgegebenen Sollwert (V(F)-PM);
- c) Einschalten oder Steigerung der Kettenkühlleistung auf einen vorgegebenen Sollwert (P(F)-PM);
- d) Einschalten oder Steigerung der Gebindekühlleistung auf einen vorgegebenen Sollwert (P(G)-PM);

dadurch gekennzeichnet, dass

das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs frühestens mit einem der Schritte a), b), c) und / oder d) erfolgt.

- Verfahren nach Anspruch 1, wobei das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs spätestens nach einem der Schritte a), b), c) oder d) erfolgen.
- 3. Verfahren nach Anspruch 1 oder 2, wobei das Öffnen des Schrumpftunneleingangsbereichs und / oder das Öffnen des Schrumpftunnelausgangsbereichs frühestens dann erfolgt, wenn der vordefinierte Soll-Wert mindestens einer der Schritte a), b), c) oder d), bevorzugt des Schritt a), erreicht wird.
- Verfahren nach Anspruch 1, wobei der Schritt b), das Einschalten des Fördermittels bzw. das Erhöhen der Geschwindigkeit des Fördermittels in Abhängigkeit des Fortschritts des Aufheizens des Schrumpftunnels auf eine vordefinierte Solltemperatur (Ti-PM)
 erfolgt.
 - 5. Verfahren nach Anspruch 1, wobei die Steigerung der Kettenkühlleistung auf einen vorgegebenen Sollwert (P(F)-PM) gemäß Schritt c) in Abhängigkeit des Fortschritts des Aufheizens des Schrumpftunnels auf eine vordefinierte Solltemperatur (Ti-PM), insbesondere einer ermittelten Schrumpftunnelinnenraumtemperatur, erfolgt und / oder wobei die Steigerung der Kettenkühlleistung auf einen vorgegebenen Sollwert (P(F)-PM) in Abhängigkeit einer ermittelten Fördermitteltemperatur erfolgt..
 - 6. Verfahren nach einem der vorherigen Ansprüche, wobei das Verfahren zusätzlich einen Schritt e) umfasst, mit welchem die Position der auf dem Fördermittel beförderten Gebinde ermittelt wird und in Abhängigkeit der ermittelten Position das Öffnen des Schrumpftunneleingangsbereichs und/oder des Schrumpftunnelausgangsbereichs erfolgt und / oder wobei vor dem Ausführen aller Schritte ein zusätzlicher Schritt f) ausgeführt wird, der eine Steuerungseinheit des Schrumpftunnels in einen Run-Modus versetzt.

15

20

25

35

40

45

50

- 7. Verfahren nach einem der vorherigen Ansprüche, wobei das Öffnen des Schrumpftunneleingangsbereichs und das Öffnen oder des Schrumpftunnelausgangsbereichs gleichzeitig erfolgt und / oder wobei frühestens mit dem Öffnen des Schrumpftunneleingangsbereichs und / oder des Schrumpftunnelausgangsbereichs die Geschwindigkeit des Fördermittels kurzfristig über den vorgegebenen Sollwert erhöht wird.
- 8. Verfahren zum Überführen eines Schrumpftunnels in einen Produktionsmodus (PM), wobei das Verfahren mindestens das Öffnen eines Schrumpftunneleingangsbereichs und/ oder das Öffnen eines Schrumpftunnelausgangsbereichs umfasst; wobei der Schrumpftunnel durch Einschalten oder Hochsetzen der Leistung mindestens eines Verbrauchers innerhalb des Schrumpftunnels zuerst in einen Betriebsmodus (BM) versetzt wird,

dadurch gekennzeichnet, dass

das Öffnen eines Schrumpftunneleingangsbereichs und / oder das Öffnen eines Schrumpftunnelausgangsbereichs frühestens mit dem Einschalten oder Hochsetzen der Leistung des mindestens einen Verbrauchers innerhalb des Schrumpftunnels erfolgt.

- 9. Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus (PM) in einen Stillstand-Modus (SB, S), wobei das Verfahren mindestens das Schließen eines Schrumpftunneleingangsbereichs und / oder das Schließen eines Schrumpftunnelausgangsbereichs umfasst; sowie wenigstens einen der nachfolgenden Schritte
 - aa) Absenken der Schrumpftunnelinnenraumtemperatur auf einen vordefinierten Sollwert (Ti-SB, Ti-S);
 - bb) Verringern der Geschwindigkeit des Fördermittels auf einen vorgegebenen Sollwert (V(F)-SB, V(F)-S);
 - cc) Reduzieren der Kettenkühlleistung auf einen vorgegebenen Sollwert (P(F)-SB, P(F)-S);
 - dd) Reduzieren der Gebindekühlleistung auf einen vorgegebenen Sollwert (P(G)-SB, P(G)-S);

gekennzeichnet dadurch, dass

das Schließen des Schrumpftunneleingangsbereichs und / oder das Schließen des Schrumpftunnelausgangsbereichs spätestens mit einem der Schritte aa), bb), cc) oder dd) erfolgt.

- 10. Verfahren nach Anspruch 8, wobei das Schließen des Schrumpftunneleingangsbereichs und / oder das Schließen des Schrumpftunnelausgangsbereichs frühestens vor einem der Schritte aa), bb), cc) oder dd) erfolgt.
- 11. Verfahren nach Anspruch 8, wobei das Schließen

des Schrumpftunneleingangsbereichs und / oder das Schließen des Schrumpftunnelausgangsbereichs spätestens dann erfolgt, bevor der vordefinierte Soll-Wert mindestens einer der Schritte Schritte aa), bb), cc) oder dd) erreicht wird.

- 12. Verfahren nach Anspruch 8, wobei das Verringern der Geschwindigkeit des Fördermittels spätestens mit dem Absenken der Schrumpftunnelinnenraumtemperatur erfolgt und / oder wobei das Reduzieren der Kettenkühlleistung spätestens mit dem Verringern der Geschwindigkeit des Fördermittels erfolgt.
- 13. Verfahren nach einem Ansprüche 8 bis 12, wobei das Verfahren zusätzlich einen Schritt ee) umfasst, mit welchem die Position der auf dem Fördermittel beförderten Gebinde ermittelt wird und in Abhängigkeit der ermittelten Position das Schließen des Schrumpftunneleingangsbereichs und / oder des Schrumpftunnelausgangsbereichs erfolgt.
- 14. Verfahren nach einem der vorherigen Ansprüche, wobei das Schließen des Schrumpftunnelausgangsbereichs und das Schließen des Schrumpftunnelausgangsbereichs gleichzeitig erfolgt und / oder wobei jeder der Sollwerte der Verfahrensschritte aa) bis dd) jeweils einem Wert gleich Null entspricht und / oder wobei spätestens nach dem Ausführen aller Schritte ein zusätzlicher Schritt ff) ausgeführt wird, der eine Steuerungseinheit des Schrumpftunnels in einen Stop-Modus versetzt.
- 15. Verfahren zum Überführen eines Schrumpftunnels von einem Produktionsmodus (PM)) in einen Stillstand- Modus (SB, S), wobei das Verfahren mindestens das Schließen eines Schrumpftunneleingangsbereichs und/ oder das Schließen eines Schrumpftunnelausgangsbereichs umfasst; wobei der Schrumpftunnel durch Ausschalten oder Herabsetzen der Leistung mindestens eines Ver-

dadurch gekennzeichnet, dass

einen Betriebsmodus (BM) versetzt wird,

das Schließen eines Schrumpftunneleingangsbereichs und/ oder das Schließen eines Schrumpftunnelausgangsbereichs frühestens mit dem Ausschalten oder Herabsetzen der Leistung des mindestens einen Verbrauchers innerhalb des Schrumpftunnels erfolgt.

brauchers innerhalb des Schrumpftunnels zuerst in

Fig. 1

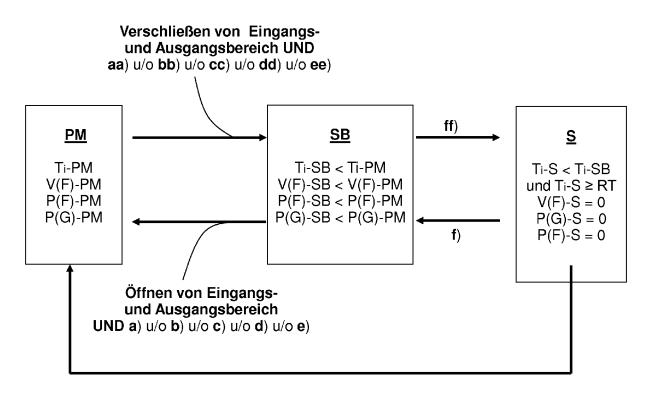
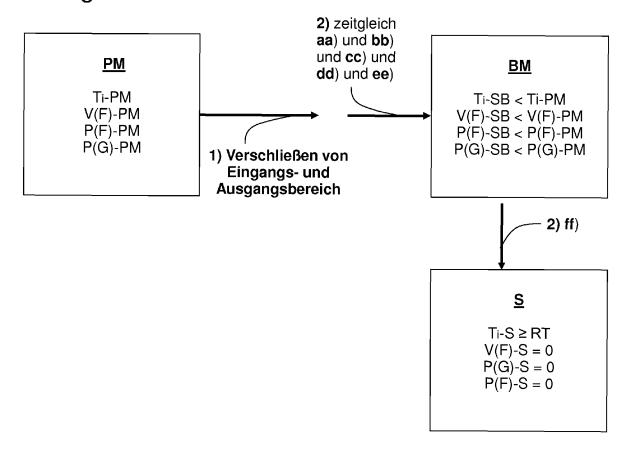
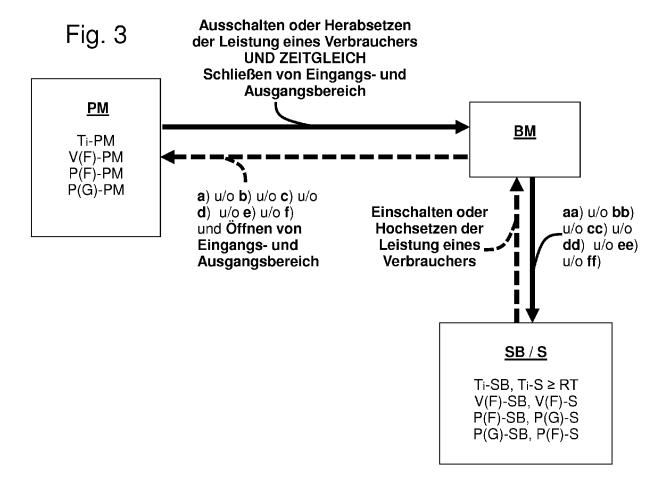




Fig. 2

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 14 16 4846

ı	EINSCHLÄGIGE	I/I AOOIEI/ATION DET			
Kategorie	Kennzeichnung des Dokume der maßgeblichen	nts mit Angabe, soweit erforderlich, Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)	
X,D	DE 10 2010 020957 A1 24. November 2011 (2 * Absatz [0038] * * Absatz [0049] * * Absatz [0035] *		1-15	INV. B65B53/06 B65B57/00 F27B9/40 F27D1/18	
Α	US 2004/083687 A1 (0 [US] ET AL) 6. Mai 2 * Absatz [0034] *		1-15		
А	US 4 616 123 A (ZAGO 7. Oktober 1986 (198 * Spalte 3, Zeile 37 * Spalte 4, Zeile 16 Abbildungen 1,1a,1b,	' - Zeile 57 *) - Zeile 31;	1-15		
A	US 3 826 017 A (KOST 30. Juli 1974 (1974- * Spalte 3, Zeile 24	74-07-30)			
А	US 3 807 126 A (SCHW 30. April 1974 (1974 * Spalte 9, Zeile 63 10; Abbildung 1 *	1-15	RECHERCHIERTE SACHGEBIETE (IPC) B65B F27B F27D		
A	EP 0 309 132 A2 (GRA 29. März 1989 (1989- * Spalte 12, Zeile 5 42; Abbildung 6 *	03-29) 62 - Spalte 13, Zeile 	1-15		
	Recherchenort	Abschlußdatum der Recherche	' 	Prüfer	
München		11. Juni 2014	Sch	helle, Joseph	
X : von Y : von ande A : tech	ATEGORIE DER GENANNTEN DOKUM besonderer Bedeutung allein betrachtei besonderer Bedeutung in Verbindung n eren Veröffentlichung derselben Katego nologischer Hintergrund tschriffliche Offenbarung	E : âlteres Patentdok t nach dem Anmek nit einer D : in der Anmeklung rie L : aus anderen Grü	kument, das jedo dedatum veröffer g angeführtes Do nden angeführtes	itlicht worden ist kument	

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 14 16 4846

5

55

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

2014

10			3		11-06-201
	Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
15	DE 102010020957 A	41	24-11-2011	DE 102010020957 A1 EP 2571768 A1 WO 2011144231 A1	24-11-2011 27-03-2013 24-11-2011
	US 2004083687 A	41	06-05-2004	US 2004083687 A1 US 2004168411 A1	06-05-2004 02-09-2004
20	US 4616123 A	4	07-10-1986	KEINE	
	US 3826017 A	4 	30-07-1974	KEINE	
	US 3807126 A	4 	30-04-1974	KEINE	
25	EP 0309132 A	A 2	29-03-1989	AR 248110 A1 AU 2242688 A BR 8804859 A CA 1325587 C DE 3876197 D1	30-06-1995 23-03-1989 25-04-1989 28-12-1993 07-01-1993
30				DE 3876197 T2 DK 522488 A EP 0309132 A2 ES 2035309 T3 GR 3006488 T3 JP H0199931 A	01-04-1993 22-03-1989 29-03-1989 16-04-1993 21-06-1993 18-04-1989
35				NZ 226261 A US 5044142 A ZA 8807019 A	26-03-1991 03-09-1991 30-05-1989
40					
45					
50	FORM P0461				

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EP 2 799 352 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 102010011640 A1 [0006]

• DE 102010020957 A1 [0007]