EP 2 799 986 A1

Patent Office

e brevers (11) EP 2 799 986 A1

(1 9) ’ e Hllmlmll‘m||m||H|Hl“‘ll‘l‘l“”l“”l‘l”l“l |H|‘H||H‘|H||‘
Patentamt
0 European

(12) EUROPEAN PATENT APPLICATION
(43) Date of publication: (51) IntCl.:
05.11.2014 Bulletin 2014/45 GOG6F 9/45 (2006.01)

(21) Application number: 14166856.6

(22) Date of filing: 02.05.2014

(84) Designated Contracting States: * Yoo, Dong-Hoon
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Gyeonggi-do (KR)
GRHRHUIEISITLILTLULV MC MK MT NL NO * Lee, Jin-Seok
PL PT RO RS SE SI SK SM TR Seoul (KR)
Designated Extension States: * Hwang, Seok-Joong
BA ME Seoul (KR)
(30) Priority: 03.05.2013 KR 20130050251 (74) Representative: Griinecker, Kinkeldey,
Stockmair & Schwanh&usser
(71) Applicant: Samsung Electronics Co., Ltd Leopoldstrasse 4
Gyeonggi-do 443-742 (KR) 80802 Miinchen (DE)
(72) Inventors:
¢ Kim, Seong-Gun
Gyeonggi-do (KR)

(54) Apparatus and method for translating multithread program code

(67) A method and apparatus for translating a multi-
thread program code are provided. The method includes:
dividing a multithread program code into a plurality of FI1G. 7
statements according to a synchronization point; gener-

g - i
ating at least one loop group by combining one or more (STaRT
adjacent statements based on a number of instructions R T
included in the plurality of statements; expanding or re- | ACCORBING TO SYNCHRONTZA TION POTNTS i~ 710
naming variables in each of the plurality of statements J{
so that each statement included in the at least one loop | CALCULATE NUMBER OF WORK GROUPS | 715
. . . . {THAT ARE EXECUTABLE WITHIN SINGLELOOPY — '
group is executed with respect to a work item of a different ; :
work group; and enclosing each of the generated at least }]
one loop group respectively with a work item coalescing GENERATE LOOP GROUP 7
loop. 1
1 EXPAND OR RENAME VARIABLE . 730
' T
- *
| ENCLOSE WITH WORK ITEM 740
i COALESCING LOOP !
~ 750
760
I ADD VARIABLE ROTATION CODE —~ 770
: T
Y
[ENCLOSE WITH WORK GROUP — 780
INTERLEAVING LOOP

(o0)

Printed by Jouve, 75001 PARIS (FR)

1 EP 2 799 986 A1 2

Description
1. Field

[0001] Apparatuses and methods consistent with ex-
emplary embodiments relate to compiling a program, and
more particularly, to translating a multithread program
code.

2. Description of the Related Art

[0002] There has been a noticeable development in
multicore or many-core technologies. In addition, a het-
erogeneous system for execution of a data parallel pro-
gram is now drawing attention in a high performance
computing field. Under these circumstances, Open Com-
puting Language (OpenCL) is proposed to meet the de-
mands. OpenCL is a standard for parallel programming
on heterogeneous processing platforms such as central
processing units (CPUs), graphics processing units
(GPUs), digital signal processors (DSPs), and other proc-
essors. OpenCL allows the use of the same program
source on various platforms, thereby giving software de-
velopers portability and enabling them to easily use the
processing power of the platforms.

SUMMARY

[0003] Aspects of one or more exemplary embodi-
ments provide an apparatus and method for translating
a multithread program code.

[0004] Accordingtoan aspectofanexemplary embod-
iment, there is provided a method for translating a mul-
tithread program code, the method including: dividing a
multithread program code into a plurality of statements
according to a synchronization point; generating at least
one loop group by combining one or more adjacent state-
ments based on a number of instructions included in the
plurality of statements; expanding or renaming variables
in each of the plurality of statements so that each state-
ment included in the generated at least one loop group
is executed with respect to a work item of a different work
group; and enclosing each of the generated at least one
loop group respectively with a work item coalescing loop.
[0005] The multithread program code may be an Open-
CL kernel code ora Compute Unified Device Architecture
(CUDA) kernel code.

[0006] The synchronization point may include at least
one of an entry point of the multithread program code, a
barrier function, and an entry point of a control structure.
[0007] The method may further include calculating a
number of work groups that are executable alternatively
within a single loop group based on a capacity of a mem-
ory used by the multithread program code, wherein the
generating the at least one loop group may include gen-
erating the at least one loop group by combining the one
or more adjacent statement such that a number of in-
structionsin each ofthe generated atleast one loop group

10

15

20

25

30

35

40

45

50

55

is close or equal to another and such that a number of
statements of each of the generated at least one loop
group does not exceed the calculated number of work
groups.

[0008] The method may further include optimizing a
translated code in a predetermined scheme.

[0009] The method may further include adding a vari-
able rotation code that sets variables in each statement
to indicate a memory offset at which the work group to
be executed is stored.

[0010] The method may further include translating a
code of a statement so that the statement is executed
for only a valid work group.

[0011] The translating the code of the statement may
include translating the statement using a conditional
statement or predication.

[0012] The method may further include enclosing the
work item coalescing loop and the variable rotation code
with awork group interleaving loop so that all work groups
are executed with respect to each statement.

[0013] According to an aspect of another exemplary
embodiment, there is provided an apparatus for translat-
ing a multithread program code, the apparatus including:
acode divider configured to divide a multithread program
code into a plurality of statements according to a syn-
chronization point; a loop group generator configured to
generate at least one loop group by combining one or
more adjacent statements based on a number of instruc-
tions included in the plurality of statements; a variable
expander/renamer configured to expand or rename var-
iables in each of the plurality of statements so that state-
ments in a same loop group execute work items of a
different work group serially; a work item coalescing loop
adder configured to enclose each of the generated at
least one loop group respectively with a work item coa-
lescing loop.

[0014] The multithread program code may be an Open-
CL kernel code or a CUDA kernel code.

[0015] The synchronization point may include at least
one of an entry point of the multithread program code, a
barrier function, and an entry point of a control structure.
[0016] The apparatus may furtherinclude a work group
number calculator configured to calculate a number of
executable work groups in a loop group based on a ca-
pacity of a memory used by the multithread program
code, wherein the loop group generator is further config-
ured to generate the at least one loop group by combining
the one or more adjacent statements such that a number
of instructions in each of the generated at least one loop
group is close or equal to another and a number of state-
ments of each of the generated at least one loop group
does not exceed the calculated number of work groups.
[0017] The apparatus may further include a code op-
timizer configured to optimize a translated code in a pre-
determined scheme.

[0018] The apparatus may further include a variable
rotation code adder configured to add a variable rotation
code that sets variables in each statement to indicate a

3 EP 2 799 986 A1 4

memory offset at which the work group to be executed
is stored.

[0019] Theapparatus may furtherinclude a code trans-
lator configured to translate a code of a statement so that
the statement is executed for only a valid work group.
[0020] The code translator may be further configured
to translate the code of the statement using a conditional
state or predication.

[0021] Theapparatus may furtherinclude a work group
interleaving loop adder configured to enclose a work item
coalescing loop and the variable rotation code with a work
group interleaving loop so that all work groups are exe-
cuted with respect to each statement.

[0022] According to an aspect of another exemplary
embodiment, there is provided a method for translating
a multithread program code, the method including: gen-
erating at least one loop group by combining one or more
adjacent statements, among a plurality of statements di-
vided from a multithread program code, based on a
number of instructions included in the plurality of state-
ments; modifying the plurality of statements so that each
statement included in the generated at least one loop
group is executed with respect to a work item of a different
work group; and enclosing each of the generated at least
one loop group respectively with a work item coalescing
loop.

[0023] Other features and aspects may be apparent
from the following detailed description, the drawings, and
the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The above and/or other aspects will become
apparent and more readily appreciated from the following
description of exemplary embodiments, takenin conjunc-
tion with the accompanying drawings, in which:

FIG. 1is adiagram illustrating a multithread program
execution model;

FIG. 2A is a diagram illustrating an example of a
kernel code including a barrier function;

FIG. 2B is a diagram illustrating an example of a
resultant code that s translated from the kernel code
in FIG. 2A by serializing work items on a basis of a
work group basis;

FIG. 2C is a diagram illustrating an execution se-
quence of the resultant code in FIG. 2B with respect
to work items;

FIG. 3 is a block diagram illustrating an apparatus
for translating a code according to an exemplary em-
bodiment;

FIG. 4Ais adiagram illustrating a resultant code that
is translated from the kernel code in FIG. 2A accord-
ing to an exemplary embodiment;

FIG. 4B is a diagram illustrating an execution se-
quence of the resultant code in FIG. 4A with respect
to work items;

FIG. 4C is a diagram illustrating a mnemonic code

10

15

20

25

30

35

40

45

50

55

that represents the resultant code in FIG. 4A;
FIG.5is adiagramiillustrating a mnemonic code that
represents a translation result when a work group to
be processed is dynamically assigned, according to
an exemplary embodiment;

FIG. 6 is a diagram illustrating an example of layout
of a memory space according to an exemplary em-
bodiment; and

FIG. 7 is a flowchart illustrating a method for trans-
lating a kernel code according to an exemplary em-
bodiment.

DETAILED DESCRIPTION OF EXEMPLARY EMBOD-
IMENTS

[0025] The following description is provided to assist
the reader in gaining a comprehensive understanding of
the methods, apparatuses, and/or systems described
herein. Accordingly, various changes, modifications, and
equivalents of the methods, apparatuses, and/or sys-
tems described herein will be understood by those of
ordinary skill in the art. Also, descriptions of well-known
functions and constructions may be omitted for increased
clarity and conciseness.

[0026] Throughout the drawings and the detailed de-
scription, unless otherwise described, the same drawing
reference numerals will be understood to refer to the
same elements, features, and structures. The relative
size and depiction of these elements may be exaggerat-
ed for clarity, illustration, and convenience. Hereinafter,
expressions such as "at least one of," when preceding a
list of elements, modify the entire list of elements and do
not modify the individual elements of the list.

[0027] FIG. 1isadiagramillustratinga multithread pro-
gram execution model.

[0028] A multithread program is a program written in a
fine-grained multithread programming language, such as
OpenCL and CUDA, which shares a program code. For
example, the multithread program may include a Fine-
grained Single Program Multiple Data-threaded pro-
gram. The multithread program code includes a kernel
code written in OpenCL or CUDA, and descriptions here-
inafter are provided with reference to a kernel code.
[0029] A kernel code may include one or more state-
ments. A statement is an individual instruction or signif-
icant expression which composes a program, and may
include an instruction sequence.

[0030] Inthe multithread program execution model, an
execution domainis divided into multiple work items (e.g.,
work items 111, 112, and 113) so that a kernel code may
be executed with respect to each work item (e.g., work
items 111, 112, and 113). Herein, each work item (e.g.,
work items 111, 112, and 113) may be executed alter-
natively in independent threads.

[0031] When work items are to be synchronized for
sharing data, the work items to be synchronized (e.g.,
work items 111 and 112) may be classified into one work
group 110. That s, a work group is a group of work items

5 EP 2 799 986 A1 6

to be synchronized, and may include one or more work
items. Synchronization between work items (e.g., the
work items 111 and 112) belonging to the same work
group is possible, but synchronization between work
items (e.g., the work items 112 and 113) belonging to a
different work group may not be possible. FIG. 1 dem-
onstrates a case in which an execution domain is divided
into 15x15 work items or 5x5 work groups.

[0032] Meanwhile, akernel code may include a barrier
function (i.e., a barrier instruction). A barrier function is
used to synchronize work items in the same work group.
The barrier function may be called a synchronization bar-
rier function, a synchronization function, or a barrier. If a
kernel code includes a barrier function, all the work items
in each work group are to be synchronized, and it is not
possible to proceed to a statement beyond the barrier
function until all the work items in a work group reach the
barrier function.

[0033] Hereinafter, a method for translating a kernel
code for parallel processing will be described in detail
with the assumption that a plurality of work items to be
processed operate in a single processing element.
[0034] FIG. 2Ais a diagram illustrating an example of
a kernel code that includes a barrier function, FIG. 2B is
a diagram illustrating a resultant code that is translated
from the kernel code in FIG. 2A by serializing work items
on a basis of a work group unit, and FIG. 2C is a diagram
illustrating an execution sequence of the resultant code
in FIG. 2B with respect to work items.

[0035] In the assumption that an execution domain of
a multithread program execution model is divided into N
number of work groups and that each work group in-
cludes M number of work items, a work item may be
represented by T(i, j), where i denotes a numerical value
that indicates a corresponding work group in the range
of 0 <i<N, and j denotes a numerical value that indicates
a corresponding work item in the range of 0<j<M.
[0036] In order to execute all of the N*M number of
work items in alow-level parallelism processor (or a proc-
essor with a small number of processing elements), var-
ious work items are processed in a single processing
element. To this end, the work items are to be serialized
in a process referred to as work item serialization, struc-
tured microthreading, or work-item coalescing.

[0037] Theworkitem serialization is a process of trans-
lating a kernel code by enclosing the kernel code with an
iterative statement so that the kernel code may be exe-
cuted a number of times equal to the number of work
itemsto be serialized. At this point, the iterative statement
may be referred to as a work-item coalescing loop (WCL)
or a thread loop.

[0038] AsshowninFIG. 2A, if a kernel code is divided
into a statement S1 220 and a statement S2 240 with
reference to a barrier function 230, work item serialization
may be performed on a basis of a work group unit such
that the statement S 1 220 and the statement S2 240,
which are separate with reference to the barrier function
230, are respectively translated into a statement S1° 261

10

15

20

25

30

35

40

45

50

55

and a statement S2’ 271, which lead to the same result
of the statement S1 220 and the statement S2 240. Ad-
ditionally, two work item coalescing loops 260 and 270,
each of which iteratively executes the statement S1’ 261
and the statement S2’ 271, are generated to enclose the
statement S1’ 261 and the statement S2’ 271, respec-
tively.

[0039] A code 250, which has been translated by per-
forming work item serialization on a basis of awork group
unit, executes work items of each work group. Accord-
ingly, the statement S1’ 261 and the statement S2’ 271
in FIG. 2B are executed with respect to each work item
in a sequence shown in FIG. 2C. That is, the statement
S1’ 261 is executed with respect to all the work items
(from T(i, 0) to T(i, M-1)) belonging to a work group i, and
then the statement S2’ 271 is executed with respect to
all the work items (from T(i, 0) to T(i, M-1)) belonging to
the work group i Furthermore, the statement S1’ 261 and
the statement S2’ 271 are executed sequentially for all
the work items (from T(i+1, 0) to T(i+1, M-1)) belonging
to a work group i+1. As such, a translated code on which
work item serialization is performed on a basis of a work
group unitin the above-described sequence is provided.
[0040] Thatis, ifakernelcodeis translated by perform-
ing work item serialization on a basis of work group unit,
the kernel code with a barrier function is translated into
various small-sized iterative statements (that is, multiple
iterative statements, each of which has less instructions).
Reduction in the number of instructions in an iterative
statement leads to a lower possibility of finding out an
instruction that directs an instruction scheduler of a com-
piler or an out-of-order scheduler of a Central Processing
Unit (CPU) to execute simultaneously, but also increas-
ing overheads for iteration of an instruction with seman-
tics (e.g., comparison of instruction variables, an in-
crease in instruction variables, and branch), so that the
instruction-level parallelism (ILP) may be degraded.
[0041] FIG. 3 is a block diagram of an apparatus 300
for translating a code according to an exemplary embod-
iment.

[0042] Referringto FIG. 3, the apparatus 300 for trans-
lating a code includes a code divider 310, a loop group
generator 320, a variable expander/renamer 330, and a
work item coalescing loop adder 340.

[0043] The code divider 310 may divide aninputkernel
code into one or more statements according to a syn-
chronization point. Herein, the synchronization point may
include an entry point of a kernel code, a barrier function,
and an entry point of a control structure.

[0044] For example, if a kernel code does not include
a barrier function, the kernel code itself may be deter-
mined as a single statement. In this case, the kernel code
becomes a single statement.

[0045] In another example, if a kernel code includes a
barrier function, the kernel code may be divided into two
statements with reference to the barrier function, that is,
one statement before the barrier function and the other
statement after the barrier function.

7 EP 2 799 986 A1 8

[0046] Alternatively, in another example, if a barrier
function is included in a conditional statement, the out-
side of the conditional statement may be divided into a
statement before the conditional statement and a state-
ment after the conditional statement. In addition, the in-
side of the conditional statement may be divided with
reference to the barrier function into a statement before
the barrier function and a statement after the barrier func-
tion.

[0047] Furthermore, in another example, if a barrier
function is included in a loop statement, a code outside
of the loop statement is executed once with respect to
each work item, but a code inside of the loop statement
is executed a number of times equal to the number of
iterations of the loop statement with respect to each work
item. Thus, the code outside of the loop statement and
the code inside of the loop statement may be separate.
In other words, with respect to the outside of the loop
statement, a kernel code may be divided into a statement
before the loop statement and a statement after the loop
statement. In addition, with respect to the inside of the
loop statement, akernel code may be divided into a state-
ment specifying a condition of a loop, a statement before
the barrier function, and a statement afterthe barrier func-
tion.

[0048] The loop group generator 320 may generate a
loop group that includes one or more statements, which
are to be enclosed by a work item coalescing loop, based
on the number of instructions in the statements divided
by the code divider 310.

[0049] In an exemplary embodiment, the loop group
generator 320 may generate a loop group by combining
adjacent statements based on the number of instructions
in each separate statement, so that the number of in-
structions in each loop group may become close or equal
to that of each other.

[0050] For example, assuming that a kernel code is
divided into five statements, which includes a statement
S 1 with 100 instructions, a statement S2 with 20 instruc-
tions, a statement S3 with 30 instructions, a statement
S4 with 30 instructions, and a statement S5 with 110
instructions, and that three work groups can be executed
alternatively withinone loop. In this case, in order to make
the number of instructions in each loop group close or
equal to that of each other, the loop group generator 320
may generate a first loop group including the statement
S 1 (the number of instructions = 100), a second loop
group including the statements S2, S3 and S4 (the
number of instructions = 20 + 30 + 30 = 80), and a third
loop group including the statement S5 (the number of
instructions = 110).

[0051] With respect to each of the loop groups gener-
ated by the loop group generator 320, the variable ex-
pander/renamer 330 may expand or rename variables in
each statement so that statements in the same loop
group execute work items of a different work group, se-
rially.

[0052] In an exemplary embodiment, the variable ex-

10

15

20

25

30

35

40

45

50

55

pander/renamer 330 may perform scalar expansion on
variables in each statement or rename the variables so
that each statement in the same loop group serially ex-
ecutes a work item of a different work group. In this case,
a variable on which scalar expansion is performed may
be a private variable that is used exclusively by each
work item, and a variable to be renamed may be a local
variable that is shared within each work group.

[0053] A workitems belongingto each work group may
have variables at different locations due to scalar expan-
sion. In addition, by renaming variables, a different data
location may be set for a work group to be executed with
respect to each statement.

[0054] Meanwhile, to keep semantics of a kernel code
intact, a translated code may be executed in a way that
all the statements are executed with respect to all the
work groups or that each statement is executed with re-
spect to a different work group when multiple statement
are executed within a single loop group. Thus, adjacent
statements belonging to different loop groups of a trans-
lated code are to be executed with respect to the same
work group. In addition, adjacent statements belonging
to the same loop group of a translated code are to be
executed with respect to different work groups such that
the faster a statement appears in the kernel code, the
greater number a work group is given with respect to
which the statement is executed. For example, assuming
that the statement S1 belongs to a first loop group, the
statements S2, S3, and S4 belong to a second loop
group, and the statement S5 belongs to a third loop
group, and that the statement S2 is executed with respect
to a work group i. In this case, among the statements S2,
S3, and S4 of the second loop group, the statement S2
appears first in the kernel code so that the statements
S3 and S4 are executed with respect to work groups i-1
and i-2, respectively. In addition, the statements S1 and
S2 are adjacent statements belonging to different loop
groups, so the statements S1 and S2 are executed with
respect to the same work group i, and similarly, the state-
ments S4 and S5 are executed with respect to the same
work group i-2.

[0055] In an exemplary embodiment, when expanding
or renaming variables in each statement, the variable
expander/renamer 330 may consider work groups of
each statement.

[0056] The work item coalescing loop adder 340 may
generate and add a work item coalescing loop that en-
closes eachloop group thatis generated in the loop group
generator 320.

[0057] In addition, the apparatus 300 may further in-
clude a work group number calculator 315 configured to
calculate the number of work groups that are executable
alternatively within the same work item coalescing loop.
[0058] In an exemplary embodiment, by taking into
consideration the number of statements separated by
the code divider 310 and a memory space for each work
group, the work group number calculator 315 may cal-
culate the number of work groups that are executable

9 EP 2 799 986 A1 10

alternatively at the same time. For example, if a dispos-
able memory size is large enough, the work group
number calculator 315 may determine the number of al-
ternatively executable work groups to be close or equal
to the number of the separate statements. Alternatively,
if a disposable memory size is not large enough, the work
group number calculator 315 may accordingly reduce the
number of alternatively executable work groups and
properly calculate the number of alternatively executable
work groups by taking into consideration the disposable
memory size.

[0059] In this case, in order to prevent the number of
statements included in a single loop group from exceed-
ing the number of work groups that are executable alter-
natively at the same time, which is calculated by the work
group number calculator 315, the loop group generator
320 may consider the calculated number of work groups
when generating a loop group.

[0060] In addition, the apparatus 300 may further in-
clude a code translator 350 configured to add or translate
a code so that each statement is executed only for a valid
work group. For example, suppose that the statement S1
executes a work group i and the statement S2 executes
a work group i-1, and that a work group is in the range
of 0 < j < N. In this case, with a condition of i=0, the
statement S2 is to execute a work group -1, but the work
group -1 does not exist. In addition, with a condition of
i=N, the statement S 1 is to execute a work group N,
although the work group N does not exist. Thus, the state-
ment S2 cannot be executed in the condition of i=0, and
the statement S1 cannot be executed in the condition of
i=N. Accordingly, the code translator 350 may add a con-
ditional statement in order to cause each statement to
be executed only for a valid work group, or may translate
a code of a corresponding statement to use predication.
[0061] In addition, the apparatus 300 may further in-
clude an optimizer 350 configured to optimize a translat-
ed code.

[0062] Inanexemplary embodiment, the code optimiz-
er 350 may optimize a code using various preset loop
optimization schemes or scalar optimization schemes.
For example, if a code has been translated such that
each statement is executed only for a valid work group,
the code optimizer 350 may optimize the translated code
through loop unswitching or may change a private vari-
able froman array into an ordinary variable through scalar
replacement.

[0063] Also, the apparatus 300 may further include a
variable rotation code adder 370 configured to add a var-
iable rotation code that results in variables in each state-
ment to indicate a memory offset at which a work group
to be executed is stored. That is, the variable rotation
code is a code to set variables in each statement to in-
dicate a memory offset at which a work group to be ex-
ecuted is stored.

[0064] In addition, the apparatus 300 may further in-
clude a work group interleaving loop adder 380 config-
ured to generate and add a work group interleaving loop

10

15

20

25

30

35

40

45

50

55

to enclose all the work item coalescing loops and variable
rotation codes, so that statements may be executed with
respect to all the work groups.

[0065] FIG.4Aisadiagramillustrating aresultantcode
translated from the kernel code in FIG. 2A, FIG. 4B is a
diagram illustrating an execution sequence of the result-
ant code with respect to work items, and FIG. 4C is a
diagramiillustrating a mnemonic code thatrepresents the
resultant code in FIG. 4A.

[0066] Referring to FIGS. 4A to 4C, a resultant code
410 translated according to an exemplary embodiment
is illustrated.

[0067] Inotherwords, in the resultant code 410in FIG.
4A, two work groups are executed alternatively. That is,
the resultant code is executed in a sequence where the
statement S2" 443 is executed with respect to a work
item (T(i-1, 0)) of a work group i-1 and then the statement
S1"441 is executed with respect to the work item O(T (i,
0)) of the work group i, rather than in a sequence where
the statement S1" 441 is executed with respect to a work
item O(T(i, 0)) of a work group i and then the statement
S1" 441 is executed with respect to a work item 1(T(i, 1))
of the work group i. In other words, a following statement
executes a work item with a numerical value that is small-
er by one, compared with that of a preceding statement.
Such an execution sequence can be presented as a sin-
gle iterative statement (that is, a work item coalescing
loop), and thus, less iterative statements may be gener-
ated during serialization processing.

[0068] Meanwhile, the statement S1"441 and the
statement S2" 443 are arranged sequentially in the code,
but use independent data, so that data-level parallelism
(DLP) is achieved.

[0069] The variable rotation code 430 is a code that
sets variables in each statement to indicate a memory
offset at which a work group to be executed is stored,
and the variable rotation code 430 is added by the vari-
able rotation code adder 370.

[0070] Inanexemplary embodiment,inthe case where
all the work groups have the same variable layout, except
for a memory offset, the variable rotation code 430 may
be configured to adjust an offset of a reference/pointer
of a variable. For example, in the case where a code
includes two variables, x and y, renaming may be per-
formed by declaring a structure with fields of x’ and y’,
which is similar to a structure with fields of x and y, and
then inputting the variables in the fields of x and y to the
fields of x and y, respectively. In this case, a variable
rotation code may be a code that inputs a specific offset
address to a reference/pointer of a structure that is used
in remaining a variable.

[0071] Meanwhile, the work group interleaving loop
420 is a loop that is inserted in order to execute all the
statements 441 and 443 with respect to all the work
groups. In some cases, the statement S1" 441 or the
statement S2" 443 are not to be executed atthe beginning
or end of an iterative statement that constitutes the work
group interleaving loop 420. For example, if a work group

11 EP 2 799 986 A1 12

is in the range of 0 <j < N, if a work group i is 0, a work
group -1 does not exist, so that the statement S2" 443
cannot be executed. In addition, if the work group i is N
and the work group N does not exist, the statement S1"
441 cannot be executed. Thus, in order for the statement
S1" 441 or the statement S2" 443 to satisfy respective
execution conditions, the code translator 450 translates
each code of the statement S1" 441 or the statement S2"
443. In this case, just like the code shown in FIG. 4C, a
conditional statement or predication may be utilized.
[0072] That is, when a conditional statement is used,
the code optimizer 360 may optimize a translated code
through loop unswitching, and, when predication is used,
the code optimizer 360 may optimize a translated code
through predicate analysis.

[0073] FIG.5isadiagramillustratinga mnemonic code
that represents a translated code when a work group to
be processed is dynamically given, according to an ex-
emplary embodiment. FIG. 4C demonstrates an example
in which work groups to be processed are given numer-
ical values from 0 to N-1, and the same processing meth-
od may be adapted in a case where a work group to be
processed is dynamically given. In FIG. 5, it is assumed
that a work group (WG) (in the third row) is set as invalid
inresponse to an empty queue, and that a set of variables
(V1) (in the fifth row) is set as invalid if the work group
(WGQG) is set as being invalid.

[0074] FIG. 6 is a diagram illustrating a layout of a
memory space according to an exemplary embodiment.
[0075] Forimplementation of a multithread program, a
system memory address space may be divided into a
global memory, a local memory, and a private memory.
The global memory is a memory shared between all the
work groups/work items of an entire domain to store data,
the local memory is a memory shared between work
items of the same work group to store data, and the pri-
vate memory is a memory used exclusively by a single
work item to store data.

[0076] A different set of a local memory and a private
memory are assigned to each work group, and used for
a lifetime of a corresponding work group. Thus, if the
local memory and private memory are re-assigned to a
different work group after the life time of the correspond-
ing work group has elapsed, various work groups may
use the local memory and private memory. Accordingly,
as shown in the example of FIG. 6, all the work groups
may be executed such that three sets of a local memory
LM1, LM2, and LM3 and a private memory PM1, PM2,
and PM3 are secured and sequentially assigned to cor-
responding work groups.

[0077] For example, work groups may be executed
with a work group 0 assigned with a local memory LM1
and a private memory PM1, a work group 1 assigned
with a local memory LM2 and a private memory PM2,
and a work group 2 assigned with a local memory LM3
and a private memory PM3. In this case, when the work
group Ois finished, the local memory LM1 and the private
memory PM1 are re-assigned to the next work group

10

15

20

25

30

35

40

45

50

55

(e.g., a work group 3).

[0078] FIG. 7 is a flowchart illustrating a method for
translating a kernel code according to an exemplary em-
bodiment.

[0079] Referring to FIG. 7, the method for translating
a kernel code includes dividing a kernel code into one or
more statements according to a synchronization point in
operation 710. The synchronization point may include an
entry point of the kernel code, a barrier function, and an
entry point of a control structure.

[0080] Forexample,ifthe kernel code does notinclude
a barrier function, the entire kernel code is regarded a
single statement with reference to the entry point of the
kernel code.

[0081] In another example, if the kernel code includes
a barrier function, the kernel code may be divided into a
statement before the barrier function and a statement
after the barrier function with reference to the barrier func-
tion.

[0082] Furthermore, in another example, if a barrier
function is included in a conditional statement, the out-
side of the conditional statement may be divided into a
statement before the conditional statement and a state-
ment after the conditional statement with reference to the
barrier function. In addition, the inside of the conditional
statement may be divided into a statement before the
barrier function and a statement after the barrier function
with reference to the barrier function.

[0083] Additionally, in another example, if a barrier
function is included in a loop statement, a code outside
of the loop statement is executed once with respect to
each work item, but a code inside of the loop statement
is executed a number of times equal to the number of
iterations of the loop statement with respect to each work
item. Thus, the outside of the loop statement may be
divided into a statement before the loop statement and
a statement after the loop statement. In addition, the in-
side of the loop statement may be divided into a state-
ment specifying a condition of a loop, a statement before
the barrier function, and a statement after the barrier func-
tion.

[0084] Aloop group, which includes one or more state-
ments and to be enclosed by a work item coalescing loop,
is generated based on the number of instructions includ-
ed in each separate statement in operation 720.

[0085] In an exemplary embodiment, a loop group is
generated by combining adjacent statements based on
the number of instructions in each separate statement,
so that the number of instructions included in each loop
group may become close or equal to that of each other.
[0086] For example, assuming that a kernel code is
divided into five statements, including a statement S1
with 100 instructions, a statement S2 with 20 instructions,
a statement S3 with 30 instructions, a statement S4 with
30 instructions and a statement S5 with 110 instructions,
and that three work groups can be executed alternatively
within one loop. In this case, in order to make the number
of instructions in each loop group close or equal to that

13 EP 2 799 986 A1 14

of each other, three loop groups may be generated, in-
cluding a first loop group including the statement S1 (the
number of instructions = 100), a second loop group in-
cluding the statements S2, S3, and S4 (the number of
instructions = 20 + 30 + 30 = 80), and a third loop group
including the statement S5 (the number of instructions =
110).

[0087] Variables in each statement may be expanded
using scalar expansion or the variables are renamed in
operation 730.

[0088] Inanexemplary embodiment, variables in each
statement in aloop group may be expanded using scalar
expansion or may be renamed so that each statement
of the loop group serially executes work items of a differ-
ent work group. In this case, a variable to be expanded
may be a private variable thatis used exclusively by each
work item, and a variable to be renamed may be a local
variable that is shared only within the same work group.
[0089] Due to scalar expansion, each work item of the
same work group may have variables at different loca-
tions. Alternatively, due to renaming the variables, each
statement may designate a different data location of a
work group to be executed.

[0090] Meanwhile, to keep semantics of a kernel code
intact, a translated code is to be executed in a way that
all the statements are executed with respect to all the
work groups or that each statement is executed with re-
spect to a different work group when multiple statement
are executed within a single loop group. Thus, adjacent
statements belonging to different loop groups of a trans-
lated code are to be executed with respect to the same
work group. In addition, adjacent statements belonging
to the same loop group of a translated code are to be
executed with respect to different work groups such that
the faster a statement appears in the kernel code, the
greater number a work group is given with respect to
which the statement is executed. For example, assuming
that statement S1 belongs to a first loop group, the state-
ments S2, S3, and S4 belong to a second loop group,
and the statement S5 belongs to a third loop group, and
that the statement S2 is executed with respect to a work
group i. In this case, among the statements S2, S3, and
S4 of the second loop group, the statement S2 appears
firstin the kernel code so that the statements S3 and S4
are executed with respect to work groups i-1 and i-2,
respectively. In addition, the statements S1 and S2 are
adjacent statements belonging to different loop groups,
so that the statements S1 and S2 are executed with re-
spect to the same work group i, and similarly, the state-
ments S4 and S5 are executed with respect to the same
work group i-2.

[0091] In an exemplary embodiment, the above de-
scribed work group of each statement may be considered
when expanding variables in each statement using scalar
expansion or renaming the variables.

[0092] Each generated loop group is enclosed by a
work item coalescing loop in operation 740.

[0093] In addition, the method for translating a code

10

15

20

25

30

35

40

45

50

55

may furtherinclude calculating the number of alternative-
ly executable work groups within a single work item co-
alescing loop in operation 715. In an exemplary embod-
iment, by taking into account the number of statements
separated in operation 710 and a memory size for each
work group, it is possible to calculate the number of al-
ternatively executable work group. For example, if a dis-
posable memory size is large enough, the number of al-
ternatively executable work groups may be determined
to be equal to the number of separate statements. Alter-
natively, if a disposable memory size is not large enough,
the number of alternatively executable work groups may
be reduced properly and according to the disposable
memory size.

[0094] In this case, during operation 720 of generating
a loop group, the number of work groups calculated in
operation 715 is taken into consideration so that the
number of statements belonging to a single loop group
may not exceed the calculated number of work groups.
[0095] In addition, the method for translating a code
may further include an operation 750 of adding or trans-
lating a code so that each statement may be executed
with respect to a valid work group. For example, it is as-
sumed that statements S 1 and S2 execute work groups
i and i-1, respectively, and that each work group is in the
range of 0 < j < N. At this point, if a condition of i=0 is
given, the statement S2 is to execute a work group -1,
although the work group -1 is invalid. Thus, the statement
S2 cannotbe executed in acondition ofi=0, and, similarly,
the statement S1 cannot be executed in a condition of
i=N (where the work group N is invalid). In such cases,
it is possible to execute each statement only for a valid
work group using a conditional statement or using pred-
ication.

[0096] Furthermore, the method for translating a code
may further include an operation 760 of optimizing a code
in a predetermined scheme. In an exemplary embodi-
ment, at least one of a loop optimization and a scalar
optimization may be employed. For example, if a code
has been translated so that each statement may be ex-
ecuted only for a valid work group, it is possible to opti-
mize the translated code through loop unswitching or to
change some private variables from array into normal
variables through scalar replacement.

[0097] The method for translating a code may further
include an operation 770 of adding a variable rotation
code that sets variables in each statement to indicate a
memory offset at which a work group to be executed is
stored.

[0098] Moreover, the method for translating a code
may further include an operation 780 of enclosing all the
work item coalescing loops with awork group interleaving
loop so that a statement is able to be executed with re-
spect to all the work groups. At this point, if a variable
rotation code is added, a work group interleaving loop
may enclose the variable rotation code and the work item
coalescing loops all together.

[0099] By serializing OpenCL or CUDA program codes

15 EP 2 799 986 A1 16

according to one or more exemplary embodiments, it is
possible to execute a plurality of work groups alternative-
ly in a device which has a relatively small number of
processing elements.

[0100] In addition, as a lower number of iterative state-
ments is generated during serialization according to one
or more exemplary embodiments, overhead caused by
the iterative statements may be reduced.

[0101] Furthermore, as the number of instructions in-
cluded in an iterative statement increases and each part
of a kernel code performs computation using different
data according to one or more exemplary embodiments,
thereis an increased chance of finding an instruction that
can be executed at the same time, leading to processing
performance improvement.

[0102] The methods and/or operations described
above may be recorded, stored, or fixed in one or more
computer-readable storage media that includes program
instructions to be implemented by a computer to cause
a processor to execute or perform the program instruc-
tions. The media may also include, alone or in combina-
tion with the program instructions, data files, data struc-
tures, and the like.

[0103] Examples of computer-readable storage media
include magnetic media, such as hard disks, floppy disks,
and magnetic tape; optical media such as CD ROM disks
and DVDs; magneto-optical media, such as optical disks;
and hardware devices that are specially configured to
store and perform program instructions, such as read-
only memory (ROM), random access memory (RAM),
flash memory, and the like. Examples of program instruc-
tions include machine code, such as produced by a com-
piler, and files containing higher level code that may be
executed by the computer using an interpreter. The de-
scribed hardware devices may be configured to act as
one or more software modules in order to perform the
operations and methods described above, or vice versa.
In addition, a computer-readable storage medium may
be distributed among computer systems connected
through a network and computer-readable codes or pro-
gram instructions may be stored and executed in a de-
centralized manner. Also, functional programs, codes
and code segments to implement those exemplary em-
bodiments may be easily inferred by programmers who
are skilled in the related art.

[0104] Those who are skilled in the related art may
understand that various and specific modifications may
be made without modifying the technical ideas or essen-
tial characteristics of the present inventive concept. Ac-
cordingly, exemplary embodiments disclosed above are
to be considered as illustrative. The scope of the inven-
tion is defined in the appended claims.

Claims

1. Amethod for translating a multithread program code,
the method comprising:

10

15

20

25

30

35

40

45

50

55

dividing a multithread program code into a plu-
rality of statements according to a synchroniza-
tion point;

generating atleast one loop group by combining
one or more adjacent statements based on a
number of instructions included in the plurality
of statements;

expanding or renaming variables in the plurality
of statements so that each statement included
in the generated at least one loop group is exe-
cuted with respect to a work item of a different
work group; and

enclosing each of the generated at least one
loop group respectively with a work item coa-
lescing loop.

The method of claim 1, wherein the multithread pro-
gram code is an Open Computing Language, Open-
CL, kernel code or a Compute Unified Device Archi-
tecture, CUDA, kernel code.

The method of claim 1 or 2, wherein the synchroni-
zation point comprises at least one of an entry point
of the multithread program code, a barrier function,
and an entry point of a control structure.

The method of one of claims 1 to 3, further compris-
ing:

calculating a number of executable work groups
for the at least one generated loop group based
on a capacity of a memory used by the multi-
thread program code,

wherein the generating the at least one loop
group comprises generating the at least one
loop group by combining the one or more adja-
cent statements according to the calculated
number of executable work groups such that a
number of instructions in each of the generated
at least one loop group is close or equal to an-
other and such that a number of statements of
each of the generated at least one loop group
does not exceed the calculated number of work
groups.

The method of one of claims 1 to 4, further compris-
ing:

optimizing a translated code in a predetermined
scheme, and/or

wherein the optimizing comprises optimizing the
translated code by employing at least one of a
loop optimization and a scalar optimization.

The method of one of claims 1 to 5, further compris-
ing:

adding a variable rotation code to set variables

7.

10.

1.

17 EP 2 799 986 A1 18

in the plurality of statements to indicate a mem-
ory offset at which a work group to be executed
is stored.

The method of one of claims 1 to 6, further compris-
ing:

translating a code of a statement, among the
plurality of statements, so that the statement is
executed for only a valid work group, and/or
wherein the translating the code of the statement
comprises translating the statement using a
conditional statement or predication.

The method of claim 6, further comprising:

enclosing the work item coalescing loop and the
variable rotation code with a work group inter-
leaving loop so that all work groups are executed
with respect to each of the plurality of state-
ments.

The method of one of claims 1 to 8, wherein the di-
viding comprises when the multithread program
code comprises a barrier function, dividing the mul-
tithread program code into a statement before the
barrier function and a statement after the barrier
function.

The method of one of claims 1 to 9, wherein the di-
viding comprises when the multithread program
code comprises a barrier function included in a con-
ditional statement, dividing the multithread program
code into a statement before the conditional state-
ment and a statement after the conditional state-
ment, and dividing an inside of the conditional state-
mentinto a statement before the barrier function and
a statement after the barrier function.

An apparatus for translating a multithread program
code, the apparatus comprising:

a code divider configured to divide a multithread
program code into a plurality of statements ac-
cording to a synchronization point;

a loop group generator configured to generate
at least one loop group by combining one or
more adjacent statements based on a number
of instructions included in the plurality of state-
ments;

a variable expander/renamer configured to ex-
pand orrename variables in the plurality of state-
ments so that each statement in a same loop
group executes work items of a different work
group serially; and

awork item coalescing loop adder configured to
enclose each of the generated at least one loop
group respectively with a work item coalescing

10

15

20

25

30

35

40

45

50

55

10

loop.

12. The apparatus of claim 11 adapted to operate ac-

cording to one of method claims 1 to 10.

13. A non-transitory computer readable recording medi-

um having recorded thereon a program executable
by a computer for translating a multithread program
code, the method comprising:

generating atleast one loop group by combining
one or more adjacent statements, among a plu-
rality of statements divided from a multithread
program code, based on a number of instruc-
tions included in the plurality of statements;
modifying the plurality of statements so that
each statement included in the generated at
least one loop group is executed with respect to
a work item of a different work group; and
enclosing each of the generated at least one
loop group respectively with a work item coa-
lescing loop.

14. The non-transitory computer-readable recording

medium of claim 13, further comprising:

calculating a number of executable work groups
for the at least one generated loop group based
on a capacity of a memory used by the multi-
thread program code,

wherein the generating the at least one loop
group comprises generating the at least one
loop group by combining the one or more adja-
cent statements according to the calculated
number of executable work groups such that a
number of instructions in each of the generated
at least one loop group is close or equal to an-
other and such that a number of statements of
each of the generated at least one loop group
does not exceed the calculated number of work
groups.

15. The non-transitory computer-readable recording

medium of claim 14, further comprising:

adding a variable rotation code to set variables
in the plurality of statements to indicate a mem-
ory offset at which a work group to be executed
is stored.

EP 2 799 986 A1

FIG. 1
1
i ’\Ti’jlio
|
12—
BT

1"

EP 2 799 986 A1

FIG. 2A

[\
<

KERNEL CODE
220

STATEMENT S1

230

BARRIER
FUNCTION

240

STATEMENT 82

12

EP 2 799 986 A1

FIG. 2B

250

J

RESULT CODE
)/260

WORK I'TEM
COALESCING LOOP

STATEMENT 817 2261

270
/

WORK I'TEM
COALESCING LOOP

STATEMENT 827 44

N
~

13

EP 2 799 986 A1

FIG. 2C

M-1

o

=
]
g
— g
&t
2 e
PRt
./UY\N
[
b y\}
[S o
S~
e O D
ft Bt o
Suwi Bt B
g8
T T
(AR IRy

Amsff:\\}/f\\éfi\\/;:iza%

S2' for T(i+1, 0) ~ T(i+1, M-1),

Ap - T
\ o
! .
|
V-
\ e\hzfx\!fi\\:fff\p\fiu.fﬁv
/ \)/(\QKE\HM;H;\‘HA/!V
-
AN PR
&~
0]

14

31

L

7
I
/

EP 2 799 986 A1

FIG. 3

310

CODE DIVIDER

WORK GROUP
NUMBER
CALCULATOR

LOOP GROUP
GENERATOR

350

CODE
TRANSLATOR

330

376

VARIABLE
EXPANDER/
RENAMER

VARIABLE
ROTATION
CODE ADDER

360

340

380

CODE OPTIMIZER

WORK ITEM
COALESCING
LOOP ADDER

WORK GROUP
INTERLEAVING
LOOP ADDER

15

EP 2 799 986 A1

FIG. 4A

410

RESULT CODE
420

7

WORK GROUP
INTERLEAVIN aj ﬁi{}{,){}i’

PrE
Z

VARIABLE
ROTATION CODE

440

WORK ITEM
COALESCING LOOP

441

STATEMENT SV

443

STATEMENT 827

16

EP 2 799 986 A1

FIG. 4B

M-1

o4

St for T, M-1) ~ 82" for T(i-1, M-1},

S1" for T(i, 0) ~ S2" for T(i-1, 0),
S1" for T(i, 1) ~ $2" for T(i-1, 1),
S17 for T(i+1, 0) ~ S2" for T(i, 0)

B e N N
.Al'}

B T T G o e S L T

— =

17

EP 2 799 986 A1

FIG. 4C

V1« set of variables of work group i
/2 < set of variables of work group i-1

if <N

execute 51" using V1
ifi>0

execute S2" using V2

18

EP 2 799 986 A1

FIG. 5

initialize Vi~V as invalid
repeat
WG < pop a work group from work_group gueue
Vi < Vm; Vi e Vo o Ve W,y
Vi« set of variables of WG
break this loop if Vi~V are all invalid

if Vi is valid
execute Sy using Vi
iV is valid
execute 5: using V.

if Vx is valid
execute Sk using Vi

19

EP 2 799 986 A1

{won y1om 1ad) ATOWat 91RALLL AL
(dnoId yaom 2{FUIS B UIYIIM SWY 10 21} BUOLUE poteys} AIOWOW [BOO AT
(sdnoid y1om 2] [JB SUOWE PAIBYS) AIOWSW [BGO[NIIND

/!

CINd
o

ENT

\
TN ~
b
y

CNT

S
\MEL
s

e

TN

O

9 DId

AIOWAW WIDISAS

20

EP 2 799 986 A1

FIG. 7

START

\ 4

DIVIDE MULTITHREAD PROGRAM CODEE
ACCORDING TO SYNCHRONIZATION POINTS

L~ 710

CALCULATE NUMBE

R OF WORK GROUPS

THAT ARE EXECUTABLE WITHIN SINGLE LOOP

715

7

GENERATE LOOP GROUP

EXPAND OR RENAME VARIABLE

- 730

ENCLOSE WIT
COALESC

H WORK [TEM
ING LOOP

740

TRANSLATE CODE SO THAT EACH
STATEMENT IS EXECUTABLE
ONLY FOR VALIDK GROUP

OPTIMIZE CODE

3

ADD VARIABLE

ROTATION CODE

-~ 770

A

ENCLOSE WITH

1 WORK GROUP

INTERLEAVING LOOP

L~ 780

A4

{ END ’

21

10

15

20

25

30

35

40

45

50

55

European
Patent Office
Office européen

Europidisches
Patentamt

des brevets

—

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

EP 2 799 986 A1

Application Number

EP 14 16 6856

DOCUMENTS CONSIDERED TO BE RELEVANT

Category

Citation of document with indication, where appropriate,

Relevant CLASSIFICATION OF THE

of relevant passages

to claim

APPLICATION (IPC)

X

US 2011/161944 Al (CHO SEUNG-MO [KR] ET
AL) 30 June 2011 (2011-06-30)

* page 1, left-hand column, paragraphs
0003, 0006, 0007 *

* page 4, left-hand column, paragraphs
0065, 0070 *

* page 4, right-hand column, paragraph
0077; figures 5,7 *

* page 3, left-hand column, paragraph 0054
*

OTTONI G ET AL: "Automatic Thread
Extraction with Decoupled Software
Pipelining",

MICROARCHITECTURE, 2005. MICRO-38.
PROCEEDINGS. 38TH ANNUAL IEEE/ACM I
NTERNATIONAL SYMPOSIUM ON BARCELONA, SPAIN
12-16 NOV. 2005, PISCATAWAY, NJ, USA,IEEE,
12 November 2005 (2005-11-12), pages
105-118, XP010854733,

ISBN: 978-0-7695-2440-5

* page 4, right-hand column *

Csetech ET AL: "Scalar vs. parallel
optimizations",

CSETech. Paper,

1 January 1990 (1990-01-01), XP055131007,
Retrieved from the Internet:
URL:http://digitalcommons.ohsu.edu/cgi/vie
wcontent.cgi?article=1209&context=csetech
[retrieved on 2014-07-23]

* page 3 *

The present search report has been drawn up for all claims

1-15

4-10,12,
14,15

5-10,12,
15

INV.
GO6F9/45

TECHNICAL FIELDS
SEARCHED (IPC)

GO6F

Place of search

Munich

Date of completion of the search

23 July 2014

Examiner

Hoareau, Samuel

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone

Y : particularly relevant if combined with another
document of the same category

A : technological background

O : non-written disclosure

P : intermediate document

T : theory or principle underlying the invention

E : earlier patent document, but published on, or
after the filing date

D : document cited in the application

L : document cited for other reasons

& : member of the same patent family, corresponding
document

22

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

EP 2 799 986 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 14 16 6856

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-07-2014
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011161944 Al 30-06-2011 KR 20110077720 A 07-07-2011
US 2011161944 Al 30-06-2011

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

23

	bibliography
	abstract
	description
	claims
	drawings
	search report

