(19) |
 |
|
(11) |
EP 2 808 879 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
14.10.2015 Bulletin 2015/42 |
(22) |
Date of filing: 29.05.2013 |
|
(51) |
International Patent Classification (IPC):
|
|
(54) |
An arragement of windings of a HV insulation transformer
Anordnung von Wicklungen eines Hochspannungsisolierungstransformators
Agencement d'enroulements d'un transformateur d'isolation haute tension
|
(84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
(43) |
Date of publication of application: |
|
03.12.2014 Bulletin 2014/49 |
(73) |
Proprietor: ABB Technology AG |
|
8050 Zürich (CH) |
|
(72) |
Inventors: |
|
- Gruca, Jacek
31-279 Krakow (PL)
- Wyzga, Andrzej
31-867 Krakow (PL)
- Laskos, Przemyslaw
31-869 Krakow (PL)
|
(74) |
Representative: Chochorowska-Winiarska, Krystyna |
|
ABB Sp. z o. o.,
Ul. Zeganska 1 04-713 Warszawa 04-713 Warszawa (PL) |
(56) |
References cited: :
EP-A1- 2 061 043 WO-A1-2009/138099
|
WO-A1-2005/057769
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The subject of the invention is an arrangement of windings of a HV insulation transformer
for power supply devices with multiple outputs whose outputs must be insulated from
the primary side and between each other, to withstand very high voltages.
[0002] Multiple outputs power supply devices use various high voltage insulation transformers
to provide high voltage galvanic insulation. This allows to isolate each output from
the input of the power supply device as well as each output from the other output
of the supply device. There are two ways to build a high voltage insulation transformer.
One is to insulate the magnetic path of the transformer, by dividing a core into two
pieces and introducing an insulation gap between them. The second way consist on using
a HV insulated wires. This method creates an opportunity to look at an optimized way
of transferring energy between primaries and secondaries in high voltage isolation
power supply devices.
[0003] There are known high voltage power supply devices with multiple outputs provided
with the separate high voltage insulation transformers where the primary and the secondary
windings of a single transformer are wound on the same core and the high voltage insulation
is provided by use of the wire insulating material. There are also known solutions,
where the windings are wound with low voltage wires and the high voltage insulation
is provided by use of the bobbins. There are known pulse transformers having a core
composed of a two pieces, insulated between each other with air, resin or another
insulating material, usually operating at the resonant frequency to reduce impact
of leakage inductance. The known multiple transformers solution for the power supply
device creates relatively bulky solutions. The power supply device become quite large
and expensive, as every output of the power supply device uses a separate high voltage
insulated transformer. In the known pulse power supply devices the controllers sense
primary currents to protect the circuit against overload or shorted output. For a
few separate transformers, the sensing circuits can be applied to monitor primary
currents, which are dependent on secondary currents. There are known designs, where
the isolating transformer comprises a single primary and multiple secondary windings,
and the sensing circuit measures total primary current without the possibility of
monitoring individual secondary currents. In the known versions of the power supply
devices with HV insulated transformers having multiple outputs there are separate
transformers for each of the outputs, providing galvanic isolation between primaries
and secondaries as well as between all of the secondaries. It is essential in high
voltage power supply devices to introduce current measurements for protection and/or
monitoring on the primary side, since the secondary monitoring must be done at the
high voltage site and isolation of the current feedback is expensive and difficult.
The known solution with separate transformers for each of the outputs create relatively
bulky solutions, so the idea is to use a single HV insulated transformer with multiple
outputs, to save space and reduce costs of the power supply device. In typical transformers
equipped with a single primary and multiple secondary windings, the current measurement
performed on the primary side allows indirect monitoring of total output currents
without the information about sharing between the secondary outputs. In this case
it is impossible to determine which output is overloaded, because the total primary
current could be within the overall load limit of the transformer. It was found that
for a certain winding arrangement, the primary measurements allow to determine output
current for each output separately. The relevant prior art is presented in the international
applications
WO2009/138099 (which shows the features of the preamble of claim 1) and
WO2005/057769.
[0004] The essence of the invention comprising a secondary winding superimposed on a primary
winding forming a pair of windings wound on a transformer core is that at least two
pairs of windings are placed on the same one common core in such a way that any windings
of each pair of windings are not overlapping the neighboring pair of windings. The
primary windings are connected in parallel and each of the primary winding has a current
sensor adapted for measuring the current of its respective secondary winding. Preferably
each pair of windings has an insulation gap situated between the external surface
of the primary windings and the internal surface of the secondary windings. Preferably
the gap between the external surface of the primary winding and the internal surface
of the secondary winding, an insulation shell is inserted having a shape compatible
with the shape of the core.
[0005] Preferably on the outer side of the insulation shell a series of press-fits are placed
for positioning the secondary windings exactly in superposition area on the primary
windings.
[0006] Preferably the insulation shell is provided with ribs which are distributed radially
along the internal side of shell walls on both sides of the shell for proper positioning
the core and primary windings.
Alternatively the insulation shell is made in the form of a insulation mesh.
Preferably around the perimeter of the core transformer the four pairs of windings
are place uniformly.
Preferably the primary windings and the secondary windings are coated with one or
more insulation layers.
Preferably the transformer core is made as a solid ferromagnetic body in the shape
of a toroid.
Alternatively the transformer core is made as one body with the insertion of the other
magnetic material having different magnetic permittivity in its magnetic path. Alternatively
the transformer core is made as a stack of separate ring plates situated one on a
top of the other.
[0007] The advantage of the inventive transformer is that it assures the assessment of the
individual secondary current of each outputs of the power supply device by sensing
the primary current. The use of single common core transformer as opposed to the multiple
transformers allows the size reduction of the power supply device.
[0008] transformer windings in an axonometric view, fig. 3 - the second embodiment of the
transformer windings in an axonometric view, fig.4 - transformer windings from fig.
3 after detaching a half of the transformer shell.
[0009] The transformer for the power supply device has a magnetic core ring 1, on which
at least two separated primary windings 2 are wound. The primary windings are connected
in parallel. Each primary winding 2 is equipped with a current sensor 3. Around each
of the primary winding 2 a separate secondary winding 4 is wound in such a way that
winding 4 is spatially superimposed on the primary winding 2, where a certain distance
is present between the external surface of the winding 2 and the internal surface
of the winding 4 forming an insulation gap 5 between them.
[0010] The gap 5 can be filled with a potting insulation material assuring the proper insulation
level between both windings 2 and 4, which is not shown in the drawing. The primary
windings 2 and the secondary windings 4 are forming pairs of windings 6 having one
primary and one secondary winding in each pair. All pairs of the windings 6 are distributed
uniformly along the perimeter of the core 1 in such a way that the neighboring pairs
are not overlapping each other.
[0011] In the second embodiment of the invention an insulation shell 7 made of plastic is
inserted in the gap 5. The shell 7 is composed of two halves 7a and 7b and has a shape
similar to core 1, thus covers the core 1 except of primary windings terminals leaded
out of the shell 7, which is not shown in the drawing. The outer side of the side
wall of the shell 7 is provided with a series of press-fits 8 placed on its perimeter
in order to position the secondary windings 4 on top of the primary winding 2. The
shell 7 is provided with ribs 9 which are distributed radially along both inner sides
of the side walls.
[0012] The insulation shell 7 can be realized as mesh construction which is not shown in
the drawing. In such a case the press-fits 8 are needless.
[0013] In both embodiments of the invention the primary windings 2 and the secondary windings
4 can be coated with one or more insulation layers. In such embodiment where the primary
and the secondary windings are coated with the insulating layer, the gap 5 can be
eliminated, which means that the primary and the secondary windings of the pair 6
remain in contact.
[0014] The transformer according to the both embodiments of the invention could be placed
in an insulating housing and covered with an insulating cover which is not presented
in the drawing. The housing can be made out of a resin by molding and in such a case,
the shell can be omitted, because the resin insulation between the windings replaces
the shell.
[0015] In the exemplary embodiment of the invention the magnetic core 1 is made as a solid
ferromagnetic body in the shape of toroid, but it can be made as one body with the
insertions of the other magnetic material having different magnetic permittivity.
Also the core 1 could be made of some separate ring plates situated one on the top
of the other forming a stack. The number of the pairs of windings in the exemplary
embodiment is four, but it may be different on the assumption that the pairs 6 do
not overlap each other.
[0016] The principle of operation of the inventive transformer is the following. All the
primary windings 2 equipped with current sensors 3 are connected in parallel and driven
from an AC source inducing voltages in the secondary windings 4. The sensors 3 measure
primary currents which are dependent on the secondary ones, so indirectly the sensors
sense secondary currents. Even though all pairs of the windings 6 are placed on the
same common core 1, the individual currents flowing through the primary windings 2
are dependent on the currents of their respective secondary windings 4 with negligible
impact of the currents of neighboring pairs 6. Each pair of the windings 6 acts like
an independent transformer, since the magnetic coupling within each pair of the windings
is much higher than between the neighboring pairs, hence the crosstalk between the
neighboring windings is negligible. This is a very important feature, which simplifies
detection of the overload or short circuit of any individual secondary winding. This
is a very essential feature of the transformer operating in HV applications where
there is no feedback from the secondaries to the primary controller, which is a part
of the supply device.
[0017] In the presented embodiment of the invention the pair of winding 6 is formed such
that the secondary windings 4 are placed on top of the primary windings 3 but it is
understand to those skilled in the art that the reverse relation between windings
is possible. When the secondary windings is placed under the primary windings, the
scope of the protection will be the same.
1. An arrangement of windings of a HV insulated transformer for power supply device comprising
a secondary winding (4) superimposed on a primary winding (2) forming a pair of windings
(6) wound on a transformer core (1), wherein at least two pairs of windings (6) are
placed on the same one common transformer core (1) in such a way that any windings
(2, 4) of each pair of windings (6) are not overlapping the windings (2, 4) of the
neighboring pair of windings (6) and where the primary windings (2) are connected
in parallel, characterized in that each of the primary winding (2) has a current sensor (3) adapted for measuring the
current of its respective secondary winding (4).
2. An arrangement according to claim 1, characterized in that each pair of windings (6) has an insulation gap (5) situated between the external
surface of the primary windings (2) and the internal surface of the secondary windings
(4).
3. An arrangement according to claim 2, characterized in that in the gap (5) between the external surface of the primary winding (2) and the internal
surface of the secondary winding (4) an insulation shell (7) is inserted having a
shape compatible with the shape of the transformer core (1).
4. An arrangement according to claim 3, characterized in that on the outer side of the insulation shell (7) a series of press-fits (8) are placed
for positioning the secondary windings (7) exactly in superposition area on the primary
windings (2).
5. An arrangement according to claim 3, characterized in that the shell (7) is provided with ribs (9) which are distributed radially along the
internal side of shell walls on both sides of the shell for proper positioning the
core (1) and primary windings (2).
6. An arrangement according to claim 3, characterized in that the insulation shell (7) is made in the form of a insulation mesh.
7. An arrangement according to claim 1, characterized in that four pairs of windings (6) are placed uniformly around the perimeter of the transformer
core (1).
8. An arrangement according to any of the previous claims, characterized in that the primary windings (2) and the secondary windings (4) are coated with one or more
insulation layers.
9. An arrangement according to any of the previous claims, characterized in that the transformer core (1) is made as a solid ferromagnetic body in the shape of a
toroid.
10. An arrangement according to claim 9 ; characterized in that the transformer core (1) is made as one body with the insertion of the other magnetic
material having different magnetic permittivity in its magnetic path.
11. An arrangement according to claims 1-8, characterized in that the transformer core (1) is made as a stack of separate ring plates situated one
on top of the other.
1. Eine Anordnung von Wicklungen eines Hochspannungsisolierungstransformators für eine
Stromversorgungseinrichtung, die aus einer Sekundärwicklung (4), aufgesetzt auf einer
Primärwicklung (2) besteht und welche ein Paar von Wicklungen (6), das um einen Transformatorkern
(1) gewickelt ist, bilden, wobei mindestens zwei Paare von solchen Wicklungen (6)
auf demselben gemeinsamen Transformatorkern (1) in der Weise angeordnet sind, dass
keine der Wicklungen (2, 4), die ein Paar bilden (6), die Wicklungen (2, 4) des benachbarten
Paares von Wicklungen (6) überlappt, und wobei die Primärwicklungen (2) parallel geschaltet
sind, dadurch gekennzeichnet, dass jede der Primärwicklungen (2) einen Stromsensor (3) besitzt, der dazu dient, den
Strom in der Sekundärwicklung (4), die mit der ihr entsprechenden Primärwicklung (2)
ein Paar darstellt, zu messen.
2. Eine Anordnung von Wicklungen gemäß Anspruch 1, dadurch gekennzeichnet, dass jedes Paar von Wicklungen (6) einen Isolationsspalt (5) besitzt, der sich zwischen
der Außenfläche der Primärwicklungen (2) und der Innenfläche der Sekundärwicklungen
(4) befindet.
3. Eine Anordnung von Wicklungen gemäß Anspruch 2, dadurch gekennzeichnet, dass sich im Spalt (5) zwischen der Außenfläche der Primärwicklungen (2) und der Innenfläche
der Sekundärwicklungen (4) eine Isolationsschale (7) befindet, deren Form an die Form
des Transformatorkerns (1) angepasst ist.
4. Eine Anordnung von Wicklungen gemäß Anspruch 3, dadurch gekennzeichnet, dass sich auf der Außenseite der Isolationsschale (7) eine Reihe von Rillen (8) befindet,
deren Aufgabe ist, die Position der Sekundärwicklungen (4) exakt zentrisch zu den
ihnen entsprechenden Primärwindungen (2) zu bestimmen.
5. Eine Anordnung von Windungen gemäß Anspruch 3, dadurch gekennzeichnet, dass die Isolationsschale (7) mit Rippen (9) versehen ist, die radial entlang der Innenseite
der Schalenwände auf beiden Seiten der Schale verteilt sind und der richtigen Positionierung
des Kerns (1) und der Primärwindungen (2) dienen.
6. Eine Anordnung von Windungen gemäß Anspruch 3, dadurch gekennzeichnet, dass die Isolationsschale (7) in Form eines Isolationsgewebes ausgeführt ist.
7. Eine Anordnung von Windungen gemäß Anspruch 1, dadurch gekennzeichnet, dass vier Paare von Wicklungen (6) gleichmäßig um den Transformatorkern (1) herum angeordnet
sind.
8. Eine Anordnung von Windungen gemäß irgendeinem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Primärwindungen (2) und die Sekundärwindungen (4) mit einer oder mehreren Isolationsschichten
überzogen sind.
9. Eine Anordnung von Windungen gemäß irgendeinem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Transformatorkern (1) als fester ferromagnetischer Körper in Form eines Torus
ausgeführt ist.
10. Eine Anordnung von Windungen gemäß Anspruch 9, dadurch gekennzeichnet, dass der Transformatorkern (1) als ein Stück ausgeführt ist, das aus einem magnetischen
Material mit einer anderen Permittivität besteht, welches einen Teil der magnetischen
Bahn darstellt.
11. Eine Anordnung von Windungen gemäß den Ansprüchen 1-8, dadurch gekennzeichnet, dass der Transformatorkern (1) als Stapel aus einzelnen magnetischen Ringscheiben, eine
über der anderen angeordnet, ausgeführt ist.
1. Agencement d'enroulement d'un transformateur d'isolation haute tension utilisé pour
l'alimentation électrique comprenant les enroulements secondaires (4) embobinés sur
les enroulements primaires (2) et constituant un couple (6) enroulé sur le noyau du
transformateur (1), où deux couples au moins de ces enroulements (6) sont placés sur
le même noyau du transformateur (1) de manière à ce qu'aucun des enroulements (2,
4) constituant un couple (6) ne chevauche les enroulements (2, 4) du couple adjacent
d'enroulements (6) et où les enroulements primaires (2) sont raccordés en parallèle,
caractérisé en ce que chaque enroulement primaire (2) possède un détecteur de courant (3) servant à mesurer
le courant dans l'enroulement (4) qui constitue le couple avec l'enroulement primaire
(2).
2. L'agencement d'enroulement selon la revendication 1, caractérisé en ce que chaque couple d'enroulements (6) possède une coupure d'isolation (5) située entre
la surface extérieure des enroulements primaires (2) et la surface intérieure des
enroulements secondaires (4).
3. L'agencement d'enroulement selon la revendication 2, caractérisé en ce que dans la coupure d'isolation (5), entre la surface extérieure des enroulements primaires
(2) et la surface intérieure des enroulements secondaires (4), est insérée une carapace
isolant (7) dont la forme est adaptée à la forme du noyau du transformateur (1).
4. L'agencement d'enroulement selon la revendication 3, caractérisé en ce que sur la surface extérieure de la carapace isolant (7) se trouve une série de rainures
(8) destinée à positionner les enroulements secondaires exactement au centre au dessus
de leur enroulements correspondants primaires (2).
5. L'agencement d'enroulement selon la revendication 3, caractérisé en ce que la carapace isolant (7) possède des nervures (9) qui sont réparties de façon radiale
le long des parois intérieures de la carapace de ses deux côtés qui servent à positionner
correctement le noyau (1) des enroulements primaires (2).
6. L'agencement d'enroulement selon la revendication 3, caractérisé en ce que la carapace isolant (7) est faite en grille isolante.
7. L'agencement d'enroulement selon la revendication 1, caractérisé en ce que les quatre couples d'enroulement (6) sont répartis uniformément le long de la circonférence
du transformateur (1).
8. L'agencement d'enroulement selon une quelconque des revendications précédentes, caractérisé en ce que les enroulements primaires (2) et les enroulements secondaires (4) sont revêtus d'une
ou plus de couches isolantes.
9. L'agencement d'enroulement selon une quelconque des revendications précédentes, caractérisé en ce que le noyau du transformateur (1) est fait en matériau ferromagnétique d'une forme de
tor.
10. L'agencement d'enroulement selon la revendication 9, caractérisé en ce que le noyau du transformateur (1) est exécuté comme une seule pièce dont la composition
comprend un autre matériau magnétique ayant une autre permittivité, constituant une
partie de???
11. L'agencement d'enroulement selon les revendications 1 à 8, caractérisé en ce que le noyau du transformateur (1) est fait comme une pile d'anneaux magnétiques empilés
les uns sur les autres.


REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description