(11) EP 2 811 041 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 10.12.2014 Bulletin 2014/50

(21) Application number: 12867174.0

(22) Date of filing: 01.02.2012

(51) Int Cl.: C22C 21/02^(2006.01)

(86) International application number: PCT/JP2012/052215

(87) International publication number:WO 2013/114582 (08.08.2013 Gazette 2013/32)

(84) Designated Contracting States:

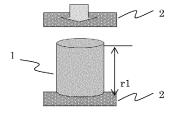
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

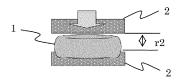
BA ME

(71) Applicant: UACJ Corporation Tokyo 100-0004 (JP) (72) Inventor: MORI, Kensuke Tokyo, 100 0004 (JP)

(74) Representative: Gulde & Partner
Patent- und Rechtsanwaltskanzlei mbB
Wallstraße 58/59
10179 Berlin (DE)


(54) ALUMINUM ALLOY HAVING EXCELLENT WEAR RESISTANCE, EXTRUDABILITY, AND FORGING WORKABILITY

(57) Productivity of an aluminum alloy such as extrusion property and forging property are improved, while satisfying the required properties, by optimizing the amount of elements contained in the aluminum alloy.


The aluminum alloy contains 5.5 to 7.0% of Si, 1.0 to 2.0% of Cu, 0.4 to 0.8% of Mg, 0.05 to 0.15% of Cr, 0.05 to 0.25% of Ni, and when further desired, 0.01 to 0.05% of Sr. The rest of the aluminum alloy is Al and unavoidable impurities. When Sc is defined as the size

of the eutectic Si in the central portion of the cross section which is vertical with respect to the longitudinal direction of the aluminum alloy extruded, and Ss is defined as the size of the eutectic Si at the surface side of the cross section of the extrusion material, the aluminum alloy satisfies the equation of "Sc-Ss \leq 15 μm^2 ", and the number of the particles having the size of $20\mu m^2$ or smaller is $1000\ to\ 3000\ /mm^2$

FIG.1

before forging

after forging

outline of forging process

EP 2 811 041 A1

Description

Technical Field

[0001] The present invention relates to aluminum alloy with superior abrasion resistance, extrusion property and forge processing property, such aluminum alloy being used for parts such as compressors in automobiles and home electric appliances.

Background Art

10

20

30

35

40

45

50

[0002] Properties such as abrasion resistance and the like are required with aluminum alloy used for compressors and the like in automobiles and home electric appliances. For example, regarding an aluminum alloy used for compressors, Si is added to the Al-Si by 10 mass% (herein after referred to as %) or more, in order to improve abrasion resistance and to decrease the rate of thermal expansion. Patent Literature 1 discloses an aluminum alloy for sliding use with superior fatigue resistance and seizure resistance. In order to obtain such fatigue resistance and seizure resistance, Si is added to the aluminum alloy as an essential element by 1 to 15%. However, the literature also discloses that the aluminum alloy becomes brittle when the amount of Si added exceeds 15%.

Citation List

Patent Literature

[0003] [Patent Literature 1] JP H03-006345

SUMMARY OF INVENTION

Technical Problem

[0004] As mentioned above, aluminum alloys used for compressors and the like are added with a quite amount of Si to obtain the required properties of superior abrasion resistance, rate of thermal expansion and the like. Although such aluminum alloys are improved in abrasion resistance, rate of thermal expansion and the like, they have problems in that processability such as extrusion processability may decrease and surface texture may deteriorate. This is observed since processability decreases by increasing the concentration of additives in the aluminum alloy. In particular, Si added to the aluminum alloy for improving abrasion resistance decreases the productivity in the processes of extrusion process and forge process. In practical use, abrasion resistance, rate of thermal expansion and the like of the aluminum alloy often exceed the degree required for its actual use. Therefore, when such an extremely superior abrasion resistance and the like are not necessary, it is desirable to optimize the required properties (such as abrasion resistance) of the aluminum alloy within the required degree, from the view of productivity.

[0005] Accordingly, by balancing the required property and the productivity as necessary, aluminum alloy with highly advantageous effect in cost can be obtained without losing productivity.

[0006] Thus, development of a balanced aluminum alloy with required property while suppressing the loss of productivity to its minimum is desired.

[0007] Taking the afore-mentioned circumstances into consideration, an object of the present invention is to provide an aluminum alloy of Al-Si series which possesses superior extrusion property and forge property, and also enables the production of forged products maintaining their abrasion resistance.

Solution to Problem

[0008] The present inventors have made a diligent investigation and found that an aluminum alloy with balanced required properties and productivity can be obtained, by adjusting the amount of each compositions and controlling the size of eutectic Si. That is, the present inventors have found that the object of the present invention can be achieved by the following means.

[0009] That is, according to the present invention, an aluminum alloy possessing superior abrasion resistance, extrusion property and forging property, comprising: 5.5 to 7.0 mass% (hereinafter referred to as %) of Si, 1.0 to 2.0% of Cu, 0.4 to 0.8% of Mg, 0.05 to 0.15% of Cr, 0.05 to 0.25% of Ni, with the rest consisting of Al and unavoidable impurities, wherein Sc (defined as the size of an eutectic Si in the central portion of the cross section which is vertical with respect to the longitudinal direction of the aluminum alloy extruded) and Ss (defined as the size of the eutectic Si at the surface side of the cross section which is vertical with respect to the longitudinal direction of the aluminum alloy extruded) satisfies

an equation of "Sc-Ss \leq 15 μ m²", and the number of the eutectic Si particles having the size of 20 μ m² or smaller is 1000 to 3000 /mm², is provided.

[0010] Preferably, an aluminum alloy with superior abrasion resistance, extrusion property and forge processing property further containing 0.01 to 0.05% of Sr is provided.

Advantageous Effects of Invention

[0011] According to the present invention, aluminum alloy material for manufacturing extrusion material and forged material with superior extrusion property and forge processing property, while also maintaining abrasion resistance, can be provided by controlling the content of each composition and the size of the eutectic Si in the aluminum alloy.

Brief Description of the Drawing

[FIG 1]

5

15

20

30

35

45

50

55

[0012] This is a figure showing the forge processing of the extruded product manufactured by extrusion.

Description of Embodiments

[0013] Hereinafter, the embodiments of the present invention will be described.

[0014] First, each of the elements added to the aluminum alloy will be explained.

[0015] Si contributes to the improvement in abrasion resistance by forming a Si compound. In addition, Si, together with Mg, forms Mg_2Si , and thereby contributes to the improvement in strength. When the amount of Si added is less than 5.5%, the effect observed for the improvement in strength and abrasion resistance is low. When the amount of Si added exceeds 7.0%, the surface texture deteriorates, and the extrusion property lowers.

[0016] Cu contributes to the improvement in strength. When the amount of Cu added is less than 1.0%, the effect observed for the improvement in strength is low. When the amount of Cu added exceeds 2.0%, the extrusion processability and corrosion resistance lowers.

[0017] Mg, together with Si, forms Mg_2Si and contributes to the improvement in strength. When the amount of Mg added is less than 0.4%, its effect is low. When the amount of Mg added exceeds 0.8%, the extrusion processability lowers. Preferably, Mg is added by 0.55 to 0.65%.

[0018] Cr is effective for refining the crystalline grain, and contributes to the improvement in strength. When the amount of Cr added is less than 0.05%, such effect is low. When the amount of Cr added exceeds 0.15%, further increase in such effect cannot be observed. Preferably, Cr is added by 0.07 to 0.10%.

[0019] Ni is effective for improving heat resistance and abrasion resistance, and also contributes to the improvement in strength. When the amount of Ni added is less than 0.05%, such effect is low. When the amount of Ni added exceeds 0.25%, further increase in such effect cannot be observed. In addition, extrusion property lowers. Preferably, Ni is added by 0.07 to 0.13%.

[0020] Sr, by being added, is an element which contributes to the improvement in mechanical properties. Sr is used for the modification treatment of the crystallized Si, and addition of Sr gives fine crystals of Si. The amount of Sr added is preferably 0.01 to 0.05%. When the amount of Sr added is less than 0.01%, such effect is low. When the amount of Sr added exceeds 0.05%, further increase in such effect cannot be observed.

[0021] Fe and Mn are contained by 0.5% or less, since these elements form compounds with other additive elements and thus leads to lowering of the effects obtained by the additive elements.

[0022] Here, the aluminum alloy according to the present invention consists of the afore-mentioned elements, unavoidable impurities and Al. For example, the aluminum alloy may contain a small amount of Ti, Zr or Zn in the range so long as it does not impair the effect of the present invention. Such range is 0.05% or less.

[0023] The uniformity of surface texture and abrasion resistance in extrusion material and forged material depend on the size and distribution of the eutectic Si in these materials, since eutectic Si have influence on such properties. That is, the aluminum alloy of the present invention attained the superior extrusion property and forge processing property by controlling the content of Si and other compositions. In addition, by controlling the size and distribution of the eutectic Si, variation in the surface texture and the properties among the portions of the material can be avoided. Therefore, the present invention can provide extrusion material and forged material having uniform properties with high productivity.

[0024] When Ss and Sc are controlled so as to satisfy the equation of "Sc-Ss \leq 15 μ m²", the surface texture of the extrusion material becomes superior, and the variation in abrasion resistance among the surface side and the central portion of the extrusion material can be suppressed. Here, regarding the size of eutectic Si, Ss is obtained as the size of eutectic Si as follows: A cross section obtained by cutting the extrusion material in the vertical direction with respect to the longitudinal direction thereof is used for the observation. The size of the eutectic Si existing slightly inward of

 $50\mu m$ from the surface side of the cross section of the extrusion material is observed under an optical microscope with magnification of 100 times. Within this visual field under the microscope, the size of the eutectic Si is observed for four sites, each site being placed with an interval of 90 degrees of central angle, with respect to the center of the visual field. Ss refers to the largest size of eutectic Si thus observed. Sc is defined as the size of eutectic Si observed at the central portion of the cross section of the extrusion material under an optical microscope with magnification of 100 times. The size of eutectic Si in the present invention means the crystal area of the eutectic Si.

[0025] Further, the roughness of the surface of the extrusion material can be suppressed by keeping the size of the eutectic Si contained in the extrusion material $20\mu\text{m}^2$ or smaller. In addition, the number of eutectic Si particles should be kept in the range of 1000 to 3000 /mm² in order to obtain the abrasion resistance. When the number of eutectic Si particles with the size of $20\mu\text{m}^2$ or smaller is less than 1000 /mm², the effect on abrasion resistance after the material being forged is low. When the number of eutectic Si particles exceeds 3000 /mm², the extrusion property and the forge processing property are inhibited.

[0026] Here, it should be noticed that there is no particular limitation with respect to the production conditions and the thermal refining of the aluminum alloy of the present invention. The thermal refining should be selected depending on the intended application, within the usual production conditions.

[0027] When the extrusion material is used as the forged product, the processability during the forging process is influenced by the hardness of the material. Therefore, the type of thermal refining adopted for the extrusion material of the present invention is preferably F, T1 or O, and more preferably O.

[0028] In addition, the type of thermal refining after the forging process should be selected depending on the required properties. Here, in the present invention, T6 is preferable.

Examples

10

20

25

30

35

40

45

50

55

[0029] The present invention will be described in detail by referring to the Examples. However, the present invention shall not be limited to these Examples.

[0030] First, each of the alloy having the composition described in Table 1 was heated within the temperature range of 700°C to 740°C to give the molten aluminum alloy, and then molding was conducted using a metallic mold. The amount of cooling water was adjusted to 70 to 100 L/min.

[0031] After obtaining ingots with 220mm diameter, these ingots were subjected to surface finishing for four hours at 490°C. The ingots were then extruded through a single hole at 500°C to give a round bar with 30mm diameter.

[0032] The samples thus obtained as the extrusion materials were subjected to observation. Here, the cross section which is vertical with respect to the longitudinal direction of the extrusion material was used for such observation. The size of the eutectic Si existing slightly inward of 50µm from the surface side of the cross section of the extrusion material was observed under an optical microscope with magnification of 100 times. The largest size of the eutectic Si (Ss) was obtained by observing four sites within this visual field under the microscope, each site being placed with an interval of 90 degrees of central angle, with respect to the center of the visual field. Further, the size of eutectic Si at the central portion (Sc) was observed at the cross section of the extrusion material under an optical microscope with magnification of 100 times. Here, the size and the number of the eutectic Si particles were analyzed using the software "image analysis software A-ZO-KUN" available from Asahi Kasei Engineering Corporation. Surface texture was evaluated by stroking the surface with a pencil with hardness of HB, and the results were judged as passed "Good" when no scratch was observed, and the results were judged as failed "Not Good" when scratch was observed. The results are shown in Table 2. Samples which satisfied the predetermined criteria were judged as failed.

[0033] Next, the round bars were subjected to annealing treatment for five hours at 400°C to give an O-material. Before evaluating the forged product, the samples were confirmed that the size and number of eutectic Si particles were in the range of the present invention.

[0034] The round bars were then cut by 100mm length in the longitudinal direction, and were subsequently subjected to upset forging with the processing rate of 80%. The forged products were then subjected to solution treatment for two hours at 520°C, followed by immediate heat treatment with 50°C water. The forged products further went through artificial aging treatments for ten hours at 180°C to give forged products with thermal refining of T6.

[0035] Here, the processing rate for the upset forging is a value obtained by calculation using the formula: (r1-r2) / r1 X 100 with respect to Fig. 1.

[0036] Tensile strength test, observation of appearance after upset forging and abrasion test were conducted for the test samples of forged alloy products obtained as above. Results are given in Table 3.

(1) Appearance after upset forging

[0037] Appearance after upset forging with the processing rate of 80 % was observed. Samples with no cracks were

judged as passed (shown as "Good"), and samples with cracks were judged as failed (shown as "Not Good").

(2) Tensile strength test

Test pieces for the tensile strength test were prepared so that the longitudinal direction of the extrusion bar is used for the longitudinal side of the test piece. The test pieces were prepared in accordance with the Japanese Industrial Standards (JIS) as test piece No. 4. The results of the test were evaluated as "passed" when the tensile strength (TS) was 300 MPa or higher, and were evaluated as "failed" when TS was lower than such value.

0 (3) Abrasion test

15

20

25

30

35

40

45

[0039] Comparative abrasion quantity was evaluated using the Ogoshi-type abrasion tester. Here, the conditions for the test were arranged as follows: gear oil (75W-90) was used as the lubricant, SCM415 was used as the opposite material, abrasion distance was set to 1200m, and the load was set to 19kgf. The results of the test were evaluated as "passed" when the comparative abrasion quantity was 5.0 x 10⁻⁹ or lower, and were evaluated as "failed" when the comparative abrasion quantity was higher than such value.

[Table 1]

							1.1					
		Composition										
		Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Ti	Sr	
	1	6.5		1.7		0.7	0.15	0.25	_		0.03	
	2	5.5	_	1.3	_	0.5	0.05	0.05		_	_	
	3	6.0	0.4	1.5		0.6	0.10	0.15		0.02	0.04	
<u>e</u>	4	7.0	_	1.3	0.4	0.5	0.08	0.18		_	0.02	
dμ	5	6.4	_	1.0	_	0.7	0.08	0.25	·		0.02	
Example	6	6.5	0.2	1.5	_	0.5	0.08	0.09	_		0.02	
Ш	7	6.2	_	1.5	_	0.7	0.07	0.17	_	_	0.02	
	8	6.1	_	1.7	_	0.4	0.08	0.17	0.03	_	_	
	9	6.3	_	1.7	0.3	0.5	0.08	0.24	<u> </u>		0.05	
	10	6.1		2.0		8.0	0.08	0.09	,		0.01	
	11	7.5	_	1.7	_	0.7	0.15	0.25	_	_	0.03	
on e	12	4.5		1.3	0.2	0.5	0.05	0.05				
ris Ipl	13	4.5		0.9		0.5	0.05	0.05		0.03	0.02	
Comparison Example	14	7.5		2.2		0.9	0.20	0.15			0.03	
اشقا	15	5.7	_	1.3		0.5	0.07	0.06				
ŏ	16	11.0	0.4	3.8		0.6	0.10	0.25			0.06	
	17	10.0		1.5		0.3	0.10	0.15	0.02			

[Table 2]

55

5	Surface Texture	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Not Good	Not Good	Not Good	Not Good	Not Good	Not Good	Not Good
10	6) F											Z	Z	Z	N	Z	Z	Z
15	of Si aving of or or																	
20	Number of Eutectic Si Particles Having the Size of $20 \mu \mathrm{m}^2$ or Smaller $\mathrm{Smaller}$	3000	1000	1500	2000	1300	1200	1100	2000	1100	1500	1000	006	1500	1200	1200	3100	2500
25																		
30	Sc-Ss [μm²]	-	2	9	വ	2	8	9	4	, -	<u>+</u>	16	16	12		17	8	16
35	Size of Eutectic Si Particle at Central Portion (Sc)	20	10	17	20	16	18	12	12	20	20	27	23	21	25	28	22	27
40																		
45	Size of Eutectic Si Particle at Surface Side (Ss)	6	8	-	15	7	10	***************************************	8	19	5	-	7	6	14	-	14	=
00			2	3	4	5	9	7	8	9	10	11	12	13	14	15	16	17
55					ə		ıex							ldr Idr	ue)	K∃ W0		*

[Table 3]

5

10

15

20

25

30

35

50

		Appearance After Forging	Tensile Test TS(MPa)	Comparative Abrasion Quantity (mm ² /kgf)
	domen	Good	372	3.0×10^{-9}
	2	Good	345	3.8×10^{-9}
	3	Good	350	3.6×10^{-9}
ø	4	Good	387	3.0×10^{-9}
ldu	5	Good	379	3.0×10^{-9}
Example	6	Good	382	3.0×10^{-9}
Ш	7	Good	388	3.0×10^{-9}
	8	Good	356	3.0×10^{-9}
	9	Good	379	3.0×10^{-9}
	10	Good	392	3.6×10^{-9}
	11	Not Good	397	1.7×10^{-9}
_ _	12	Good	290	5.1×10^{-9}
iso	13	Good	280	5.1×10^{-9}
omparisor Example	14	Not Good	398	1.7×10^{-9}
Somparison Example	15	Good	340	3.5×10^{-9}
	16	Not Good	430	1.2×10^{-9}
	17	Not Good	360	1.4×10^{-9}

[0040] As shown in Table 1 and Table 2, the extrusion materials 1 to 10 according to the present invention showed superior surface texture, while the extrusion materials of comparative Examples 11 to 17 showed inferior surface texture. [0041] Surface texture of Examples 1 to 10 of the present invention are superior since the composition is within the preferred range. That is, their smooth surface provides superior extrusion property and thus productivity is high.

[0042] The composition of the extrusion materials of Comparison Examples 11 to 14, 16 and 17 were out of the preferred range, and thus their surface texture caused the extrusion material to get caught during extrusion, leading to poor extrusion processability.

[0043] The extrusion material of Comparison Example 11 contains a large amount of Si, and the value of Sc-Ss is large. Therefore, the surface texture of the extrusion material caused the extrusion material to get caught during the extrusion, leading to poor extrusion processability.

[0044] The extrusion material of Comparison Example 12 contains a small amount of Si, and the value of Sc-Ss is large. Therefore, the surface texture of the extrusion material caused the extrusion material to get caught during the extrusion, leading to poor extrusion processability.

[0045] The extrusion material of Comparison Example 13 contains a small amount of Si and Cu. Therefore, the surface texture of the extrusion material caused the extrusion material to get caught during the extrusion, leading to poor extrusion processability.

[0046] The extrusion material of Comparison Example 14 contains a large amount of Si, Cu, Mg and Cr. Therefore, the surface texture of the extrusion material caused the extrusion material to get caught during the extrusion, leading to poor extrusion processability.

[0047] Sr contained in the extrusion material of Comparison Example 16 is out of the preferred range, and the number of eutectic Si particles having the size of $20\mu\text{m}^2$ or smaller is large. Therefore, the surface texture of the extrusion material caused the extrusion material to get caught during the extrusion, leading to poor extrusion processability.

[0048] The extrusion material of Comparison Example 17 contains a large amount of Si, contains a small amount of Mg, and the value of Sc-Ss is large. Therefore, the surface texture of the extrusion material caused the extrusion material to get caught during the extrusion, leading to poor extrusion processability.

[0049] The composition of the extrusion material of Comparison Example 15 is within the preferred range, however, the value of Sc-Ss is large. Therefore, the surface texture of the extrusion material caused the extrusion material to get caught during the extrusion, leading to poor extrusion processability.

[0050] As shown in Table 3, Examples 1 to 10 according to the present invention showed superior appearance after forging, tensile strength and comparative abrasion quantity, while the Comparison Examples 11 to 17 showed inferior results.

[0051] The forged materials of Examples 1 to 10 according to the present invention showed good results in tensile strength test and possessed good comparative abrasion quantity. In addition, since the forged materials have good forge processing property, the appearance after upset forging was superior.

[0052] The forged material of Comparison Example 11 contains a large amount of Si in its composition. Therefore, crack is observed in the appearance of the material after upset forging. That is, the forge processing property of Comparison Example 11 is low, and thus such material is not suitable as a forge material.

[0053] The forged material of Comparison Example 12 contains a small amount of Si in its composition. Therefore, the tensile strength is low, and the abrasion resistance is inferior. Further, as shown in Table 2, abrasion resistance is inferior since the number of eutectic Si particles having the size of $20\mu\text{m}^2$ or smaller is large.

[0054] The forged material of Comparison Example 13 contains a small amount of Si and Cu in its composition. Therefore, the tensile strength is low, and the abrasion resistance is inferior.

[0055] The forged material of comparative Example 14 contains a large amount of Si, Cu, Mg and Cr. Therefore, crack is observed in the appearance of the material after upset forging. That is, the forge processing property of Comparison Example 14 is low, and thus such material is not suitable as a forge material.

[0056] The forged material of Comparison Example 15 has its composition within the preferred range, and thus all of the appearance after upset forging, results of the tensile strength test and the comparative abrasion quantity were satisfactory. However, as shown in Table 2, the productivity of the extrusion material of comparative Example 15 is poor due to its poor extrusion processability. Therefore, productivity of the forged material of comparison 15 is poor.

[0057] The forged material of Comparison Example 16 contains a large amount of Si, Cu and Sr in its composition. In addition, as shown in Table 2, crack is observed in the appearance of the material after upset forging since the number of eutectic Si particles having the size of $20\,\mu\text{m}^2$ or smaller is large. That is, the forge processing property of this material is poor, and is not suitable as a forged material.

[0058] The forged material of Comparison Example 17 contains a large amount of Si and a small amount of Mg in its composition. Accordingly, crack is observed in the appearance of the material after upset forging. That is, the forge processing property of this material is poor, and is not suitable as a forged material.

Explanation of Symbols

[0059]

20

30

35

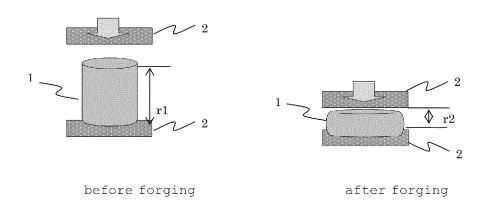
55

- 40 1 extruded bar after cutout (before forging)
 - 2 forging machine
 - r1 height of material before upset forging
 - r2 height of material after upset forging
 - 3 rotating ring
- 45 4 material for evaluation (aluminum alloy)

Claims

50 **1.** An aluminum alloy possessing superior abrasion resistance, extrusion property and forging property, comprising:

5.5 to 7.0 mass% (hereinafter referred to as %) of Si, 1.0 to 2.0% of Cu, 0.4 to 0.8% of Mg, 0.05 to 0.15% of Cr, 0.05 to 0.25% of Ni, with the rest consisting of Al and unavoidable impurities, wherein


Sc (defined as the size of an eutectic Si in the central portion of the cross section which is vertical with respect to the longitudinal direction of the aluminum alloy extruded) and Ss (defined as the size of the eutectic Si at the surface side of the cross section which is vertical with respect to the longitudinal direction of the aluminum alloy extruded) satisfies an equation of "Sc-Ss \leq 15 μ m²", and

the number of the eutectic Si particles having the size of $20\mu m^2$ or smaller is 1000 to 3000 /mm².

2. The aluminum alloy of Claim 1, further comprising 0.01 to 0.05% of Sr.

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

FIG.1

outline of forging process

	INTERNATIONAL SEARCH REPORT		International applic			
<u> </u>			PCT/JP2	012/052215		
	CATION OF SUBJECT MATTER (2006.01) i					
According to Int	ernational Patent Classification (IPC) or to both national	al classification and IPC	2			
B. FIELDS SE						
Minimum docur C22C21/02	nentation searched (classification system followed by cl	assification symbols)				
Jitsuyo Kokai J	itsuyo Shinan Koho 1971-2012 To	tsuyo Shinan To oroku Jitsuyo Sh	oroku Koho ninan Koho	1996-2012 1994-2012		
Electronic data b	pase consulted during the international search (name of	data base and, where pr	acticable, search te	rms used)		
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the releva	int passages	Relevant to claim No.		
A	JP 5-287427 A (Furukawa Alum 02 November 1993 (02.11.1993) claims; paragraphs [0022] to 2 (Family: none)	,		1,2		
А	JP 7-197164 A (The Furukawa Ltd.), 01 August 1995 (01.08.1995), claims; paragraphs [0018], [(Family: none)	1,2				
A	JP 8-028493 A (The Furukawa Ltd., Higashi Nippon Tanzo Ka 30 January 1996 (30.01.1996), claims; paragraph [0021] (Family: none)	abushiki Kais		1,2		
× Further do	ocuments are listed in the continuation of Box C.	See patent fam	nily annex.			
* Special cate "A" document of to be of par "E" earlier applifiling date	gories of cited documents: efining the general state of the art which is not considered icular relevance cation or patent but published on or after the international which may throw doubts on priority claim(s) or which is	"T" later document pu date and not in co the principle or th "X" document of part considered nove	ublished after the inte onflict with the applicate above underlying the in- icular relevance; the c	laimed invention cannot be dered to involve an inventive		
cited to est special reas "O" document re "P" document p	on the publication date of another citation or other on (as specified) eferring to an oral disclosure, use, exhibition or other means ublished prior to the international filing date but later than date claimed	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family				
	al completion of the international search i1, 2012 (06.04.12)	Date of mailing of th	e international sear , 2012 (17.			
Japane	ng address of the ISA/ se Patent Office	Authorized officer				
Facsimile No.	(1) (cacond chaet) (July 2000)	Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2012/052215

	PCT/JP2012/05					
5	C (Continuation)	DOCUMENTS CONSIDERED TO BE RELEVANT				
	Category*	Citation of document, with indication, where appropriate, of the relevan	ant passages	Relevant to claim No.		
10	A	JP 10-204566 A (Sumitomo Light Metal Industries, Ltd.), 04 August 1998 (04.08.1998), claims; paragraph [0024]; tables 1 to 5 (Family: none)		1,2		
15	А	JP 1-104742 A (Furukawa Aluminum Co., Ltd 21 April 1989 (21.04.1989), claims; page 2, lower left column, lines to 20 (Family: none)		1,2		
20						
25						
30						
35						
40						
45						
50						

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP H03006345 B [0003]