TECHNICAL FIELD
[0001] The present invention relates to a method and system for the production of spacers
2 from wires, rods, or materials of diverse prismatic cross section; as well as meshes
of wire, or concrete-reinforcing rods, or tubes, or material of prismatic cross section.
Such spacers 2 are placed inside wooden or metallic molds so as to define the location
of the reinforcement of the concrete plates. These spacer meshes are produced from
initial mesh 1 that may be produced at a mesh welder. The development of such mesh
into spacers occurs as follows. The initial mesh is situated along its longitudinal
direction in a machine including grippers seated on carriers so as to be freely movable
along this longitudinal direction of the product. However, a central gripper is stationary,
whereas every second gripper may be moved also perpendicular to the longitudinal direction
by the action of a cylinder. With the action of these cylinders, the starting product
is deformed, and the carriers of the grippers are subjected to relocation as a result
of the pull of the longitudinal wires of the starting product as the final product
is formed.
BACKGROUND ART
[0002] The usual practice in production of spacers is their formation at presses with the
use of suitable tools. An initial level mesh is introduced into a machine that has
disposed both stationary and movable deformation tools, and where the movable deformation
tools may be moved by pneumatic or hydraulic cylinders so that by their action the
mesh is formed in the desired shape or form. In another approach, prior
US-3,722,254A disclosed a material forming apparatus with plural forming heads and a single motor
acting through a drive chain system. A linkage system constrained the material forming
heads in parallel, equal-space relationship relative to each other, and since all
of the material forming heads were connected to each other by that linkage system,
it was only necessary to connect the chains to the outermost material forming heads.
Thus,
US-3,722,254A necessitated that the material forming heads are connected all together by linkage
control elements for maintaining a fixed angular relationship between the material
forming heads as they move relative to each other.
SUMMARY OF INVENTION
TECHNICAL PROBLEM
[0003] The above referred-to methods disadvantageously require adjustment or even changing
of tools for different diameters of longitudinal wires. Furthermore, the quality of
the produced product is disadvantageously affected by the elastic recovery of the
longitudinal wires that, in turn, is affected negatively as a result of slipping of
the wires inside these tools. The result is always a disadvantageous divergence of
the dimensions of the produced spacer from the desired form.
SOLUTION TO THE PROBLEM
[0004] Advantageous solutions may be found via systems and methods that locate grippers
(3,4,5,6,7) at initial locations, then place material (1) inside the grippers on an
axis (XX'). By energizing the grippers to hold the material at their respective locations
(BC, DE, FG, HI, JK) and then energizing respective cylinders (23,24) to transpose
the respective locations (DE, HI) corresponding to the respective grippers, respectively,
perpendicularly relative to the axis (XX'), the product spacer (2) is deformed. This
moves respective plate carriers (14,15) parallel with the axis (XX') via the linking
of respective intermediate longitudinal wires (E'F', G'H') of the product (2), and
also moves respective carriers (16,17) of respective grippers parallel with the axis
(XX') via the linking of respective intermediate longitudinal wires (C'D', I'J') of
the product (2). A bending of respective end sides (AB, KL) of the material (1) by
the action of respective bending mechanisms (81,82) seated on the respective carriers
(16,17) of respective grippers, may be made either at the beginning, the duration
or the end of deformation. In finishing, such systems and methods open the grippers
and deliver the product spacer (2).
[0005] According to the invention, this object is achieved by systems having the features
of patent claim 1, and by processes and methods having the features of patent claim
7. Advantageous configurations and further developments of the invention are evident
from the dependent claims and from the description in combination with the figures
of the drawings.
ADVANTAGEOUS EFFECTS OF INVENTION
[0006] The systems and methods may be understood to present many advantages, especially
notably in that the formation of spacers now does not depend on the diameter of the
longitudinal wires. Furthermore, the adjustments of the mechanism assembly are comparatively
simple, that is are only the boundaries of motion of the carriers. Additionally, the
forces of deformation are small because the longitudinal wires are bent freely and
are not compressed in the tools. Thus, the instant invention presents advantageous
systems and methods that may produce spacers from level starting mesh, flexibly, with
excellent quality and low cost.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Aspects of systems and methods according to the present invention may be understood
from the following description and from the attached drawings, wherein systems and
methods are presented in an exemplary manner, and where parts which are the same or
similar are provided with the same reference numeral labels.
FIG. 1A - schematically depicts a spacer of one wire or rod.
FIG. 1B - schematically depicts a common spacer from mesh.
FIG. 1C - schematically depicts a second common spacer from mesh.
FIGS. ID - IE - depict spacers of mesh with more than two longitudinal wires.
FIGS. IF - 1G - depict spacers with variant formation of the apexes.
FIGS. 1H - 1I - depict spacers from mesh and having differing length sides.
FIG. 2A - a schematic side view at the beginning of method operations.
FIG. 2B - a schematic side view of progress of method operations.
FIG. 3 - a detailed perspective view of a system for production of spacers.
DESCRIPTION
[0008] In following are presented descriptions of exemplary implementations of systems and
methods in the sense of non-limiting examples.
[0009] The spacers 2 are depicted in FIGS. 1A-1I and may be of differing forms. FIG. 1A
depicts a spacer 2 comprised of one wire or rod. In contrast, FIG. 1B depicts the
most common type of spacer 2, that includes a longitudinal mesh with two longitudinal
wires. FIG. 1C similarly depicts a spacer 2, but in a version with the transverse
wires located between the longitudinal wires rather than below as depicted in FIG.
1B. FIGS. 1D and 1E depict corresponding spacers to those of FIGS. 1B-1C, but including
more longitudinals, as indicated. FIGS. 1F and 1G present spacers 2 with differing
formation of the apexes. Finally, FIGS. 1H and 1I present spacers with different length
sides, as can be seen from side view.
[0010] A method may be understood in an exemplary sense for the production of a spacer 2
with five horizontal sections, for example as in FIGS. 1B - 1C. It should be understood
that, with the same method, there may be produced spacers with more or fewer horizontal
sections.
[0011] Considering FIGS. 1B-1C and FIG. 2B, spacer 2 includes straight sections A'B', B'C',
C'D', D'E', E'F', F'G', G'H', HT, I'J', J'K' and K'L' of which B'C', D'E', F'G', H'J',
and J'K' are horizontal, as depicted. The location O' coincides with the middle of
the straight section F'G'. With further reference to FIG. 2A, the spacer 2 is produced
from the starting mesh 1 on which may be identified the locations A, B, C, D, E, F,
G, H, I, J, K, L that correspond to locations A', B', C', D', E', F', G', H', I',
J', K', L' of the formed spacer 2.
[0012] At the location O of the under-formation mesh 1 there is located a gripper 3 that
is fixed and holds the product 1 along length FG. A second gripper 4 holds the under-formation
mesh 1 on the straight section DE. The gripper 4 is seated upon guides 9 and with
the action of a force originating for example from a cylinder 22 may transpose the
section DE perpendicular relative to axis XX'. Carrier 8 of gripper 4 and the guides
9 upon which gripper 4 moves are seated on a plate carrier 14 which is moved on guides
30 along the length of axis XX'.
[0013] A third gripper 6 restrains the subject-to-formation mesh 1 on the straight section
BC. The gripper 6 is seated on carrier 16 that moves on guides 30 along the length
of axis XX'. On this carrier 16 there is seated a bending mechanism 81 that rotates
a tool 31 around its axis by the action of a force that originates for example from
a cylinder 24.
[0014] Considering the other direction along axis XX' from location O, on the straight section
HI acts gripper 5 that is seated on a carrier 11 that is moved on guides 12 perpendicularly
relative to axis XX', which carrier 11 is moved by a force exercised, for example,
by cylinder 23. Gripper 5, carrier 11, guides 12 and cylinder 23 are seated on plate
carrier 15 that is seated on the guides 30 and is moved parallel to axis XX'.
[0015] On the straight section JK acts gripper 7 seated on carrier 17 that in turn moves
on guides 30 parallel to axis XX'. On this carrier 17 there is seated a bending mechanism
82 that rotates the tool 32 on its axis by the action of a force originating from
a cylinder 25.
[0016] An exemplary method and system operate as follows. The grippers 3, 4, 5, 6, 7 are
located at their initial locations that correspond to straight sections FG, DE, HI,
BC, JK. The under-formation mesh 1 is placed on axis XX' and inside the grippers.
The grippers are energized and squeeze the under-formation product at the referred-to
corresponding straight sections. Subsequently there are energized the respective cylinders
22, 23 on the respective carriers 14, 15 correspondingly. The straight section DE
is transposed towards the D'E' and the HI towards the H'I'. During the movement of
carriers 8, 11 perpendicularly relative to axis XX' there are moved the carriers 14,
15, 16, 17 parallel with the axis XX', because the carriers are linked via the intermediate
longitudinal wires of the product. For example, the intermediate section EF carries
the gripper 4, the straight section DE and the carrier 14 on the guides 30 along the
length of axis XX'. Simultaneously via the action of straight section CD the gripper
6, the straight section BC, and the carrier 16 are transferred on guides 30 along
the length of axis XX'.
[0017] With the completion of the action of the cylinders 22, 23 the initial product is
formed into a spacer 2. The end sides AB and KL are bent with the action of bending
mechanisms 81, 82 correspondingly either at the beginning, the duration or the end
of the deformation.
[0018] With the retraction of the forces of cylinders 22, 23 the longitudinal wires of the
product undergo elastic recovery and the product 2 with the carriers steadies in its
final form. This elastic recovery is a combination of the diameter, the mechanical
properties of the material and the geometry of the shape. By deforming towards the
appropriate size more than desired, with this elastic recovery there is obtained the
desired geometry. Subsequently, the grippers 3, 4, 5, 6, 7 may be opened and the product
is then rendered towards a storage.
[0019] Considering FIGS. 1F-1I, the restraining tools at the gripper may be formed at their
interior side with a radius of curvature so as to correspond to the desired radius
of curvature of the longitudinal wires of the spacer 2.
[0020] The method was presented in exemplary form for the products of FIGS. 1A-1I. It should
be understood that the method may be applied for the simultaneous formation of spacers
2 with either more or fewer apexes. Furthermore, while the method is advantageously
applied for the production of spacers from initial product mesh, it should be understood
that it may in this form also deform at least one or more wires or rods, as depicted
in FIGS. 1A, 1F.
[0021] According to the method, the form of the spacer 2 depends on the tools on the grippers.
With different tools a different product may be produced, such as, for example, the
products of FIGS. 1F-1G. Furthermore, with more particular reference to FIG. 1I, according
to the method, it should be understood that the apexes of the spacer may have either
the same or different forms in correspondence with the chosen tools on the grippers.
Again with reference to FIGS. 1H-1I, according to the method, the sections on the
apexes F'G', D'E', B'C', H'I', J'K' may have either equal or different lengths.
[0022] With further reference to FIG. 1H , according to the method the intermediate sections
EF and CD may be different or equal length one to the other. With the action of the
forces, the carriers are moved and deform the product.
[0023] Accordingly, FIGS. 2A-2B indicate in an exemplary manner methods for production of
spacers 2 from mesh, wires or rods or material of prismatic cross section 1, which
spacers 2 include inclined sections A'B', C'D', E'F', G'H', I'J', K'L' with alternating
inclinations and intermediate apexes B'C', D'E', F'G', H'I', J'K'. As explained, the
starting product 1 is restrained at a location O by gripper 3, and an apex DE beside
location O is restrained by a gripper 4 that is seated on guides 9 so as to be movable
by the action of a force perpendicular to the longitudinal direction of product XX'.
The guides 9, after the gripper 4, are ultimately seated on guides 30 so that they
may move along the length of direction XX'. The subsequent apex BC is restrained by
a gripper 6 that is seated on carrier 16, and this carrier 16 on guides 30 so as to
be movable in the direction XX'. On the gripper 6 there is seated a rotating bending
mechanism 81 that bends the last section A'B' of the spacer 2. Advantageously, from
the other side of location O there are grippers 5, 7 and carriers 11, 17 with the
same functionality and aim, with the starting mesh 1 being positioned inside the grippers
3, 4, 5, 6, 7. The sum of the grippers 3, 4, 5, 6, 7 restrain the subject-to-formation
material 1. By the action of cylinders 22, 23 respectively on the carriers of grippers
4, 5 the starting material 1 is deformed into the form of a spacer 2, with the carriers
14, 15, 16, 17 being pulled by the inclined sections C'D', E'F', G'H', I'J' of the
product. The rotating bending mechanisms 81, 82 bend the endmost sections A'B', K'L'
of the spacer 2 to a desired angle. The conclusion of formation ends the action of
formation forces of respective cylinders 22, 23 of carriers 14, 15 and the formed
product 2 may undergo elastic recovery and thus assume its final form. At the end,
the grippers 3, 4, 5, 6, 7 open to deliver product 2.
[0024] In following to the explanation of the immediately preceding paragraph, and with
reference to FIGS. IF - 1I, it should be understood that optionally, the form of the
product at the apexes may be of any form, in conjunction with the form of the restraining
tools of the grippers 3, 4, 5, 6, 7. Again in following to the explanation of the
immediately preceding paragraph, optionally the product may be made up of identically
or differently inclined sides.
[0025] Considering FIG. 2A and FIG. 3, the central jaw 3 has situated both a stationary
tool 41 and also a movable tool 42 that is moved by the air cylinder 40. The gripper
3 has a slot disposed so that it may enter inside the under-production mesh 1 in a
manner that may be understood from FIG. 3.
[0026] As may be further understood from FIG. 2A and FIG. 3, the grippers 4, 5 also each
dispose a respective stationary 41 and a respective movable tool 42 which by the action
of respective cylinders 40 hold the under-formation mesh 1. The gripper 4 is seated
on respective carrier 8 that is moved by the action of respective air cylinder 22
on guides 9 perpendicular to the under-formation mesh 1. The guides 9 are seated on
a plate carrier 14 that in turn is seated on guides 30 so as to be movable parallel
to the longitudinal axis XX' of the product. Air cylinder 71 acts on plate carrier
14, functioning to return the plate carrier 14 to its starting position for the start
of formation, while during the duration of formation the cylinder 71 does not exert
forces on the plate carrier 14.
[0027] Considering FIG. 2A and FIG. 3 further, the gripper 6 has the same form with the
gripper 7 and is located on respective carrier 16 that is seated upon guides 30. The
gripper 6 also has disposed a stationary 41 tool and a movable tool 42, and these
by action of cylinders 40 restrain the under-formation mesh 1. On gripper 6 is seated
a rotating bending mechanism 81, that includes the movable tool, being in this example
the cylinder 31 seated on a lever and being movable by air cylinder 24. As shown,
the air cylinder 72 acts on carrier 16 so as to transport it to its initial location
for the start of deformation, while during the duration of deformation it does not
exert forces upon carrier 16.
[0028] On the other side of location O and symmetrically relative to the machine axis XX',
there are respective grippers 5, 7 with corresponding functions to those of grippers
4, 6, and there is also a bending mechanism 82 in correspondence to bending mechanism
81.
[0029] As depicted in detail in FIG. 3, the sum of the grippers 3, 4, 5, 6, 7 the carriers
13, 16, 17, 8, 11 and the guides 30 mount on a plate 59 and rotating beam 60. The
rotating beam 60 is seated on two respective axes 64 of the respective thrust bearings
61 on the frame 62 of the machine. With the action of air cylinders 63 the mechanism
assembly of the grippers may assume two positions, one horizontal for the supply of
starting mesh 1, depicted in FIG. 3, and one rotated, at an apex at which the unloading
of the produced spacer 2 occurs.
[0030] The function of this exemplary machine of FIG. 3 may be understood as follows. Initially,
the machine is found at a horizontal position and all the grippers 3, 4, 5, 6, 7 at
their initial locations after their spacers. The under-formation initial product 1
is advanced inside grippers 3, 4, 5, 6, 7. These grippers 3, 4, 5, 6, 7 squeeze the
under-formation product 1 with the action of respective cylinders 40. In following,
the respective air cylinders 22, 23 of grippers 4, 5 respectively, are energized.
Simultaneously, with the action of cylinders 22, 23 carriers 14, 15, 16, 17 are moved.
Simultaneously, respective cylinders 24, 25 of the respective rotatable bending mechanisms
81, 82 are energized for the formation of the external sides. Consideration of FIG.
2B indicates the effect. With the end of formation the air cylinders 22, 23 are deenergized
and the carriers are transposed anew because of the elastic recovery.
[0031] Then in progress toward finishing, the gripper system rotates to the unloading position
(apex) under the action of cylinders 63. At the unloading position grippers 3, 4,
5, 6, 7 are deenergized and the readied product 2 falls to a collection surface where
it is received.
[0032] It should be understood by the above discussion that the system may produce spacers
2 with manual feeding of meshes 1, or the system may be supplied with meshes 1 from
a mesh storage via a suitable supply mechanism. Furthermore, the system may cooperate
with a production machine for meshes 1, these produced meshes then being automatically
fed and the synchronization being effected by a central control unit.
[0033] Accordingly, FIGS. 2A-2B and FIG. 3 indicate in an exemplary manner systems for production
of spacers 2 from mesh, wires or rods 1, which spacers 2 have inclined sections A'B',
C'D', E'F', G'H', I'J', K'L' with alternating inclinations. The starting product 1
is restrained at location O by gripper 3 with the action of cylinders 40, and beside
location O there is gripper 4 energized by another cylinder 40, that restrains the
mesh 1 at a starting location that, after the formation corresponds to the next neighboring
apex D'E' of the spacer 2. The gripper 4 is seated on a respective carrier 8 which
is ultimately seated on guides 9 so as to be moved by the action of cylinder 22 perpendicular
to the longitudinal direction XX' of product. The carrier 8 is seated on guides 30
via plate carrier 14 so as to be able to move along the length of direction XX'. In
following, in the same direction there is a jaw 6 that also restrains the starting
mesh 1 at a location BC that corresponds to the next apex B'C', with the gripper 6
being energized by cylinders 40 and the gripper 6 being seated on carrier 16 and thus
on guides 30 so as to be able to be moved parallel to the direction XX'. On the gripper
6 there is seated a rotating bending mechanism 81 that by action of cylinder 24 bends
the end section A'B' of the spacer 2. On the other side of location O there exist
the same grippers 5,7 and the same carriers 11, 15, 17 with the same functionality
and aim. The cylinders 71, 72, 73, 74 act to transfer, correspondingly, the respective
carriers 14, 16, 15, 17 to their respective starting locations, as they do not typically
exert any significant force on the carriers during the duration of formation. The
entire gripper mechanism assembly is advantageously supported on a rotating beam 60,
and this rotating beam in turn is supported upon two bearings 61 in a metallic construction
frame 62. This rotating beam 60 rotates by the action of two cylinders 63, taking
two positions, one horizontal for supply of the starting mesh 1 and one apex position
for the unloading of the formed product 2. The starting mesh 1 is positioned symmetrically
in the jaws 3, 4, 5, 6, 7 and these jaws 3, 4, 5, 6, 7 are located at the appropriate
positions along axis XX' by the action of cylinders 71, 72, 73, 74. In following,
the grippers 3, 4, 5, 6, 7 restrain the subject-to-formation mesh 1, cylinders 22,
23 are energized, and the starting mesh 1 is formed into the spacer 2, with the carriers
14, 15, 16, 17 being pulled by the inclined sections C'D', E'F', G'H', I'J' of the
product 2. Simultaneously, the rotating bending mechanisms 81, 82 bend the end sections
A'B', K'L' of the spacer 2 to a desired angle. With the conclusion of formation ends
the action of the deformation forces of cylinders 22, 23 of plate carriers 14, 15,
and the formed product 2 undergoes elastic recovery and takes its final form. To finish,
the entire gripper system rotates to an apex location by the action of cylinders 63,
and the restraining cylinders 40 of all the grippers are deenergized to deliver the
formed spacer 2.
[0034] In following to the explanation of the immediately preceding paragraph, it should
be understood that optionally, the feeding of meshes 1 may be made automatically by
a machine for the production of mesh, or may be made automatically by a feeder. Systems
according to the explanation of the immediately preceding paragraph may optionally
but preferably be controlled by an electronic computer so that all the working phases
occur automatically.
[0035] It should be understood in the context of the preceding discussion that the present
invention is not limited in any manner to the described and drawings-depicted implementations,
but may be realized in many forms and dimensions without abandoning the region of
protection of the invention. For example, in implementations of the invention the
materials that are used and also as well the dimensions of particular elements may
be according to the demands of a particular construction. Thus, in closing, it should
be noted that the invention is not limited to the abovementioned versions and exemplary
working examples. Further developments, modifications and combinations are also within
the scope of the patent claims and are placed in the possession of the person skilled
in the art from the above disclosure. Accordingly, the techniques and structures described
and illustrated herein should be understood to be illustrative and exemplary, and
not necessarily limiting upon the scope of the present invention. The scope of the
present invention is defined by the appended claims, including known equivalents and
unforeseeable equivalents at the time of filing of this application.
REFERENCE SIGNS LIST
[0036]
- 1
- starting (initial) mesh
- 2
- spacer
- 3,4,5,6,7
- grippers (jaws)
- 8
- carrier of gripper 4
- 9
- guides
- 11
- carrier of gripper 5
- 12
- guides
- 13
- carrier of gripper 3
- 14
- plate carrier
- 15
- plate carrier
- 16
- carrier of gripper 6
- 17
- carrier of gripper 7
- 22
- cylinder
- 23,24,25
- cylinders
- 30
- guides
- 31,32
- bending tool
- 40
- air cylinders
- 41
- stationary tool of jaw
- 42
- movable tool of jaw
- 59
- plate
- 60
- rotating beam
- 61
- thrust bearings
- 62
- frame of machine
- 63
- air cylinders
- 64
- axes of thrust bearings 61
- 71,72,73,74
- air cylinders
- 81, 82
- bending mechanisms
- A - L
- locations on mesh
- A' - L'
- locations on spacer 2
- XX'
- longitudinal axis
- O, O'
- location (central)
1. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic
cross section,
characterized by:
a gripper (3) situated at a central location (O) to correspond to a spacer (2) apex
(F'G');
a respective cylinder (40) configured to energize said gripper (3);
on one side of said central location (O) a second gripper (4) situated beside said
central location (O), said second gripper energizable by a respective second cylinder
(40) to restrain a spacer (2) at a location corresponding to a next-neighboring second
apex (D'E') of the spacer (2);
said second gripper (4) being seated on a respective carrier (8) seated on respective
guides (9);
a respective cylinder (22) configured to move said second gripper (4) perpendicular
to a longitudinal direction (XX');
a third gripper (6) energizable by a respective third cylinder (40) to restrain the
spacer (2) at a location corresponding to a next-neighboring third apex (B'C') of
the spacer (2);
said third gripper (6) being seated on a respective carrier (16) movably seated on
guides (30) so as to be movable along said longitudinal direction (XX');
a first rotatable bending mechanism (81) seated on said third gripper (6), and a respective
cylinder (24) configured to act on said rotatable bending mechanism (81) to bend a
spacer end section (A'B');
on the other side of said central location (O) a fourth gripper (5) situated beside
said central location (O), said fourth gripper energizable by a respective fourth
cylinder (40) to restrain a spacer (2) at a location corresponding to a next-neighboring
fourth apex (H'I') of the spacer (2);
said fourth gripper (5) being seated on a respective carrier (11) seated on respective
guides (12);
a respective cylinder (23) configured to move said fourth gripper (5) perpendicular
to said longitudinal direction (XX');
a fifth gripper (7) energizable by a respective fifth cylinder (40) to restrain the
spacer (2) at a location corresponding to a next-neighboring fifth apex (J'K') of
the spacer (2);
said fifth gripper (7) being seated on a respective carrier (17) movably seated on
said guides (30) so as to be movable along said longitudinal direction (XX');
a second rotatable bending mechanism (82) seated on said fifth gripper (7), and a
respective cylinder (25) configured to act on said second rotatable bending mechanism
(82) to bend another spacer end section (K'L');
said second gripper's (4) respective carrier (8) and respective guides (9) being seated
on a first plate carrier (14) movably seated on said guides (30) so as to be movable
along said longitudinal direction (XX');
said fourth gripper's (5) respective carrier (11) and respective guides (12) being
seated on a second plate carrier (15) movably seated on said guides (30) so as to
be movable along said longitudinal direction (XX');
a first transfer cylinder (71) configured to return said first plate carrier (14)
to its starting position for the start of formation;
a second transfer cylinder (72) configured to return said respective carrier (16)
of said third gripper (6) to its starting position for the start of formation;
a third transfer cylinder (73) configured to return said second plate carrier (15)
to its starting position for the start of formation;
a fourth transfer cylinder (74) configured to return said respective carrier (17)
of said fifth gripper (7) to its starting position for the start of formation; and,
a gripper mechanism assembly including said grippers (3,4,5,6,7), said gripper mechanism
assembly being supported on a rotatable beam (60), said rotatable beam (60) being
supported by two bearings (61) in a frame (62) to controllably rotate under cylinder
(63) action to two positions including supply and unloading.
2. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic
cross section as claimed in claim 1, further characterized in that the system is configured such that:
during the duration of spacer (2) formation said first transfer cylinder (71) does
not exert forces on said first plate carrier (14), said second transfer cylinder (72)
does not exert forces on said respective carrier (16) of said third gripper (6), said
third transfer cylinder (73) does not exert forces on said second plate carrier (15),
and said fourth transfer cylinder (74) does not exert forces on said respective carrier
(17) of said fifth gripper (7).
3. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic
cross section as claimed in any one of claims 1 to 2, further characterized by:
two cylinders (63) configured to act on said rotating beam (60) to rotate it.
4. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic
cross section as claimed in any one of claims 1 to 3, further characterized in that:
the system is controlled by an electronic computer and all the working phases occur
automatically.
5. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic
cross section as claimed in any one of claims 1 to 4, further characterized by:
restraining tools at a gripper (3,4,5,6,7) are formed at their interior side with
a radius of curvature so as to correspond to a desired radius of curvature of the
longitudinal wires of a spacer (2).
6. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic
cross section as claimed in any one of claims 1 to 5, further characterized by:
said guides (30) mount on a plate (59) and said rotating beam (60).
7. A method for production of spacers (2) from material (1) such as mesh, wires, rods,
or material of prismatic cross section (1),
characterized by the steps of:
locating first (3), second (4), third (6), fourth (5), and fifth (7) grippers at their
respective initial locations;
placing material (1) on an axis (XX') and inside said grippers (3,4,5,6,7);
energizing said grippers (3,4,5,6,7) to hold the material (1) at respective locations
(BC, DE, FG, HI, JK) corresponding to said grippers (3,4,5,6,7);
energizing respective cylinders (22,23) of the second (4) and fourth (5) grippers
on respective plate carriers (14,15);
by said step of energizing the respective cylinders (22,23) transposing the respective
locations (DE, HI) corresponding to the second (4) and fourth (5) grippers, respectively,
perpendicularly relative to the axis (XX') to deform the product spacer (2);
moving the respective plate carriers (14,15) parallel with the axis (XX') via the
linking of respective intermediate longitudinal wires (E'F', G'H') of the product
(2);
moving respective carriers (16,17) of said third (6) and fifth (7) grippers parallel
with the axis (XX') via the linking of respective intermediate longitudinal wires
(C'D', I'J') of the product (2);
bending respective end sides (AB, KL) of the material (1) by the action of respective
bending mechanisms (81,82) seated on the respective carriers (16,17) of said third
(6) and fifth (7) grippers, either at the beginning, the duration or the end of deformation;
opening said grippers (3,4,5,6,7); and,
delivering product spacer (2).
8. A method for production of spacers (2) from material (1) such as mesh, wires, rods,
or material of prismatic cross section (1) as claimed in claim 7, further characterized by the step of:
locating said grippers (3, 4, 5, 6, 7) at respective appropriate positions along said
axis (XX') by the actions of respective cylinders (71, 72, 73, 74).
9. A method for production of spacers (2) from material (1) such as mesh, wires, rods,
or material of prismatic cross section (1) as claimed in any one of claims 7 to 8,
further characterized by the steps of:
rotating a rotating beam (60) supporting a gripper mechanism assembly including said
grippers (3,4,5,6,7) to a first position for supply of starting material (1); and,
rotating the rotating beam (60) to a second position for unloading formed spacer.
10. A method for production of spacers (2) from material (1) such as mesh, wires, rods,
or material of prismatic cross section (1) as claimed in any one of claims 7 to 9,
further characterized by the step of:
moving the respective plate carriers (14,15) and moving the respective carriers (16,17)
of said third (6) and fifth (7) grippers, all parallel with the axis (XX') on guides
(30).
11. A method for production of spacers (2) from material (1) such as mesh, wires, rods,
or material of prismatic cross section (1) as claimed in claim 10 in combination with
claim 9, further characterized in that:
said guides (30) are mounted on a plate (59) and said rotating beam (60).
12. A method for production of spacers (2) from material (1) such as mesh, wires, rods,
or material of prismatic cross section (1) as claimed in any one of claims 7 to 11,
further characterized by the step of:
providing a gripper (3,4,5,6,7) with restraining tools having at their interior side
a radius of curvature corresponding to a desired radius of curvature of the longitudinal
wires of a spacer (2).
13. A method for production of spacers (2) from material (1) such as mesh, wires, rods,
or material of prismatic cross section as claimed in any one of claims 7 to 12, further characterized in that:
the feeding of meshes (1) is made automatically by a machine for the production of
mesh.
14. A method for production of spacers (2) from material (1) such as mesh, wires, rods,
or material of prismatic cross section as claimed in any one of claims 7 to 12, further characterized in that:
the feeding of meshes (1) is made automatically by a feeder.
1. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem
Material mit einem prismatischen Querschnitt, durch Folgendes gekennzeichnet:
einen Greifer (3), der sich an einer Mittenposition (O) befindet, um einem Scheitel
(F'G') des Abstandsstücks (2) zu entsprechen;
einen entsprechenden Zylinder (40), der dazu ausgelegt ist, den Greifer (3) anzusteuern;
einen zweiten Greifer (4) auf einer Seite der Mittenposition (O), der sich neben der
Mittenposition (O) befindet, wobei der zweite Greifer von einem entsprechenden zweiten
Zylinder (40) angesteuert werden kann, um einen Greifer (2) an einer Position, die
einem nächstliegenden benachbarten zweiten Scheitel (D'E') des Abstandsstücks (2)
entspricht, festzuhalten;
wobei der zweite Greifer (4) auf einem entsprechenden Träger (8) sitzt, der auf einer
entsprechenden Führung (9) sitzt;
einen entsprechenden Zylinder (22), der dazu ausgelegt ist, den zweiten Greifer (4)
senkrecht zu einer Längsrichtung (XX') zu bewegen;
einen dritten Greifer (6), der von einem entsprechenden dritten Zylinder (40) angesteuert
werden kann, um den Greifer (2) an einer Position, die einem nächstliegenden benachbarten
dritten Scheitel (B'C') des Abstandsstücks (2) entspricht, festzuhalten;
wobei der dritte Greifer (6) auf einem entsprechenden Träger (16) sitzt, der beweglich
auf Führungen (30) sitzt, derart, dass er entlang der Längsachse (XX') bewegt werden
kann;
einen ersten drehbaren Biegemechanismus (81), der auf dem dritten Greifer (6) sitzt,
und einen entsprechenden Zylinder (24), der dazu ausgelegt ist, auf den drehbaren
Biegemechanismus (81) zu wirken, um einen Abstandsstückendabschnitt (A'B') zu biegen;
einen vierten Greifer (5) auf der anderen Seite der Mittenposition (O), der sich neben
der Mittenposition (O) befindet, wobei der vierte Greifer von einem entsprechenden
vierten Zylinder (40) angesteuert werden kann, um einen Greifer (2) an einer Position,
die einem nächstliegenden benachbarten vierten Scheitel (H'I') des Abstandsstücks
(2) entspricht, festzuhalten;
wobei der vierte Greifer (5) auf einem entsprechenden Träger (11) sitzt, der auf einer
entsprechenden Führung (12) sitzt;
einen entsprechenden Zylinder (23), der dazu ausgelegt ist, den vierten Greifer (5)
senkrecht zu einer Längsrichtung (XX') zu bewegen;
einen fünften Greifer (7), der von einem entsprechenden fünften Zylinder (40) angesteuert
werden kann, um den Greifer (2) an einer Position, die einem nächstliegenden benachbarten
fünften Scheitel (J'K') des Abstandsstücks (2) entspricht, festzuhalten;
wobei der fünfte Greifer (7) auf einem entsprechenden Träger (17) sitzt, der beweglich
auf Führungen (30) sitzt, derart, dass er entlang der Längsachse (XX') bewegt werden
kann;
einen zweiten drehbaren Biegemechanismus (82), der auf dem fünften Greifer (7) sitzt,
und einen entsprechenden Zylinder (25), der dazu ausgelegt ist, auf den drehbaren
Biegemechanismus (82) zu wirken, um einen anderen Abstandsstückendabschnitt (K'L')
zu biegen;
wobei der entsprechende Träger (8) und die entsprechenden Führungen (30) des zweiten
Greifers (4) auf einem ersten Plattenträger (14) sitzen, der beweglich auf den Führungen
(30) sitzt, derart, dass er entlang der Längsachse (XX') bewegt werden kann;
wobei der entsprechende Träger (11) und die entsprechenden Führungen (12) des vierten
Greifers (5) auf einem zweiten Plattenträger (15) sitzen, der beweglich auf den Führungen
(30) sitzt, derart, dass er entlang der Längsachse (XX') bewegt werden kann;
einen ersten Transferzylinder (71), der dazu ausgelegt ist, den ersten Plattenträger
(14) in seine Ausgangsposition für den Beginn der Formation zurück zu bringen;
einen zweiten Transferzylinder (72), der dazu ausgelegt ist, den entsprechenden Träger
(16) des dritten Greifers (6) in seine Ausgangsposition für den Beginn der Formation
zurück zu bringen;
einen dritten Transferzylinder (73), der dazu ausgelegt ist, den zweiten Plattenträger
(15) in seine Ausgangsposition für den Beginn der Formation zurück zu bringen;
einen vierten Transferzylinder (74), der dazu ausgelegt ist, den entsprechenden Träger
(17) des fünften Greifers (7) in seine Ausgangsposition für den Beginn der Formation
zurück zu bringen; und,
eine Greifmechanismusanordnung, die die Greifer (3, 4, 5, 6, 7) aufweist, wobei die
Greifmechanismusanordnung auf einem drehbaren Balken (60) getragen wird, wobei der
drehbare Balken (60) von zwei Lagern (61) in einem Rahmen (62) getragen wird, um unter
Wirkung des Zylinders (63) gesteuert zu zwei Positionen für Zufuhr und Entladen zu
drehen.
2. Anlage zum Herstellen von Abstandsstücken (2) aus Netzten, Drähten, Stäben oder Materialien
mit prismatischem Querschnitt nach Anspruch 1, die ferner dadurch gekennzeichnet ist, dass die Anlage zu Folgendem ausgelegt ist:
der erste Transferzylinder (71) übt während der Formationsdauer eines Abstandsstücks
(2) keine Kraft auf den ersten Plattenträger (14) aus, der zweite Transferzylinder
(72) übt keine Kraft auf den entsprechenden Träger (16) des dritten Greifers (6) aus,
der Transferzylinder (73) wirkt keine Kraft auf den zweiten Plattenträger (15) aus
und der vierte Transferzylinder (74) wirkt keine Kraft auf den entsprechenden Träger
(17) des fünften Greifers (7) aus.
3. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem
Material mit einem prismatischen Querschnitt nach Anspruch 1 bis 2, ferner durch Folgendes
gekennzeichnet:
zwei Zylinder (63), die dazu ausgelegt sind, auf den drehbaren Balken (60) zu wirken,
um ihn zu drehen.
4. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem
Material mit einem prismatischen Querschnitt nach einem der Ansprüche 1 bis 3, ferner
durch Folgendes gekennzeichnet:
die Anlage wird von einem elektronischen Computer gesteuert und alle Arbeitsphasen
erfolgen automatisch.
5. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem
Material mit einem prismatischen Querschnitt nach einem der Ansprüche 1 bis 4, ferner
durch Folgendes gekennzeichnet:
Haltewerkzeuge an einem Greifer (3, 4, 5, 6, 7) werden derart mit einem Krümmungsradius
an ihrer Innenseite gebildet, um einem gewünschten Krümmungsradius der längsverlaufenden
Drähte eines Abstandsstücks (2) zu entsprechen.
6. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem
Material mit einem prismatischen Querschnitt nach Anspruch 1 bis 5, ferner durch Folgendes
gekennzeichnet:
die Führungen (30) sind auf einer Platte (59) und dem drehbaren Balken (60) befestigt.
7. Anlage zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel
Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1),
durch folgende Schritte gekennzeichnet:
Positionieren des ersten (3), zweiten (4), dritten (6), vierten (5) und fünften (7)
Greifers an ihren entsprechenden Anfangspositionen;
Anbringen von Material (1) auf einer Achse (XX') und innerhalb der Greifer (3, 4,
5, 6, 7);
Ansteuern der Greifer (3, 4, 5, 6, 7), um das Material an entsprechenden Positionen
(BC, DE, FG, HI, JK), die den Greifern (3, 4, 5, 6, 7) entsprechen, festzuhalten;
Ansteuern der entsprechenden Zylinder (22, 23) des zweiten (4) bzw. vierten (5) Greifers
auf entsprechenden Plattenträgern (14, 15);
durch den Schritt des Ansteuerns des entsprechenden Zylinders (22, 23), jeweils Verlagern
der entsprechenden Position (DE, HI) entsprechend des zweiten (4) und vierten (5)
Greifers senkrecht bezüglich der Achse (XX'), um das Produktabstandsstück (2) zu verformen;
Bewegen des entsprechenden Plattenträgers (14, 15) parallel zu der Achse (XX') mittels
Verbindung entsprechender längsverlaufender Zwischendrähte (E'F', G'H') des Produkts
(2);
Bewegen des entsprechenden Trägers (16, 17) des dritten (6) bzw. fünften (7) Greifers
parallel zu der Achse (XX') mittels der Verbindung entsprechender längsverlaufender
Zwischendrähte (C'D', I'J') des Produkts (2);
Biegen entsprechender Endseiten (AB, KL) des Materials (1) durch Wirkung entsprechender
Biegemechanismen (81, 82), die auf den entsprechenden Trägern (16, 17) des dritten
(6) bzw. fünften (7) Greifers sitzen, entweder zu Beginn, während oder am Ende der
Verformung;
Öffnen des Greifers (3, 4, 5, 6, 7) und Bereitstellen von Produktabstandsstücken (2).
8. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel
Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1)
nach Anspruch 7, ferner durch folgende Schritte gekennzeichnet:
Positionieren des Greifers (3, 4, 5, 6, 7) an entsprechenden geeigneten Positionen
entlang der Achse (XX') mittels Wirkung des entsprechenden Zylinders (71, 72, 73,
74).
9. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel
Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1)
nach einem der Ansprüche 7 bis 8, ferner durch folgende Schritte gekennzeichnet:
Drehen eines drehbaren Balkens (60), der eine Greifmechanismusanordnung, die die Greifer
(3, 4, 5, 6, 7) aufweist, trägt, in eine erste Position für das Zuführen von Ausgangsmaterial
(1); und
Drehen des drehbaren Balkens (60) in eine zweite Position für das Entladen gebildeter
Abstandsstücke.
10. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel
Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1)
nach einem der Ansprüche 7 bis 9, ferner durch folgende Schritte gekennzeichnet:
Bewegen des entsprechenden Plattenträgers (14, 15) und Bewegen des entsprechenden
Trägers (16, 17) des dritten (6) bzw. fünften (7) Greifers, jeweils parallel zu der
Achse (XX') auf den Führungen (30).
11. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel
Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1)
nach Anspruch 10 in Kombination mit Anspruch 9, ferner durch Folgendes gekennzeichnet:
die Führungen (30) sind auf einer Platte (59) und dem drehbaren Balken (60) neu befestigt.
12. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel
Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1)
nach einem der Ansprüche 7 bis 11, ferner durch folgende Schritte gekennzeichnet:
Versehen eines Greifers (3, 4, 5, 6, 7) mit Haltewerkzeugen, die an ihrer Innenseite
einen Krümmungsradius aufweisen, der einem gewünschten Krümmungsradius der längsverlaufenden
Drähte eines Abstandsstücks (2) entspricht.
13. Verfahren zum Herstellen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel
Netzten, Drähten, Stäben oder Materialien mit prismatischem Querschnitt nach einem
der Ansprüche 7 bis 12, das ferner durch Folgendes gekennzeichnet ist:
das Zuführen von Netzten (1) wird automatisch von einer Maschine zur Herstellung von
Netzten ausgeführt.
14. Verfahren zum Herstellen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel
Netzten, Drähten, Stäben oder Materialien mit prismatischem Querschnitt nach einem
der Ansprüche 7 bis 12, das ferner durch Folgendes gekennzeichnet ist:
das Zuführen von Netzten (1) wird automatisch von einer Zufuhrvorrichtung ausgeführt.
1. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou
de matériau de section prismatique,
caractérisé par :
une pince de préhension (3) située à un emplacement central (O) pour correspondre
à un sommet (R'G') d'un écarteur (2) ;
un cylindre respectif (40) configuré pour fournir de l'énergie à ladite pince de préhension
(3),
sur un côté dudit emplacement central (O), une deuxième pince de préhension (4) située
à côté dudit emplacement central (O), ladite deuxième pince de préhension pouvant
recevoir de l'énergie d'un deuxième cylindre (40) respectif pour retenir un écarteur
(2) à un emplacement correspondant à un deuxième sommet (D'E') suivant voisin de l'écarteur
(2) ;
ladite deuxième pince de préhension (4) étant logée sur un support (8) respectif logé
sur des guides (9) respectifs ;
un cylindre respectif (22) configuré pour déplacer ladite deuxième pince de préhension
(4) perpendiculairement à une direction longitudinale (XX') ;
une troisième pince de préhension (6) pouvant recevoir de l'énergie par un troisième
cylindre (40) respectif pour retenir l'écarteur (2) à un emplacement correspondant
à un troisième sommet (B'C') suivant voisin de l'écarteur (2) ;
ladite troisième pince de préhension (6) étant logée sur un support respectif (16)
logé de façon mobile sur des guides (30) de façon à être mobile le long de ladite
direction longitudinale (XX') ;
un premier mécanisme de flexion rotatif (81) logé sur ladite troisième pince de préhension
(6), et un cylindre respectif (24) configuré pour agir sur ledit mécanisme de flexion
rotatif (81) pour fléchir une section d'extrémité d'écarteur (A'B') ;
sur l'autre côté dudit emplacement central (O), une quatrième pince de préhension
(5) située à côté dudit emplacement central (O), ladite quatrième pince de préhension
pouvant recevoir de l'énergie d'un quatrième cylindre (40) respectif pour retenir
un écarteur (2) à un emplacement correspondant à un quatrième sommet (H'I') suivant
voisin de l'écarteur (2) ;
ladite quatrième pince de préhension (5) étant logée sur un support (11) respectif
logé sur des guides (12) respectifs ;
un cylindre (23) respectif configuré pour déplacer ladite quatrième pince de préhension
(5) perpendiculairement à ladite direction longitudinale (XX') ;
une cinquième pince de préhension (7) pouvant recevoir de l'énergie par un cinquième
cylindre (40) respectif pour retenir l'écarteur (2) à un emplacement correspondant
à un cinquième sommet (J'K') suivant voisin de l'écarteur (2) ;
ladite cinquième pince de préhension (7) étant logée sur un support (17) respectif
logé de façon mobile sur lesdits guides (30) de façon à être mobile le long de ladite
direction longitudinale (XX') ;
un deuxième mécanisme de flexion rotatif (82) logé sur ladite cinquième pince de préhension
(7), et un cylindre (25) respectif configuré pour agir sur ledit deuxième mécanisme
de flexion rotatif (82) pour fléchir une autre section d'extrémité d'écarteur (K',
L') ;
lesdits support (8) respectif et guides (9) respectifs de la deuxième pince de préhension
(4) étant logés sur un premier support à plateau (14) logé de façon mobile sur lesdits
guides (30) de façon à être mobile le long de ladite direction longitudinale (XX')
;
lesdits support (11) respectif et guides (12) respectifs de la quatrième pince de
préhension (5) étant logés sur un deuxième support à plateau (15) logé de façon mobile
sur lesdits guides (30) de façon à être mobiles le long de ladite direction longitudinale
(XX') ;
un premier cylindre de transfert (71) configuré pour renvoyer ledit premier support
à plateau (14) à sa position de départ pour le départ de la formation ;
un deuxième cylindre de transfert (72) configuré pour renvoyer ledit support (16)
respectif de ladite troisième pince de préhension (6) à sa position de départ pour
le départ de la formation ;
un troisième cylindre de transfert (73) configuré pour renvoyer ledit deuxième support
à plateau (15) à sa position de départ pour le départ de la formation ;
un quatrième cylindre de transfert (74) configuré pour renvoyer ledit support (17)
respectif de ladite cinquième pince de préhension (7) à sa position de départ pour
le départ de la formation ;
un montage de mécanisme de pinces de préhension incluant lesdites pinces de préhension
(3, 4, 5, 6, 7), ledit montage de mécanisme de pinces de préhension étant supporté
sur une poutre rotative (60), ladite poutre rotative (60) étant supportée par deux
paliers (61) dans un châssis (62) pour tourner de façon commandée sous l'action du
cylindre (63) vers deux positions incluant la fourniture et le déchargement.
2. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou
de matériau de section prismatique selon la revendication 1, caractérisé en outre en ce que le système est configuré de telle façon que :
pendant la durée de la formation de l'écarteur (2), ledit premier cylindre de transfert
(71) n'exerce pas de forces sur ledit premier support à plateau (14), ledit deuxième
cylindre de transfert (72) n'exerce pas de forces sur ledit support respectif (16)
de ladite troisième pince de préhension (6), ledit troisième cylindre de transfert
(73) n'exerce pas de forces sur ledit deuxième support à plateau (15) et ledit quatrième
cylindre de transfert (74) n'exerce pas de forces sur ledit support (17) respectif
de ladite cinquième pince de préhension (7).
3. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou
de matériau de section prismatique selon l'une quelconque des revendications 1 à 2,
caractérisé en outre par :
deux cylindres (63) configurés pour agir sur ladite poutre rotative (60) pour la faire
tourner.
4. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou
de matériau de section prismatique selon l'une quelconque des revendications 1 à 3,
caractérisé en outre en ce que :
le système est commandé par un ordinateur électronique et toutes les phases de travail
se produisent automatiquement.
5. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou
de matériau de section prismatique selon l'une quelconque des revendications 1 à 4,
caractérisé en outre en ce que :
des outils de retenue sur une pince de préhension (3, 4, 5, 6, 7) sont formés sur
leur côté intérieur avec un rayon de courbure de façon à correspondre à un rayon souhaité
de courbure des fils longitudinaux d'un écarteur (2).
6. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou
de matériau de section prismatique selon l'une quelconque des revendications 1 à 5,
caractérisé en outre en ce que :
lesdits guides (30) se montent sur un plateau (59) et ladite poutre rotative (60).
7. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis,
des fils, des tiges ou de matériau de section prismatique (1),
caractérisé par les étapes de :
situer les première (3), deuxième (4), troisième (6), quatrième (5) et cinquième (7)
pinces de préhension sur leurs emplacements initiaux respectifs ;
placer le matériau (1) sur un axe (XX') et à l'intérieur desdites pinces de préhension
(3, 4, 5, 6, 7) ;
fournir de l'énergie auxdites pinces de préhension (3, 4, 5, 6, 7) pour maintenir
le matériau (1) aux emplacements (BC, DE, FG, HI, JK) respectifs correspondant auxdites
pinces de préhension (3, 4, 5, 6, 7) ;
fournir de l'énergie aux cylindres (22, 23) respectifs des deuxième (4) et quatrième
(5) pinces de préhension sur des supports à plateau (14, 15) respectifs ;
par ladite étape de fournir de l'énergie aux cylindres (22, 23) respectifs, transposer
les emplacements (DE, HI) respectifs correspondant aux deuxième (4) et quatrième (5)
pinces de préhension, respectivement, perpendiculairement à l'axe (XX') pour déformer
l'écarteur (2) produit ;
déplacer les supports à plateau (14, 15) respectifs parallèlement à l'axe (XX') par
le biais de la liaison de fils longitudinaux intermédiaires (E'F', G'H') respectifs
du produit (2) ;
déplacer les supports (16, 17) respectifs desdites troisième (6) et cinquième (7)
pinces de préhension parallèlement à l'axe (XX') par le biais de la liaison de fils
longitudinaux intermédiaires (C'D', I'J') respectifs du produit (2) ;
fléchir les côtés d'extrémité (AB, KL) respectifs du matériau (1) par l'action de
mécanismes de flexion (81, 82) respectifs logés sur les supports (16, 17) respectifs
desdites troisième (6) et cinquième (7) pinces de préhension, soit au début, pendant
ou à la fin de la déformation ;
ouvrir lesdites pinces de préhension (3, 4, 5, 6, 7) ; et,
fournir l'écarteur (2) produit.
8. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis,
des fils, des tiges ou de matériau de section prismatique (1) selon la revendication
7, caractérisé en outre par les étapes de :
situer lesdites pinces de préhension (3, 4, 5, 6, 7) à des positions appropriées respectives
le long dudit axe (XX') par les actions des cylindres respectifs (71, 72, 73, 74).
9. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis,
des fils, des tiges ou de matériau de section prismatique (1) selon l'une des revendications
7 à 8,
caractérisé en outre par les étapes de :
faire tourner une barre rotative (60) supportant un montage de mécanisme de pinces
de préhension incluant lesdites pinces de préhension (3, 4, 5, 6, 7) vers une première
position pour fournir le matériau (1) de départ ;
et,
faire tourner la poutre rotative (60) vers une seconde position pour décharger l'écarteur
formé.
10. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis,
des fils, des tiges ou de matériau de section prismatique (1) selon l'une des revendications
7 à 9, caractérisé en outre par les étapes de :
déplacer les supports à plateau (14, 15) respectifs et déplacer les supports (16,
17) respectifs desdites troisième (6) et cinquième (7) pinces de préhension, le tout
parallèlement à l'axe (XX') sur des guides (30) .
11. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis,
des fils, des tiges ou de matériau de section prismatique (1) selon la revendication
10 en combinaison avec la revendication 9, caractérisé en outre en ce que :
lesdits guides (30) sont montés sur un plateau (59) et ladite poutre rotative (60).
12. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis,
des fils, des tiges ou de matériau de section prismatique (1) selon l'une des revendications
7 à 11, caractérisé en outre par l'étape de :
fournir une pince de préhension (3, 4, 5, 6, 7) avec des outils de retenue ayant sur
leur côté intérieur un rayon de courbure correspondant à un rayon souhaité de courbure
des fils longitudinaux d'un écarteur (2).
13. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis,
des fils, des tiges ou de matériau de section prismatique selon l'une des revendications
7 à 12, caractérisé en outre en ce que :
l'alimentation de treillis (1) est réalisée automatiquement par une machine de production
de treillis.
14. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis,
des fils, des tiges ou de matériau de section prismatique selon l'une des revendications
7 à 12, caractérisé en outre en ce que :
l'alimentation de treillis (1) est réalisée automatiquement par un système d'alimentation.