(19)
(11) EP 2 822 714 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.05.2018 Bulletin 2018/21

(21) Application number: 13717980.0

(22) Date of filing: 05.03.2013
(51) International Patent Classification (IPC): 
B21F 1/04(2006.01)
B21F 27/12(2006.01)
B21D 11/12(2006.01)
(86) International application number:
PCT/IB2013/051740
(87) International publication number:
WO 2013/132429 (12.09.2013 Gazette 2013/37)

(54)

METHOD AND SYSTEM FOR BENDING SPACERS

VERFAHREN UND SYSTEM ZUM BIEGEN VON ABSTANDSHALTERN

PROCÉDÉ ET SYSTÈME DE PLIAGE D'ENTRETOISES


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 09.03.2012 GR 20120100138

(43) Date of publication of application:
14.01.2015 Bulletin 2015/03

(73) Proprietor: Anagnostopoulos, Antonios
14562 Kiffisia, Attikis (GR)

(72) Inventor:
  • Anagnostopoulos, Antonios
    14562 Kiffisia, Attikis (GR)

(74) Representative: Schuhmann, Albrecht 
c/o Merten & Pfeffer Allersberger Strasse 185
90461 Nürnberg
90461 Nürnberg (DE)


(56) References cited: : 
EP-A2- 0 140 859
JP-U- S60 157 021
DE-A1- 3 018 120
US-A- 3 722 254
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a method and system for the production of spacers 2 from wires, rods, or materials of diverse prismatic cross section; as well as meshes of wire, or concrete-reinforcing rods, or tubes, or material of prismatic cross section. Such spacers 2 are placed inside wooden or metallic molds so as to define the location of the reinforcement of the concrete plates. These spacer meshes are produced from initial mesh 1 that may be produced at a mesh welder. The development of such mesh into spacers occurs as follows. The initial mesh is situated along its longitudinal direction in a machine including grippers seated on carriers so as to be freely movable along this longitudinal direction of the product. However, a central gripper is stationary, whereas every second gripper may be moved also perpendicular to the longitudinal direction by the action of a cylinder. With the action of these cylinders, the starting product is deformed, and the carriers of the grippers are subjected to relocation as a result of the pull of the longitudinal wires of the starting product as the final product is formed.

    BACKGROUND ART



    [0002] The usual practice in production of spacers is their formation at presses with the use of suitable tools. An initial level mesh is introduced into a machine that has disposed both stationary and movable deformation tools, and where the movable deformation tools may be moved by pneumatic or hydraulic cylinders so that by their action the mesh is formed in the desired shape or form. In another approach, prior US-3,722,254A disclosed a material forming apparatus with plural forming heads and a single motor acting through a drive chain system. A linkage system constrained the material forming heads in parallel, equal-space relationship relative to each other, and since all of the material forming heads were connected to each other by that linkage system, it was only necessary to connect the chains to the outermost material forming heads. Thus, US-3,722,254A necessitated that the material forming heads are connected all together by linkage control elements for maintaining a fixed angular relationship between the material forming heads as they move relative to each other.

    SUMMARY OF INVENTION


    TECHNICAL PROBLEM



    [0003] The above referred-to methods disadvantageously require adjustment or even changing of tools for different diameters of longitudinal wires. Furthermore, the quality of the produced product is disadvantageously affected by the elastic recovery of the longitudinal wires that, in turn, is affected negatively as a result of slipping of the wires inside these tools. The result is always a disadvantageous divergence of the dimensions of the produced spacer from the desired form.

    SOLUTION TO THE PROBLEM



    [0004] Advantageous solutions may be found via systems and methods that locate grippers (3,4,5,6,7) at initial locations, then place material (1) inside the grippers on an axis (XX'). By energizing the grippers to hold the material at their respective locations (BC, DE, FG, HI, JK) and then energizing respective cylinders (23,24) to transpose the respective locations (DE, HI) corresponding to the respective grippers, respectively, perpendicularly relative to the axis (XX'), the product spacer (2) is deformed. This moves respective plate carriers (14,15) parallel with the axis (XX') via the linking of respective intermediate longitudinal wires (E'F', G'H') of the product (2), and also moves respective carriers (16,17) of respective grippers parallel with the axis (XX') via the linking of respective intermediate longitudinal wires (C'D', I'J') of the product (2). A bending of respective end sides (AB, KL) of the material (1) by the action of respective bending mechanisms (81,82) seated on the respective carriers (16,17) of respective grippers, may be made either at the beginning, the duration or the end of deformation. In finishing, such systems and methods open the grippers and deliver the product spacer (2).

    [0005] According to the invention, this object is achieved by systems having the features of patent claim 1, and by processes and methods having the features of patent claim 7. Advantageous configurations and further developments of the invention are evident from the dependent claims and from the description in combination with the figures of the drawings.

    ADVANTAGEOUS EFFECTS OF INVENTION



    [0006] The systems and methods may be understood to present many advantages, especially notably in that the formation of spacers now does not depend on the diameter of the longitudinal wires. Furthermore, the adjustments of the mechanism assembly are comparatively simple, that is are only the boundaries of motion of the carriers. Additionally, the forces of deformation are small because the longitudinal wires are bent freely and are not compressed in the tools. Thus, the instant invention presents advantageous systems and methods that may produce spacers from level starting mesh, flexibly, with excellent quality and low cost.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] Aspects of systems and methods according to the present invention may be understood from the following description and from the attached drawings, wherein systems and methods are presented in an exemplary manner, and where parts which are the same or similar are provided with the same reference numeral labels.

    FIG. 1A - schematically depicts a spacer of one wire or rod.

    FIG. 1B - schematically depicts a common spacer from mesh.

    FIG. 1C - schematically depicts a second common spacer from mesh.

    FIGS. ID - IE - depict spacers of mesh with more than two longitudinal wires.

    FIGS. IF - 1G - depict spacers with variant formation of the apexes.

    FIGS. 1H - 1I - depict spacers from mesh and having differing length sides.

    FIG. 2A - a schematic side view at the beginning of method operations.

    FIG. 2B - a schematic side view of progress of method operations.

    FIG. 3 - a detailed perspective view of a system for production of spacers.


    DESCRIPTION



    [0008] In following are presented descriptions of exemplary implementations of systems and methods in the sense of non-limiting examples.

    [0009] The spacers 2 are depicted in FIGS. 1A-1I and may be of differing forms. FIG. 1A depicts a spacer 2 comprised of one wire or rod. In contrast, FIG. 1B depicts the most common type of spacer 2, that includes a longitudinal mesh with two longitudinal wires. FIG. 1C similarly depicts a spacer 2, but in a version with the transverse wires located between the longitudinal wires rather than below as depicted in FIG. 1B. FIGS. 1D and 1E depict corresponding spacers to those of FIGS. 1B-1C, but including more longitudinals, as indicated. FIGS. 1F and 1G present spacers 2 with differing formation of the apexes. Finally, FIGS. 1H and 1I present spacers with different length sides, as can be seen from side view.

    [0010] A method may be understood in an exemplary sense for the production of a spacer 2 with five horizontal sections, for example as in FIGS. 1B - 1C. It should be understood that, with the same method, there may be produced spacers with more or fewer horizontal sections.

    [0011] Considering FIGS. 1B-1C and FIG. 2B, spacer 2 includes straight sections A'B', B'C', C'D', D'E', E'F', F'G', G'H', HT, I'J', J'K' and K'L' of which B'C', D'E', F'G', H'J', and J'K' are horizontal, as depicted. The location O' coincides with the middle of the straight section F'G'. With further reference to FIG. 2A, the spacer 2 is produced from the starting mesh 1 on which may be identified the locations A, B, C, D, E, F, G, H, I, J, K, L that correspond to locations A', B', C', D', E', F', G', H', I', J', K', L' of the formed spacer 2.

    [0012] At the location O of the under-formation mesh 1 there is located a gripper 3 that is fixed and holds the product 1 along length FG. A second gripper 4 holds the under-formation mesh 1 on the straight section DE. The gripper 4 is seated upon guides 9 and with the action of a force originating for example from a cylinder 22 may transpose the section DE perpendicular relative to axis XX'. Carrier 8 of gripper 4 and the guides 9 upon which gripper 4 moves are seated on a plate carrier 14 which is moved on guides 30 along the length of axis XX'.

    [0013] A third gripper 6 restrains the subject-to-formation mesh 1 on the straight section BC. The gripper 6 is seated on carrier 16 that moves on guides 30 along the length of axis XX'. On this carrier 16 there is seated a bending mechanism 81 that rotates a tool 31 around its axis by the action of a force that originates for example from a cylinder 24.

    [0014] Considering the other direction along axis XX' from location O, on the straight section HI acts gripper 5 that is seated on a carrier 11 that is moved on guides 12 perpendicularly relative to axis XX', which carrier 11 is moved by a force exercised, for example, by cylinder 23. Gripper 5, carrier 11, guides 12 and cylinder 23 are seated on plate carrier 15 that is seated on the guides 30 and is moved parallel to axis XX'.

    [0015] On the straight section JK acts gripper 7 seated on carrier 17 that in turn moves on guides 30 parallel to axis XX'. On this carrier 17 there is seated a bending mechanism 82 that rotates the tool 32 on its axis by the action of a force originating from a cylinder 25.

    [0016] An exemplary method and system operate as follows. The grippers 3, 4, 5, 6, 7 are located at their initial locations that correspond to straight sections FG, DE, HI, BC, JK. The under-formation mesh 1 is placed on axis XX' and inside the grippers. The grippers are energized and squeeze the under-formation product at the referred-to corresponding straight sections. Subsequently there are energized the respective cylinders 22, 23 on the respective carriers 14, 15 correspondingly. The straight section DE is transposed towards the D'E' and the HI towards the H'I'. During the movement of carriers 8, 11 perpendicularly relative to axis XX' there are moved the carriers 14, 15, 16, 17 parallel with the axis XX', because the carriers are linked via the intermediate longitudinal wires of the product. For example, the intermediate section EF carries the gripper 4, the straight section DE and the carrier 14 on the guides 30 along the length of axis XX'. Simultaneously via the action of straight section CD the gripper 6, the straight section BC, and the carrier 16 are transferred on guides 30 along the length of axis XX'.

    [0017] With the completion of the action of the cylinders 22, 23 the initial product is formed into a spacer 2. The end sides AB and KL are bent with the action of bending mechanisms 81, 82 correspondingly either at the beginning, the duration or the end of the deformation.

    [0018] With the retraction of the forces of cylinders 22, 23 the longitudinal wires of the product undergo elastic recovery and the product 2 with the carriers steadies in its final form. This elastic recovery is a combination of the diameter, the mechanical properties of the material and the geometry of the shape. By deforming towards the appropriate size more than desired, with this elastic recovery there is obtained the desired geometry. Subsequently, the grippers 3, 4, 5, 6, 7 may be opened and the product is then rendered towards a storage.

    [0019] Considering FIGS. 1F-1I, the restraining tools at the gripper may be formed at their interior side with a radius of curvature so as to correspond to the desired radius of curvature of the longitudinal wires of the spacer 2.

    [0020] The method was presented in exemplary form for the products of FIGS. 1A-1I. It should be understood that the method may be applied for the simultaneous formation of spacers 2 with either more or fewer apexes. Furthermore, while the method is advantageously applied for the production of spacers from initial product mesh, it should be understood that it may in this form also deform at least one or more wires or rods, as depicted in FIGS. 1A, 1F.

    [0021] According to the method, the form of the spacer 2 depends on the tools on the grippers. With different tools a different product may be produced, such as, for example, the products of FIGS. 1F-1G. Furthermore, with more particular reference to FIG. 1I, according to the method, it should be understood that the apexes of the spacer may have either the same or different forms in correspondence with the chosen tools on the grippers. Again with reference to FIGS. 1H-1I, according to the method, the sections on the apexes F'G', D'E', B'C', H'I', J'K' may have either equal or different lengths.

    [0022] With further reference to FIG. 1H , according to the method the intermediate sections EF and CD may be different or equal length one to the other. With the action of the forces, the carriers are moved and deform the product.

    [0023] Accordingly, FIGS. 2A-2B indicate in an exemplary manner methods for production of spacers 2 from mesh, wires or rods or material of prismatic cross section 1, which spacers 2 include inclined sections A'B', C'D', E'F', G'H', I'J', K'L' with alternating inclinations and intermediate apexes B'C', D'E', F'G', H'I', J'K'. As explained, the starting product 1 is restrained at a location O by gripper 3, and an apex DE beside location O is restrained by a gripper 4 that is seated on guides 9 so as to be movable by the action of a force perpendicular to the longitudinal direction of product XX'. The guides 9, after the gripper 4, are ultimately seated on guides 30 so that they may move along the length of direction XX'. The subsequent apex BC is restrained by a gripper 6 that is seated on carrier 16, and this carrier 16 on guides 30 so as to be movable in the direction XX'. On the gripper 6 there is seated a rotating bending mechanism 81 that bends the last section A'B' of the spacer 2. Advantageously, from the other side of location O there are grippers 5, 7 and carriers 11, 17 with the same functionality and aim, with the starting mesh 1 being positioned inside the grippers 3, 4, 5, 6, 7. The sum of the grippers 3, 4, 5, 6, 7 restrain the subject-to-formation material 1. By the action of cylinders 22, 23 respectively on the carriers of grippers 4, 5 the starting material 1 is deformed into the form of a spacer 2, with the carriers 14, 15, 16, 17 being pulled by the inclined sections C'D', E'F', G'H', I'J' of the product. The rotating bending mechanisms 81, 82 bend the endmost sections A'B', K'L' of the spacer 2 to a desired angle. The conclusion of formation ends the action of formation forces of respective cylinders 22, 23 of carriers 14, 15 and the formed product 2 may undergo elastic recovery and thus assume its final form. At the end, the grippers 3, 4, 5, 6, 7 open to deliver product 2.

    [0024] In following to the explanation of the immediately preceding paragraph, and with reference to FIGS. IF - 1I, it should be understood that optionally, the form of the product at the apexes may be of any form, in conjunction with the form of the restraining tools of the grippers 3, 4, 5, 6, 7. Again in following to the explanation of the immediately preceding paragraph, optionally the product may be made up of identically or differently inclined sides.

    [0025] Considering FIG. 2A and FIG. 3, the central jaw 3 has situated both a stationary tool 41 and also a movable tool 42 that is moved by the air cylinder 40. The gripper 3 has a slot disposed so that it may enter inside the under-production mesh 1 in a manner that may be understood from FIG. 3.

    [0026] As may be further understood from FIG. 2A and FIG. 3, the grippers 4, 5 also each dispose a respective stationary 41 and a respective movable tool 42 which by the action of respective cylinders 40 hold the under-formation mesh 1. The gripper 4 is seated on respective carrier 8 that is moved by the action of respective air cylinder 22 on guides 9 perpendicular to the under-formation mesh 1. The guides 9 are seated on a plate carrier 14 that in turn is seated on guides 30 so as to be movable parallel to the longitudinal axis XX' of the product. Air cylinder 71 acts on plate carrier 14, functioning to return the plate carrier 14 to its starting position for the start of formation, while during the duration of formation the cylinder 71 does not exert forces on the plate carrier 14.

    [0027] Considering FIG. 2A and FIG. 3 further, the gripper 6 has the same form with the gripper 7 and is located on respective carrier 16 that is seated upon guides 30. The gripper 6 also has disposed a stationary 41 tool and a movable tool 42, and these by action of cylinders 40 restrain the under-formation mesh 1. On gripper 6 is seated a rotating bending mechanism 81, that includes the movable tool, being in this example the cylinder 31 seated on a lever and being movable by air cylinder 24. As shown, the air cylinder 72 acts on carrier 16 so as to transport it to its initial location for the start of deformation, while during the duration of deformation it does not exert forces upon carrier 16.

    [0028] On the other side of location O and symmetrically relative to the machine axis XX', there are respective grippers 5, 7 with corresponding functions to those of grippers 4, 6, and there is also a bending mechanism 82 in correspondence to bending mechanism 81.

    [0029] As depicted in detail in FIG. 3, the sum of the grippers 3, 4, 5, 6, 7 the carriers 13, 16, 17, 8, 11 and the guides 30 mount on a plate 59 and rotating beam 60. The rotating beam 60 is seated on two respective axes 64 of the respective thrust bearings 61 on the frame 62 of the machine. With the action of air cylinders 63 the mechanism assembly of the grippers may assume two positions, one horizontal for the supply of starting mesh 1, depicted in FIG. 3, and one rotated, at an apex at which the unloading of the produced spacer 2 occurs.

    [0030] The function of this exemplary machine of FIG. 3 may be understood as follows. Initially, the machine is found at a horizontal position and all the grippers 3, 4, 5, 6, 7 at their initial locations after their spacers. The under-formation initial product 1 is advanced inside grippers 3, 4, 5, 6, 7. These grippers 3, 4, 5, 6, 7 squeeze the under-formation product 1 with the action of respective cylinders 40. In following, the respective air cylinders 22, 23 of grippers 4, 5 respectively, are energized. Simultaneously, with the action of cylinders 22, 23 carriers 14, 15, 16, 17 are moved. Simultaneously, respective cylinders 24, 25 of the respective rotatable bending mechanisms 81, 82 are energized for the formation of the external sides. Consideration of FIG. 2B indicates the effect. With the end of formation the air cylinders 22, 23 are deenergized and the carriers are transposed anew because of the elastic recovery.

    [0031] Then in progress toward finishing, the gripper system rotates to the unloading position (apex) under the action of cylinders 63. At the unloading position grippers 3, 4, 5, 6, 7 are deenergized and the readied product 2 falls to a collection surface where it is received.

    [0032] It should be understood by the above discussion that the system may produce spacers 2 with manual feeding of meshes 1, or the system may be supplied with meshes 1 from a mesh storage via a suitable supply mechanism. Furthermore, the system may cooperate with a production machine for meshes 1, these produced meshes then being automatically fed and the synchronization being effected by a central control unit.

    [0033] Accordingly, FIGS. 2A-2B and FIG. 3 indicate in an exemplary manner systems for production of spacers 2 from mesh, wires or rods 1, which spacers 2 have inclined sections A'B', C'D', E'F', G'H', I'J', K'L' with alternating inclinations. The starting product 1 is restrained at location O by gripper 3 with the action of cylinders 40, and beside location O there is gripper 4 energized by another cylinder 40, that restrains the mesh 1 at a starting location that, after the formation corresponds to the next neighboring apex D'E' of the spacer 2. The gripper 4 is seated on a respective carrier 8 which is ultimately seated on guides 9 so as to be moved by the action of cylinder 22 perpendicular to the longitudinal direction XX' of product. The carrier 8 is seated on guides 30 via plate carrier 14 so as to be able to move along the length of direction XX'. In following, in the same direction there is a jaw 6 that also restrains the starting mesh 1 at a location BC that corresponds to the next apex B'C', with the gripper 6 being energized by cylinders 40 and the gripper 6 being seated on carrier 16 and thus on guides 30 so as to be able to be moved parallel to the direction XX'. On the gripper 6 there is seated a rotating bending mechanism 81 that by action of cylinder 24 bends the end section A'B' of the spacer 2. On the other side of location O there exist the same grippers 5,7 and the same carriers 11, 15, 17 with the same functionality and aim. The cylinders 71, 72, 73, 74 act to transfer, correspondingly, the respective carriers 14, 16, 15, 17 to their respective starting locations, as they do not typically exert any significant force on the carriers during the duration of formation. The entire gripper mechanism assembly is advantageously supported on a rotating beam 60, and this rotating beam in turn is supported upon two bearings 61 in a metallic construction frame 62. This rotating beam 60 rotates by the action of two cylinders 63, taking two positions, one horizontal for supply of the starting mesh 1 and one apex position for the unloading of the formed product 2. The starting mesh 1 is positioned symmetrically in the jaws 3, 4, 5, 6, 7 and these jaws 3, 4, 5, 6, 7 are located at the appropriate positions along axis XX' by the action of cylinders 71, 72, 73, 74. In following, the grippers 3, 4, 5, 6, 7 restrain the subject-to-formation mesh 1, cylinders 22, 23 are energized, and the starting mesh 1 is formed into the spacer 2, with the carriers 14, 15, 16, 17 being pulled by the inclined sections C'D', E'F', G'H', I'J' of the product 2. Simultaneously, the rotating bending mechanisms 81, 82 bend the end sections A'B', K'L' of the spacer 2 to a desired angle. With the conclusion of formation ends the action of the deformation forces of cylinders 22, 23 of plate carriers 14, 15, and the formed product 2 undergoes elastic recovery and takes its final form. To finish, the entire gripper system rotates to an apex location by the action of cylinders 63, and the restraining cylinders 40 of all the grippers are deenergized to deliver the formed spacer 2.

    [0034] In following to the explanation of the immediately preceding paragraph, it should be understood that optionally, the feeding of meshes 1 may be made automatically by a machine for the production of mesh, or may be made automatically by a feeder. Systems according to the explanation of the immediately preceding paragraph may optionally but preferably be controlled by an electronic computer so that all the working phases occur automatically.

    [0035] It should be understood in the context of the preceding discussion that the present invention is not limited in any manner to the described and drawings-depicted implementations, but may be realized in many forms and dimensions without abandoning the region of protection of the invention. For example, in implementations of the invention the materials that are used and also as well the dimensions of particular elements may be according to the demands of a particular construction. Thus, in closing, it should be noted that the invention is not limited to the abovementioned versions and exemplary working examples. Further developments, modifications and combinations are also within the scope of the patent claims and are placed in the possession of the person skilled in the art from the above disclosure. Accordingly, the techniques and structures described and illustrated herein should be understood to be illustrative and exemplary, and not necessarily limiting upon the scope of the present invention. The scope of the present invention is defined by the appended claims, including known equivalents and unforeseeable equivalents at the time of filing of this application.

    REFERENCE SIGNS LIST



    [0036] 
    1
    starting (initial) mesh
    2
    spacer
    3,4,5,6,7
    grippers (jaws)
    8
    carrier of gripper 4
    9
    guides
    11
    carrier of gripper 5
    12
    guides
    13
    carrier of gripper 3
    14
    plate carrier
    15
    plate carrier
    16
    carrier of gripper 6
    17
    carrier of gripper 7
    22
    cylinder
    23,24,25
    cylinders
    30
    guides
    31,32
    bending tool
    40
    air cylinders
    41
    stationary tool of jaw
    42
    movable tool of jaw
    59
    plate
    60
    rotating beam
    61
    thrust bearings
    62
    frame of machine
    63
    air cylinders
    64
    axes of thrust bearings 61
    71,72,73,74
    air cylinders
    81, 82
    bending mechanisms
    A - L
    locations on mesh
    A' - L'
    locations on spacer 2
    XX'
    longitudinal axis
    O, O'
    location (central)



    Claims

    1. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic cross section, characterized by:

    a gripper (3) situated at a central location (O) to correspond to a spacer (2) apex (F'G');

    a respective cylinder (40) configured to energize said gripper (3);

    on one side of said central location (O) a second gripper (4) situated beside said central location (O), said second gripper energizable by a respective second cylinder (40) to restrain a spacer (2) at a location corresponding to a next-neighboring second apex (D'E') of the spacer (2);

    said second gripper (4) being seated on a respective carrier (8) seated on respective guides (9);

    a respective cylinder (22) configured to move said second gripper (4) perpendicular to a longitudinal direction (XX');

    a third gripper (6) energizable by a respective third cylinder (40) to restrain the spacer (2) at a location corresponding to a next-neighboring third apex (B'C') of the spacer (2);

    said third gripper (6) being seated on a respective carrier (16) movably seated on guides (30) so as to be movable along said longitudinal direction (XX');

    a first rotatable bending mechanism (81) seated on said third gripper (6), and a respective cylinder (24) configured to act on said rotatable bending mechanism (81) to bend a spacer end section (A'B');

    on the other side of said central location (O) a fourth gripper (5) situated beside said central location (O), said fourth gripper energizable by a respective fourth cylinder (40) to restrain a spacer (2) at a location corresponding to a next-neighboring fourth apex (H'I') of the spacer (2);

    said fourth gripper (5) being seated on a respective carrier (11) seated on respective guides (12);

    a respective cylinder (23) configured to move said fourth gripper (5) perpendicular to said longitudinal direction (XX');

    a fifth gripper (7) energizable by a respective fifth cylinder (40) to restrain the spacer (2) at a location corresponding to a next-neighboring fifth apex (J'K') of the spacer (2);

    said fifth gripper (7) being seated on a respective carrier (17) movably seated on said guides (30) so as to be movable along said longitudinal direction (XX');

    a second rotatable bending mechanism (82) seated on said fifth gripper (7), and a respective cylinder (25) configured to act on said second rotatable bending mechanism (82) to bend another spacer end section (K'L');

    said second gripper's (4) respective carrier (8) and respective guides (9) being seated on a first plate carrier (14) movably seated on said guides (30) so as to be movable along said longitudinal direction (XX');

    said fourth gripper's (5) respective carrier (11) and respective guides (12) being seated on a second plate carrier (15) movably seated on said guides (30) so as to be movable along said longitudinal direction (XX');

    a first transfer cylinder (71) configured to return said first plate carrier (14) to its starting position for the start of formation;

    a second transfer cylinder (72) configured to return said respective carrier (16) of said third gripper (6) to its starting position for the start of formation;

    a third transfer cylinder (73) configured to return said second plate carrier (15) to its starting position for the start of formation;

    a fourth transfer cylinder (74) configured to return said respective carrier (17) of said fifth gripper (7) to its starting position for the start of formation; and,

    a gripper mechanism assembly including said grippers (3,4,5,6,7), said gripper mechanism assembly being supported on a rotatable beam (60), said rotatable beam (60) being supported by two bearings (61) in a frame (62) to controllably rotate under cylinder (63) action to two positions including supply and unloading.


     
    2. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic cross section as claimed in claim 1, further characterized in that the system is configured such that:
    during the duration of spacer (2) formation said first transfer cylinder (71) does not exert forces on said first plate carrier (14), said second transfer cylinder (72) does not exert forces on said respective carrier (16) of said third gripper (6), said third transfer cylinder (73) does not exert forces on said second plate carrier (15), and said fourth transfer cylinder (74) does not exert forces on said respective carrier (17) of said fifth gripper (7).
     
    3. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic cross section as claimed in any one of claims 1 to 2, further characterized by:
    two cylinders (63) configured to act on said rotating beam (60) to rotate it.
     
    4. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic cross section as claimed in any one of claims 1 to 3, further characterized in that:
    the system is controlled by an electronic computer and all the working phases occur automatically.
     
    5. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic cross section as claimed in any one of claims 1 to 4, further characterized by:
    restraining tools at a gripper (3,4,5,6,7) are formed at their interior side with a radius of curvature so as to correspond to a desired radius of curvature of the longitudinal wires of a spacer (2).
     
    6. A system for producing spacers (2) from mesh, wires, rods, or material of prismatic cross section as claimed in any one of claims 1 to 5, further characterized by:
    said guides (30) mount on a plate (59) and said rotating beam (60).
     
    7. A method for production of spacers (2) from material (1) such as mesh, wires, rods, or material of prismatic cross section (1), characterized by the steps of:

    locating first (3), second (4), third (6), fourth (5), and fifth (7) grippers at their respective initial locations;

    placing material (1) on an axis (XX') and inside said grippers (3,4,5,6,7);

    energizing said grippers (3,4,5,6,7) to hold the material (1) at respective locations (BC, DE, FG, HI, JK) corresponding to said grippers (3,4,5,6,7);

    energizing respective cylinders (22,23) of the second (4) and fourth (5) grippers on respective plate carriers (14,15);

    by said step of energizing the respective cylinders (22,23) transposing the respective locations (DE, HI) corresponding to the second (4) and fourth (5) grippers, respectively, perpendicularly relative to the axis (XX') to deform the product spacer (2);

    moving the respective plate carriers (14,15) parallel with the axis (XX') via the linking of respective intermediate longitudinal wires (E'F', G'H') of the product (2);

    moving respective carriers (16,17) of said third (6) and fifth (7) grippers parallel with the axis (XX') via the linking of respective intermediate longitudinal wires (C'D', I'J') of the product (2);

    bending respective end sides (AB, KL) of the material (1) by the action of respective bending mechanisms (81,82) seated on the respective carriers (16,17) of said third (6) and fifth (7) grippers, either at the beginning, the duration or the end of deformation;

    opening said grippers (3,4,5,6,7); and,

    delivering product spacer (2).


     
    8. A method for production of spacers (2) from material (1) such as mesh, wires, rods, or material of prismatic cross section (1) as claimed in claim 7, further characterized by the step of:
    locating said grippers (3, 4, 5, 6, 7) at respective appropriate positions along said axis (XX') by the actions of respective cylinders (71, 72, 73, 74).
     
    9. A method for production of spacers (2) from material (1) such as mesh, wires, rods, or material of prismatic cross section (1) as claimed in any one of claims 7 to 8, further characterized by the steps of:

    rotating a rotating beam (60) supporting a gripper mechanism assembly including said grippers (3,4,5,6,7) to a first position for supply of starting material (1); and,

    rotating the rotating beam (60) to a second position for unloading formed spacer.


     
    10. A method for production of spacers (2) from material (1) such as mesh, wires, rods, or material of prismatic cross section (1) as claimed in any one of claims 7 to 9, further characterized by the step of:
    moving the respective plate carriers (14,15) and moving the respective carriers (16,17) of said third (6) and fifth (7) grippers, all parallel with the axis (XX') on guides (30).
     
    11. A method for production of spacers (2) from material (1) such as mesh, wires, rods, or material of prismatic cross section (1) as claimed in claim 10 in combination with claim 9, further characterized in that:
    said guides (30) are mounted on a plate (59) and said rotating beam (60).
     
    12. A method for production of spacers (2) from material (1) such as mesh, wires, rods, or material of prismatic cross section (1) as claimed in any one of claims 7 to 11, further characterized by the step of:
    providing a gripper (3,4,5,6,7) with restraining tools having at their interior side a radius of curvature corresponding to a desired radius of curvature of the longitudinal wires of a spacer (2).
     
    13. A method for production of spacers (2) from material (1) such as mesh, wires, rods, or material of prismatic cross section as claimed in any one of claims 7 to 12, further characterized in that:
    the feeding of meshes (1) is made automatically by a machine for the production of mesh.
     
    14. A method for production of spacers (2) from material (1) such as mesh, wires, rods, or material of prismatic cross section as claimed in any one of claims 7 to 12, further characterized in that:
    the feeding of meshes (1) is made automatically by a feeder.
     


    Ansprüche

    1. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt, durch Folgendes gekennzeichnet:

    einen Greifer (3), der sich an einer Mittenposition (O) befindet, um einem Scheitel (F'G') des Abstandsstücks (2) zu entsprechen;

    einen entsprechenden Zylinder (40), der dazu ausgelegt ist, den Greifer (3) anzusteuern;

    einen zweiten Greifer (4) auf einer Seite der Mittenposition (O), der sich neben der Mittenposition (O) befindet, wobei der zweite Greifer von einem entsprechenden zweiten Zylinder (40) angesteuert werden kann, um einen Greifer (2) an einer Position, die einem nächstliegenden benachbarten zweiten Scheitel (D'E') des Abstandsstücks (2) entspricht, festzuhalten;

    wobei der zweite Greifer (4) auf einem entsprechenden Träger (8) sitzt, der auf einer entsprechenden Führung (9) sitzt;

    einen entsprechenden Zylinder (22), der dazu ausgelegt ist, den zweiten Greifer (4) senkrecht zu einer Längsrichtung (XX') zu bewegen;

    einen dritten Greifer (6), der von einem entsprechenden dritten Zylinder (40) angesteuert werden kann, um den Greifer (2) an einer Position, die einem nächstliegenden benachbarten dritten Scheitel (B'C') des Abstandsstücks (2) entspricht, festzuhalten;

    wobei der dritte Greifer (6) auf einem entsprechenden Träger (16) sitzt, der beweglich auf Führungen (30) sitzt, derart, dass er entlang der Längsachse (XX') bewegt werden kann;

    einen ersten drehbaren Biegemechanismus (81), der auf dem dritten Greifer (6) sitzt, und einen entsprechenden Zylinder (24), der dazu ausgelegt ist, auf den drehbaren Biegemechanismus (81) zu wirken, um einen Abstandsstückendabschnitt (A'B') zu biegen;

    einen vierten Greifer (5) auf der anderen Seite der Mittenposition (O), der sich neben der Mittenposition (O) befindet, wobei der vierte Greifer von einem entsprechenden vierten Zylinder (40) angesteuert werden kann, um einen Greifer (2) an einer Position, die einem nächstliegenden benachbarten vierten Scheitel (H'I') des Abstandsstücks (2) entspricht, festzuhalten;

    wobei der vierte Greifer (5) auf einem entsprechenden Träger (11) sitzt, der auf einer entsprechenden Führung (12) sitzt;

    einen entsprechenden Zylinder (23), der dazu ausgelegt ist, den vierten Greifer (5) senkrecht zu einer Längsrichtung (XX') zu bewegen;

    einen fünften Greifer (7), der von einem entsprechenden fünften Zylinder (40) angesteuert werden kann, um den Greifer (2) an einer Position, die einem nächstliegenden benachbarten fünften Scheitel (J'K') des Abstandsstücks (2) entspricht, festzuhalten;

    wobei der fünfte Greifer (7) auf einem entsprechenden Träger (17) sitzt, der beweglich auf Führungen (30) sitzt, derart, dass er entlang der Längsachse (XX') bewegt werden kann;

    einen zweiten drehbaren Biegemechanismus (82), der auf dem fünften Greifer (7) sitzt, und einen entsprechenden Zylinder (25), der dazu ausgelegt ist, auf den drehbaren Biegemechanismus (82) zu wirken, um einen anderen Abstandsstückendabschnitt (K'L') zu biegen;

    wobei der entsprechende Träger (8) und die entsprechenden Führungen (30) des zweiten Greifers (4) auf einem ersten Plattenträger (14) sitzen, der beweglich auf den Führungen (30) sitzt, derart, dass er entlang der Längsachse (XX') bewegt werden kann;

    wobei der entsprechende Träger (11) und die entsprechenden Führungen (12) des vierten Greifers (5) auf einem zweiten Plattenträger (15) sitzen, der beweglich auf den Führungen (30) sitzt, derart, dass er entlang der Längsachse (XX') bewegt werden kann;

    einen ersten Transferzylinder (71), der dazu ausgelegt ist, den ersten Plattenträger (14) in seine Ausgangsposition für den Beginn der Formation zurück zu bringen;

    einen zweiten Transferzylinder (72), der dazu ausgelegt ist, den entsprechenden Träger (16) des dritten Greifers (6) in seine Ausgangsposition für den Beginn der Formation zurück zu bringen;

    einen dritten Transferzylinder (73), der dazu ausgelegt ist, den zweiten Plattenträger (15) in seine Ausgangsposition für den Beginn der Formation zurück zu bringen;

    einen vierten Transferzylinder (74), der dazu ausgelegt ist, den entsprechenden Träger (17) des fünften Greifers (7) in seine Ausgangsposition für den Beginn der Formation zurück zu bringen; und,

    eine Greifmechanismusanordnung, die die Greifer (3, 4, 5, 6, 7) aufweist, wobei die Greifmechanismusanordnung auf einem drehbaren Balken (60) getragen wird, wobei der drehbare Balken (60) von zwei Lagern (61) in einem Rahmen (62) getragen wird, um unter Wirkung des Zylinders (63) gesteuert zu zwei Positionen für Zufuhr und Entladen zu drehen.


     
    2. Anlage zum Herstellen von Abstandsstücken (2) aus Netzten, Drähten, Stäben oder Materialien mit prismatischem Querschnitt nach Anspruch 1, die ferner dadurch gekennzeichnet ist, dass die Anlage zu Folgendem ausgelegt ist:
    der erste Transferzylinder (71) übt während der Formationsdauer eines Abstandsstücks (2) keine Kraft auf den ersten Plattenträger (14) aus, der zweite Transferzylinder (72) übt keine Kraft auf den entsprechenden Träger (16) des dritten Greifers (6) aus, der Transferzylinder (73) wirkt keine Kraft auf den zweiten Plattenträger (15) aus und der vierte Transferzylinder (74) wirkt keine Kraft auf den entsprechenden Träger (17) des fünften Greifers (7) aus.
     
    3. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt nach Anspruch 1 bis 2, ferner durch Folgendes gekennzeichnet:
    zwei Zylinder (63), die dazu ausgelegt sind, auf den drehbaren Balken (60) zu wirken, um ihn zu drehen.
     
    4. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt nach einem der Ansprüche 1 bis 3, ferner durch Folgendes gekennzeichnet:
    die Anlage wird von einem elektronischen Computer gesteuert und alle Arbeitsphasen erfolgen automatisch.
     
    5. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt nach einem der Ansprüche 1 bis 4, ferner durch Folgendes gekennzeichnet:
    Haltewerkzeuge an einem Greifer (3, 4, 5, 6, 7) werden derart mit einem Krümmungsradius an ihrer Innenseite gebildet, um einem gewünschten Krümmungsradius der längsverlaufenden Drähte eines Abstandsstücks (2) zu entsprechen.
     
    6. Anlage zum Erzeugen von Abstandsstücken (2) aus Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt nach Anspruch 1 bis 5, ferner durch Folgendes gekennzeichnet:
    die Führungen (30) sind auf einer Platte (59) und dem drehbaren Balken (60) befestigt.
     
    7. Anlage zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1), durch folgende Schritte gekennzeichnet:

    Positionieren des ersten (3), zweiten (4), dritten (6), vierten (5) und fünften (7) Greifers an ihren entsprechenden Anfangspositionen;

    Anbringen von Material (1) auf einer Achse (XX') und innerhalb der Greifer (3, 4, 5, 6, 7);

    Ansteuern der Greifer (3, 4, 5, 6, 7), um das Material an entsprechenden Positionen (BC, DE, FG, HI, JK), die den Greifern (3, 4, 5, 6, 7) entsprechen, festzuhalten;

    Ansteuern der entsprechenden Zylinder (22, 23) des zweiten (4) bzw. vierten (5) Greifers auf entsprechenden Plattenträgern (14, 15);

    durch den Schritt des Ansteuerns des entsprechenden Zylinders (22, 23), jeweils Verlagern der entsprechenden Position (DE, HI) entsprechend des zweiten (4) und vierten (5) Greifers senkrecht bezüglich der Achse (XX'), um das Produktabstandsstück (2) zu verformen;

    Bewegen des entsprechenden Plattenträgers (14, 15) parallel zu der Achse (XX') mittels Verbindung entsprechender längsverlaufender Zwischendrähte (E'F', G'H') des Produkts (2);

    Bewegen des entsprechenden Trägers (16, 17) des dritten (6) bzw. fünften (7) Greifers parallel zu der Achse (XX') mittels der Verbindung entsprechender längsverlaufender Zwischendrähte (C'D', I'J') des Produkts (2);

    Biegen entsprechender Endseiten (AB, KL) des Materials (1) durch Wirkung entsprechender Biegemechanismen (81, 82), die auf den entsprechenden Trägern (16, 17) des dritten (6) bzw. fünften (7) Greifers sitzen, entweder zu Beginn, während oder am Ende der Verformung;

    Öffnen des Greifers (3, 4, 5, 6, 7) und Bereitstellen von Produktabstandsstücken (2).


     
    8. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1) nach Anspruch 7, ferner durch folgende Schritte gekennzeichnet:
    Positionieren des Greifers (3, 4, 5, 6, 7) an entsprechenden geeigneten Positionen entlang der Achse (XX') mittels Wirkung des entsprechenden Zylinders (71, 72, 73, 74).
     
    9. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1) nach einem der Ansprüche 7 bis 8, ferner durch folgende Schritte gekennzeichnet:

    Drehen eines drehbaren Balkens (60), der eine Greifmechanismusanordnung, die die Greifer (3, 4, 5, 6, 7) aufweist, trägt, in eine erste Position für das Zuführen von Ausgangsmaterial (1); und

    Drehen des drehbaren Balkens (60) in eine zweite Position für das Entladen gebildeter Abstandsstücke.


     
    10. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1) nach einem der Ansprüche 7 bis 9, ferner durch folgende Schritte gekennzeichnet:
    Bewegen des entsprechenden Plattenträgers (14, 15) und Bewegen des entsprechenden Trägers (16, 17) des dritten (6) bzw. fünften (7) Greifers, jeweils parallel zu der Achse (XX') auf den Führungen (30).
     
    11. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1) nach Anspruch 10 in Kombination mit Anspruch 9, ferner durch Folgendes gekennzeichnet:
    die Führungen (30) sind auf einer Platte (59) und dem drehbaren Balken (60) neu befestigt.
     
    12. Verfahren zum Erzeugen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel Netzen, Drähten, Stäben oder einem Material mit einem prismatischen Querschnitt (1) nach einem der Ansprüche 7 bis 11, ferner durch folgende Schritte gekennzeichnet:
    Versehen eines Greifers (3, 4, 5, 6, 7) mit Haltewerkzeugen, die an ihrer Innenseite einen Krümmungsradius aufweisen, der einem gewünschten Krümmungsradius der längsverlaufenden Drähte eines Abstandsstücks (2) entspricht.
     
    13. Verfahren zum Herstellen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel Netzten, Drähten, Stäben oder Materialien mit prismatischem Querschnitt nach einem der Ansprüche 7 bis 12, das ferner durch Folgendes gekennzeichnet ist:
    das Zuführen von Netzten (1) wird automatisch von einer Maschine zur Herstellung von Netzten ausgeführt.
     
    14. Verfahren zum Herstellen von Abstandsstücken (2) aus einem Material (1) wie zum Beispiel Netzten, Drähten, Stäben oder Materialien mit prismatischem Querschnitt nach einem der Ansprüche 7 bis 12, das ferner durch Folgendes gekennzeichnet ist:
    das Zuführen von Netzten (1) wird automatisch von einer Zufuhrvorrichtung ausgeführt.
     


    Revendications

    1. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou de matériau de section prismatique, caractérisé par :

    une pince de préhension (3) située à un emplacement central (O) pour correspondre à un sommet (R'G') d'un écarteur (2) ;

    un cylindre respectif (40) configuré pour fournir de l'énergie à ladite pince de préhension (3),

    sur un côté dudit emplacement central (O), une deuxième pince de préhension (4) située à côté dudit emplacement central (O), ladite deuxième pince de préhension pouvant recevoir de l'énergie d'un deuxième cylindre (40) respectif pour retenir un écarteur (2) à un emplacement correspondant à un deuxième sommet (D'E') suivant voisin de l'écarteur (2) ;

    ladite deuxième pince de préhension (4) étant logée sur un support (8) respectif logé sur des guides (9) respectifs ;

    un cylindre respectif (22) configuré pour déplacer ladite deuxième pince de préhension (4) perpendiculairement à une direction longitudinale (XX') ;

    une troisième pince de préhension (6) pouvant recevoir de l'énergie par un troisième cylindre (40) respectif pour retenir l'écarteur (2) à un emplacement correspondant à un troisième sommet (B'C') suivant voisin de l'écarteur (2) ;

    ladite troisième pince de préhension (6) étant logée sur un support respectif (16) logé de façon mobile sur des guides (30) de façon à être mobile le long de ladite direction longitudinale (XX') ;

    un premier mécanisme de flexion rotatif (81) logé sur ladite troisième pince de préhension (6), et un cylindre respectif (24) configuré pour agir sur ledit mécanisme de flexion rotatif (81) pour fléchir une section d'extrémité d'écarteur (A'B') ;

    sur l'autre côté dudit emplacement central (O), une quatrième pince de préhension (5) située à côté dudit emplacement central (O), ladite quatrième pince de préhension pouvant recevoir de l'énergie d'un quatrième cylindre (40) respectif pour retenir un écarteur (2) à un emplacement correspondant à un quatrième sommet (H'I') suivant voisin de l'écarteur (2) ;

    ladite quatrième pince de préhension (5) étant logée sur un support (11) respectif logé sur des guides (12) respectifs ;

    un cylindre (23) respectif configuré pour déplacer ladite quatrième pince de préhension (5) perpendiculairement à ladite direction longitudinale (XX') ;

    une cinquième pince de préhension (7) pouvant recevoir de l'énergie par un cinquième cylindre (40) respectif pour retenir l'écarteur (2) à un emplacement correspondant à un cinquième sommet (J'K') suivant voisin de l'écarteur (2) ;

    ladite cinquième pince de préhension (7) étant logée sur un support (17) respectif logé de façon mobile sur lesdits guides (30) de façon à être mobile le long de ladite direction longitudinale (XX') ;

    un deuxième mécanisme de flexion rotatif (82) logé sur ladite cinquième pince de préhension (7), et un cylindre (25) respectif configuré pour agir sur ledit deuxième mécanisme de flexion rotatif (82) pour fléchir une autre section d'extrémité d'écarteur (K', L') ;

    lesdits support (8) respectif et guides (9) respectifs de la deuxième pince de préhension (4) étant logés sur un premier support à plateau (14) logé de façon mobile sur lesdits guides (30) de façon à être mobile le long de ladite direction longitudinale (XX') ;

    lesdits support (11) respectif et guides (12) respectifs de la quatrième pince de préhension (5) étant logés sur un deuxième support à plateau (15) logé de façon mobile sur lesdits guides (30) de façon à être mobiles le long de ladite direction longitudinale (XX') ;

    un premier cylindre de transfert (71) configuré pour renvoyer ledit premier support à plateau (14) à sa position de départ pour le départ de la formation ;

    un deuxième cylindre de transfert (72) configuré pour renvoyer ledit support (16) respectif de ladite troisième pince de préhension (6) à sa position de départ pour le départ de la formation ;

    un troisième cylindre de transfert (73) configuré pour renvoyer ledit deuxième support à plateau (15) à sa position de départ pour le départ de la formation ;

    un quatrième cylindre de transfert (74) configuré pour renvoyer ledit support (17) respectif de ladite cinquième pince de préhension (7) à sa position de départ pour le départ de la formation ;

    un montage de mécanisme de pinces de préhension incluant lesdites pinces de préhension (3, 4, 5, 6, 7), ledit montage de mécanisme de pinces de préhension étant supporté sur une poutre rotative (60), ladite poutre rotative (60) étant supportée par deux paliers (61) dans un châssis (62) pour tourner de façon commandée sous l'action du cylindre (63) vers deux positions incluant la fourniture et le déchargement.


     
    2. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou de matériau de section prismatique selon la revendication 1, caractérisé en outre en ce que le système est configuré de telle façon que :
    pendant la durée de la formation de l'écarteur (2), ledit premier cylindre de transfert (71) n'exerce pas de forces sur ledit premier support à plateau (14), ledit deuxième cylindre de transfert (72) n'exerce pas de forces sur ledit support respectif (16) de ladite troisième pince de préhension (6), ledit troisième cylindre de transfert (73) n'exerce pas de forces sur ledit deuxième support à plateau (15) et ledit quatrième cylindre de transfert (74) n'exerce pas de forces sur ledit support (17) respectif de ladite cinquième pince de préhension (7).
     
    3. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou de matériau de section prismatique selon l'une quelconque des revendications 1 à 2, caractérisé en outre par :
    deux cylindres (63) configurés pour agir sur ladite poutre rotative (60) pour la faire tourner.
     
    4. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou de matériau de section prismatique selon l'une quelconque des revendications 1 à 3, caractérisé en outre en ce que :
    le système est commandé par un ordinateur électronique et toutes les phases de travail se produisent automatiquement.
     
    5. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou de matériau de section prismatique selon l'une quelconque des revendications 1 à 4, caractérisé en outre en ce que :
    des outils de retenue sur une pince de préhension (3, 4, 5, 6, 7) sont formés sur leur côté intérieur avec un rayon de courbure de façon à correspondre à un rayon souhaité de courbure des fils longitudinaux d'un écarteur (2).
     
    6. Système pour produire des écarteurs (2) à partir de treillis, de fils, de tiges ou de matériau de section prismatique selon l'une quelconque des revendications 1 à 5, caractérisé en outre en ce que :
    lesdits guides (30) se montent sur un plateau (59) et ladite poutre rotative (60).
     
    7. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis, des fils, des tiges ou de matériau de section prismatique (1), caractérisé par les étapes de :

    situer les première (3), deuxième (4), troisième (6), quatrième (5) et cinquième (7) pinces de préhension sur leurs emplacements initiaux respectifs ;

    placer le matériau (1) sur un axe (XX') et à l'intérieur desdites pinces de préhension (3, 4, 5, 6, 7) ;

    fournir de l'énergie auxdites pinces de préhension (3, 4, 5, 6, 7) pour maintenir le matériau (1) aux emplacements (BC, DE, FG, HI, JK) respectifs correspondant auxdites pinces de préhension (3, 4, 5, 6, 7) ;

    fournir de l'énergie aux cylindres (22, 23) respectifs des deuxième (4) et quatrième (5) pinces de préhension sur des supports à plateau (14, 15) respectifs ;

    par ladite étape de fournir de l'énergie aux cylindres (22, 23) respectifs, transposer les emplacements (DE, HI) respectifs correspondant aux deuxième (4) et quatrième (5) pinces de préhension, respectivement, perpendiculairement à l'axe (XX') pour déformer l'écarteur (2) produit ;

    déplacer les supports à plateau (14, 15) respectifs parallèlement à l'axe (XX') par le biais de la liaison de fils longitudinaux intermédiaires (E'F', G'H') respectifs du produit (2) ;

    déplacer les supports (16, 17) respectifs desdites troisième (6) et cinquième (7) pinces de préhension parallèlement à l'axe (XX') par le biais de la liaison de fils longitudinaux intermédiaires (C'D', I'J') respectifs du produit (2) ;

    fléchir les côtés d'extrémité (AB, KL) respectifs du matériau (1) par l'action de mécanismes de flexion (81, 82) respectifs logés sur les supports (16, 17) respectifs desdites troisième (6) et cinquième (7) pinces de préhension, soit au début, pendant ou à la fin de la déformation ;

    ouvrir lesdites pinces de préhension (3, 4, 5, 6, 7) ; et,

    fournir l'écarteur (2) produit.


     
    8. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis, des fils, des tiges ou de matériau de section prismatique (1) selon la revendication 7, caractérisé en outre par les étapes de :
    situer lesdites pinces de préhension (3, 4, 5, 6, 7) à des positions appropriées respectives le long dudit axe (XX') par les actions des cylindres respectifs (71, 72, 73, 74).
     
    9. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis, des fils, des tiges ou de matériau de section prismatique (1) selon l'une des revendications 7 à 8, caractérisé en outre par les étapes de :

    faire tourner une barre rotative (60) supportant un montage de mécanisme de pinces de préhension incluant lesdites pinces de préhension (3, 4, 5, 6, 7) vers une première position pour fournir le matériau (1) de départ ;
    et,

    faire tourner la poutre rotative (60) vers une seconde position pour décharger l'écarteur formé.


     
    10. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis, des fils, des tiges ou de matériau de section prismatique (1) selon l'une des revendications 7 à 9, caractérisé en outre par les étapes de :
    déplacer les supports à plateau (14, 15) respectifs et déplacer les supports (16, 17) respectifs desdites troisième (6) et cinquième (7) pinces de préhension, le tout parallèlement à l'axe (XX') sur des guides (30) .
     
    11. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis, des fils, des tiges ou de matériau de section prismatique (1) selon la revendication 10 en combinaison avec la revendication 9, caractérisé en outre en ce que :
    lesdits guides (30) sont montés sur un plateau (59) et ladite poutre rotative (60).
     
    12. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis, des fils, des tiges ou de matériau de section prismatique (1) selon l'une des revendications 7 à 11, caractérisé en outre par l'étape de :
    fournir une pince de préhension (3, 4, 5, 6, 7) avec des outils de retenue ayant sur leur côté intérieur un rayon de courbure correspondant à un rayon souhaité de courbure des fils longitudinaux d'un écarteur (2).
     
    13. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis, des fils, des tiges ou de matériau de section prismatique selon l'une des revendications 7 à 12, caractérisé en outre en ce que :
    l'alimentation de treillis (1) est réalisée automatiquement par une machine de production de treillis.
     
    14. Procédé pour produire des écarteurs (2) à partir d'un matériau (1) tels que des treillis, des fils, des tiges ou de matériau de section prismatique selon l'une des revendications 7 à 12, caractérisé en outre en ce que :
    l'alimentation de treillis (1) est réalisée automatiquement par un système d'alimentation.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description