BACKGROUND OF THE INVENTION
I. FIELD OF THE INVENTION
[0001] The present invention relates to a system and method for identifying an electrical
noise propagation path through an object, such as an automotive vehicle.
II. DESCRIPTION OF RELATED ART
[0002] Complicated electrical systems, such as hybrid electrical automotive vehicles, electric
automotive vehicles and other electrical components, contain numerous sources of periodic
electrical noise. For example, in an electric or hybrid automotive vehicle, the inverter
which provides power to the vehicle generates electrical noise on a periodic basis.
In a typical electrical component, the processors, the regulators, and the oscillators
have their own frequencies and cause the electrical noises in synchronism with the
clocks. The generation of electrical noise is due primarily to the high frequency
and speed switching devices.
[0003] The periodic generation of noise in such electrical systems can cause malfunctions
or otherwise interfere with the other components of the electrical system. For example,
in an automotive vehicle the electrical noise generated by the inverter can interfere
with the infotainment system as well as the navigation system for the automotive vehicles.
[0004] In order to prevent interference by electrical noise with the vehicle systems, it
has been the previous practice to identify the propagation path for the electrical
noise through the vehicle. Once the propagation path for the electrical noise through
the vehicle has been identified, steps may be taken to address and reduce the magnitude
of the electrical noise thus protecting the other electrical systems in the vehicle
from interference by the electrical noise.
[0005] In the past, it has been the practice to place a number of different electrical noise
sensors throughout the vehicle and then empirically determine the amount of electrical
noise detected by each sensor. Once the magnitude of the electrical noise from each
sensor is identified, technicians would then estimate the propagation path for the
electrical noise. Oftentimes, additional readings for the electrical noise were necessary
to confirm the actual propagation path for the electrical noise.
[0006] These previously known procedures for determining the propagation path through the
automotive vehicle for electrical noise, however, suffered several disadvantages.
One disadvantage is that the cost for each electrical noise sensor is relatively high
thus increasing the overall cost for testing the vehicle for electrical noise due
to the multiple sensors necessary to cover every area suspected of lying in the propagation
path for the electrical noise. A still further disadvantage of this previously known
method and system for determining the propagation path for the electrical noise through
the vehicle is that the overall testing and identification of the noise propagation
path was prolonged and therefore expensive in labor cost. Furthermore, the overall
conclusions reached by the technicians for the propagation path of the electrical
noise were sometimes inaccurate.
SUMMARY OF THE PRESENT INVENTION
[0007] The present invention provides both a system and method for identifying an electrical
noise propagation path through an object, such as an automotive vehicle or electrical
components.
[0008] In brief, an electrical noise sensor is positioned at a selected area in the system.
This electrical noise sensor generates an output signal representative of the magnitude
of electrical noise detected at that selected area. Preferably, the electrical sensor
comprises an array of sensors in which each sensor generates its own independent output
signal.
[0009] After the source of electrical noise, such as the inverter in a hybrid or electrical
vehicle or a processor of electrical component, is identified, a trigger generator
generates a trigger signal in synchronism with that source of periodic electrical
noise. For example, in the inverter for an electrical or hybrid automotive vehicle,
the switching transistors for the inverter constitute a known source of noise and
cause a noise in synchronism with the switching. Consequently, by monitoring the switching
based on the voltage and/or current for the switching transistor such as a gate signal,
output voltage/current of the switching transistor, and output voltage/current of
inverter, the trigger generator generates an output trigger signal in synchronism
with the generation of the periodic noise from the inverter. In electrical component,
switching of processer constitute a source of noise. Consequently, by monitoring the
clock signal, the trigger generator generates an output trigger signal in synchronism
with the clock.
[0010] The trigger signal from the trigger generator is then coupled as an input signal
to noise measuring equipment connected to the sensor(s) to initiate the electrical
noise reading by the sensor(s). Consequently, the actual reading of the noise from
the sensor for a finite time, e.g. Δt, occurs in synchronism with the generation of
the noise from the noise source or inverter. That output signal or signals from the
sensor is then stored in an electronic recording device, such as a hard drive, memory
stick, etc.
[0011] Thereafter, the sensor is moved to a new selected area of the system and the above
process is iteratively repeated for a plurality of selected areas on the vehicle.
A programmed processor then analyzes the stored data from the multiple selected areas
on the vehicle and generates a map indicative of the electrical noise propagation
path through the vehicle such as a time-change of the magnitude at each area, or the
vector to indicate the noise propagation.
BRIEF DESCRIPTION OF THE DRAWING
[0012] A better understanding of the present invention will be had upon reference to the
following detailed description when read in conjunction with the accompanying drawing,
wherein like reference characters refer to like parts throughout the several views,
and in which:
FIG. 1 is a diagrammatic view illustrating a hybrid or electric vehicle;
FIG. 2 is a diagrammatic view illustrating a bank of inverter switching transistors;
FIG. 3 is graphs illustrating the voltage and current output from the inverter;
FIG. 4 is a block diagrammatic view illustrating a preferred embodiment of the present
invention;
FIG. 5 is a diagrammatic view illustrating a trigger generator and a device under
testing;
FIG. 6 is a graph illustrating the operation of the present invention through a plurality
of different selected areas;
FIG. 7 is a graph illustrating a mapping of the propagation path of the electrical
noise;
FIG. 8 is a flowchart illustrating the operation of the present invention; and
FIG. 9 is a flowchart.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE PRESENT INVENTION
[0013] With reference first to FIG. 1, an electric or hybrid automotive vehicle 10 (hereinafter
collectively referred to as an electric vehicle) is illustrated diagrammatically.
In the conventional fashion, the electric vehicle 10 includes at least one alternating
current electric motors 12 operatively connected to the drive wheels 14 of the vehicle
10. A DC storage battery 16 provides the electrical power to the motor 12.
[0014] Since the battery 16 provides DC power, an inverter 18 is electrically connected
between the battery 16 and the motor 12 to convert the DC electrical power from the
battery 16 to AC power for the motor 12.
[0015] With reference now to FIG. 2, an exemplary bank 21 of switching transistors 20 of
the type used by the inverter 18 is illustrated. The transistors 20 illustrated in
FIG. 2 are two FET transistors having their drains and sources connected in series
with each other and each transistor 20 has a gate 22 although other types of switching
devices may be used. When a signal is provided to the gates 22, the transistors 20
conduct and generate an output signal at their output 24.
[0016] With reference to FIGS. 2 and 3, the bank 21 includes multiple transistor pairs.
A voltage signal, illustrated by graph 26 in FIG. 3, is applied sequentially to the
gates 22 of the sequential transistor pairs 20 in the bank 21 to generate the AC current
output signal 28. This AC output current signal 28 then powers the electrical motor
12 (FIG. 1) for the vehicle 10.
[0017] The high currents required to power the electrical motor 12 for the vehicle 10 require
the switching of high currents by the inverter 18 and are of a known source of electrical
noise in the vehicle 10. Furthermore, the noise generated by the inverter is periodic.
[0018] With reference now to FIGS. 3-5, a block diagrammatic view illustrating the system
of the present invention is shown. A trigger generator 30 is coupled to the device,
e.g. the inverter 18, which is the noise source. In order to precisely synchronize
the trigger generator 30 to the inverter 18, the input to the trigger generator is
connected to a selected transistor pair, e.g. the transistor pair which generates
the output AC signal 28 at time t
1. Consequently, the trigger generator 30 generates a signal on its output 32 in synchronism
with the operation of the inverter.
[0019] Referring to FIG. 4, the output signal 52 from the trigger generator 30 is coupled
as an input signal to the electrical noise measurement equipment 34 which initiates
a reading of the electrical noise from an electrical noise probe 36. The actual duration
of the measurement of the noise by the measurement equipment 34 from the probe 36
is preset, either by the duration of the trigger signal from the trigger generator
30, or by the measurement equipment 34.
[0020] With reference now to FIGS. 4 and 6, the probe 36 preferably comprises an array of
sensors 38. For example, as shown in FIG. 6, the array of sensors 38 for the probe
36 is illustrated as a 4×4 array of sensors 38. However, this is by way of example
only, and the array can contain fewer or more sensors 38 without deviation from the
spirit or scope of the invention.
[0021] The probe 36 is mounted to a probe carrier 40 which is positioned by the technician
at a first selected area on the vehicle 10. In practice, the technician selects an
area on the vehicle suspected of lying in the propagation path for the electrical
noise from the inverter. The technician or system then inputs the position of the
probe in the propagation path by input devices, such as a keyboard, a mouse, etc.
That position information is then stored in a data logger 44, such as a hard drive,
memory stick, and/or the like.
[0022] In operation, with the probe 36 positioned at a first selected area by the probe
carrier 40, the measurement equipment 34 measures the electrical noise at the first
selected area for a preset time interval in synchronism with the inverter due to the
trigger generator 30. The measured electrical noise from the probe 36 is then provided
as an output signal from the measurement equipment 34 to the data logger 44.
[0023] An exemplary output signal from the measurement equipment 34 is shown in FIG. 6 for
the first selected area or area A. As shown at area A, high electrical noise is detected
as shown at 50 during the time period beginning at time T. This noise data is then
recorded with the time measured time information elapsed from the trigger timing by
the data logger 44 associated with the probe position information (or position/location
information of the selected area A).
[0024] Thereafter, the probe 36 is moved by the probe carrier 40 to a second selected area
or area B as shown in FIG. 6. The second selected area or area B is selected by the
technician or the system as being in the propagation path for the electrical noise.
In this example, the second selected area or area B is further spaced from the inverter
18 than the first selected area or area A. The distance of the moving the selected
area is the same as the area of measurement so that the noise propagation map can
be generated based on the outcome of the measured noise and the position information
of the measured area. As such, the detected electrical noise 52 is slightly time delayed
from the periodic initiation of the trigger signal at time 2T where T equals one complete
cycle of the AC waveform 28 (FIG. 3) if the inverter is the noise source and it has
a constant cycle. If the inverter has not a constant cycle, the time difference between
each trigger is not constant. It is also possible that trigger generator does not
always output a periodical trigger. The trigger generator may output a signal every
time a preset condition of the device. It is also possible that trigger generator
does not always output a periodical trigger. The trigger generator may output a signal
every time a preset condition of the device. The noise data is measured and recorded
with the time information elapsed from the second trigger timing 2T in the data logger
44 associated with the probe position information (or position information of the
selected area B).
[0025] The probe 36 is then moved by the probe carrier 40 to a selected area on the vehicle
suspected of being in the propagation path for the electrical noise but further away
from the inverter than the second selected area or area B. As shown in FIG. 6, the
electrical noise signal is detected at 54, but time delayed from the noise signal
52 detected at the second selected area or area B. This overall process is then repeated
for as many selected areas, e.g. area C, as desired.
[0026] With reference now to FIG. 7, a processor is preferably programmed to generate a
noise map based on the detected electrical noise 50, 52, and 54 for all of the selected
areas with the position information of the measured areas. And the processor also
programmed to generate a noise propagation movie by generating a plurality of noise
maps based on the noise data, location information of the selected area and elapsed
time from the trigger timing and displaying the plurality of noise maps as the movie
in order of the elapsed time from the trigger timing. The plurality of the noise maps
can be displayed in the same time like FIG. 7 depicting based on the elapsed time
from the each trigger timing. This noise propagation map or movie thus illustrates
the propagation of the electrical noise through the vehicle.
[0027] In some situations, there may be extraneous electrical noise present during the trigger
signal from the trigger generator 30 from a source other than the inverter. In order
to isolate the electrical noise signal from the inverter, multiple measurements may
be taken at each selected area and then averaged to isolate the inverter noise from
other noise sources. Preferably, a processor is programmed to perform this average
calculation.
[0028] With reference now to FIG. 8, a flowchart illustrating the method of the present
invention is shown. At step 60, the trigger generator is connected to the device under
measurement. Step 60 then proceeds to step 62. At step 62, the trigger generator is
connected to the measurement equipment. Step 62 then proceeds to step 64.
[0029] At step 64, the sensor is placed at a selected area on the vehicle. This area is
selected as suspected of being in the propagation path for the electrical noise. Step
64 then proceeds to step 65.
[0030] At step 65, the measurement equipment obtains and logs the data. Preferably, a plurality
of data are obtained for the sensor output on the selected area every trigger timing
and then averaged to eliminate extraneous transient noise from other sources. Step
65 then proceeds to step 68.
[0031] At step 68 it is determined if a sufficient number of selected areas have been measured
by the sensor. If not, step 68 branches to step 69 in which a different area is selected.
Step 69 then proceeds back to step 64 and continues to iterate for different selected
areas until the data for a sufficient number of selected areas have been attained.
When this occurs, step 68 proceeds to step 70 where the data is mapped, preferably
by a programmed processor, and displayed to the technician. Any form of a display
74 (FIG. 4) may be obtained, such as a video screen, printer, and the like.
[0032] With reference to FIG. 9, a flowchart is shown to analyze and display the data. At
step 70 the program is initiated and step 70 proceeds to step 72 where the first sensor
location is read from the data logger 44. Step 72 then proceeds to step 74 where the
sensor output is similarly read from the data logger for the first sensor location.
Step 74 then proceeds to step 76.
[0033] At step 76 the program determines if all of the measured areas have been read from
the data logger. If not, step 76 branches back to step 72 and reiterates the above
steps for the next sensor location. If all of the sensor locations and readings have
been retrieved from the data logger 44, step 76 proceeds to step 78.
[0034] At step 78 a map or graph is calculated showing all of the sensor locations and sensor
measurements for the vehicle. Step 80 then displays the noise map or the plurality
of noise maps as noise propagation path information on the display or output device.
The system can display the plurality of the noise map according to the elapsed time
from the trigger as shown in FIG. 7 and this noise propagation map can show a time-change
of magnitude of the electrical noise and/or vector of direction of the noise propagation
path.
[0035] From the foregoing, it can be seen that the present invention provides an improved
method and system for identifying the propagation path for electrical noise in electrical
vehicles. A primary advantage of the present invention is that a single probe 36 may
be utilized to detect the electrical noise in a plurality of different locations within
the vehicle since the detection of electrical noise by the probe is synchronized with
the inverter by the trigger generator 30.
[0036] Having described our invention, many modifications thereto will become apparent to
those skilled in the art to which it pertains without deviation from the spirit of
the invention as defined by the scope of the appended claims.
1. A method for identifying an electrical noise propagation path through an object from
a source of periodic electrical noise comprising the steps of:
a) positioning an electric noise sensor of a noise measurement device at a selected
area on the object, the noise sensor generating an output signal to the noise measurement
device representative of the magnitude of electrical noise,
b) generating a trigger signal in synchronism with the source of periodic electrical
noise,
c) connecting the trigger signal to the noise measurement device to initiate an electrical
noise reading from the sensor by the noise measurement device, the noise measurement
device generating an output signal as noise data,
d) recording the noise data output from the measurement device associated with the
location information of the selected area,
e) moving the sensor to a different selected area, and
f) reiterating steps a) - e).
2. The method as defined in claim 1 wherein the sensor comprises an array of sensors.
3. The method as defined in claim 1 wherein the object is an automotive vehicle.
4. The method as defined in claim 1 wherein the recording step comprises the step of
recording the magnitude of the sensor output signal to a computer database.
5. The method as defined in claim 1 comprising the steps of:
inputting a plurality of output signals from the sensor for each selected area,
computing an average sensor output signal for each selected area, and
thereafter recording the average sensor output signal.
6. The method as defined in claim 1 further comprising the step of generating a noise
map based on the location information of the selected area and the noise data.
7. The method as defined in claim 1 further comprising the steps of:
generating a plurality of noise maps based on the noise data, location information
of the selected area and elapsed time from the trigger timing; and
displaying the plurality of noise maps in order of the elapsed time from the trigger
timing.
8. A system for identifying an electrical noise propagation path through an object from
a source of periodic electrical noise comprising:
a noise measurement device having an electric noise sensor positioned at a selected
area on the object, the noise sensor generating an output signal representative of
the magnitude of electrical noise,
a trigger generator which generates a trigger signal in synchronism with the source
of periodic electrical noise,
the trigger signal from the trigger generator being connected as an input signal to
the noise measurement device to initiate an electrical noise reading by the sensor,
a recorder which records the sensor output signal associated with the location information
of the selected area,
wherein the sensor is moved to different selected areas on the object.
9. The system as defined in claim 8 wherein the sensor comprises an array of sensors.
10. The system as defined in claim 8 wherein the object is an automotive vehicle.
11. The system as defined in claim 8 wherein the recorder comprises a computer database.
12. The system as defined in claim 8 wherein:
a plurality of sensor output signals are inputted for each selected area,
a processor configured to compute an average sensor output signal for each selected
area, and
thereafter the recorder recording the average sensor output signal.
13. The system as defined in claim 8 further comprising a processor configured to generate
a noise map based on the location information of the selected area and the noise data.
14. The system as defined in claim 8 further comprising a processor configured to:
generate a plurality of noise maps based on the noise data, location information of
the selected area and elapsed time from the trigger timing; and
output the plurality of noise maps in order of the elapsed time from the trigger timing.