TECHNICAL FIELD
[0001] The present invention relates to high strength cold rolled steel sheet suitable for
applications in automobiles, construction materials and the like, specifically a high
strength steel sheet excellent in formability. In particular, the invention relates
to a cold rolled steel sheet having a tensile strength of at least 780 MPa.
[0002] Such a cold rolled high-strength steel sheet is known e.g. from
JP 2004 332099 A.
BACKGROUND ART
[0003] For a great variety of applications increased strength levels are pre-requisite for
light weight constructions in particular in the automotive industry, since car body
mass reduction results in reduced fuel consumption.
[0004] Automotive body parts are often stamped out of sheet steels, forming complex structural
members of thin sheet. However, such part cannot be produced from conventional high
strength steels because of a too low formability for complex structural parts. For
this reason multiphase Transformation Induced Plasticity aided steels (TRIP steels)
have gained considerable interest in the last years.
[0005] TRIP steels possess a multi-phase microstructure, which includes a meta-stable retained
austenite phase, which is capable of producing the TRIP effect. When the steel is
deformed, the austenite transforms into martensite, which results in remarkable work
hardening. This hardening effect, acts to resist necking in the material and postpone
failure in sheet forming operations. The microstructure of a TRIP steel can greatly
alter its mechanical properties. The most important aspects of the TRIP steel microstructure
are the volume percentage, size and morphology of the retained austenite phase, as
these properties directly affect the austenite to martensite transformation when the
steel is deformed. There are several ways in which to chemically stabilize austenite
at room temperature. In low alloy TRIP steels the austenite is stabilized through
its carbon content and the small size of the austenite grains. The carbon content
necessary to stabilize austenite is approximately 1 wt. %. However, high carbon content
in steel cannot be used in many applications because of impaired weldability.
[0006] Specific processing routs are therefore required to concentrate the carbon into the
austenite in order to stabilize it at room temperature. A common TRIP steel chemistry
also contains small additions of other elements to help in stabilizing the austenite
as well as to aid in the creation of microstructures which partition carbon into the
austenite. The most common additions are 1.5 wt. % of both Si and Mn. In order to
inhibit the austenite to decompose during the bainite transformation it is generally
considered necessary that the silicon content should be at least 1 wt. %. The silicon
content of the steel is important as silicon is insoluble in cementite.
US 2009/0238713 discloses such a TRIP steel. However, a high silicon content can be responsible for
a poor surface quality of hot rolled steel and a poor coatability of cold rolled steel.
Accordingly, partial or complete replacement of silicon by other elements has been
investigated and promising results have been reported for Al-based alloy design. However,
a disadvantage with the use of aluminium is the segregation behaviour during casting,
which results in a depletion of Al in the centre position of the slabs resulting in
an increased risk of the formation of martensite bands in the final microstructure.
[0007] Depending on the matrix phase the following main types of TRIP steels are cited:
TPF TRIP steel with matrix of polygonal ferrite
TPF steels, as already mentioned before-hand, contain the matrix from relatively soft
polygonal ferrite with inclusions from bainite and retained austenite. Retained austenite
transforms to martensite upon deformation, resulting in a desirable TRIP effect, which
allows the steel to achieve an excellent combination of strength and drawability.
Their stretch flangability is however lower compared to TBF, TMF and TAM steels with
more homogeneous microstructure and stronger matrix.
TBF TRIP steel with matrix of bainitic ferrite
TBF steels have been known for long and attracted a lot of interest because the bainitic
ferrite matrix allows an excellent stretch flangability. Moreover, similarly to TPF
steels, the TRIP effect, ensured by the strain-induced transformation of metastable
retained austenite islands into martensite, remarkably improves their drawability.
TMF TRIP steel with matrix of martensitic ferrite
TMF steels also contain small islands of metastable retained austenite embedded into
strong martensitic matrix, which enables these steels to achieve even better stretch
flangability compared to TBF steels. Although these steels also exhibit the TRIP effect,
their drawability is lower compared to TBF steels.
TAM TRIP steel with matrix of annealed martensite
TAM steels contain the matrix from needle-like ferrite obtained by re-annealing of
fresh martensite. A pronounced TRIP effect is again enabled by the transformation
of metastable retained austenite inclusions into martensite upon straining. Despite
their promising combination of strength, drawability and stretch flangability, these
steels have not gained a remarkable industrial interest due to their complicated and
expensive double-heat cycle.
DISCLOSURE OF THE INVENTION
[0008] The present invention is directed to a high strength cold rolled steel sheet having
a tensile strength of at least 780 MPa and having an excellent formability and a method
of producing the same on an industrial scale. In particular, the invention relates
to a cold rolled TPF steel sheet having properties adapted for the production in a
conventional industrial annealing line. Accordingly, the steel shall not only possess
good formability properties but at the same time be optimized with respect to A
c3- temperature, M
s-temperature, austempering time and temperature and other factors such as sticky scale
influencing the surface quality of the hot rolled steel sheet and the processability
of the steel sheet in the industrial annealing line.
DETAILED DESCRIPTION
[0009] The invention is described in the claims.
[0010] In the following specification the following abbreviations are:
PF= polygonal ferrite,
B = bainite,
BF= bainitic ferrite,
TM = tempered martensite.
RA = retained austenite
Rm = tensile strength (MPa)
Ag = uniform elongation, UEl (%)
A80= total elongation (%)
Rp0.2 = yield strength (MPa)
HR = hot rolling reduction (%)
Tan = annealing temperature (°C)
tan = annealing time (s)
CR1= cooling rate (°C/s)
TQ = quenching temperature (°C)
CR2 = cooling rate (°C/s)
TRJ = stop temperature of rapid cooling (°C)
TOA= overageing/austempering temperature (°C)
tOA = overageing/austempering time (s)
CR3 = cooling rate (°C/s)
[0011] The cold rolled high strength TPF steel sheet has a composition consisting of the
following elements (in wt. %):
| C |
0.15 - 0.3 |
| Mn |
1.4 - 2.7 |
| Si |
0.4 - 0.9 |
| Cr |
0.1 - 0.9 |
| Si + Cr |
0.9 - 1.4 |
| Si/Cr |
1 - 5 |
| Si |
> 10 Al |
| Al |
≤ 0.1 |
| Nb |
< 0.1 |
| Mo |
< 0.3 |
| Ti |
< 0.2 |
| V |
< 0.2 |
| Cu |
< 0.5 |
| Ni |
< 0.5 |
| B |
< 0.005 |
| Ca |
< 0.005 |
| Mg |
< 0.005 |
| REM |
< 0.005 |
balance Fe apart from impurities.
[0012] The reasons for the limitation of the elements are explained below.
[0013] The elements C, Mn, Si and Cr are essential to the invention for the reasons set
out below:
C: 0.15 - 0.3 %
[0014] C is an element which stabilizes austenite and is important for obtaining sufficient
carbon within the retained austenite phase. C is also important for obtaining the
desired strength level. Generally, an increase of the tensile strength in the order
of 100 MPa per 0.1 %C can be expected. When C is lower than 0.1 % then it is difficult
to attain a tensile strength of 780 MPa. If C exceeds 0.3 % then weldability is impaired.
For this reasons, preferred ranges are 0.15 - 0.19 % or 0.19-0.23 % depending on the
desired strength level.
Mn: 1.4 - 2.7 %
[0015] Manganese is a solid solution strengthening element, which stabilises the austenite
by lowering the M
s temperature and prevents pearlite to be formed during cooling. In addition, Mn lower
the A
c3 temperature. At a content of less than 1.4 % it might be difficult to obtain a tensile
strength of at least 780 MPa. It may be difficult to obtain a tensile strength of
at least 780 MPa already at a content of less than 1.7 %. However, if the amount of
Mn is higher than 2.7 % problems with segregation may occur and the workability may
be deteriorated. The upper limit is also determined by the influence of Mn on the
microstructure during cooling on the run out table and in the coil since a high Mn
contents may result in the formation of a martensite fraction which is unfavourable
for cold rolling. Preferred ranges are therefore 1.5 - 2.5, 1.5 - 1.7 %, 1.5 - 2.3,
1.7 - 2.3 %, 1.8 - 2.2 %, 1.9 - 2.3 % and 2.3 - 2.5 %.
Si: 0.4 - 0.9 %
[0016] Si acts as a solid solution strengthening element and is important for securing the
strength of the thin steel sheet. Si is insoluble in cementite and will therefore
act to greatly delay the formation of carbides during the bainite transformation as
time must be given to Si to diffuse from the precipitating cementite. Si improves
the mechanical properties of the steel sheet. However, high Si forms Si oxides on
the surface which may result in pickles on the rolls resulting in surface defects.
Further, galvanizing is very difficult for high Si contents, i.e. the risk for surface
defects increases. Therefore, Si is limited to 0.9 %. Preferred ranges are therefore
0.4 - 0.9 %, 0.4 - 0.8 %, 0.5 - 0.9 %, 0.5 - 0.7 % and 0.75 - 0.90 %.
Cr: 0.1 - 0.9 %
[0017] Cr is effective in increasing the strength of the steel sheet. Cr is an element that
forms ferrite and retards the formation of pearlite and bainite. The A
c3 temperature and the M
s temperature are only slightly lowered with increasing Cr content. In this type of
steel the amount of retained austenite increases with the chromium content. However,
due to the retardation of the bainite transformation longer holding times are required
such that the processing on a conventional industrial annealing line is made difficult
or impossible, when using normal line speeds. For this reason the amount of Cr is
preferably limited to 0.8 %. Preferred ranges are therefore 0.15 - 0.6 %, 0.15 - 0.35
%, 0.3 - 0.7 %, 0.5 -0.7 %, 0.4 - 0.8 %, and 0.25 - 0.35 %.
Si + Cr: 0.9 - 1.4
[0018] Si and Cr are also efficient in reducing the risk for martensite banding in that
they counteract the effect of the manganese segregation during casting. In addition,
and completely unforeseen, the combined provision of Si and Cr has been found to result
in an increased amount of residual austenite, which, in turn, results in an improved
ductility. For these reasons the amount of Si + Cr must be ≥ 0.9. However, too large
amounts of Si + Cr could result in a strong delay of the bainite formation and therefore
Si + Cr is preferably limited to 1.4 %. Preferred ranges are therefore 1.0 - 1.4 %,
1.05 - 1.30 % and 1.1 - 1.2 %.
Si/Cr = 1 - 5
[0019] Si shall be present in the steel in at least the same amount as Cr in order to get
a balance between a strong retardation of cementite precipitation and a small delay
of the bainite formation kinetics as Si and Cr retards cementite formation and Cr
has a strong delaying effect on the bainite formation kinetics. Preferably Si is present
in a greater amount than Cr. Preferred ranges for Si/Cr are therefore 1 - 5, 1.5 -
3, 1.7 - 3, 1.7-2.8, 2 - 3 and 2.1 - 2.8.
[0020] In addition to C, Mn, Si and Cr the steel may optionally contain one or more of the
following elements in order to adjust the microstructure, influence on transformation
kinetics and/or to fine tune one or more of the mechanical properties.
Al: ≤ 0.1
[0021] Al promotes ferrite formation and is also commonly used as a deoxidizer. Al, like
Si, is not soluble in the cementite and therefore considerably delays the cementite
formation during bainite formation. Additions of Al result in a remarkable increase
in the carbon content in the retained austenite. However, the M
s temperature is increased with increasing Al content. A further drawback of Al is
that it results in a drastic increase in the A
c3 temperature. However, since the inventive TPF alloys can be annealed in the two-phase
region substantial amounts of Al may be used. Al is used with success for the substitution
of Si in TRIP steel grades. However, a main disadvantage of Al is its segregation
behavior during casting. During casting Mn is enriched in the middle of the slabs
and the Al-content is decreased. Therefore in the middle a significant austenite stabilized
region or band is formed. This results at the end of the processing in martensite
banding and at low strain internal cracks are formed in the martensite band. On the
other hand, Si and Cr are also enriched during casting. Hence, the propensity for
martensite banding may be reduced by alloying with Si and Cr since the austenite stabilization
due to the Mn enrichment is counteracted by these elements. For these reasons the
Al content is preferably limited to 0.1 %, most preferably to less than 0.06 %.
Nb: < 0.1
[0022] Nb is commonly used in low alloyed steels for improving strength and toughness because
of its remarkable influence on the grain size development. Nb increases the strength
elongation balance by refining the matrix microstructure and the retained austenite
phase due to precipitation of NbC. Hence, additions of Nb may be used to obtain a
high strength steel sheet having good deep drawability. At contents above 0.1 % the
effect is saturated.
[0023] Preferred ranges are therefore 0.01-0.08 %, 0.01 - 0.04 % and 0.01 - 0.03 %. Even
more preferred ranges are 0.02-0.08 %, 0.02-0.04 % and 0.02-0.03 %.
Mo: < 0.3
[0024] Mo can be added in order to improve the strength. Addition of Mo together with Nb
results in precipitation of fine NbMoC carbides which results in a further improvement
in the combination of strength and ductility.
Ti: < 0.2; V: < 0.2
[0025] These elements are effective for precipitation hardening. Ti may be added in preferred
amounts of 0.01 - 0.1 %, 0.02 - 0.08 % or 0.02 - 0.05 %. V may be added in preferred
amounts of 0.01 - 0.1 % or 0.02 - 0.08 %.
Cu: < 0.5; Ni: < 0.5
[0026] These elements are solid solution strengthening elements and may have a positive
effect on the corrosion resistance. The may be added in amounts of 0.05 - 0.5 % or
0.1 - 0.3 % if needed.
B: < 0.005
[0027] B suppresses the formation of ferrite and improves the weldability of the steel sheet.
For having a noticeable effect at least 0.0002 % should be added. However, excessive
amounts of deteriorate the workability.
[0028] Preferred ranges are < 0.004 %, 0.0005- 0.003 % and 0.0008 -0.0017 %.
Ca: < 0.005; Mg: < 0.005; REM: < 0.005
[0029] These elements may be added in order to control the morphology of the inclusions
in the steel and thereby improve the hole expandability and the stretch flangability
of the steel sheet.
[0030] Preferred ranges are 0.0005 -0.005 % and 0.001- 0.003 %.
Si > Al
[0031] The high strength cold rolled steel sheet according to the invention has a silicon
based design, i.e. the amount of Si is larger than the amount of Al, preferably Si
> 10 Al.
Mn + 3Cr
[0032] To avoid a too strong retardation of the bainite formation in the steel sheet of
the present invention it is preferred to control the ratio of Mn + 3Cr ≤ 3.8, preferably
≤ 3.6 and more preferred ≤ 3.4.
(Rp0.2)/(Rm)
[0033] In the steel sheet of the present invention it is preferred to control the yield
ratio of (Rp
0.2)/(R
m) ≤ 0.7, preferably (Rp
0.2)/(R
m) ≤ 0.75, in order to get the desired formability.
[0034] The high strength cold rolled TPF steel sheet has a multiphase microstructure comprising
(in vol. %)
| retained austenite |
5 - 22 |
| bainite + bainitic ferrite + tempered martensite |
≤ 80 |
| polygonal ferrite |
>50 |
[0035] The amount of retained austenite (RA) is 5-22 %, preferably 6 - 22 %, and more preferred
6 - 16 %. Because of the TRIP effect retained austenite is a prerequisite when high
elongation is necessary. High amount of residual austenite decreases the stretch flangability.
In these steel sheets the matrix mainly consists of the soft polygonal ferrite (PF)
with an amount generally exceeding 50 %. Only a minor amount of bainitic ferrite (BF)
is usually present in the final microstructure. As a consequence of insufficient local
austenite stability the structure may also contain some minor amounts of fresh martensite
forming during cooling to room temperature.
[0036] The high strength cold rolled TPF steel sheet has the following mechanical properties
| tensile strength (Rm) |
≥ 780 |
MPa |
| total elongation (A80) |
≥ 12 |
%, preferably ≥ 13 %, |
| |
|
more preferred ≥ 14 % |
[0037] The R
m and A
80 values were derived according to the European norm EN 10002 Part 1, wherein the samples
were taken in the longitudinal direction of the strip.
[0038] The formability of the steel sheet was assessed by the strength-elongation balance
(R
m x A
80).
[0039] The steel sheet of the present invention fulfils the following condition:
[0040] The mechanical properties of the steel sheet of the present invention can be largely
adjusted by the alloying composition and the microstructure.
[0041] In one preferred embodiment the high strength cold rolled steel sheet has a tensile
strength of at least 780MPa wherein the steel comprises:
| C |
0.17 - 0.23 |
| Mn |
1.5 - 1.8, preferably 1.5 - 1.7 |
| Si |
0.4 - 0.9, |
| Cr |
0.3 - 0.7, preferably 0.4 - 0.7 |
| |
|
| optionally |
|
| Nb |
0.01- 0.03, preferably 0.02 - 0.03 |
| |
|
| or |
|
| |
|
| C |
0.15 - 0.17 |
| Mn |
1.7 - 2.3 |
| Si |
0.5 - 0.9 |
| Cr |
0.3-0.7 |
| |
|
| optionally |
|
| Nb |
0.01- 0.03, preferably 0.02 - 0.03 |
and wherein the steel sheet fulfil at least one of the following requirements:
| (Rm) |
780 - 1200 |
MPa |
| (A80) |
≥15 |
% |
| |
|
|
| and |
|
|
| |
|
|
| Rm x A80 |
≥ 14 000 |
MPa%, preferably ≥ 16 000 MPa% |
[0042] Typical compositions for the high strength cold rolled steel sheet having a tensile
strength of at least 780 MPa could be:
C ∼ 0.2 %, Mn ∼ 1.6 %, Si ∼ 0.6 %, Cr ∼ 0.6 %, Nb ∼ 0 or 0.025 %, or
C ∼ 0.15 %, Mn ∼ 1.8 %, Si ∼ 0.7 %, Cr ∼ 0.4 %, Nb ∼ 0 or 0.025%, rest iron apart
from impurities.
[0043] In another preferred embodiment the high strength cold rolled steel sheet has a tensile
strength of at least 980 MPa wherein the steel comprises:
| C |
0.18 - 0.22 |
| Mn |
1.7 - 2.3 |
| Si |
0.5 - 0.9 |
| Cr |
0.3 - 0.8 |
| optionally |
|
| Si + Cr |
≥ 1.0 |
| Nb |
0.01- 0.03 |
| |
|
| or |
|
| |
|
| C |
0.14 - 0.20 |
| Mn |
1.9 - 2.5 |
| Si |
0.5 - 0.9 |
| Cr |
0.3 - 0.8 |
| |
|
| optionally |
|
| Si + Cr |
≥ 1.0 |
| Nb |
0.01- 0.03 |
and wherein the steel sheet fulfil at least one of the following requirements
| (Rm) |
980 - 1200 |
MPa |
| (A80) |
≥ 13 |
% |
| |
|
|
| and |
|
|
| |
|
|
| Rm x A80 |
≥ 13 000 |
MPa% |
[0044] Typical compositions for the high strength cold rolled steel sheet having a tensile
strength of at least 980 MPa could C ∼ 0.18 %, Mn ∼ 2.2 %, Si ∼ 0.8 %, Cr ∼ 0.5 %,
Nb ∼ 0 or 0.025 %, rest iron apart from impurities.
[0045] In yet another preferred embodiment the high strength cold rolled steel sheet has
a tensile strength (R
m) of at least 1180 MPa. In this embodiment the steel comprises
| C |
0.18 - 0.22 |
| Mn |
1.7 - 2.5, preferably 1.7 - 2.3 |
| Si |
0.5 - 0.9 |
| Cr |
0.4 - 0.8 |
| optionally |
|
| Si + Cr |
≥ 1.1 |
| Nb |
0.01- 0.03, preferably 0.02 - 0.03 |
and fulfil at least one of the following requirements
| (Rm) |
1000 - 1400 MPa, preferably 1180 - 1400 MPa |
| (A80) |
≥ 12 %, preferably ≥ 14 % |
and
| Rm x A80 |
≥ 13 000 |
MPa%, preferably ≥ 15 000 MPa% |
[0046] A typical composition for the high strength cold rolled steel sheet having a tensile
strength of at least 1180 MPa could be:
C ∼ 0.2 %, Mn ∼ 2.2 %, Si ∼ 0.8 %, Cr ∼ 0.6 %, Nb ∼ 0 or 0.025 %, rest iron apart
from impurities, or
C ∼ 0.2 %, Mn ∼ 2 %, Si ∼ 0.6 %, Cr ∼ 0.6 %, Nb ∼ 0 or 0.025 %, rest iron apart from
impurities.
[0047] The high strength cold rolled steel sheet of the present invention can be produced
using a conventional industrial annealing line. The processing comprises the steps
of:
- a) providing a cold rolled strip having a composition as set out above,
- b) annealing the cold rolled strip at an annealing temperature, Tan, that is between 760 °C and Ac3 +20 °C, followed by
- c) cooling the cold rolled strip from the annealing temperature, Tan, to a cooling stop temperature, TRJ, that is between 300 and 475 °C, preferably 350 and 475 °C at a cooling rate that
is sufficient to avoid pearlite formation, followed by
- d) austempering the cold rolled strip at an overageing/austempering temperature, TOA, that is between 320 and 480 °C, and
- e) cooling the cold rolled strip to ambient temperature.
[0048] The process shall preferably further comprise the steps of:
in step b) the annealing being performed at an annealing temperature, Tan, that is between 760 and 820 °C, during an annealing holding time, tan, of up to 100 s, preferably 60 s,
in step c) the cooling can be performed according to a cooling pattern having two
separate cooling rates; a first cooling rate, CR1, of about 3 - 20 °C/s, from the
annealing temperature, Tan, to a quenching temperature, TQ, that is between 600 and 750 °C, and a second cooling rate, CR2, of about 20 - 100
°C/s, from the quenching temperature, TQ, to the stop temperature of rapid cooling, TRJ, and
in step d) the austempering of the steel sheet being performed at an overageing/austempering
temperature, TOA, that is between 350 and 475 °C and an overageing/austempering time, tOA, that is between 50 and 600 s.
[0049] Preferably, no external heating is applied to the steel sheet between step c) and
d).
[0050] In one conceivable method of producing the high strength cold rolled steel sheet
of the invention the austempering in step d) is performed at an
overageing/austempering temperature, T
OA, which is between 375 and 475°C for an overageing/austempering time, t
OA, of ≤ 200 s.
[0051] In another conceivable method of producing the high strength cold rolled steel sheet
of the invention the austempering in step d) is performed an overageing/austempering
temperature, T
OA, which is between of 350 and 450°C for an overageing/austempering time, t
OA, of ≥ 200 s.
[0052] The reasons for regulating the heat treatment conditions are set out below:
Annealing temperature, Tan, = 760 °C to Ac3 temperature + 20 °C:
[0053] The annealing temperature controls the recrystallization, the dissolution of cementite
and the amount of ferrite and austenite during annealing. Low annealing temperature,
T
an, results in an unrecrystallized microstructure and an insufficient dissolution of
cementite. High annealing temperatures results in a fully austenitization and grain
growth. This may result in an insufficient ferrite formation during cooling.
Austempering temperature, TOA, being between 320 and 480 °C:
[0054] By controlling the austempering temperature, T
OA, to the mentioned range, the amount of bainite, the undesirable precipitation of
cementite and therefore the amount and stability of retained austenite, RA, can be
controlled. Lower austempering temperature, T
OA, will lower the bainite formation kinetics and a too small amount of bainite can
results in an unsatisfying stabilized retained austenite. A higher austempering temperature,
T
OA, increases the bainite formation kinetic but generally the amount of bainite is reduced
and this may result in an unsatisfyingly stabilized retained austenite. A further
increase of the austempering temperature could result in undesirable precipitation
of cementite.
Cooling stop temperature of rapid cooling, TRJ, being between 300 and 475 °C
[0055] By controlling the cooling stop temperature of rapid cooling, T
RJ, a further controlling of the transformation prior austempering is possible and this
can be applied for a fine tuning of the obtained amounts of different constituents.
First and second cooling rates, CR1, CR2:
[0056] A cooling pattern for cooling the annealed strip from the annealing temperature,
T
an, to the stop temperature of rapid cooling, T
RJ, may have two separate cooling steps. By controlling the first cooling rate, CR1
to about 3 - 20 °C/s from the annealing temperature, T
an, to a quenching temperature, T
Q, that is between 600 and 750 °C and a second cooling rate, CR2, of about 20 - 100
°C/s from the quenching temperature, T
Q, to the stop temperature of rapid cooling, T
RJ, the amount of polygonal ferrite and, by extension, the amount of austenite may be
controlled. Furthermore, by this cooling pattern the formation of pearlite is avoided,
as pearlite deteriorates formability properties of the steel sheet. However, a small
amount of pearlite may be present in the quenched strip. Up to 1 % of pearlite may
be present although it is preferred that the quenched strip is void of pearlite.
Third cooling rate CR3:
[0057] The cooling schedule from the austempering temperature, T
OA, to room temperature typical applied in annealing lines has a neglectable impact
on the microstructure and mechanical properties of the steel sheet.
Examples
[0058] A number of test alloys A-Q were manufactured having chemical compositions according
to table I. Steel sheets were manufactured and subjected to heat treatment using a
conventional industrial annealing line according to the parameters specified in Table
II. The microstructures of the steel sheets were examined along with a number of other
mechanical properties and the result is presented in Table III. In Table I and Table
III examples according to the invention or outside the invention are marked by Y or
N respectively.
Table I
| Steel |
C |
Si |
Mn |
P |
S |
Al |
Cr |
Ni |
Mo |
Cu |
V |
Nb |
Ti |
B |
N |
AC3 |
Ms |
Invention |
| A |
0,200 |
0,65 |
1,55 |
0,0048 |
0,0041 |
0,069 |
0,015 |
0,009 |
<0,001 |
0,014 |
< 0,001 |
< 0,001 |
<0,001 |
0,0004 |
0,0035 |
802 |
400 |
N |
| B |
0,198 |
0,64 |
1,56 |
0,0047 |
0,0034 |
0,063 |
0,300 |
0,009 |
0,001 |
0,013 |
< 0,001 |
< 0,001 |
<0,001 |
0,0003 |
0,0038 |
801 |
397 |
Y |
| C |
0,197 |
0,65 |
1,51 |
0,0039 |
0,0021 |
0,060 |
0,550 |
0,014 |
<0,001 |
0,014 |
< 0,001 |
< 0,001 |
0,001 |
0,0003 |
0,0037 |
803 |
396 |
Y |
| D |
0,197 |
0,62 |
1,98 |
0,0056 |
0,0065 |
0,055 |
0,014 |
0,010 |
0,003 |
0,015 |
0,002 |
< 0,002 |
0,003 |
0,0003 |
0,0046 |
788 |
388 |
N |
| E |
0,199 |
0,85 |
2,25 |
0,0076 |
0,0068 |
0,046 |
0,120 |
0,011 |
0,003 |
0,017 |
0,002 |
0,027 |
0,003 |
0,0003 |
0,0040 |
790 |
375 |
N |
| F |
0,220 |
0,87 |
2,30 |
0,0070 |
0,0054 |
0,045 |
0,320 |
0,009 |
0,002 |
0,017 |
0,002 |
0,027 |
0,003 |
0,0004 |
0,0037 |
785 |
362 |
N |
| G |
0,200 |
0,84 |
2,26 |
0,0081 |
0,0049 |
0,046 |
0,580 |
0,011 |
0,003 |
0,016 |
0,002 |
0,027 |
0,003 |
0,0003 |
0,0047 |
789 |
369 |
N |
| H |
0,210 |
0,84 |
2,00 |
0,0077 |
0,0050 |
0,050 |
0,310 |
0,010 |
0,003 |
0,017 |
0,002 |
0,026 |
0,003 |
0,0003 |
0,0046 |
794 |
376 |
N |
| I |
0,210 |
0,84 |
2,24 |
0,0079 |
0,0051 |
0,048 |
0,320 |
0,011 |
0,003 |
0,017 |
0,002 |
< 0,002 |
0,002 |
0,0004 |
0,0051 |
787 |
369 |
N |
| J |
0,220 |
0,84 |
2,23 |
0,0082 |
0,0040 |
0,054 |
0,320 |
0,011 |
0,003 |
0,017 |
0,002 |
0,049 |
0,003 |
0,0003 |
0,0051 |
785 |
365 |
N |
| K |
0,198 |
0,55 |
1,51 |
0,0066 |
0,0042 |
0,044 |
0,017 |
0,010 |
0,004 |
0,015 |
0,002 |
< 0,002 |
0,003 |
0,0003 |
0,0046 |
799 |
403 |
N |
| L |
0,196 |
0,72 |
1,49 |
0,0065 |
0,0043 |
0,045 |
0,017 |
0,010 |
0,004 |
0,015 |
0,002 |
< 0,002 |
0,003 |
0,0003 |
0,0047 |
807 |
402 |
N |
| M |
0,200 |
1,09 |
1,52 |
0,0062 |
0,0039 |
0,043 |
0,018 |
0,010 |
0,004 |
0,015 |
0,002 |
< 0,002 |
0,002 |
0,0003 |
0,0045 |
822 |
396 |
N |
| N |
0,200 |
1,52 |
1,50 |
0,0068 |
0,0041 |
0,042 |
0,017 |
0,010 |
0,004 |
0,015 |
0,002 |
< 0,002 |
0,003 |
0,0002 |
0,0048 |
842 |
392 |
N |
| O |
0,131 |
0,84 |
2,31 |
0,0076 |
0,0037 |
0,038 |
0,290 |
0,012 |
0,003 |
0,018 |
0,002 |
< 0,001 |
0,002 |
0,0003 |
0,0038 |
805 |
400 |
N |
| P |
0,250 |
0,82 |
2,34 |
0,0078 |
0,0039 |
0,041 |
0,300 |
0,012 |
0,003 |
0,018 |
0,002 |
< 0,001 |
0,002 |
0,0003 |
0,0042 |
775 |
349 |
N |
| Q |
0,145 |
0,65 |
1,9 |
0,009 |
0,0022 |
0,045 |
0,35 |
0,015 |
0,004 |
0,016 |
0,002 |
0,025 |
0,003 |
0,0002 |
0,0046 |
808 |
415 |
N |
Table II
| Heat cycle No. |
HR |
Tan |
tan |
CR1 |
TQ |
CR2 |
TRJ |
TOA |
tOA |
CR3 |
| 1 |
20 |
800 |
60 |
5 |
720 |
50 |
325 |
325 |
600 |
30 |
| 2 |
20 |
800 |
60 |
5 |
720 |
50 |
350 |
350 |
600 |
30 |
| 3 |
20 |
800 |
60 |
5 |
720 |
50 |
375 |
375 |
600 |
30 |
| 4 |
20 |
800 |
60 |
5 |
720 |
50 |
400 |
400 |
600 |
30 |
| 5 |
20 |
800 |
60 |
5 |
720 |
50 |
425 |
425 |
600 |
30 |
| 6 |
20 |
800 |
60 |
5 |
720 |
50 |
450 |
450 |
600 |
30 |
| 7 |
20 |
800 |
60 |
5 |
720 |
50 |
400 |
400 |
120 |
30 |
| 8 |
20 |
800 |
60 |
5 |
720 |
50 |
425 |
425 |
120 |
30 |
| 9 |
20 |
800 |
60 |
5 |
720 |
50 |
450 |
450 |
120 |
30 |
| 10 |
20 |
800 |
60 |
5 |
720 |
50 |
475 |
475 |
120 |
30 |
| 11 |
20 |
800 |
60 |
5 |
720 |
50 |
425 |
425 |
60 |
30 |
| 12 |
20 |
780 |
60 |
5 |
720 |
50 |
400 |
400 |
600 |
30 |
| 13 |
20 |
820 |
60 |
5 |
720 |
50 |
400 |
400 |
600 |
30 |
| 14 |
20 |
880 |
60 |
5 |
720 |
50 |
400 |
400 |
600 |
30 |
Table III
| Example |
Chemical composition |
Heat cycle No. |
PF |
B + BF + TM |
RA |
Rp0.2 |
Rm |
Ag |
A80 |
Rm x A80 |
Invention |
Rp0.2/Rm |
| 1 |
A |
4 |
72 |
24,0 |
4,0 |
562 |
713 |
13,5 |
17,5 |
12478 |
N |
0,79 |
| 2 |
B |
4 |
63 |
29,0 |
8,0 |
598 |
821 |
16,5 |
21,0 |
17241 |
Y |
0,73 |
| 3 |
C |
4 |
57 |
30,0 |
13,0 |
604 |
825 |
17,5 |
23,5 |
19388 |
Y |
0,73 |
| 4 |
D |
4 |
38 |
54,5 |
7,5 |
634 |
911 |
9,3 |
13,3 |
12116 |
N |
0,70 |
| 5 |
E |
4 |
34 |
53 |
13,0 |
613 |
941 |
14,8 |
18,5 |
17409 |
N |
0,65 |
| 6 |
F |
4 |
29 |
59,5 |
11,5 |
603 |
1049 |
14,6 |
17,8 |
18672 |
N |
0,57 |
| 7 |
G |
4 |
25 |
65,1 |
9,9 |
594 |
1116 |
11,3 |
14,3 |
15959 |
N |
0,53 |
| 8 |
H |
4 |
36 |
53,0 |
11.0 |
561 |
919 |
17,3 |
21,1 |
19391 |
N |
0,61 |
| 9 |
I |
4 |
27 |
60,9 |
12,1 |
580 |
1021 |
12,9 |
16,4 |
16744 |
N |
0,57 |
| 10 |
J |
4 |
30 |
59,1 |
10,9 |
606 |
990 |
13,8 |
17,2 |
17028 |
N |
0,61 |
| 11 |
K |
4 |
73 |
20,8 |
6,2 |
523 |
650 |
11,3 |
15,4 |
10010 |
N |
0,80 |
| 12 |
L |
4 |
67 |
25,2 |
7,8 |
483 |
702 |
14,1 |
17,8 |
12496 |
N |
0,69 |
| 13 |
M |
4 |
63 |
25,1 |
11,9 |
472 |
735 |
17,4 |
21,5 |
15803 |
N |
0,64 |
| 14 |
N |
4 |
65 |
20,5 |
14,5 |
504 |
754 |
18,9 |
26,5 |
19981 |
N |
0,67 |
| 15 |
O |
4 |
43 |
48,1 |
8,9 |
603 |
945 |
10,4 |
14,9 |
14081 |
N |
0,64 |
| 16 |
P |
4 |
26 |
59,7 |
14,3 |
667 |
1129 |
10.1 |
12,5 |
14113 |
N |
0,59 |
| 17 |
C |
1 |
61 |
31,6 |
7,4 |
663 |
964 |
8,6 |
11,4 |
10990 |
N |
0,69 |
| 18 |
C |
2 |
59 |
33,0 |
8,0 |
648 |
903 |
11,9 |
16,1 |
14538 |
Y |
0,72 |
| 19 |
C |
3 |
58 |
32,5 |
9,5 |
624 |
843 |
15,1 |
18,9 |
15933 |
Y |
0,74 |
| 20 |
C |
4 |
60 |
29,2 |
10,8 |
598 |
829 |
15,9 |
20,5 |
16995 |
Y |
0,72 |
| 21 |
C |
5 |
62 |
25,5 |
12,5 |
482 |
823 |
17,5 |
21,8 |
17941 |
Y |
0,59 |
| 22 |
C |
6 |
65 |
28,5 |
6,5 |
513 |
894 |
12,8 |
17,3 |
15466 |
Y |
0,57 |
| 23 |
C |
7 |
58 |
28,5 |
13,5 |
476 |
877 |
15,9 |
20,2 |
17715 |
Y |
0,54 |
| 24 |
C |
8 |
62 |
23,4 |
14,6 |
478 |
842 |
18,3 |
24,3 |
20461 |
Y |
0,57 |
| 25 |
C |
9 |
61 |
23,8 |
15,2 |
422 |
861 |
16,2 |
21,2 |
18253 |
Y |
0,49 |
| 26 |
C |
10 |
65 |
25,9 |
9,1 |
427 |
891 |
15,2 |
18,8 |
16751 |
Y |
0,48 |
| 27 |
Q |
8 |
38 |
50,1 |
11,9 |
512 |
821 |
17,8 |
22,6 |
18555 |
N |
0,62 |
| 28 |
Q |
11 |
36 |
52,5 |
11,5 |
498 |
835 |
16,4 |
20.6 |
17201 |
N |
0,60 |
| 29 |
H |
12 |
39 |
50,6 |
10,4 |
516,6 |
889,2 |
17,1 |
20,7 |
18406 |
N |
0,58 |
| 30 |
H |
13 |
31 |
58,8 |
10,2 |
681,2 |
968,1 |
12,5 |
16,8 |
16264 |
N |
0,70 |
| 31 |
H |
14 |
<5 |
> 86 |
9,0 |
784,2 |
973,6 |
8,7 |
12 |
11683 |
N |
0,81 |
INDUSTRIAL APPLICABILITY
[0059] The present invention can be widely applied to high strength steel sheets having
excellent formability for vehicles such as automobiles.
1. A high strength cold rolled steel sheet comprising:
a) a composition consisting of the following elements (in wt. %):
| C |
0.15 - 0.3 |
| Mn |
1.4 - 2.7 |
| Si |
0.4 - 0.9 |
| Cr |
0.1 - 0.9 |
| Si + Cr |
0.9 - 1.4 |
| Si/Cr |
1 - 5 |
| Si |
> 10 Al |
| Al |
≤ 0.1 |
| Nb |
< 0.1 |
| Mo |
< 0.3 |
| Ti |
< 0.2 |
| V |
< 0.2 |
| Cu |
< 0.5 |
| Ni |
< 0.5 |
| S |
≤ 0.01 |
| P |
≤ 0.02 |
| N |
≤ 0.02 |
| B |
< 0.005 |
| Ca |
< 0.005 |
| Mg |
< 0.005 |
| REM |
< 0.005 |
balance Fe apart from impurities,
b) a multiphase microstructure consisting of (in vol. %)
| retained austenite |
5 - 22 |
| bainite + bainitic ferrite + tempered martensite |
≤ 80 |
| polygonal ferrite |
> 50 |
c) the following mechanical properties
| a tensile strength (Rm) |
≥780 |
MPa |
| an elongation (A80) |
≥ 12 |
%, preferably ≥13 %, |
and optionally fulfilling the following condition
2. A high strength cold rolled steel sheet according to claim 1 fulfilling at least one
of:
| C |
0.15 - 0.25 |
| Mn |
1.5 - 2.5, preferably 1.5 - 2.3, even more preferred 1.7 - 2.3 |
| Si |
0.4 - 0.9 |
| Cr |
0.2 - 0.6 |
3. A high strength cold rolled steel sheet according to any of the preceding claims fulfilling
at least one of:
| Al |
≤ 0.06 |
| Nb |
0.02 - 0.08 |
| Mo |
0.05 - 0.3 |
| Ti |
0.02 - 0.08 |
| V |
0.02 - 0.1 |
| Cu |
0.05 - 0.4 |
| Ni |
0.05 - 0.4 |
| B |
0.0002 - 0.003 |
| Ca |
0.0005 - 0.005 |
| Mg |
0.0005 - 0.005 |
| REM |
0.0005 - 0.005 |
4. A high strength cold rolled steel sheet according to any of the preceding claims fulfilling
at least one of:
| S |
≤ 0.01 |
preferably ≤ 0.003 |
| P |
≤ 0.02 |
preferably ≤ 0.01 |
| N |
≤ 0.02 |
preferably ≤ 0.005 |
| Ti |
> 3.4N |
|
5. A high strength cold rolled steel sheet according to according to any of the preceding
claims wherein the maximum size of the retained austenite (RA) is ≤ 6 µm, preferably
≤ 3 µm.
6. A high strength cold rolled steel sheet according to any of the preceding claims wherein
the multiphase microstructure comprising (in vol. %)
| retained austenite |
6 - 16 |
| bainite + bainitic ferrite + tempered martensite |
≤ 80 |
7. A high strength cold rolled steel sheet according to any of the preceding claims wherein
the steel comprises:
| C |
0.17 - 0.23 |
| Mn |
1.5 - 1.8, preferably 1.5 - 1.7 |
| Si |
0.4 - 0.8, preferably 0.4 - 0.7 |
| Cr |
0.3 - 0.7, preferably 0.4 - 0.7 |
| |
|
| optionally |
|
| Nb |
0.01- 0.03, preferably 0.02 - 0.03 |
and wherein the steel sheet fulfils at least one of the following requirements:
| (Rm) |
780 - 1200 MPa |
| (A80) |
≥ 15 % |
| |
|
| and |
|
| |
|
| Rm × A80 |
≥ 16000 MPa% |
8. A high strength cold rolled steel sheet according to any of claims 1-6 wherein the
steel comprises:
| C |
0.15 - 0.17 |
| Mn |
1.7 - 2.3 |
| Si |
0.5 - 0.9 |
| Cr |
0.3 - 0.7 |
| |
|
| optionally |
|
| Nb |
0.01 - 0.03, preferably 0.02 - 0.03 |
and wherein the steel sheet fulfils at least one of the following requirements:
| (Rm) |
780 - 1200 MPa |
| (A80) |
≥ 15 % |
| |
|
| and |
|
| |
|
| Rm × A80 |
≥ 14 000 MPa%, preferably ≥ 16 000 MPa% |
9. A high strength cold rolled steel sheet according to any of claims 1-6 wherein the
steel comprises:
| C |
0.18 - 0.22 |
| Mn |
1.7 - 2.3 |
| Si |
0.5 - 0.9 |
| Cr |
0.3 - 0.8 |
| |
|
| optionally |
|
| Si + Cr |
1.0 - 1.4 |
| Nb |
0.01- 0.03 |
and wherein the steel sheet fulfils at least one of the following requirements
| (Rm) |
980 - 1200 MPa |
| (A80) |
≥ 13 % |
| |
|
| and |
|
| |
|
| Rm × A80 |
≥ 13 000 MPa% |
10. A high strength cold rolled steel sheet according to any of claims 1-6 wherein the
steel comprises
| C |
0.15 - 0.20 |
| Mn |
1.9 - 2.5 |
| Si |
0.5 - 0.9 |
| Cr |
0.3 - 0.8 |
| |
|
| optionally |
|
| Si + Cr |
1.0 - 1.4 |
| Nb |
0.01- 0.03 |
and wherein the steel sheet fulfils at least one of the following requirements
| (Rm) |
980 - 1200 |
MPa |
| (A80) |
≥ 13 |
% |
| |
|
|
| and |
|
|
| |
|
|
| Rm × A80 |
≥ 13 000 |
MPa% |
11. A high strength cold rolled steel sheet according to any of claims 1-6 wherein the
steel comprises:
| C |
0.18 - 0.22 |
|
| Mn |
1.7 - 2.5, |
preferably 1.7 - 2.3 |
| Si |
0.5 - 0.9 |
|
| Cr |
0.4 - 0.8 |
|
| optionally |
|
|
| Si + Cr |
1.1 - 1.4 |
|
| Nb |
0.01- 0.03, |
preferably 0.02 - 0.03 |
and wherein the steel sheet fulfils at least one of the following requirements:
| (Rm) |
1000 - 1400 |
MPa, |
preferably 1180 - 1400 MPa |
| (A80) |
≥ 10 |
%, |
preferably ≥ 14 % |
| |
|
|
|
| and |
|
|
|
| |
|
|
|
| Rm × A80 |
≥ 12 000 |
MPa%, |
preferably ≥ 15 000 MPa% |
12. A high strength cold rolled steel sheet according to any of the preceding claims wherein
the ratio Mn + 3 × Cr ≤ 3.8, preferably ≤ 3.6, most preferred ≤ 3.4.
13. A high strength cold rolled steel sheet according to any of the preceding claims wherein
the ratio of Si/Cr = 1.5 - 3, preferably 1.7 - 3, more preferably 1.7-2.8.
14. A high strength cold rolled steel sheet according to any of the preceding claims which
is not provided with a hot dip galvanizing layer.
15. A method of producing a high strength cold rolled steel sheet according to any of
the preceding claims comprising the steps of:
a) providing a cold rolled steel strip having a composition as set out in any of the
preceding claims,
b) annealing the cold rolled steel strip at an annealing temperature, Tan, that is between 760 °C and Ac3 +20 °C, followed by
c) cooling the cold rolled steel strip from the annealing temperature, Tan, to a cooling stop temperature of rapid cooling, TRJ, that is between 300 and 475 °C, preferably 350 and 475 °C at a cooling rate that
is sufficient to avoid pearlite formation, followed by
d) austempering the cold rolled steel strip at an overageing/austempering temperature,
TOA, that is between 320 and 480 °C, followed by
e) cooling the cold rolled steel strip sheet to ambient temperature.
16. A method of producing a high strength cold rolled steel sheet according to claim 15
wherein the austempering in step d) is performed at an overageing/austempering temperature,
TOA, that is between 375 and 475°C for a time of ≤ 200 s.
17. A method of producing a high strength cold rolled steel sheet according to claim 15
wherein the austempering in step d) is performed at an overageing/austempering temperature,
TOA, that is between 350 and 450 °C for a time of ≥ 200 s.
1. Hochfestes kaltgewalztes Stahlblech, umfassend:
a) eine Zusammensetzung, die aus den folgenden Elementen besteht (in Gew.-%):
| C |
0,15 - 0,3 |
| Mn |
1,4 - 2,7 |
| Si |
0,4 - 0,9 |
| Cr |
0,1 - 0,9 |
| Si + Cr |
0,9 - 1,4 |
| Si/Cr |
1 - 5 |
| Si |
> 10Al |
| Al |
≤ 0,1 |
| Nb |
< 0,1 |
| Mo |
< 0,3 |
| Ti |
< 0,2 |
| V |
< 0,2 |
| Cu |
< 0,5 |
| Ni |
< 0,5 |
| S |
≤ 0,01 |
| P |
< 0,02 |
| N |
< 0,02 |
| B |
< 0,005 |
| Ca |
< 0,005 |
| Mg |
< 0,005 |
| REM |
< 0,005 |
Rest Fe außer Verunreinigungen,
b) eine mehrphasige Feinstruktur, bestehend aus (in Vol.-%)
| Restaustenit |
5 - 22 |
| Bainit + ferritisches Bainit + vergütetes Martensit |
≤ 80 |
| polygonales Ferrit |
≥ 50 |
c) die folgenden mechanischen Eigenschaften
| Zugfestigkeit (Rm) |
≥ 780 MPa |
| Dehnung (A80) |
≥ 12 %, bevorzugt ≥ 13 %, |
und wahlweise die folgende Bedingung erfüllend
2. Hochfestes kaltgewalztes Stahlblech nach Anspruch 1, erfüllend mindestens eines der
folgenden:
| C |
0,15 - 0,25 |
| Mn |
1,5 - 2,5, bevorzugt 1,5 - 2,3, bevorzugter 1,7 - 2,3 |
| Si |
0,4 - 0,9 |
| Cr |
0,2 - 0,6 |
3. Hochfestes kaltgewalztes Stahlblech nach einem der vorhergehenden Ansprüche, erfüllend
mindestens eines der folgenden:
| Al |
≤ 0,06 |
| Nb |
0,02 - 0,08 |
| Mo |
0,05 - 0,3 |
| Ti |
0,02 - 0,08 |
| V |
0,02 - 0,1 |
| Cu |
0,05 - 0,4 |
| Ni |
0,05 - 0,4 |
| B |
0,0002 - 0,003 |
| Ca |
0,0005 - 0,005 |
| Mg |
0,0005 - 0,005 |
| REM |
0,0005 - 0,005 |
4. Hochfestes kaltgewalztes Stahlblech nach einem der vorhergehenden Ansprüche, erfüllend
mindestens eines der folgenden:
| S |
≤ 0,01 bevorzugt ≤ 0,003 |
| P |
≤ 0,02 bevorzugt ≤ 0,01 |
| N |
≤ 0,02 bevorzugt ≤ 0,005 |
| Ti |
> 3,4N |
5. Hochfestes kaltgewalztes Stahlblech nach einem der vorhergehenden Ansprüche, wobei
die maximale Größe des Restaustentins (RA) ≤ 6 µm, bevorzugt ≤ 3 µm ist.
6. Hochfestes kaltgewalztes Stahlblech nach einem der vorhergehenden Ansprüche, wobei
die mehrphasige Feinstruktur umfasst (in Vol.-%)
| Restaustenit |
6-16 |
| Bainit + ferritisches Bainit + vergütetes Martensit |
≤ 80 |
7. Hochfestes kaltgewalztes Stahlblech nach einem der vorhergehenden Ansprüche, wobei
der Stahl umfasst:
| C |
0,17 - 0,23 |
| Mn |
1,5 - 1,8, bevorzugt 1,5 - 1,7 |
| Si |
0,4 - 0,8, bevorzugt 0,4 - 0,7 |
| Cr |
0,3 - 0,7, bevorzugt 0,4 - 0,7 |
| |
|
| wahlweise |
|
| Nb |
0,01 - 0,03, bevorzugt 0,02 - 0,03 |
und wobei das Stahlblech mindestens eine der folgenden Anforderungen erfüllt:
| (Rm) |
780 - 1200 MPa |
| (A80) |
≥ 15 % |
| |
|
| und |
|
| |
|
| Rm × A80 ≥ |
16 000 MPa% |
8. Hochfestes kaltgewalztes Stahlblech nach einem der Ansprüche 1-6, wobei der Stahl
umfasst:
| C |
0,15 - 0,17 |
| Mn |
1,7 - 2,3 |
| Si |
0,5 - 0,9 |
| Cr |
0,3 - 0,7 |
| |
|
| wahlweise |
|
| Nb |
0,01 - 0,03, bevorzugt 0,02 - 0,03 |
und wobei das Stahlblech mindestens eine der folgenden Anforderungen erfüllt:
| (Rm) |
780 - 1200 MPa |
| (A80) |
≥ 15 % |
| |
|
| und |
|
| |
|
| Rm × A80) |
≥ 14 000 MPa%, bevorzugt 16 000 MPa% |
9. Hochfestes kaltgewalztes Stahlblech nach einem der Ansprüche 1-6, wobei der Stahl
umfasst:
| C |
0,18 - 0,22 |
| Mn |
1,7 - 2,3 |
| Si |
0,5 - 0,9 |
| Cr |
0,3 - 0,8 |
| |
|
| wahlweise |
| Si + Cr |
1,0 - 1,4 |
| Nb |
0,01 - 0,03 |
und wobei das Stahlblech mindestens eine der folgenden Anforderungen erfüllt
| (Rm) |
980 - 1200 MPa |
| (A80) |
≥ 13 % |
| |
|
| und |
| |
|
| Rm × A80 ≥ 13 000 |
MPa% |
10. Hochfestes kaltgewalztes Stahlblech nach einem der Ansprüche 1-6, wobei der Stahl
umfasst
| C |
0,15 - 0,20 |
| Mn |
1,9 - 2,5 |
| Si |
0,5 - 0,9 |
| Cr |
0,3 - 0,8 |
| |
|
| wahlweise |
| Si + Cr |
1,0 - 1,4 |
| Nb |
0,01 - 0,03 |
und wobei das Stahlblech mindestens eine der folgenden Anforderungen erfüllt
| (Rm) |
980 - 1200 MPa |
| (A80) |
≥ 13 % |
| |
|
| und |
| |
|
| Rm × A80 |
≥ 13 000 MPa%. |
11. Hochfestes kaltgewalztes Stahlblech nach einem der Ansprüche 1-6, wobei der Stahl
umfasst:
| C |
0,18 - 0,22 |
| Mn |
1,7 - 2,5, bevorzugt 1,7 - 2,3 |
| Si |
0,5 - 0,9 |
| Cr |
0,4 - 0,8 |
| wahlweise |
|
| Si + Cr |
1,1 - 1,4 |
| Nb |
0,01 - 0,03, bevorzugt 0,02 - 0,03 |
und wobei das Stahlblech mindestens eine der folgenden Anforderungen erfüllt:
| (Rm) |
1000 - 1400 MPa, bevorzugt 1180 - 1400 MPa |
| (A80) |
≥ 10 %, bevorzugt ≥ 14 % |
| |
|
| und |
|
| |
|
| Rm × A80 |
≥ 12 000 MPa%, bevorzugt ≥ 15 000 MPa% |
12. Hochfestes kaltgewalztes Stahlblech nach einem der vorhergehenden Ansprüche, wobei
das Verhältnis Mn + 3 × Cr ≤ 3,8, bevorzugt ≤ 3,6, ganz besonders bevorzugt ≤ 3,4
ist.
13. Hochfestes kaltgewalztes Stahlblech nach einem der vorhergehenden Ansprüche, wobei
das Verhältnis von Si/Cr = 1,5 - 3, bevorzugt 1,7 - 3, besonders bevorzugt 1,7 - 2,8.
14. Hochfestes kaltgewalztes Stahlblech nach einem der vorhergehenden Ansprüche, das nicht
mit einer feuerverzinkten Schicht versehen ist.
15. Verfahren zum Herstellen eines hochfesten kaltgewalzten Stahlblechs nach einem der
vorhergehenden Ansprüche, das die folgenden Schritte umfasst:
a) Bereitstellen eines kaltgewalzten Stahlstreifens, der eine Zusammensetzung nach einem
der vorhergehenden Ansprüche aufweist,
b) Glühen des kaltgewalzten Stahlstreifens bei deiner Glühtemperatur Tan zwischen 760 °C und Ac3 +20 °C, gefolgt von
c) Kühlen des kaltgewalzten Stahlstreifens von der Glühtemperatur Tan auf eine Kühlstopptemperatur vom schnellen Kühlen TRJ zwischen 300 °C und 475 °C, bevorzugt 350 und 475 °C mit einer Abkühlrate, die ausreicht,
um Peralitbildung zu vermeiden, gefolgt von
d) Zwischenstufenvergüten des kaltgewalzten Stahlstreifens bei einer Überalterungs-/Zwischenstufenvergütungstemperatur
TOA zwischen 320 °C und 480 °C, gefolgt von
e) Abkühlen des kaltgewalzten Stahlstreifens auf Umgebungstemperatur.
16. Verfahren zum Herstellen eines hochfesten kaltgewalzten Stahlblechs nach Anspruch
15, wobei die Zwischenstufenvergütung in Schritt d) bei einer Überalterungs-/Zwischenstufenvergütungstemperatur
TOA zwischen 375 und 475 °C über einen Zeitraum von ≤ 200 sec durchgeführt wird.
17. Verfahren zum Herstellen eines hochfesten kaltgewalzten Stahlblechs nach Anspruch
15, wobei die Zwischenstufenvergütung in Schritt d) bei einer Überalterungs-/Zwischenstufenvergütungstemperatur
TOA zwischen 350 und 450 °C über einen Zeitraum von ≥ 200 sec durchgeführt wird.
1. Une tôle d'acier laminée à froid à haute résistance comprenant :
a) une composition constituée des éléments suivants (en % en poids) :
| C |
0,15 - 0,3 |
| Mn |
1,4 - 2,7 |
| Si |
0,4 - 0,9 |
| Cr |
0,1 - 0,9 |
| Si+ Cr |
0,9 - 1,4 |
| Si/Cr |
1 - 5 |
| Si |
> 10 Al |
| Al |
≤ 0,1 |
| Nb |
< 0,1 |
| Mo |
< 0,3 |
| Ti |
< 0,2 |
| V |
< 0,2 |
| Cu |
< 0,5 |
| Ni |
< 0,5 |
| S |
≤ 0,01 |
| P |
≤ 0,02 |
| N |
≤ 0,02 |
| B |
< 0,005 |
| Ca |
< 0,005 |
| Mg |
< 0,005 |
| REM |
< 0,005 |
le reste étant du Fe, à l'exception des impuretés,
b) une microstructure multiphase composée de (% en volume)
| austénite retenue |
5 - 22 |
| bainite + bainite ferritique + martensite trempée |
≤ 80 |
| ferrite polygonale |
> 50 |
c) les propriétés mécaniques suivantes :
| résistance à la traction (Rm) |
≥ 780 |
MPa |
| un allongement (A80) |
≥ 12 |
%, de préférence ≥ 13 %, |
et remplissant facultativement la condition suivante
2. Une tôle d'acier laminée à froid à haute résistance selon la revendication 1, remplissant
au moins une des conditions suivantes :
| C |
0,15 - 0,25 |
| Mn |
1,5 - 2,5, de préférence 1,5 - 2,3, de façon encore préférée 1,7 à 2,3 |
| Si |
0,4 - 0,9 |
| Cr |
0,2 - 0,6 |
3. Une tôle d'acier laminée à froid à haute résistance selon l'une des revendications
précédentes remplissant au moins une des conditions suivantes :
| Al |
≤ 0,06 |
| Nb |
0,02 - 0,08 |
| Mo |
0,05 - 0,3 |
| Ti |
0,02 - 0,08 |
| V |
0,02 - 0,1 |
| Cu |
0,05 - 0,4 |
| Ni |
0,05 - 0,4 |
| B |
0,0002 - 0,003 |
| Ca |
0,0005 - 0,005 |
| Mg |
0,0005 - 0,005 |
| REM |
0,0005 - 0,005 |
4. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
précédentes remplissant au moins l'une des conditions suivantes :
| S |
≤ 0,01 |
de préférence ≤ 0,003 |
| P |
≤ 0,02 |
de préférence ≤ 0,01 |
| N |
≤ 0,02 |
de préférence ≤ 0,005 |
| Ti |
> 3,4N |
|
5. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
précédentes, dans laquelle la taille maximale de l'austénite retenue (RA) est ≤ 6
µm, de préférence ≤ 3 µm.
6. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
précédentes, dans laquelle la microstructure multiphase comprend (en % en volume)
| austénite retenue |
6 - 16 |
| bainite + bainite ferritique + martensite revenue |
≤ 80 |
7. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
précédentes, dans laquelle l'acier comprend :
| C |
0,17 - 0,23 |
| Mn |
1,5 - 1,8, de préférence 1,5 - 1,7 |
| Si |
0,4 - 0,8, de préférence 0,4 - 0,7 |
| Cr |
0,3 - 0,7, de préférence 0,4 - 0,7 |
| |
|
| facultativement |
|
| Nb |
0,01 - 0,03, de préférence 0,02 - 0,03 |
et la tôle d'acier remplissant au moins une des exigences suivantes :
| (Rm) |
780 - 1200 |
MPa |
| (A80) |
≥ 15 |
% |
| |
|
|
| et |
|
|
| |
|
|
| Rm × A80 |
≥ 16000 |
MPa% |
8. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
1 à 6, dans laquelle l'acier comprend :
| C |
0,15 - 0,17 |
| Mn |
1,7 - 2,3 |
| Si |
0,5 - 0,9 |
| Cr |
0,3 - 0,7 |
| facultativement |
|
| Nb |
0,01 - 0,03, de préférence 0,02 - 0,03 |
et la tôle d'acier remplissant au moins une des exigences suivantes :
| (Rm) |
780 - 1200 MPa |
| (A80) |
≥ 15 % |
| |
|
| et |
|
| |
|
| Rm × A80 |
≥ 14000 MPa%, de préférence ≥ 16000 MPa% |
9. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
1 à 6, dans laquelle l'acier comprend :
| C |
0,18 - 0,22 |
| Mn |
1,7 - 2,3 |
| Si |
0,5 - 0,9 |
| Cr |
0,3 - 0,8 |
| |
|
| facultativement |
|
| Si+ Cr |
1,0 - 1,4 |
| Nb |
0,01 - 0,03 |
et la tôle d'acier remplissant au moins une des exigences suivantes
| (Rm) |
980 - 1200 |
MPa |
| (A80) |
≥ 13 |
% |
| |
|
|
| et |
|
|
| |
|
|
| Rm × A80 ~ |
≥ 13000 |
MPa% |
10. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
1 à 6, dans laquelle l'acier comprend
| C |
0,15 - 0,20 |
| Mn |
1,9 - 2,5 |
| Si |
0,5 - 0,9 |
| Cr |
0,3 - 0,8 |
| |
|
| facultativement |
|
| Si+ Cr |
1,0 - 1.4 |
| Nb |
0,01 - 0,03 |
et la tôle d'acier remplissant au moins une des exigences suivantes
| (Rm) |
980 - 1200 |
MPa |
| (A80) |
≥ 13 |
% |
| |
|
|
| et |
|
|
| |
|
|
| Rm × A80 |
≥ 13000 |
MPa% |
11. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
1 à 6, dans laquelle l'acier comprend :
| C |
0,18 - 0,22 |
|
| Mn |
1,7 - 2,5 |
de préférence 1,7 - 2,3 |
| Si |
0,5 - 0,9 |
|
| Cr |
0,4 - 0,8 |
|
| |
|
|
| facultativement |
|
|
| Si+ Cr |
1,1 - 1,4 |
|
| Nb |
0,01 - 0,03, |
de préférence 0,02 - 0,03 |
et la tôle d'acier remplissant au moins une des exigences suivantes
| (Rm) |
1000 - 1400 |
Mpa |
de préférence 1180 - 1400 Mpa |
| (A80) |
≥ 10 |
% |
de préférence ≥ 14 % |
| |
|
|
|
| et |
|
|
|
| |
|
|
|
| Rm × A80 |
≥ 12000 |
MPa% |
de préférence ≥ 15000 MPa% |
12. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
précédentes dans laquelle le rapport Mn + 3 × Cr ≤ 3,8, de préférence ≤ 3,6, de façon
la plus préférée ≤ 3.4.
13. Une tôle d'acier laminée à froid à haute résistance selon l'une quelconque des revendications
précédentes, dans laquelle le rapport Si/Cr= 1,5 - 3, de façon préférée 1,7 - 3, de
façon encore préférée 1,7 - 2,8.
14. Une tôle d'acier laminée à froid à haute résistance selon l'une des revendications
précédentes, qui n'est pas munie d'une couche de galvanisation par immersion à chaud.
15. Un procédé de fabrication d'une tôle d'acier laminée à froid à haute résistance selon
l'une quelconque des revendications précédentes comprenant les étapes consistant à
:
a) prévoir un feuillard laminé à froid ayant une composition telle que définie dans
l'une des revendications précédentes,
b) opérer un recuit du feuillard laminé à froid à une température de recuit, Tan, comprise entre 760°C et Ac3 +20°C, suivi par
c) refroidir le feuillard laminé à froid depuis la température de recuit, Tan, à une température d'arrêt de refroidissement du refroidissement rapide, TRJ, c'est-à-dire comprise entre 300 et 475°C, de préférence entre 350 et 475°C, à une
vitesse de refroidissement qui est suffisante pour éviter la formation de perlite,
suivi par
d) austempériser le feuillard laminé à froid à une température de sur-vieillissement/transformation
bainitique, T0A, qui est comprise entre 320 et 480°C, suivi par
e) refroidir le feuillard laminé à froid à température ambiante.
16. Un procédé de fabrication d'une tôle d'acier laminée à froid à haute résistance selon
la revendication 15, dans lequel l'austempérisation à l'étape d) est effectuée à une
température de sur-vieillissement/transformation bainitique, TOA, qui est comprise entre 375 et 475°C pendant une durée ≤ 200 s.
17. Un procédé de fabrication d'une tôle d'acier laminée à froid à haute résistance selon
la revendication 16, dans lequel l'austempérisation à l'étape d) est effectuée à une
température de sur-vieillissement / transformation bainitique, TOA, qui est comprise entre 350 et 450°C pendant une durée ≥ 200 s.