(11) EP 2 837 469 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

18.02.2015 Bulletin 2015/08

(51) Int Cl.:

B25B 27/02 (2006.01)

B25B 27/14 (2006.01)

(21) Application number: 13180740.6

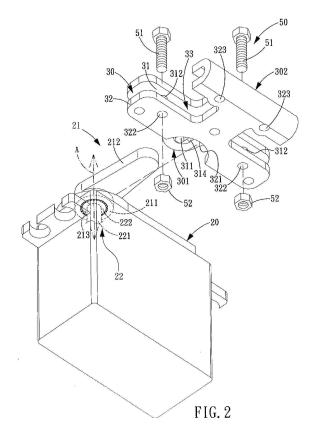
(22) Date of filing: 16.08.2013

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME


(71) Applicant: Model Research International Co., Ltd. Taipei (TW)

(72) Inventor: Cheng, Bing Taipei (TW)

(74) Representative: Karakatsanis, Georgios Haft Karakatsanis Patentanwaltskanzlei Dietlindenstrasse 18 80802 München (DE)

(54) Removal tool for servo horn with spline-shaft coupling

(57)A removal tool to remove a metal servo horn (21) in an efficient way by utilizing the lifting force to separate the servo horn (21) from a servo output shaft (22) when screw (23) is rotated counter-clockwise and hits against the concave of lower surface of an active-lifting portion (31). Clamping force provided by two fastening members (50) combines the removal tool and servo horn (21) into one integrated unit to avoid the distortion of open end (301) of the removal tool when lifting force (τ) is greater than rigidity of the removal tool. When a lifting force (τ) for removing the integrated unit is applied in direction opposite to installing direction of servo horn (21), it overcomes the friction between the inner splines (213) of servo horn (21) and the outer splines (222) of servo output shaft (22) then separates both splines (213, 222). The removal of the servo horn (21) from the servo output shaft (22) is achieved.

15

25

30

40

50

Description

FIELD OF THE INVENTION

[0001] The present invention relates to the removal of servo horns used in radio control models, and more particularly to a device for the removal of machining parts coupled by spline shafts such as servos with servo horns.

1

DESCRIPTION OF THE PRIOR ART

[0002] Fig. 1 shows the joining structure of a conventional servo 10 and its servo horn 11. The servo horn 11 has an extended arm with an inner spline 111 inside of the connecting boss and an opening 112 in the center of the inner spline 111. An outer spline shaft 12 is an extended integration of a shaft portion 121 with the outer spline 122 to match the inner spline 111. A screw 13 is tightened into a threaded hole 123 to secure the servo horn 11 to the outer spline shaft 12. Then servo horn 11 is engaged to the outer spline shaft 12 securely.

[0003] The output torque of the servo 10 is carried out by the engagement of the outer spline shaft 12 and the servo horn 11. The outer spline shaft 12 and the servo horn 11 are normally made of metal to obtain the maximum strength of the engagement and also improve the output torque. However, the requirement of tight-fit of spline coupling also makes it hard to separate the servo horn 11 and the outer spline shaft 12.

SUMMARY OF THE INVENTION

[0004] The primary object of the present invention is to provide a device for the removal of a metal servo horn, which has inner splines mounted on the outer splines of the servo output gear.

[0005] The present invention comprises an open end and a close end with several drilled or tapped holes on the bottom plate and drilled hole on the upper plate of the open end for fasteners to clamp the servo horn. The lifting force, created by the counter-clockwise rotation of the screw when the screw hits against the lower surface of the upper plate, applied on the lower plate of the front open end will separate the servo horn from the servo output shaft effectively when the clamping mechanism integrates the present invention and servo horn into one unit. This clamping force is necessary when the separating force of servo horn and servo output shaft required is much greater than the rigidity of the present invention formed by the open and close ends.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006]

Fig. 1 is an exploded view of a conventional servo; Fig. 2 is an exploded view of the present invention with a conventional servo; Fig. 3 is an assembly view of the present invention and a conventional servo;

Fig. 4 is a top view of Fig. 2;

Fig. 5 is a cross sectional view taken along the line 5-5 of Fig. 4;

Fig. 6 is a cross sectional view taken along the line 6-6 of Fig. 4;

Fig. 7 is an operational view of Fig. 6;

Fig. 8 is a cross sectional view showing that the lifting member in accordance with the present invention is used to remove the servo horn;

Fig. 9 is a top view showing that the lifting member in accordance with the present invention is equipped with gaskets to fill the gap of the open end when clamping force is carried out by two fastening members;

Fig. 10 is a cross sectional view showing that the gaskets are disposed between the active-lifting portion and passive-lifting portion of the lifting member; Fig. 11 is a perspective view in accordance with the present invention showing the lifting member with two arcs for two passive-lifting surfaces in passive-lifting portion:

Fig. 12 is a perspective view in accordance with the present invention showing the passive-lifting portion with one arc:

Fig. 13 is a perspective view in accordance with the present invention showing the lifting member with one additional closed ends; and

Fig. 14 is another perspective view in accordance with the present invention showing the lifting member with part of the opening end fixed by one fastening member to act like one additional closed end.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0007] Referring to Figs. 2-6, a device for servo horn removal tool (SRT) in accordance with the present invention comprises a lifting member 30 and two fastening members 50 and is used to remove the servo horn 21 from the servo 20.

[0008] As shown in Figs. 2 and 6, the servo 20 comprises an outer spline shaft 22 engages with the inner spline 111 of the servo horn 21, which is secured by a screw 23. The servo horn 21 is one end thereof with a connecting boss 211.

[0009] A perpendicular direction of the connecting boss 211 is defined as an axial direction X. The connecting boss 211 is formed with an inner spline 213 (in the form of an internal spline gear) and an opening 214 in the bottom of the inner spline 213.

[0010] As shown in Figs. 4 and 6, the output shaft 221 of the outer spline shaft 22 is integrated with the servo 20. The outer spline shaft 22 engages with the inner spline 213 of the servo horn 21. The output shaft 221 has a threaded hole 223 which aligns with the opening 214 of the servo horn 21. The screw 23 includes a head por-

tion 231 and a body 232. The body 232 of the screw 23 goes through the opening 214 of the servo horn 21 and turns into the threaded hole 223 of the outer spline shaft 22.

[0011] The lifting member 30, as shown in Figs. 2 and 3, includes an open end 301 and a closed end 302. The close end 302 extends toward the open end 301 to form an active-lifting portion 31 and a passive-lifting portion 32. The active-lifting portion 31 is formed as the upper plate of the open end 301 with an elongated hole 311 and concave area 314, and the passive-lifting portion 32 is formed as the lower plate of the open end 301 with an arc 321 under the elongated hole 311. A space 33 is formed between the passive-lifting portion 32 and the active-lifting portion 31 for holding of the assembling portion 212 of the servo horn 21. When the connecting boss 211 of the servo horn 21 contacts the edge of the arc 321 of the passive-lifting portion 32, the head portion 231 of the screw 23 is coincident closely with the lower edge of the elongated hole 311 of the active-lifting section 31. The lower edge of the elongated hole 311 of the activelifting portion 31 provides a concave 314 for seating the head portion 231 of the screw 23.

[0012] When two fastening members 50 are clamping the active-lifting portion 31 and the passive-lifting portion 32 in both sides of the lifting member 30, the servo horn 21 fits between the space 33 and is integrated with the active-lifting portion 31 and the passive-lifting portion 32 when it is clamped.

[0013] As shown in Figs. 2 and 5, the fastening members 50 include a bolt 51 and a nut 52. Two positioning holes 312 in both ends of the active-lifting portion 31 are aligned with two positioning holes 322 of the passive-lifting portion 32. The bolts 51 and the nuts 52 combine the active-lifting portion 31, the passive-lifting portion 32 and the servo horn 21 into one integrated unit when they are tightened so there is no gap between these three members. The closed end 302 provides the transmitting power during lifting process, which is executed by the lower surface of the active-lifting portion 31 and upper surface around the edge of arc 321 against the upper surface and lower surfaces of the servo horn 21, respectively. The integration of the lifting member 30 and the servo horn 21 is then achieved.

[0014] As shown in Fig. 6, when the screw 23 is rotated counter-clockwise by a screwdriver A, it will move upward in the axial direction X and hit against the concave 314 of the lifting member 30 to lift the integrated members 30 and the servo horn 21 away from outer spline shaft 22 then gradually separate the inner spline 213 and the gear 222.

[0015] Referring then to Figs. 7 and 8, when a rotating force F is applied on the screwdriver A to loosen the screw 23, an upward force τ will be produced in the axial direction X to move the screw 23 upward in the axial direction X. At this moment, the active-lifting portion 31 of the lifting member 30 is lifted upward by the screw 23, and the upward push force is then transmitted to the passive-

lifting portion 32 via the closed end 302. The passivelifting portion 32 then lifts the assembling portion 212 of the servo horn 21 upward and disengages the inner spline 213 of the servo horn 21 from the outer spline shaft 22. When the lifting force τ is greater than the friction between the inner spline 213 and the outer spline shaft 22, the servo horn 21 of the servo 20 is lifted upward and separated from the outer spline shaft 22 to avoid the damage to the servo horn 21 and servo 20 Furthermore, with the lifting force τ produced by the rotating force F, the servo horn 21 can be easily separated from the outer spline shaft 22 in an efficient way simply by rotating the screw 23 counter clockwise. Besides, the assembling portion 212 of the servo horn 21 can be different shapes to meet with different applications. As shown in Fig. 2, for example, the servo horn 21 has the form of a rotating arm, and the assembling portion 212 has an elongated planar structure. Also as shown in Fig. 9, the servo horn 21 has a disc shape and the assembling portion 212 is also disc-shaped.

[0016] It is important to emphasize when two fastening members 50 are tightened through the active-lifting portion 31 and the passive-lifting portion 32 of the lifting member 30 to clamp the servo horn 21, the lifting member 30 and the servo horn 21 are integrated as one piece. Therefore, when the screw 23 is rotated counter clockwise and hits against the lower edge of the elongated hole of the active-lifting portion 31, the lifting force is transmitted via the closed end 302 and is applied to the upper edge of the arc 321 of the lifting member 30 then lifts the integrated unit of the lifting member 30 and the servo horn 21 to separate the inner spline 213 of the servo horn 21 from the outer spline shaft 22. Gaskets 40 are necessary when there is a gap between the servo horn 21, the active- lifting portion 31 and the passivelifting portion 32. Insertion of proper thickness of gaskets 40 must be done before tightening two fastening members 50 to clamp the servo horn 21 and the lifting member 30 together to avoid the distortion of the lifting member 30 at the opening end when the lifting force is greater than the rigidity of the lifting member 30. Gaskets 40 can be fixed by any holes provided by the lifting member 30 and fastening members 50.

[0017] The body portions 42 of the respective gaskets 40 are disposed between the active-lifting portion 31 of the lifting member 30 and the assembling portion 212 of the servo horn 21 by through holes 41. The respective gaskets 40 are aligned with the positioning holes 312, 322 and the fixing holes 313, 323 of the lifting member 30, respectively. The fastening members 50 go through the positioning holes 312, 322 of the lifting member 30 and one of the through holes 41 of the respective gaskets 40 to fix the lifting member 30. Then two pivot members 60 are inserted through the fixing holes 313, 323 of the lifting member 30 and another through holes 41 of the respective gaskets 40. In this embodiment, the pivot member 60 comprises a bolt 61 and a nut 62.

[0018] For a better understanding of the function and

40

20

25

30

35

40

45

50

55

operation of different versions of the present invention, reference should be made to Figs. 11-14.

[0019] Referring to Fig. 11, the closed end 302 is not only acting as the connecting bend for the active-lifting portion 31 and the passive-lifting portion 32 but also provides the solidly-formed clamping area when the servo horn 21 is seated on the upper edge of the arc 324. It eliminates the fasteners like the fastening members 50 when the servo horn 21 is clamped between the active-lifting portion 31 and the passive-lifting portion 32 with or without gasket 40. The elongated hole 311 of the active-lifting portion 31 is to receive the screw 23 when the lifting force is created during counter clockwise rotation of the screw 23.

[0020] Fig. 12 shows the simplified version of the lifting member 30.

[0021] Referring to Fig. 13, the lifting member 30 has an open end 303 in one side and the second closed end 304 in the opposite side. The function of the second closed end 304 is the same as closed end 302 so one fastening member 50 can be eliminated. One fastening member 50 in the opposite side of the second closed end 304 can provide clamping force with the rigidity of the second closed end 304 when the servo horn 21 is clamped.

[0022] As shown in Fig. 14, the second closed end 304 of the lifting member 30 is formed by a sleeve 35 which is clamped between the active-lifting portion 31 and the passive-lifting section 32 by a fastening member 50. The sleeve 35 has a central hole 351 aligned with the positioning holes 312, 322 of the lifting member 30 on closed end 304 then bolt 51 of the fastening member 50 can go through the sleeve 35 and tighten the active-lifting portion 31 and the passive-lifting portion 32 with the nut 52 to form a solid closed-end structure. The result is the same as Fig. 13.

Claims

 A removal tool for removing a metal servo horn (21) from a spline-shaft (22) of a servo (20), characterized in that the removal tool comprises:

a lifting member (30) consisting of an open end (301) with one upper plate and one lower plate connected by a closed end (302), the upper plate of the open end (301) acting as an active-lifting portion (31) with one elongated hole (311) and being connected, via the closed end (302), to the lower plate which acts as a passive-lifting portion (32) and is equipped with one arc (321) corresponding to the elongated hole (311) of the active-lifting portion (31) to provide a lifting area for the servo horn (21) to seat; and two fastening members (50) clamping the active-lifting portion (31), the servo horn (21) and the passive-lifting portion (32) into one integrat-

ed unit with gaskets (40) when necessary; wherein the elongated hole (311) of the active-lifting portion (31) is formed at the open end (301), and a lifting force (τ) is created when a screw (23) on the servo horn (21) contacts a concaved lower edge of the elongated hole (311) and turns counter clockwise.

- 2. The removal tool as claimed in claim 1, wherein the servo (20) comprises an output shaft (22) with outer splines (222) and adapts to different servo horns (21) with inner splines (213), the servo horn (21) is formed with a connecting boss (211) and an extension arm (212) in radial direction, the connecting boss (211) has inner splines (213) to match the outer splines (222) of the output shaft (22) of the servo (20), and threads (223) inside of the servo output shaft (22) secure the servo horn (21) to the servo output shaft (22) by tightening a screw (23).
- 3. The removal tool as claimed in claim 1, wherein the active-lifting portion (31) and passive-lifting portion (32) are connected by two fastening members (50), the passive-lifting portion (32) has two positioning holes (322) at both sides thereof, and the active-lifting portion (31) are also formed with two positioning holes (312) aligned with the positioning holes (322) of the passive-lifting portion (32), the fastening members (50) combine the passive-lifting portion (32), the active-lifting portion (31) and the servo horn (21) into one integrated unit by nuts (52) and bolts (51).
- 4. The removal tool as claimed in claim 1, wherein the servo horn (21) is clamped between the active-lifting portion (31) and the passive-lifting portion (32) by two fastening members (50) tightening through two aligned positioning holes (312,322) at both sides of both lifting portions (31,32), when there is a gap (33) between these two lifting portions (31,32) and servo horn (21), gaskets (50) are disposed between them to fill the gap (33) to help the fastening members (50) clamp these three members into one rigid integrated unit, the rigidity is a must when the lifting force (τ) required is greater than the friction between the inner splines (213) of the servo horn (21) and outer splines (222) of the servo output spline shaft (22).
- 5. The removal tool as claimed in claim 1, wherein each of the fastening members (50) includes a bolt (51) and a nut (52), two pivot members (60) are inserted through fixing holes (313,323) of the lifting member (30), and each of the pivot member (60) comprises a bolt (61) and a nut (62).
- **6.** The removal tool as claimed in claim 1, wherein the lifting force (τ) transfers from the active-lifting portion (31) to the passive-lifting portion (32) via the closed

15

20

25

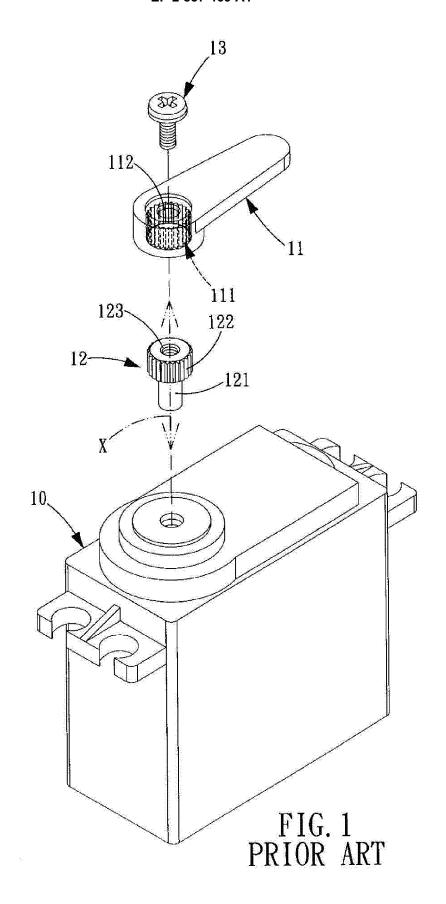
30

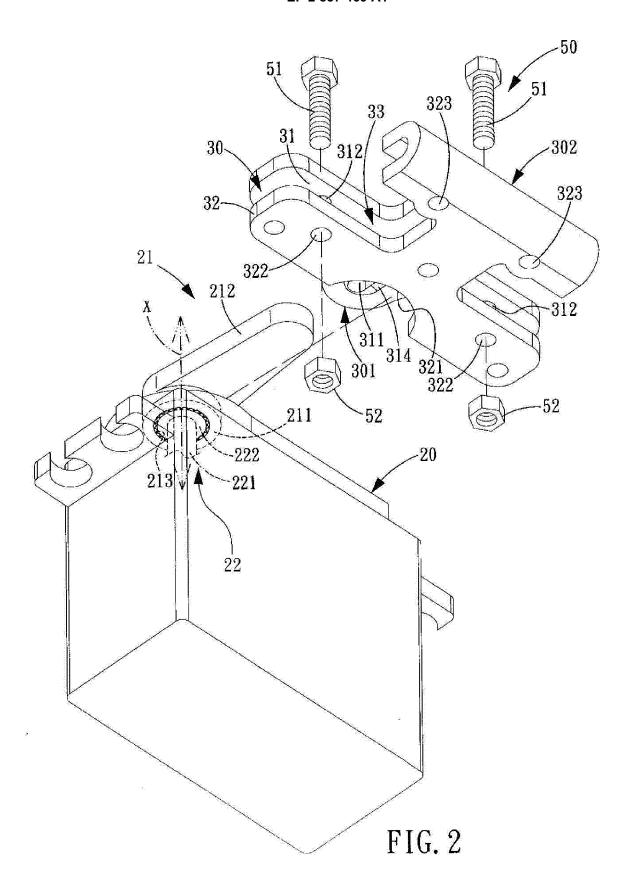
35

40

45

end (302) and transfers through the direct contact of the arc (321) of the passive-lifting portion (32) next to the connecting boss (211) of the servo horn (21) with the upper edge of the arc (321) in the passivelifting portion (32).


7. The removal tool as claimed in claim 1, wherein the lifting force (τ) separates the inner splines (213) of the servo horn (21) and the outer splines (222) of the servo outer spline shaft (22) when the lifting force (τ) overcomes the friction between the inner splines (213) and outer splines (222), the removal of the metal servo horn (21) is achieved without damaging any part of the servo (20) and the servo horn (21).


8. The removal tool as claimed in claim 1, wherein a sleeve (35) is clamped between the active-lifting portion (31) and the passive-lifting portion (32) by a bolt (52).

9. The removal tool as claimed 1, wherein the screw (23) on the servo horn (21) hits against the bottom of the elongated hole (311) when turns counter clockwise and lifts the removal tool and servo horn (21) upward to separate the inner splines (213) of the servo horn (21) and outer splines (222) of the outer spline shaft (22).

55

50

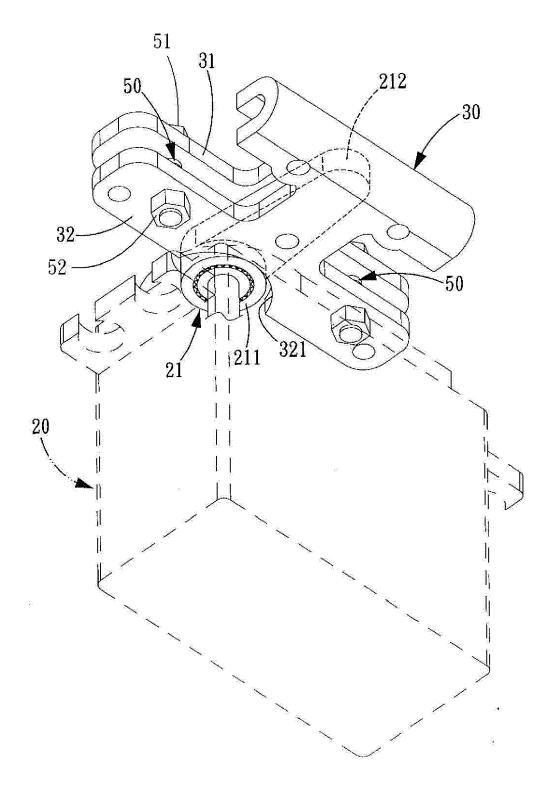


FIG. 3

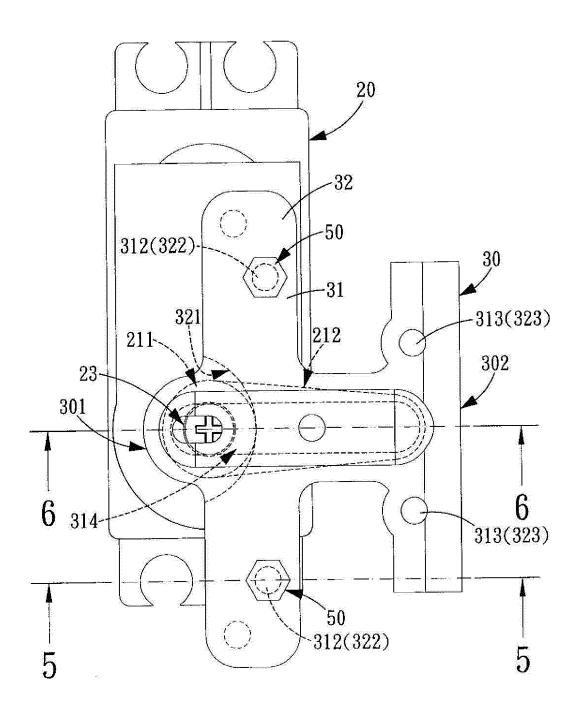


FIG. 4

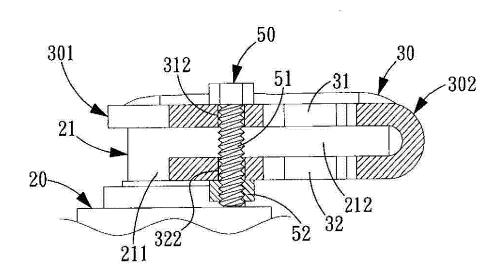


FIG. 5

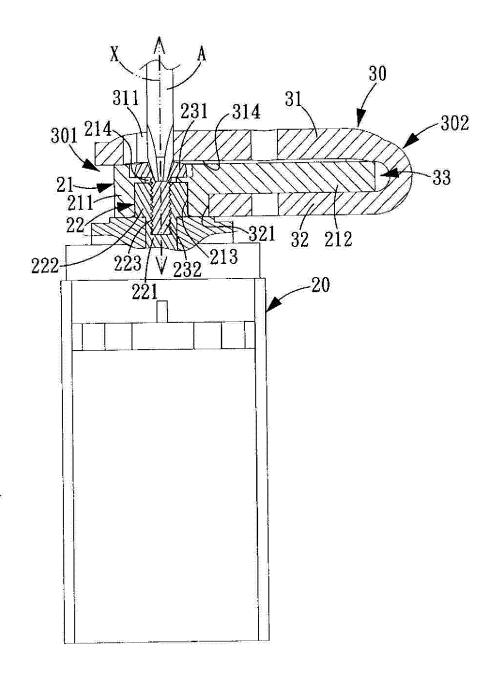


FIG. 6

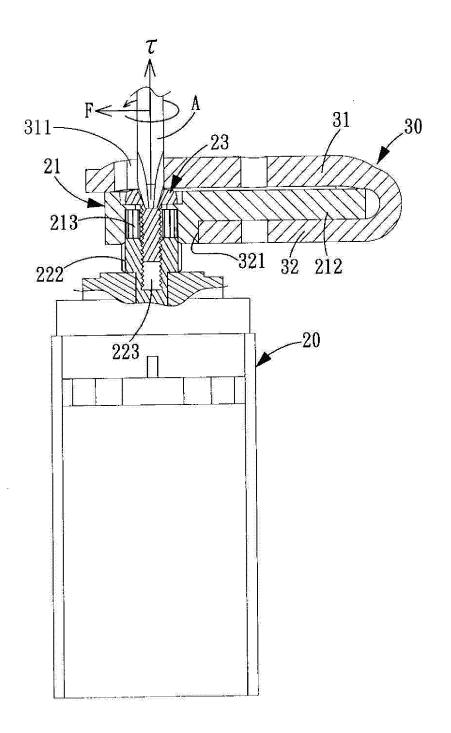


FIG. 7

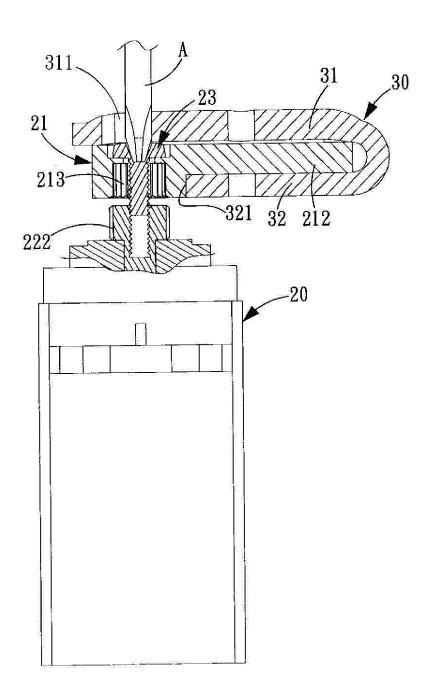


FIG. 8

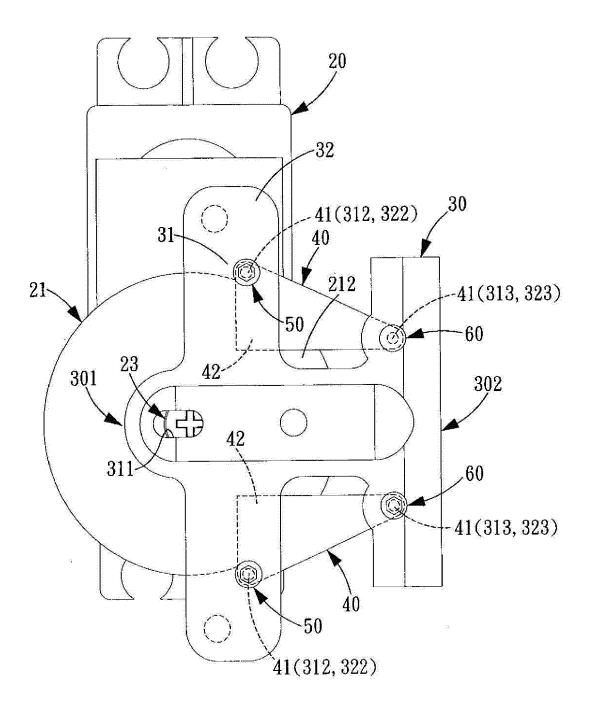


FIG. 9

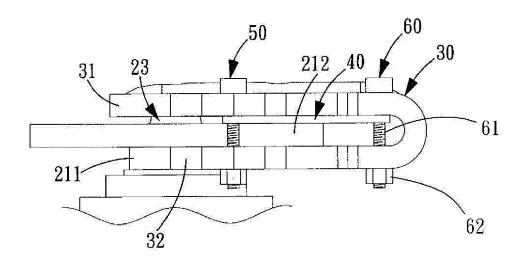


FIG. 10

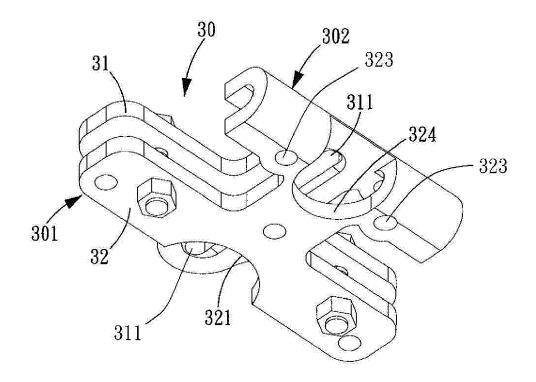


FIG. 11

FIG. 12

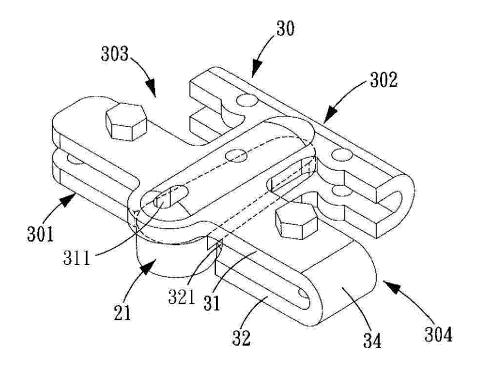
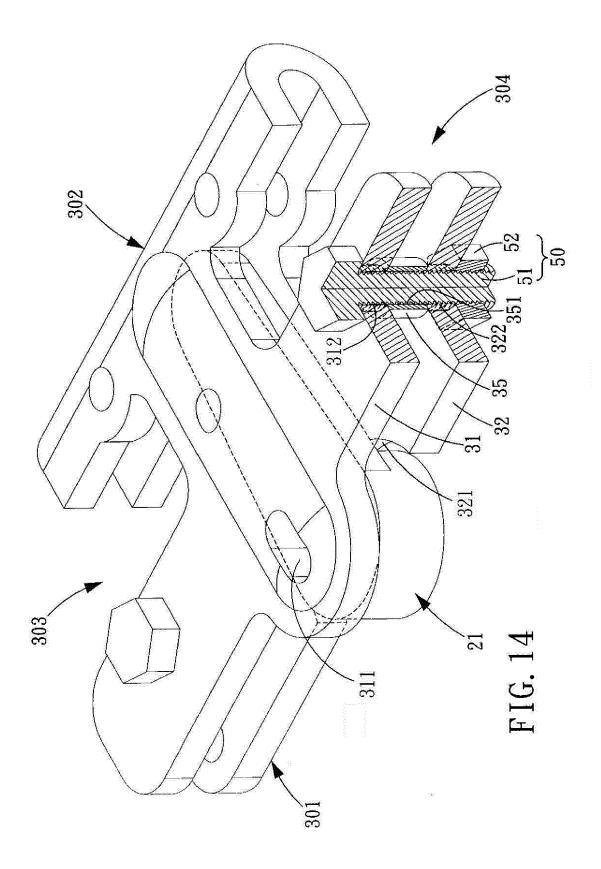



FIG. 13

EUROPEAN SEARCH REPORT

Application Number

EP 13 18 0740

Catagoni	Citation of document with in	dication, where appropriate,	Relevant	CLASSIFICATION OF THE	
Category	of relevant passa		to claim	APPLICATION (IPC)	
Α	US 5 369 863 A (HAS AL) 6 December 1994 * abstract *	ENBERG MARK J [US] ET (1994-12-06)	1	INV. B25B27/02 B25B27/14	
Α	US 2007/067985 A1 (CHIH YUAN [TW]) 29 * abstract *	HSIAO CHIH Y [TW] HSIAO March 2007 (2007-03-29)	1		
A	US 5 177 851 A (SKO 12 January 1993 (19 * abstract *		1		
				TECHNICAL FIELDS SEARCHED (IPC)	
				B25B	
	The present search report has be	peen drawn up for all claims Date of completion of the search	-	- Supplier -	
Place of search The Hague		· ·		Pothmann, Johannes	
X : part Y : part docu A : tech	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anothument of the same category inological backgroundwritten disclosure	T : theory or principl E : earlier patent do after the filing dat er D : document cited i L : document cited i	e underlying the i cument, but publi te n the application or other reasons	nvention shed on, or	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 13 18 0740

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-01-2014

	Patent document	Publication	Patent family	Publication
	cited in search report	date	member(s)	date
	US 5369863 A	06-12-1994	NONE	
5	US 2007067985 A	29-03-2007	TW M285513 U US 2007067985 A1	11-01-2006 29-03-2007
	US 5177851 A	12-01-1993	CA 2082900 A1 US 5177851 A	09-07-1993 12-01-1993
•				
5				
)				
•				
5				
0				
5				
0				
200	Section 1			

55

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82