(11) **EP 2 840 649 A1**

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

25.02.2015 Bulletin 2015/09

(51) Int Cl.:

H01Q 1/48 (2006.01)

(21) Numéro de dépôt: 14180997.0

(22) Date de dépôt: 14.08.2014

(84) Etats contractants désignés:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Etats d'extension désignés:

BA ME

(30) Priorité: 20.08.2013 FR 1358090

(71) Demandeur: Commissariat à l'Énergie Atomique et aux Énergies Alternatives

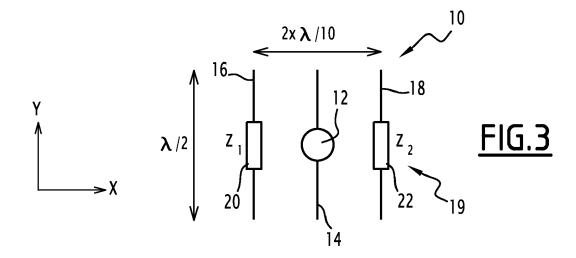
75015 Paris (FR)

(72) Inventeurs:

 Belmkaddem, Kawtar 38000 GRENOBLE (FR)

 Rudant, Lionel 38000 GRENOBLE (FR)

(74) Mandataire: Blot, Philippe Robert Emile


Cabinet Lavoix

2, place d'Estienne d'Orves 75441 Paris Cedex 09 (FR)

(54) Réseau antennaire

- (57) L'invention se rapporte à un réseau antennaire (10) comprenant :
- au moins une antenne (14) primaire,
- au moins une antenne (16, 18) secondaire,
- au moins une charge (20,22) associée à une antenne

secondaire (16, 18), la charge (20, 22) comprenant deux composants distincts, un premier composant étant une résistance et un deuxième composant étant choisi parmi une inductance ou une capacité.

EP 2 840 649 A1

Description

15

20

25

30

35

40

50

55

[0001] La présente invention concerne un procédé de détermination d'un réseau antennaire. La présente invention se rapporte également à un réseau antennaire.

[0002] L'invention s'applique au domaine des réseaux antennaires. Pour de nombreuses applications, un rayonnement directif est souhaité. A titre d'illustration, la détection et la communication avec une cible requièrent un rayonnement focalisé dans une direction privilégiée. Eviter la pollution électromagnétique en dehors des zones utiles est un autre exemple d'application impliquant un rayonnement relativement directif.

[0003] Pour augmenter la directivité d'un réseau antennaire, il est connu de l'état de la technique d'utiliser des réflecteurs tels des paraboles, de mettre en réseau des antennes ou d'associer des antennes couplées comme pour les antennes de type Yagi-Uda.

[0004] Toutefois, ces solutions augmentent fortement la taille du réseau antennaire. En effet, la directivité d'une

antenne à réflecteur est classiquement estimée par $D=\frac{4\pi}{\lambda^2}A$ où A est la surface projetée visible selon la direction

principale de rayonnement. Notamment, cela signifie que pour un disque réflecteur de rayon R, $D = \frac{4\pi^2 R^2}{\lambda^2}$.

[0005] Il est également connu d'exciter conjointement un mode de rayonnement de type transverse électrique (TE) et un mode magnétique (TM) au sein d'un même réseau antennaire. Une structure de réseau antennaire supportant un tel fonctionnement est appelée une source de Huygens. Par exemple, dans le document FR-A-2 949 611, il est proposé une structure à base d'un résonateur constitué d'une hélice conductrice en anneau réalisant une source de Huygens avec une taille d'antenne réduite.

[0006] Toutefois, le niveau de directivité maximum atteignable avec ce type de structure de réseau antennaire est limité par la directivité de la source de Huygens idéale, qui est de 4,7 dBi. L'unité dBi signifie « décibel isotrope ». De manière générale, la directivité d'une antenne s'exprime normalement en dBi, en prenant pour référence une antenne isotrope, c'est-à-dire une antenne fictive de même puissance totale rayonnée qui rayonne uniformément dans toutes les directions avec un rayonnement de 0 dBi.

[0007] Il existe donc un besoin pour un réseau antennaire présentant une directivité améliorée avec une compacité réduite.

[0008] Selon l'invention, ce but est atteint par un réseau antennaire comprenant au moins une antenne primaire, au moins une antenne secondaire et au moins une charge associée à une antenne secondaire. La charge comprend deux composants distincts, un premier composant étant une résistance et un deuxième composant étant choisi parmi une inductance ou une capacité.

[0009] Suivant des modes de réalisation particuliers, le réseau antennaire comprend une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles :

- le premier composant est une résistance négative.
- le deuxième composant est une inductance négative ou une capacité négative.
- au moins une charge présente une impédance réglable

[0010] L'invention se rapporte également à une utilisation d'un réseau antennaire tel que précédemment décrit dans un système, le système étant choisi parmi le groupe constitué d'un véhicule, d'un terminal, d'un téléphone mobile, un point d'accès de réseau sans-fil, une station de base ou une sonde d'excitation radiofréquence. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit de modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en référence aux dessins qui sont :

- figure 1, une représentation schématique générique d'un réseau antennaire selon un mode de réalisation,
- figure 2, une représentation schématique d'un réseau antennaire selon un premier mode de réalisation,
- figure 3, une représentation schématique d'un réseau antennaire selon un deuxième mode de réalisation,
- figure 4, un schéma de rayonnement pour un réseau antennaire obtenu par le procédé selon l'invention.

[0011] Il est proposé un réseau antennaire 10 tel qu'illustré de façon générique en figure 1 et par les deux modes de réalisations des figures 2 et 3. Un réseau antennaire est, généralement, au moins constitué d'une antenne primaire et d'une antenne secondaire. Chacune des antennes faisant partie du réseau antennaire comprend une ou plusieurs parties rayonnantes. Les parties rayonnantes de chaque antenne distincte sont séparées physiquement. Par l'expression « séparées physiquement », il est entendu qu'il n'existe pas de contact physique entre deux parties rayonnantes appartenant à deux antennes distinctes.

[0012] Pour la suite, il est défini deux axes X et Y contenus dans les figures 1 à 3. L'axe X est perpendiculaire à l'axe Y. Une direction parallèle à l'axe X est appelée une direction longitudinale et une direction parallèle à l'axe Y est appelée une direction transversale.

[0013] Le réseau antennaire 10 comporte une source 12, une première antenne 14, une deuxième antenne 16, une troisième antenne 18 et un circuit 19 (non représenté en figure 1).

[0014] La première antenne 14 est une antenne associée à la source 12. La source 12 délivrant un signal utile pour l'application considérée pour le réseau 10, la première antenne 14 est considérée comme une antenne primaire. Ainsi, la première antenne 14 est dite antenne primaire dans la suite.

[0015] La deuxième antenne 16 est une antenne associée à une charge passive ou active. La deuxième antenne 16 n'est pas directement associée à une source délivrant un signal utile. La deuxième antenne 16 est, en ce sens, une antenne secondaire alors que la première antenne 14 est une antenne primaire. La même remarque s'applique pour la troisième antenne 18. Ainsi, la deuxième antenne 16 et la troisième antenne 18 sont dites antennes secondaires dans la suite de la description.

[0016] Le nombre d'antennes du réseau antennaire 10 est donné à titre d'exemple, tout type de réseau antennaire 10 comprenant au moins une antenne pouvant être reliée à un circuit 19 pouvant être considéré.

[0017] En particulier, le réseau antennaire 10 comprend, dans certains modes de réalisation, plusieurs antennes primaires.

[0018] En variante, le réseau antennaire 10 comprend un grand nombre, par exemple une dizaine ou une centaine, d'antennes secondaires.

[0019] Le réseau antennaire 10 est propre à générer une onde électromagnétique notée Ototale. Le réseau antennaire 10 est ainsi propre à fonctionner pour au moins une longueur d'onde notée λ dans la suite de la description. La longueur d'onde λ est comprise entre quelques centièmes de millimètres et quelques dizaines de mètres. Cela correspond, en termes de fréquences, à des fréquences comprises entre la bande haute fréquence (souvent désignée par l'acronyme HF) et des fréquences de l'ordre de quelques TéraHertz.

[0020] Selon l'application considérée (téléphonie cellulaire, domotique...), le réseau antennaire 10 est propre à fonctionner sur des gammes de fréquences plus restreintes.

[0021] Avantageusement, le réseau antennaire 10 est propre à fonctionner pour une bande de fréquences comprises entre 30 MHz et 90 GHz. Cela rend le réseau antennaire 10 considéré particulièrement adapté pour les radiocommunications.

[0022] Le circuit 19 est un circuit présentant des paramètres influençant l'onde électromagnétique générée par le réseau antennaire 10.

[0023] Le circuit 19 est soit un circuit de couplage à base de guides d'ondes associé à une charge Z comme l'illustre la figure 2, soit au moins une charge comme le montre la figure 3, soit un circuit hybride entre le circuit de couplage de la figure 2 et la charge montrée en figure 3.

[0024] Dans la figure 2, le circuit 19 est un guide d'ondes reliant la deuxième antenne 16 à la troisième antenne 18 par l'intermédiaire d'une charge Z (qui peut ne pas être présente). Cet agencement simple peut être rendu aussi complexe que désiré selon les modes de réalisation envisagés.

[0025] Dans le cas du circuit 19 de la figure 2, les paramètres influençant l'onde électromagnétique Ototale générée par le réseau antennaire 10 sont les paramètres caractérisant la forme du circuit de couplage. Par exemple, l'impédance de la charge Z, l'impédance propre du guide d'ondes utilisé, la longueur du guide d'ondes sont des exemples de paramètres caractérisant le circuit de couplage. Dans le cas de la figure 3, le circuit 19 comporte deux charges 20, 21, la première charge 20 étant reliée à la deuxième antenne 16 et la deuxième charge 21 étant reliée à la troisième antenne 18

[0026] Dans cet exemple, les paramètres influençant l'onde électromagnétique Ototale générée par le réseau antennaire 10 sont la valeur de l'impédance de chacune des deux charges 20, 22.

[0027] De préférence, au moins une charge parmi la première charge 20 et la deuxième charge 22 comprend deux composants distincts, un premier composant étant une résistance et l'autre composant étant choisi parmi une inductance ou une capacité.

[0028] Par « composant distinct », il est entendu que chaque composant présente des impédances parasites négligeables par rapport à son impédance principale. Ainsi, une résistance a une valeur de résistance bien supérieure à la résistance parasite d'une inductance ou d'une capacité. De même, une capacité a une valeur de capacitance bien supérieure à la capacitance parasite d'une inductance ou d'une résistance et une inductance a une valeur d'inductance bien supérieure à l'inductance parasite d'une résistance ou d'une capacité.

[0029] Dans le cas de la figure 3, à titre d'exemple, ce sont les deux charges 20 et 22 qui comportent deux composants distincts.

[0030] De préférence, l'impédance de chaque charge 20, 22 présente :

• une partie réelle strictement inférieure à 0, ou

10

45

50

55

• une partie imaginaire non nulle et une partie réelle non nulle.

20

30

35

45

50

55

[0031] Selon un autre mode de réalisation, au moins une charge 20, 22 présente une impédance réglable. Cela rend le réseau antennaire 10 plus flexible.

[0032] En variante, au moins une charge 20, 22 est un composant actif.

[0033] Il est proposé de déterminer le réseau antennaire 10 illustré à la figure 2 ou à la figure 3 à l'aide d'un procédé de détermination.

[0034] Le procédé de détermination comporte une étape de choix d'un critère à vérifier pour l'onde Ototale générée par le réseau antennaire 10.

[0035] De manière générale, le critère est soit un critère de performance soit un critère de conformité à un masque.

[0036] La directivité du réseau antennaire 10 dans une direction donnée et le rapport avant/arrière du réseau antennaire 10 sont deux exemples de critère de performance.

[0037] Que le diagramme de rayonnement du réseau 10 soit sensiblement identique à un diagramme de rayonnement obtenu selon un masque spécifique, ou que le diagramme de rayonnement du réseau 10 dans un environnement perturbé soit identique à un diagramme de rayonnement désiré, sont deux exemples de critère de conformité à un masque.

[0038] Le procédé s'appuie sur une étape suivante de décomposition d'une onde dans une base. Le procédé comporte aussi une étape de détermination des coefficients de décomposition souhaités, par exemple en décomposant une onde vérifiant le critère choisi. De préférence, la base utilisée à l'étape de décomposition est la base des modes sphériques. Cette base permet de simplifier les calculs à effectuer tout en gardant une bonne précision. En effet, choisir cette base n'implique pas d'utiliser une approximation.

[0039] Avantageusement, l'étape de décomposition est effectuée à l'aide d'un calcul matriciel pour diminuer le temps de mise en oeuvre de cette étape.

[0040] Le procédé comprend alors une étape de calcul des paramètres influençant l'onde électromagnétique Ototale générée par le réseau antennaire 10, par exemple les paramètres de chaque circuit 20, 22 du réseau antennaire 10 pour que l'écart entre les coefficients de décomposition sur la base de l'onde générée par le réseau antennaire 10 et les coefficients de décomposition souhaités soit minimum.

[0041] Appliqué au cas de la figure 2, cette étape de calcul permet d'obtenir les paramètres caractérisant la forme du circuit de couplage formant le circuit 19.

[0042] Appliqué au cas de la figure 3, cette étape de calcul permet d'obtenir la valeur des impédances Z1 et Z2 des deux charges 20, 22.

[0043] Avantageusement, l'étape de calcul est effectuée à l'aide de calcul matriciel, ce qui simplifie la mise en oeuvre de cette étape.

[0044] De préférence, l'étape de calcul comporte une sous-étape de calcul d'un vecteur d'excitation Λ du réseau antennaire 10 permettant d'obtenir les coefficients de décomposition souhaités et une sous-étape de détermination des paramètres influençant l'onde électromagnétique Ototale générée par le réseau antennaire 10 de chaque charge 20, 22 du réseau antennaire 10 à partir du vecteur d'excitation Λ calculé.

[0045] Le procédé permet ainsi d'optimiser le réseau antennaire 10 pour que le réseau antennaire 10 réponde à un critère voulu. Cette optimisation est une optimisation permettant de trouver la meilleure valeur si elle existe et ce de manière exacte, sans avoir à effectuer une optimisation itérative.

[0046] Ainsi, il est obtenu un réseau antennaire 10 présentant des propriétés améliorées.

[0047] Le réseau antennaire 10 ainsi déterminé trouve son application dans de nombreux système. A titre d'exemple, il peut être cité un véhicule, un terminal, un téléphone mobile, un point d'accès de réseau sans-fil, une station de base, une sonde d'excitation radiofréquence ...

[0048] Dans la suite, il est détaillé, à titre d'exemple, le réseau antennaire 10 de la figure 3 ainsi que le procédé de détermination appliqué au réseau antennaire 10 de la figure 3, étant entendu que l'extension de l'application du procédé de détermination au réseau antennaire 10 décrit dans la figure 2 est accessible à l'homme du métier à l'aide des enseignements ci-après.

[0049] La figure 3 illustre une représentation schématique d'un réseau antennaire 10 comportant une source 12, une première antenne 14, une deuxième antenne 16, une troisième antenne 18, un circuit 19 comprenant une première charge 20 et une deuxième charge 22.

[0050] La source 12 est, par exemple, un générateur d'ondes radiofréquences. La source 12 est propre à fournir des ondes radiofréquences d'excitation de l'antenne primaire 14 à la longueur d'onde λ . La source 12 est reliée à la première antenne 14. La source 12 peut présenter une impédance interne de 50 Ohms.

[0051] Selon l'exemple de la figure 3, la première antenne 14 se présente sous la forme d'un fil conducteur s'étendant le long d'une direction longitudinale. Le long de cette direction longitudinale, la première antenne 14 présente une dimension égale à $\lambda/2$.

[0052] Selon l'exemple de la figure 3, la deuxième antenne 16 se présente également sous la forme d'un fil conducteur s'étendant le long d'une direction longitudinale. Le long de cette direction longitudinale, la deuxième antenne 16 présente

une dimension égale à $\lambda/2$. La deuxième antenne 16 est disposée parallèlement à la première antenne 14 à une distance de $\lambda/10$ par rapport à la première antenne 14 le long d'une direction transversale.

[0053] Selon l'exemple de la figure 3, la troisième antenne 18 se présente également sous la forme d'un fil conducteur s'étendant le long d'une direction longitudinale. Le long de cette direction longitudinale, la troisième antenne 18 présente une dimension égale à $\lambda/2$. La troisième antenne 18 est disposée parallèlement à la première antenne 14 à une distance de $\lambda/10$ par rapport à la première antenne 14 le long d'une direction transversale. La troisième antenne 18 est aussi disposée parallèlement à la deuxième antenne 16 à une distance de $\lambda/5$ par rapport à la deuxième antenne 16 le long de la direction transversale. Autrement formulé, la première antenne 14 est disposée au milieu de la deuxième antenne 16 et de la troisième antenne 18. Cet agencement n'est décrit qu'à titre d'exemple, étant entendu que tout autre agencement est envisageable.

[0054] La première charge 20 est reliée à la deuxième antenne 16.

[0055] La première charge 20 comprend au moins deux composants distincts. Par exemple, la première charge 20 est l'association d'un condensateur et d'une résistance. En variante, la première charge 20 est l'association d'une inductance et d'une résistance.

[0056] L'impédance de la première charge 20 est notée Z1.

10

15

20

30

35

50

55

[0057] Avantageusement, l'impédance Z1 de la première charge 20 présente une partie réelle strictement inférieure à 0, ou une partie imaginaire non nulle et une partie réelle non nulle. En effet, la mise en oeuvre de ces types de charge permet d'obtenir une décomposition de l'onde plus proche de coefficients recherchés, en comparaison avec les solutions classiques qui excluent l'utilisation de résistances associées aux réactances pour limiter les pertes dans le réseau antennaire 10.

[0058] Cela signifie que la première charge 20 n'est pas une résistance pure ou une réactance pure.

[0059] Ainsi, selon un mode de réalisation, l'impédance Z1 de la première charge 20 est équivalente à l'association en série d'une résistance et d'une bobine, l'inductance de la bobine étant supérieure à 1 nH.

[0060] Selon un autre mode de réalisation, l'impédance Z1 de la première charge 20 est équivalente à l'association en série d'une résistance et d'un condensateur, la capacité du condensateur étant supérieure à 0,1 pF. Selon encore un autre mode de réalisation, l'impédance Z1 de la première charge 20 est équivalente à l'association en série d'une résistance et d'un condensateur ou d'une bobine, la résistance étant supérieure à 0,1 Ohms.

[0061] Selon une variante, l'impédance Z1 présente une partie réelle négative. La réalisation d'une résistance négative se fait de manière connue dans l'état de la technique par introduction d'un dispositif actif, par exemple un amplificateur opérationnel pour réaliser une résistance négative.

[0062] Selon une autre variante, l'impédance Z1 présente une partie imaginaire négative. La réalisation d'une capacité ou d'une inductance négative se fait à l'aide d'un montage de type Negative Impedance Converter (NIC).

[0063] Ainsi, selon ces deux variantes qui peuvent se combiner, la première charge 20 comprend un ou plusieurs composants actifs.

[0064] Un autre avantage des composants actifs est qu'il permette de réaliser aisément des composants ayant l'impédance opposée qui serait difficile à réaliser pratiquement. Typiquement, une grande inductance de faible encombrement est difficile à obtenir à l'aide d'une inductance mais peut être obtenue avec un montage réalisant une capacité négative. De même, une petite capacitance est plus facilement obtenue en utilisant un montage réalisant une inductance négative.

[0065] Préférentiellement, l'impédance Z1 correspond à l'impédance d'une charge mixte à la fois résistive et réactive. Autrement dit, l'impédance Z1 présente une partie réelle non nulle et une partie imaginaire non nulle.

[0066] La deuxième charge 22 est reliée à la troisième antenne 18.

[0067] La deuxième charge 22 présente une impédance Z2. Les mêmes remarques que celles faites précédemment pour l'impédance Z1 de la première charge 20 s'appliquent pour l'impédance Z2 de la deuxième charge 22.

45 [0068] Le fonctionnement du réseau antennaire 10 est maintenant décrit.

[0069] En fonctionnement, la source 12 émet une onde radiofréquence propre à exciter la première antenne 14.

[0070] La première antenne 14 émet alors une première onde radiofréquence O1 sous l'effet de l'excitation due à la source 12. Cette onde radiofréquence O1 correspond à un premier champ électrique noté E1.

[0071] Le champ électrique E1 excite ensuite les antennes secondaires 16 et 18.

[0072] En réponse, la deuxième antenne 16 émet une deuxième onde radiofréquence 02 sous l'effet de l'excitation due au champ électrique E1. Cette deuxième onde radiofréquence 02 correspond à un deuxième champ électrique noté E2. Le deuxième champ électrique E2 dépend notamment de la valeur de l'impédance Z1 de la première charge 20.

[0073] Similairement, en réponse, la troisième antenne 16 émet une troisième onde radiofréquence 03 sous l'effet de l'excitation due au champ électrique E1. Cette troisième onde radiofréquence 03 correspond à un troisième champ électrique noté E3. Le troisième champ électrique E3 dépend notamment de la valeur de l'impédance Z3 de la deuxième charge 22.

[0074] Ainsi, lorsque la source 12 émet une onde radiofréquence, le réseau antennaire 10 émet une onde radiofréquence Ototale qui correspond à la superposition de la première onde générée par la première antenne 14 et des

deuxième et troisième ondes générées par les deuxième et troisième antennes 16 et 18. En termes de champ électrique, en notant Etotal le champ électrique du réseau antennaire 10 associé à l'onde radiofréquence Ototal, une telle superposition implique que le champ électrique du réseau antennaire 10 est la somme des trois champs électriques des trois antennes 14, 16, 18 du réseau. Cela s'écrit mathématiquement suivant la relation suivante :

Etotal (Z1,Z2) = E1 + E2(Z1) + E3(Z2)

[0075] Dans la précédente relation, il a été mis en évidence que le champ électrique du réseau antennaire 10 est fonction de la valeur des impédances Z1 et Z2 des première et deuxième charges 20, 22 via le deuxième champ E2 et le troisième champ E3.

[0076] Cette dépendance confère au réseau antennaire 10 une possibilité de réglage du champ électrique générée par le réseau antennaire 10 indépendante de la structure propre du réseau antennaire 10 (nombres d'antennes 14, 16, 18, forme des antennes 14, 16, 18 et positions relatives des antennes 14, 16, 18). Ceci est particulièrement avantageux dans la mesure où la modification de la structure du réseau antennaire 10 entraîne des modifications du champ électrique produite par le réseau antennaire 10 souvent difficile à prévoir.

[0077] Par la modification des valeurs des impédances Z1 et Z2 des charges 20 et 22, il est possible de modifier le diagramme de rayonnement obtenu pour le réseau antennaire 10. En particulier, selon un mode de réalisation préféré, le diagramme de rayonnement est rendu directif dans une direction privilégiée en imposant les valeurs d'impédances Z1 et Z2. Cette propriété est obtenue tout en conservant un réseau antennaire 10 compact. En effet, le réseau antennaire 10 présente une dimension de λ /2 le long d'une direction longitudinale et une dimension de λ /5 le long d'une direction transversale

[0078] La propriété du réseau antennaire 10 selon laquelle le rayonnement total produit est contrôlable par le choix des impédances Z1, Z2 des charges 20, 22 est notamment exploitable dans le cadre d'un procédé de détermination du réseau antennaire 10 pour que l'onde radiofréquence totale Ototale générée par le réseau antennaire 10 respecte un critère souhaité. Un exemple de mise en oeuvre d'un tel procédé est décrit dans ce qui suit.

[0079] Pour une meilleure compréhension, le procédé est d'abord présenté dans un cas général d'un réseau antennaire 10 quelconque comprenant un nombre quelconque d'antennes puis appliqué au cas particulier du réseau antennaire 10 présenté à la figure 3.

[0080] Le procédé de détermination comprend d'abord une étape de choix d'un critère à vérifier pour l'onde radiofréquence totale Ototale générée par le réseau antennaire 10

[0081] A titre d'exemple, pour la suite de la description, il est supposé que le critère choisi est une meilleure directivité du réseau antennaire 10 dans une direction d'angle d'élévation θ_0 et d'angle d'azimut ϕ_0 . D'autres critères peuvent être envisagés comme l'optimisation vis-à-vis d'un critère de performances de l'antenne comme la réduction d'un niveau de polarisation croisée (c'est-à-dire perpendiculaire à la polarisation principale de l'onde considérée) dans une direction donnée ou encore la maximisation d'un rapport avant/arrière etc. Le critère peut être aussi la conformité à un type de rayonnement donné par exemple un rayonnement de type dipolaire ou tout autre rayonnement spécifié par un masque de rayonnement.

[0082] Le procédé s'appuie sur une décomposition d'une onde dans une base. Le procédé comporte aussi une étape de détermination des coefficients de décomposition permettant d'atteindre le critère choisi par exemple en décomposant une onde vérifiant le critère choisi.

[0083] Selon l'exemple illustré, la base choisie est la base des modes sphériques parce que cette base permet de simplifier les calculs à effectuer tout en gardant une bonne précision. En effet, choisir cette base n'implique pas de réaliser une approximation.

[0084] En variante, toute autre base pourrait être considérée. Notamment, la base des ondes planes est utilisable pour décomposer l'onde considérée.

[0085] La base des modes sphériques se définit à partir de l'observation suivante : dans un milieu isotrope, homogène et sans source, un champ électrique E s'exprime dans une base sphérique repérée par les coordonnées r, θ et ϕ sous la forme :

$$\vec{E}(r,\theta,\varphi) = \sqrt{\eta} \frac{1}{\sqrt{4\pi}} \frac{e^{jkr}}{r} \sum_{s=1}^{2} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} Q_{smn}^{(3)} \vec{K}_{smn}(\theta,\varphi)$$

[0086] Où:

55

5

30

35

45

50

- η est l'impédance du vide (milieu de propagation),
- j le nombre complexe,

5

10

15

20

30

45

50

55

- k est la norme du vecteur d'onde associé au champ électrique E,
- Q_{smn} est le coefficient de décomposition du champ électrique E sur le mode s, m, n de la base des modes sphériques, et
- $\vec{K}_{1mn}(\theta, \varphi)$ et $\vec{K}_{2mn}(\theta, \varphi)$ sont les différents modes sphériques.

[0087] L'expression mathématique générale des modes sphériques est également connue ainsi que le montrent les équations 3 et 4 suivantes :

$$\vec{K}_{1mn}(\theta,\varphi) = \sqrt{\frac{2}{n(n+1)}} \left(-\frac{m}{|m|} \right)^m e^{jm\varphi} \left(-j \right)^{n+1} \left\{ \frac{jm\overline{P}_n^{|m|}(\cos\theta)}{\sin\theta} \vec{e}_\theta - \frac{d\overline{P}_n^{|m|}(\cos\theta)}{d\theta} \vec{e}_\varphi \right\}$$

$$\vec{K}_{2mn}(\theta,\varphi) = \sqrt{\frac{2}{n(n+1)}} \left(-\frac{m}{|m|}\right)^m e^{jm\varphi} \left(-j\right)^n \left\{ \frac{d\overline{P}_n^{|m|}(\cos\theta)}{d\theta} \vec{e}_\theta - \frac{jm\overline{P}_n^{|m|}(\cos\theta)}{\sin\theta} \vec{e}_\varphi \right\}$$

[0088] Où:

- \vec{e}_{θ} est le vecteur unitaire associé à la coordonnée θ ,
 - $\overrightarrow{e}_{\varphi}$ est le vecteur unitaire associé à la coordonnée φ ,

$$\overline{P}_{n}^{m}(\cos\theta) = \sqrt{\frac{2n+1}{2} \frac{(n-m)!}{(n+m)!}} (\sin\theta)^{m} \frac{d^{m}}{d(\cos\theta)^{m}} \left[\frac{1}{2^{n} n!} \frac{d^{n}}{d(\cos\theta)^{n}} (\cos^{2}\theta - 1)^{n} \right]$$

$$\frac{d\overline{P}_{n}^{|m|}(\cos\theta)}{d\theta} = \begin{cases} -P_{n}^{1}(\cos\theta)\sqrt{\frac{2n+1}{2}} & m=0\\ \frac{1}{2}((n-|m|+1)(n+|m|)P_{n}^{|m|-1}(\cos\theta) - P_{n}^{|m|+1}(\cos\theta))\sqrt{\frac{2n+1}{2}\frac{(n-|m|)!}{(n+|m|)!}} & |m| > 0 \end{cases}$$

[0089] D'un point de vue matriciel, l'existence de la base des modes sphériques traduit que dans un milieu isotrope, homogène et sans source, un champ électrique E s'exprime comme:

$$E = K \times Q$$

[0090] Où:

- la dépendance en θ et ϕ n'est pas reprise pour alléger les notations,
- E est un vecteur décrivant le champ électrique rayonné dans les différentes directions de l'espace et pour les différentes composantes de la polarisation s'écrivant par exemple :

$$E = \begin{pmatrix} E_{\theta}(\theta_1, \phi_1) \\ E_{\phi}(\theta_1, \phi_1) \\ E_{\theta}(\theta_2, \phi_2) \\ E_{\phi}(\theta_2, \phi_2) \\ \dots \end{pmatrix}$$

• K est une matrice décrivant le diagramme de rayonnement des modes sphériques s'écrivant par exemple :

$$K = \begin{bmatrix} K_{11-1} & K_{110} & K_{111} & \dots \\ K_{12-2} & K_{12-1} & K_{120} & \dots \\ \dots & \dots & \dots & \dots \\ K_{21-1} & K_{210} & K_{211} & \dots \\ K_{22-2} & K_{22-1} & K_{220} & \dots \\ K_{23-3} & K_{23-2} & K_{23-1} & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

[0091] D'autres organisations de la matrice K peuvent être considérées à cette étape, l'organisation précédente n'étant donnée qu'à titre d'exemple. En outre, dans la pratique, à titre d'indication, il peut être remarqué que la matrice K est dépourvue d'éléments nuls.

« x » désigne la multiplication matricielle, et

 Q est la matrice regroupant les différents coefficients Q_{smn} de décomposition du champ électrique s'écrivant par exemple :

$$Q = egin{pmatrix} Q_{1-11} \ Q_{2-11} \ Q_{101} \ Q_{201} \ \dots \end{pmatrix}$$

[0092] L'emploi du formalisme matriciel permet de simplifier les calculs du procédé de détermination.

[0093] Lorsque ce formalisme matriciel est appliqué au cas particulier de l'obtention d'une plus grande directivité du réseau antennaire 10 dans une direction par l'angle d'élévation θ_0 et l'angle d'azimut ϕ_0 , il est possible de montrer qu'une onde vérifiant un tel critère est une onde dont la matrice regroupant les différents coefficients Q_{smn} de décomposition du champ électrique vérifie la relation suivante :

$$Q = Q_{OPT} = a.K^*(\theta_0, \phi_0)$$

[0094] Où:

5

10

15

20

25

30

35

40

50

55

• a est une constante de normalisation,

• « . » désigne la multiplication scalaire, et

« * » désigne l'opération mathématique de conjugaison complexe.

[0095] Cette dernière relation permet donc d'obtenir des coefficients de décomposition souhaités.

[0096] Le procédé de détermination comporte ensuite une étape de calcul des valeurs des impédances Z1, Z2 de chaque charge 20, 22 du réseau antennaire 10 pour que l'écart entre les coefficients de décomposition sur la base de l'onde générée par le réseau antennaire 10 et les coefficients de décomposition souhaités soit minimisé.

[0097] L'étape de calcul comporte une sous-étape d'expression de l'onde générée par le réseau antennaire 10 sur la base des modes sphériques.

[0098] Selon un mode de réalisation préféré, cette sous-étape d'expression est mise en oeuvre en décomposant le champ électrique associé à l'onde générée par le réseau antennaire 10 en champ électrique élémentaire produit par chaque antenne faisant partie du réseau antennaire 10.

[0099] Ainsi qu'expliqué précédemment, pour le cas spécifique du réseau antennaire 10 de la figure 3, le champ électrique E1 lié à la première antenne 14, le champ électrique E2 généré par la deuxième antenne 16 et le champ électrique E3 généré par la troisième antenne 18 sont liés au champ électrique total Etotal produit par le réseau antennaire 10 selon la relation :

15

Etotal = E1 + E2 + F3

[0100] Cette décomposition en champs électriques élémentaires permet de faciliter les calculs effectués dans la suite de la mise en oeuvre du procédé. En effet, cette décomposition prend uniquement en compte la structure propre de chaque antenne et pas les éventuelles charges auxquelles cette antenne pourrait être reliée.

[0101] La sous-étape d'expression comporte ensuite l'expression de chaque champ électrique élémentaire dans la base des modes sphériques, ce qui se traduit mathématiquement par :

25

$Ei = K \times Qi$

[0102] Où:

- la dépendance en θ et φ n'est pas reprise pour alléger les notations,
 - Ei est le champ électrique généré par la i-ème antenne, et
 - Qi est la matrice regroupant les différents coefficients Q_{smn} de décomposition du champ électrique généré par la ième antenne.
- [0103] La sous-étape d'expression comprend ensuite une étape de concaténation des différentes matrices Qi regroupant les différents coefficients Q_{smn} de décomposition du champ électrique généré par la i-ème antenne pour obtenir une matrice Qtot correspondant à l'expression de l'onde générée par le réseau antennaire 10 sur la base des modes sphériques.
- [0104] L'étape de calcul comprend une sous-étape de calcul du vecteur d'excitation permettant d'obtenir les coefficients de décomposition souhaités représentés par la matrice Q_{OPT}. Ceci revient à résoudre l'équation suivante :

Qtot
$$x \Lambda = Q_{OPT}$$

⁴⁵ **[0105]** Où:

55

- Λ est le vecteur d'excitation du réseau antennaire 10, et
- Qtot est l'association au sein d'une seule matrice des Qi.
- [0106] A l'issue de la sous-étape de calcul du vecteur d'excitation Λ, il est obtenu un vecteur d'excitation dépendant uniquement de la structure du réseau antennaire 10 et du critère choisi pour l'onde Ototale générée par le réseau antennaire 10.

[0107] L'étape de calcul comprend ensuite une sous-étape de détermination des valeurs des impédances Z1, Z2 de chaque charge 20, 22 du réseau antennaire 10 à partir du vecteur d'excitation Λ calculé.

[0108] Pour cela, selon un mode de réalisation, l'équation suivante est résolue :

$$\Lambda = M \times \Lambda + P \times U$$

5 **[0109]** Où:

10

15

20

30

35

50

55

- M est la matrice décrivant les couplages ainsi que les réflexions associées à chacune des charges du réseau antennaire 10 soit, dans le cas particulier de la figure 3, aux première et deuxième charges 20, 22,
- P est la matrice représentant les connections entre le réseau antennaire 10 et des signaux externes, et
- U est un vecteur décrivant la pondération des signaux externes.

[0110] Appliquée au réseau antennaire 10 de la figure 3, la résolution de l'équation matricielle précédente permet de trouver les solutions suivantes :

 $Z1 = 7.6 \Omega + i \times 9.95 \Omega$

et

 $Z2 = 0.1 \Omega + i \times 13.54 \Omega$

[0111] Pour de telles valeurs des impédances des deux charges 20, 22 du réseau 10, une bonne directivité dans la direction d'angle d'élévation θ_0 et d'angle d'azimut ϕ_0 est obtenue.

[0112] Cela apparaît notamment à l'étude de la figure 4. Dans cette figure 4, quatre diagrammes de rayonnement sont représentés. Chaque diagramme de rayonnement présente la répartition angulaire de la puissance rayonnée en fonction de l'angle d'azimut φ_0 à angle d'élévation constant (en l'occurrence θ_0 = 90°).

[0113] Le diagramme représenté par une courbe 100 correspond au diagramme obtenu pour le réseau 10 en présence d'une charge résistive à la place de chacune des première et deuxième charges 20, 22 ; le diagramme représenté par une courbe 102 correspond au diagramme obtenu pour le réseau 10 en présence d'un court-circuit à la place de chacune des première et deuxième charges 20, 22 ; le diagramme représenté par une courbe 104 correspond au diagramme obtenu pour le réseau 10 en présence d'une charge réactive à la place de chacune des première et deuxième charges 20, 22 et le diagramme représenté par une courbe 106 en noir tracé en gras correspond au diagramme obtenu pour le réseau 10 en présence des première et deuxième charges 20, 22 présentant les valeurs déterminées précédemment. [0114] Il apparaît que pour la direction d'angle d'élévation θ_0 = 90° et d'angle d'azimut ϕ_0 = 0°, la directivité du réseau 10 selon l'invention est de 10 dBi (dBi pour décibel isotrope). De manière générale, la directivité d'une antenne s'exprime normalement en dBi, en prenant pour référence une antenne isotrope, c'est-à-dire une antenne fictive qui rayonne uniformément dans toutes les directions. La directivité de cette antenne fictive est donc égal à 1, soit 0 dBi. La directivité du réseau 10 selon l'invention est donc supérieure aux directivités des autres courbes.

[0115] Le gain en directivité s'observe aussi en examinant les formes des courbes 100, 102, 104 et 106. En effet, pour le réseau antennaire de la figure 3, il est observé une réduction du rayonnement en dehors de la direction principale. [0116] De ce fait, le réseau 10 de la figure 3 présente une directivité améliorée dans la direction d'angle d'élévation $\theta_0 = 90^\circ$ et d'angle d'azimut $\phi_0 = 0^\circ$.

[0117] En variante, au lieu de considérer comme critère la directivité, d'autres critères voulus pour le réseau antennaire 10 sont considérés.

[0118] A titre d'exemple, le critère correspond à imposer que le rapport avant/arrière (aussi désigné sous le terme anglais de Front/Back ratio) du réseau 10 soit supérieur à une valeur désirée, que le diagramme de rayonnement du réseau 10 soit identique à un diagramme de rayonnement obtenu avec un masque spécifique ou que le diagramme de rayonnement du réseau 10 dans un environnement perturbé soit identique à un diagramme de rayonnement désiré.

[0119] Dans chacun des cas proposés, une manière de prendre en compte le critère est d'imposer une matrice spécifique pour la matrice regroupant les différents coefficients Q_{smn} de décomposition du champ électrique à l'étape de décomposition d'une onde vérifiant le critère choisi dans une base pour obtenir des coefficients de décomposition souhaités.

[0120] Par exemple, c'est le cas lorsque le critère correspond à imposer que le diagramme de rayonnement du réseau 10 dans un environnement perturbé soit identique à un diagramme de rayonnement désiré. A titre d'exemple d'application, le réseau antennaire 10 est destiné à être fixé sur une partie supérieure de forme allongée d'un véhicule. La forme allongée perturbe le rayonnement du réseau antennaire 10. En réalisant l'optimisation de l'antenne selon le procédé objet de l'invention, il est possible d'obtenir une forme d'onde voulue générée par l'ensemble du véhicule.

[0121] Le procédé de détermination précédemment décrit s'applique à tout type de réseau antennaire 10 comprenant

au moins une antenne pouvant être reliée à une charge. En particulier, le réseau antennaire 10 comprend, dans certains modes de réalisation, plusieurs antennes primaires.

[0122] En variante, le procédé de détermination comprend également des modifications des caractéristiques de la structure du réseau antennaire 10 de manière à favoriser le respect du critère choisi. Par exemple, il est possible de modifier la distance entre la première antenne 14 et la deuxième antenne 16. Alternativement, il est choisi de modifier la longueur de la deuxième antenne 16. Pour cela, il suffit de prendre en compte les caractéristiques de la structure du réseau antennaire 10 à faire varier dans la sous-étape d'expression de l'onde générée par le réseau antennaire 10 sur la base des modes sphériques. Le vecteur d'excitation comprendra alors les caractéristiques de la structure du réseau antennaire 10 à faire varier. La résolution de l'équation au niveau de la sous-étape de détermination comprendra non seulement la détermination des valeurs des impédances Z1, Z2 des charges 20, 21 mais également la détermination des caractéristiques de la structure du réseau antennaire 10 que l'on souhaite faire varier.

[0123] Dans tous les cas, il est obtenu un réseau antennaire 10 présentant des propriétés améliorées. Selon les modes de réalisation, le réseau antennaire 10 est fixe, ni la structure ni les valeurs des impédances Z1, Z2 des charges 20, 21 n'étant ajustables. Par exemple, dans le cas d'une utilisation du réseau antennaire 10 pour pointer l'objet (une télécommande par exemple) avec lequel l'utilisateur communique, la propriété de bonne directivité sera favorisée au détriment des autres. Dans d'autres modes de réalisation, selon les utilisations, il convient de favoriser l'une ou l'autre des propriétés du réseau antennaire (passage d'une configuration directive à une configuration non-directive). Dans ce cas, il est particulièrement avantageux que les charges 20, 21 soient ajustables. Typiquement, les charges 20, 21 sont des potentiomètres associés à un composant d'inductance variable ou de capacitance variable. Cela permet d'accroître encore le caractère adaptable du réseau antennaire 10 selon l'invention.

Revendications

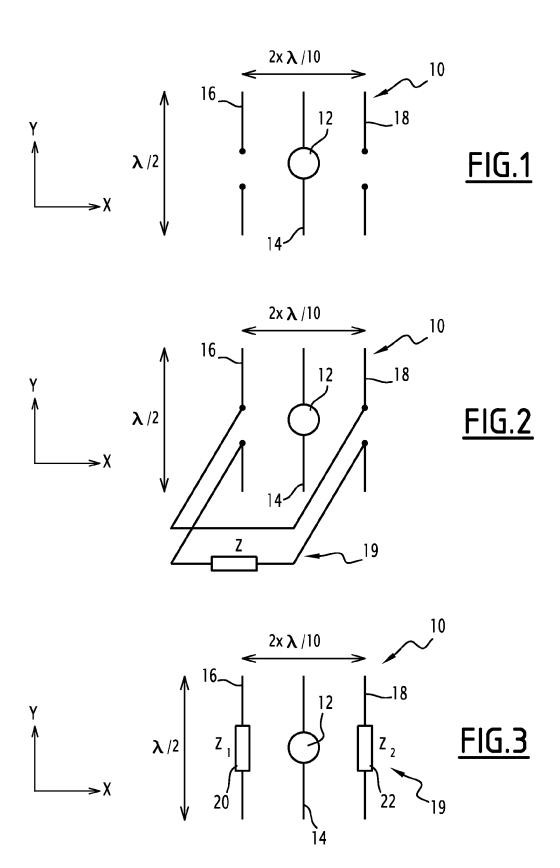
10

15

20

30

40


45

50

55

- 25 **1.** Réseau antennaire (10) comprenant :
 - au moins une antenne (14) primaire,
 - au moins une antenne (16, 18) secondaire,
 - au moins une charge (20,22) associée à une antenne secondaire (16, 18), la charge (20, 22) comprenant deux composants distincts, un premier composant étant une résistance et un deuxième composant étant choisi parmi une inductance ou une capacité.
 - 2. Réseau antennaire (10) selon la revendication 1, dans lequel le premier composant est une résistance négative.
- 35 **3.** Réseau antennaire (10) selon la revendication 1, dans lequel le deuxième composant est une inductance négative ou une capacité négative.
 - **4.** Réseau antennaire (10) selon l'une quelconque des revendications 1 à 3, dans lequel au moins une charge (20,22) présente une impédance (Z1, Z2) réglable.
 - 5. Utilisation d'un réseau antennaire (10) selon l'une quelconque des revendications 1 à 4 dans un système, le système étant choisi parmi le groupe constitué d'un véhicule, d'un terminal, d'un téléphone mobile, un point d'accès de réseau sans-fil, une station de base ou une sonde d'excitation radiofréquence.

11

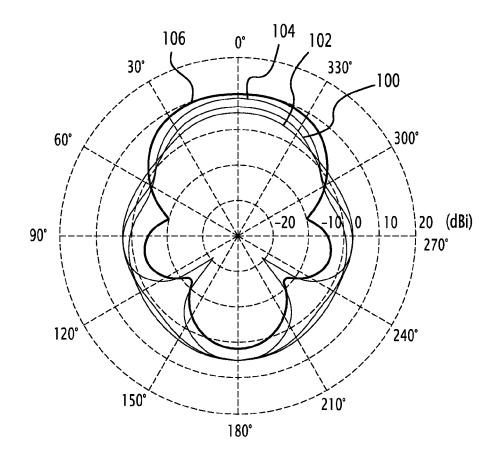


FIG.4

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 14 18 0997

atégorie	Citation du document avec	ndication, en cas de besoin,	Revendication	CLASSEMENT DE LA
alegorie	des parties pertin		concernée	DEMANDE (IPC)
	US 7 898 493 B1 (RO AL) 1 mars 2011 (20 * abrégé; figures 1 * colonne 3, ligne * colonne 2, ligne	-11 * 13-37 *	1-5	INV. H01Q1/48
	US 2011/309994 A1 (22 décembre 2011 (2 * abrégé; figure 16 * page 9, alinéa 12	*	1-5	
				DOMAINES TECHNIQUES RECHERCHES (IPC)
		4 lii		
	ésent rapport a été établi pour tou		1	Eveninatour
l	ieu de la recherche	Date d'achèvement de la recherche	, ,	Examinateur
	Munich	13 novembre 201	+ cor	rdeiro, J
X : parti Y : parti autre A : arriè	ATEGORIE DES DOCUMENTS CITES culièrement pertinent à lui seul culièrement pertinent en combinaison c document de la même catégorie re-plan technologique (gation non-écrite	E : document de bi date de dépôt o avec un D : cité dans la der L : cité pour d'autre	revet antérieur, ma u après cette date nande es raisons	nvention is publié à la

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 14 18 0997

5

10

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.
Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

13-11-2014

10				
	Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
	US 7898493 B1	01-03-2011	AUCUN	
15	US 2011309994 A1	22-12-2011	CN 102341957 A EP 2388858 A1 JP 4900515 B1 JP 2012085251 A KR 20110108417 A	01-02-2012 23-11-2011 21-03-2012 26-04-2012 05-10-2011
20			TW 201128847 A US 2011309994 A1 WO 2011090080 A1	16-08-2011 22-12-2011 28-07-2011
25				
30				
35				
40				
45				
50	EPO FORM P0480			

55

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Documents brevets cités dans la description

• FR 2949611 A [0005]