(19)
(11) EP 2 841 863 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
09.02.2022 Bulletin 2022/06

(21) Application number: 13782020.5

(22) Date of filing: 25.04.2013
(51) International Patent Classification (IPC): 
F28D 1/04(2006.01)
F28D 7/16(2006.01)
H01F 27/10(2006.01)
F28D 7/08(2006.01)
F28F 1/00(2006.01)
F28D 15/00(2006.01)
(52) Cooperative Patent Classification (CPC):
F28D 15/00; F28D 7/1623; F28F 1/003; F28D 2021/0031; F28D 2021/004; F28D 7/085; H01F 27/10
(86) International application number:
PCT/US2013/038177
(87) International publication number:
WO 2013/163400 (31.10.2013 Gazette 2013/44)

(54)

DOUBLE-WALLED DRY HEAT EXCHANGER COIL WITH SINGLE-WALLED RETURN BENDS

LUFTGEKÜHLTER DOPPELWANDIGER WÄRMETAUSCHER MIT EINWANDIGEN VERBINDUNGSKRÜMMERN

ÉCHANGEUR THERMIQUE À SEC À SERPENTIN À DOUBLE PAROI AVEC DES COURBES DE RETOUR À SIMPLE PAROI


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 25.04.2012 US 201261638275 P

(43) Date of publication of application:
04.03.2015 Bulletin 2015/10

(73) Proprietor: Evapco, Inc.
Taneytown, MD 21787 (US)

(72) Inventor:
  • BYRNE, Tom
    DK-9000 Aalborg (DK)

(74) Representative: Barker Brettell LLP 
100 Hagley Road Edgbaston
Birmingham, West Midlands B16 8QQ
Birmingham, West Midlands B16 8QQ (GB)


(56) References cited: : 
DE-A1- 19 608 049
JP-A- H0 878 242
US-A- 2 187 555
US-A- 3 467 178
US-A- 3 948 315
US-A- 4 232 735
US-A1- 2010 126 704
DE-A1- 19 721 111
JP-A- S58 139 413
US-A- 2 858 677
US-A- 3 878 593
US-A- 4 210 199
US-A- 5 551 507
US-B2- 7 011 143
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    This patent



    [0001] claims priority from U.S. Provisional Application No. 61/638,275.

    Field of the Invention



    [0002] The present invention relates to non-evaporative or "dry" heat exchangers, particularly those used to cool marine power transformers, although the invention can be used in any environment or situation where "dry" cooling solutions are required or desired.

    Background of the Invention



    [0003] It is known that air used for cooling a transformer is passed over a series of coils through which water is circulated. The prior art dry transformer cooling coils consist of a series of straight double-walled tubes which terminate at each end in sealed chambered headers. The inner tubes of the straight tubes terminate in one chamber of the header, and the outer tubes terminate in a separate sealed chamber of the header. Cooling fluid is circulated through the inner tubes, and through the corresponding chambers of the headers at each end. Air is passed only over the tubes, and the chambered headers are located outside of the air stream. Any leak in one of the inner tubes is captured by its corresponding outer tube and travels to the separate header chamber at which the outer tubes terminate. Thus, any water from leaks in the inner tubes finds its way to an outer tube chamber in one of the headers. A leak detector is present at the bottom of each of the outer tube chambers to detect the presence of any water. The headers are sealed from one another and from the outside with gaskets, but can be opened for inspection. The disadvantages of this system include the material cost and complex construction of the chambered headers, with outer tubes terminating in one chamber and inner tubes terminating in another chamber. In addition, the chambered headers restrict the ability to efficiently circuit the coil.

    [0004] DE 19608049 discloses a refrigerant evaporator in a vehicle air conditioning system for cooling an air stream to the passenger compartment. The evaporator is a heat exchanger with a serpentine coil for the refrigerant with double-walled straight passages connected by single-walled return bend tubes connected to the inner tubes of the double-walled tubes. The return bend tubes and the ends of the straight outer tubes are provided in return bend boxes, from where a possible leakage can be drained.

    [0005] US 3467178 discloses an air cooling apparatus for a transformer comprising a serpentine formed radiator coil.

    Summary of the Invention



    [0006] The present invention provides an elegant, safe and cost effective alternative to the prior art.

    [0007] While not intended to limit the scope of the invention, the description of the invention herein is presented in the context of a dry cooling solution for marine and other "dry" applications where the need to prevent water contact or contamination is critical. In particular, the present invention is particularly well-suited for use in a cooling unit used to cool transformers on ships. A "dry" cooling solution is required for marine transformers because if water contact causes a ship or other marine transformer to short circuit and fail, the ship can be left stranded without power. Therefore, marine transformer cooling systems are required to be "failsafe" systems that do not expose water to the transformer and which provide for the isolation and detection of any potential leaks in the system.

    [0008] According to the first aspect of the invention there is provided a heat exchanger in accordance with claim 1.

    [0009] According to a second aspect of the invention there is provided a transformer cooling system in accordance with claim 8.

    [0010] Therefore, there is presented according to an embodiment of the invention, a non-evaporative heat exchanger coil having a plurality of straight inner tubes connected by a plurality of return bends. The return bends allow fluid to move back and forth through the straight inner tubes of the coil. The return bends are preferably located outside of the air flow passing over the coil. The straight lengths of the inner tubes are each situated within a corresponding outer or "safety" tube. The outer tubes preferably terminate at or before the return bends that connect the inner tubes to one-another, but in any event, the ends of the outer tubes are located outside of the air flow path. Thus, the straight lengths of the heat exchange coil are double-walled or doubled tubed (inner tube within an outer tube), but the return bends are single-walled or single tubed. According to an embodiment of the invention, the inner surfaces of the outer tubes are dimpled, grooved, ribbed, or otherwise patterned to create both contact points and voids between the inner and outer tubes. Leaks occurring in the straight inner tubes are captured by the outer tubes and the leaking fluid will flow in the space between the inner and outer tubes, drip or flow out the end of the outer tube, outside of the air flow path, to be captured in a drip pan or leak detector box at the bottom of the coil housing. According to an embodiment of the invention, leaks occurring in the return bends will also be captured in drip pan or leak detector box. The bottom of the coil housing may be sloped so that only one leak detector is required.

    [0011] According to an embodiment of the invention, capturing leaks outside of the airstream allows a dry transformer to continue operating, notwithstanding the existence of a leak. In the case of a marine transformer on a ship, this embodiment allows a ship to continue operating long enough to return to port for repair.

    [0012] According to an embodiment of the invention, no chambered headers are used, and neither the return bends nor the ends of the outer tubes need be contained in special water-tight housings.

    [0013] According to an embodiment of the invention, connecting the inner tubes using return bends, thereby avoiding chambered headers, allows for more flexibility in coil circuit design.

    [0014] According to the invention, the return bends of the inner tubes are located outside of and separated from the air flow path over the coil.

    [0015] According to the invention, the ends of the outer tubes are located outside of and separated from the air flow path over the coil.

    [0016] According to an embodiment, the return bends and the ends of the outer tubes are located in a return bend box or other portion of the housing that is set off, but attached to, the primary housing. According to an embodiment of the invention, the return bend box need not be water-tight.

    [0017] According to an embodiment of the invention, fluid may also be introduced to and returned from the coil at one of the return bend boxes. The leak detectors may be located at the bottom of the return bend boxes. According to a further embodiment of the invention, a sloping drain pan may be provided at the bottom of the coil so that water collected from leaks at one side of the coil drains to the other side of the coil for detection using a single leak detector. Preferably, when a leak is detected, the transformer may be turned off, either automatically or manually, so the leak can be repaired.

    [0018] According to an embodiment of the invention, the space between the outer tubes and the inner tubes may be sealed or otherwise closed at one end of the coil, so that any leak in the inner tubes comes out only in the return bend box at the opposite end of the coil. According to a preferred embodiment, the space between the inner and outer tubes remains open at the header end of the coil, and is sealed at the opposite end of the coil, so that water from leaks in the inner tubes travels down the inside of the outer tubes and into the return bend box at the header end, where it is detected by a leak detector. According to this embodiment, there is no need for a sloping drain pan.

    [0019] According to an embodiment of the invention, the coils may be situated in the bottom portion of a housing or "box" which is attached to a transformer transfer box. Fans located in the top portion of the housing draw air from the transfer box and force it down over the coils where it is cooled, and the cooled air then exits the housing and returns to the transfer box. Heat transfer is facilitated with the use of fins fixed to the outside surfaces of the outer/safety tubes.

    [0020] According to an embodiment of the invention, the coils can be an open system, in which water is drawn from a source, circulated through the coils and returned to the source, or a closed system in which the same water is circulated through the coils. In the case of a closed system, the water warmed by the air passing over them will be cooled in a separate system before returning to the coils of the present invention.

    [0021] While the present invention is described in the context of a heat exchanger in which water is used to cool air that in turn is used to cool a power transformer, the invention is equally suited to other types of heat exchange. For example, persons of ordinary skill in the art would readily recognize that the invention can be equally used to effect heat exchange in reverse, whereby air passing over the coils can be used to receive heat from a process/industrial fluid contained in the coil, thereby cooling the process fluid.

    Description of the Drawings



    [0022] The subsequent description of the preferred embodiments of the present invention refers to the attached drawings, wherein:

    Figure 1A is a schematic of a section of heat exchange coil according to an embodiment of the invention.

    Figure IB is a representation of the principles of the invention, accomplished with double-walled/double tubed straight tubes connected by single- walled/single tubed return bends.

    Figure 2A is a front view schematic of a heat exchanger including a heat exchange coil according to an embodiment of the invention.

    Figure 2B is a side view schematic of the heat exchanger shown in Figure 2A.

    Figure 3 is a front perspective drawing of a transformer air cooling unit, including a heat exchanger according to an embodiment of the invention.

    Figure 4 is a rear perspective drawing of a transformer air cooling unit shown in Figure 3.

    Figure 5 is another rear perspective drawing of the transformer air cooling unit shown in Figure 3.


    Detailed Description of the Invention



    [0023] In the following description, numerous details are set forth to provide a more thorough explanation of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details.

    [0024] Figure 1A shows a heat exchange coil 10 according to an embodiment of the invention. Heat exchange coil 10 receives fluid from header 12 through connecting tube 14. Connecting tube 14 is connected to inner tube 16a. Fluid travels through the heat exchange coil through inner tubes 16a, 16b, and 16c, via return bends 18a and 18b. Inner tubes 16a, 16b, and 16c are expanded into outer tubes 20a, 20b, and 20c, respectively. According to an embodiment of the invention, the inner surfaces of outer tubes 20a, 20b, and 20c have dimples, ribs, or other surface features 21 to create both contact between and voids between the inner and outer tubes to allow the passage of fluid between them (see Figure 1B). According to an alternative embodiment, the outer surface of the inner tubes may have spacing features or be fitted with spacing devices to accomplish the same purpose. Fins 22 are fixed to the outside surfaces of the outer tubes to enhance heat exchange. The air flow is directed only over the center portion 24 of the coil. Return bends 18a, 18b, and the ends 26 of outer tubes 20a, 20b and 20c are located outside the air flow path.

    [0025] According to one method of manufacturing a coil according to the invention, outer tubes are inserted into the fin matrix and expanded into the fins. The inner tubes are then inserted into the outer tubes and expanded to provide contact at the contact surfaces and voids at non-contact locations. The return bends may then be brazed to the inner tubes.

    [0026] If a leak occurs in any of inner tubes 16a, 16b, or 16c, it will be captured in corresponding outer tube 20a, 20b, or 20c, travel down the length of the tube in which it was captured by virtue of the voids created between the tubes by the inner surface features 21 of outer tubes 20a, 20b and 20c, then fall out of the end of the outer tube under force of gravity into a drip pan/drain pan 28 in return bend box 30a, 30b (Fig. 2), outside of the air flow path. In this way, the air flow path (and hence the transformer, or any other device into which the air is ultimately directed) is protected from water contamination resulting from leaks in the heat exchange coil, and leaks are quickly and easily detected, all without complicated nested and sealed chambered header arrangements. Alternatively, the space between the outer tubes and the inner tubes at one end of the coil may be brazed or otherwise sealed shut. According to this embodiment, water from leaks in the inner tubes falls out of the outer tubes only in the return bend box at the end of the coil that is opposite the end where the space between the inner and outer tubes is sealed shut.

    [0027] Figures 2A and 2B show schematics of a heat exchange unit 34 including a heat exchange coil according of the invention. Return bend boxes 30a and 30b are situated outside of the primary housing of heat exchange unit, and contain the return bends (not shown) at both ends of the inner tubes (also not shown). Fins 22 are shown, which as described above, are fixed to the outside surfaces of the outer tubes of the heat exchange coil. Header 12 includes fluid inlet/outlets 32. According to an embodiment of the invention, drain pan 28 may be provided with a slope between the return bend boxes so that water from leaks collected in one return bend box is made to travel to the other side of the coil where it can be detected with a leak detector. Alternatively, according to an embodiment of the invention where the spaces between the inner tubes and outer tubes are closed, no sloped drain pan between the return bend boxes is required, as water from any leaks will fall only into the return bend box at the end of the coil opposite the end where the spaces between the inner and outer tubes are sealed shut.

    [0028] Figures 3-5 show different views of a transformer air cooling unit 36, including a heat exchanger according to an embodiment of the invention. Transformer air cooling unit 36, includes fan box 38, resting on top of heat exchange unit 34. Fans inside fan box 38 pull air from a transformer transfer unit (not shown) through louvers 39 and direct air down through heat exchange unit 34. Air passes over the tubes (not visible in Figs 3-5) and fins 22, to exit the bottom of the unit. Return bends and the ends of outer safety tubes are contained in return bend boxes 30a and 30b, outside of the air flow path, and the air flow path is preferably contained within heat exchange unit 34. Water enters one of fluid inlet/outlets 32 and exits through the other according to desired water flow valving/settings. Leak detector 40 detects the presence of water in the bottom of return bend box 30a.

    [0029] The arrangement shown in Figures 3-5 should not be considered to limit the invention, and given the present disclosure, persons of ordinary skill would readily appreciate that the features of the invention described herein may be used according to any number of heat exchange applications and arrangements. The heat exchange coil of the invention can be used according to any number of arrangements where air passing over the coil must be protected from fluid contained in the coils, provided that return bends and the ends of the outer "safety" tubes are located outside of the air flow path.


    Claims

    1. A heat exchanger comprising a heat exchange coil (10) comprising:

    a plurality of double-walled tubes traversing an intended air flow path,

    a plurality of single-walled return bend tubes connecting said double-walled tubes;

    said return bend tubes (18a; 18b) located outside of said intended air flow path,

    said double-walled tubes each comprise an inner tube (16a) and an outer tube (20a);

    said inner tubes are connected to said plurality of return bend tubes to define a fluid path through said heat exchange coil; and

    respective ends of said outer tubes are located outside of said intended air flow path,

    and the heat exchanger further comprising return bend boxes (30a, 30b) configured to

    house said return bend tubes and ends of said outer tubes,

    characterised in that said heat exchange coil is configured to guide circulating water,

    and the heat exchanger comprises a leak detector (40) to detect the presence of water in at least one of said return bend boxes (30a).


     
    2. A heat exchange coil according to claim 1, further comprising surface features (21) on inner surfaces of said outer tubes to create contact points and voids between said inner tubes (16a) and outer tubes (20a).
     
    3. A heat exchange coil according to claim 1, further comprising:
    fins (22) fixed to said outer tubes (20a) to increase heat exchange capacity of said heat exchange coil.
     
    4. A heat exchanger according to claim 1, wherein at least one of said return bend boxes (30a) comprises a drip pan (28).
     
    5. A heat exchanger according to claim 4, further comprising a leak detector (40) to detect the presence of water in said drip pan (28) which has leaked from the tubes.
     
    6. A heat exchange coil according to claim 1, wherein said heat exchange coil (10) is a marine transformer cooling coil.
     
    7. A heat exchange coil according to claim 1, wherein ends of said outer tubes (20a) at one end of said coil (10) are sealed to outer surfaces of corresponding inner tubes (16a) so that water from leaks in said inner tubes escapes said outer tubes only at another end of said coil.
     
    8. A transformer cooling system, comprising:

    an air moving system for moving air over a heat exchange coil (10), and a leak detector,

    the heat exchange coil being configured to guide circulating water, and comprising:

    a plurality of double-walled tubes traversing an intended air flow path,

    said double-walled tubes each comprise an inner tube (16a) and an outer tube (20a), the system being characterised in that

    a plurality of single-walled return tubes (18a; 18b) connect said double-walled tubes;

    said return bend tubes located outside of said intended air flow path,

    and the transformer cooling system further comprises

    return bend boxes (30a, 30b) configured to house said return bend tubes (18a; 18b) and ends of said outer tubes,

    and the cooling system comprises the leak detector (40) to detect the presence of water in at least one of said return bend boxes (30a).


     
    9. A transformer cooling system according to claim 8, further comprising: fins (22) fixed to said outer tubes (20a) to increase heat exchange capacity of said heat exchange coil.
     
    10. A transformer cooling system according to claim 8, further comprising a drip pan (28) situated to collect water dripping from one or more ends of said outer tubes (20a).
     
    11. A transformer cooling system according to claim 8, wherein ends of said outer tubes (20a) at one end of said coil (10) are sealed to outer surfaces of corresponding inner tubes (16a) so that water from leaks in said inner tubes escapes said outer tubes only at another end of said coil.
     


    Ansprüche

    1. Wärmetauscher, umfassend eine Wärmetauscherschlange (10), umfassend:

    eine Vielzahl von doppelwandigen Rohren, die einen vorgesehenen Luftstromweg durchqueren,

    eine Vielzahl einwandiger Verbindungskrümmerrohre, die die doppelwandigen Rohre verbinden;

    wobei sich die Verbindungskrümmerrohre (18a; 18b) außerhalb des vorgesehenen Luftstromweges befinden,

    die doppelwandigen Rohre jeweils aus einem Innenrohr (16a) und einem Außenrohr (20a) bestehen;

    die Innenrohre mit der Vielzahl von Verbindungskrümmerrohren zum Definieren eines Fluidweges durch die Wärmetauscherschlange verbunden sind; und jeweilige Enden der Außenrohre sich außerhalb des vorgesehenen Luftstromweges befinden,

    und der Wärmetauscher ferner Verbindungskrümmerkästen (30a, 30b) umfasst, die dafür ausgelegt ist, die Verbindungskrümmerrohre und die Enden der Außenrohre aufzunehmen,

    dadurch gekennzeichnet, dass die Wärmetauscherschlange dafür ausgelegt ist, zirkulierendes Wasser zu führen, und der Wärmetauscher einen Leckdetektor (40) zum Erkennen des Vorhandenseins von Wasser in mindestens einem der Verbindungskrümmerkästen (30a) umfasst.


     
    2. Wärmetauscherschlange nach Anspruch 1, ferner umfassend Oberflächenmerkmale (21) auf Innenflächen der Außenrohre zum Schaffen von Kontaktpunkten und Hohlräumen zwischen den Innenrohren (16a) und den Außenrohren (20a).
     
    3. Wärmetauscherschlange nach Anspruch 1, ferner umfassend:

    Rippen (22), die an den Außenrohren (20a) befestigt sind, um die Wärmeaustauschkapazität der Wärmetauscherschlange zu erhöhen.


     
    4. Wärmetauscher nach Anspruch 1, wobei mindestens einer der Verbindungskrümmerkästen (30a) eine Auffangwanne (28) umfasst.
     
    5. Wärmetauscher nach Anspruch 4, ferner umfassend einen Leckdetektor (40) zum Erkennen des Vorhandenseins von Wasser in der Auffangwanne (28), das aus den Rohren ausgetreten ist.
     
    6. Wärmetauscherschlange nach Anspruch 1, wobei die Wärmetauscherschlange (10) eine Kühlspule für Schiffstransformatoren ist.
     
    7. Wärmetauscherschlange nach Anspruch 1, wobei Enden der Außenrohre (20a) an einem Ende der Schlange (10) gegen Außenflächen entsprechender Innenrohre (16a) abgedichtet sind, so dass Wasser aus Lecks in den Innenrohren nur an einem anderen Ende der Schlange aus den Außenrohren austritt.
     
    8. Transformatorkühlsystem, umfassend:

    ein Luftbewegungssystem zum Bewegen von Luft über eine Wärmetauscherschlange (10), und einen Leckdetektor, wobei die Wärmetauscherschlange dafür ausgelegt ist, zirkulierendes Wasser zu führen, und umfassend:

    eine Vielzahl von doppelwandigen Rohren, die einen vorgesehenen Luftströmungsweg durchqueren, wobei die doppelwandigen Rohre jeweils ein Innenrohr (16a) und ein Außenrohr (20a) umfassen, wobei das System dadurch gekennzeichnet ist, dass:

    eine Vielzahl von einwandigen Verbindungskrümmerrohren (18a; 18b) die doppelwandigen Rohre verbindet;

    die Verbindungskrümmerrohre außerhalb des beabsichtigten Luftstromweges angeordnet sind, und das Transformatorkühlsystem ferner Verbindungskrümmerkästen (30a, 30b) umfasst, die dafür ausgelegt ist, die Verbindungskrümmerrohre (18a; 18b) und die Enden der Außenrohre aufzunehmen, und das Kühlsystem den Leckdetektor (40) zum Erkennen des Vorhandenseins von Wasser in mindestens einem der Verbindungskrümmerkästen (30a) umfasst.


     
    9. Transformatorkühlsystem nach Anspruch 8, ferner umfassend:

    Rippen (22), die an den Außenrohren (20a) zu dem Zweck befestigt sind, die Wärmeaustauschkapazität der Wärmetauscherschlange zu erhöhen.


     
    10. Transformatorkühlsystem nach Anspruch 8, ferner umfassend eine Auffangwanne (28), die dazu angeordnet ist, von einem oder mehreren Enden der Außenrohre (20a) tropfendes Wasser aufzufangen.
     
    11. Transformatorkühlsystem nach Anspruch 8, wobei Enden der Außenrohre (20a) an einem Ende der Schlange (10) gegen Außenflächen entsprechender Innenrohre (16a) abgedichtet sind, so dass Wasser aus Lecks in den Innenrohren nur an einem anderen Ende der Schlange aus den Außenrohren austritt.
     


    Revendications

    1. Échangeur thermique comprenant un serpentin d'échange thermique (10) comprenant :

    une pluralité de tubes à double paroi traversant un trajet d'écoulement d'air recherché, une pluralité de tubes à courbes de retour à simple paroi raccordant lesdits tubes à double paroi ;

    lesdits tubes à courbes de retour (18a ; 18b) placés à l'extérieur dudit trajet d'écoulement d'air recherché,

    lesdits tubes à double paroi comprennent chacun un tube interne (16a) et un tube externe (20a) ;

    lesdits tubes internes sont raccordés à ladite pluralité de tubes à courbes de retour pour définir un trajet de fluide à travers ledit serpentin d'échange thermique ; et

    des extrémités respectives desdits tubes externes sont placées à l'extérieur dudit trajet d'écoulement d'air recherché, et l'échangeur thermique comprenant en outre des boîtes à courbes de retour (30a, 30b) configurées pour accueillir lesdits tubes à courbes de retour et

    les extrémités desdits tubes externes, caractérisé en ce que ledit serpentin d'échange thermique est configuré pour guider de l'eau en circulation, et

    l'échangeur thermique comprend un détecteur de fuite (40) pour détecter la présence d'eau dans au moins l'une desdites boîtes à courbes de retour (30a).


     
    2. Serpentin d'échange thermique selon la revendication 1, comprenant en outre des caractéristiques de surface (21) sur des surfaces internes desdits tubes externes pour créer des points de contact et des vides entre lesdits tubes internes (16a) et tubes externes (20a).
     
    3. Serpentin d'échange thermique selon la revendication 1, comprenant en outre :

    des ailettes (22) fixées auxdits tubes externes (20a) pour augmenter la capacité d'échange thermique dudit serpentin d'échange thermique.


     
    4. Échangeur thermique selon la revendication 1, dans lequel au moins l'une desdites boîtes à courbes de retour (30a) comprend un bac d'égouttement (28).
     
    5. Échangeur thermique selon la revendication 4, comprenant en outre un détecteur de fuite (40) pour détecter la présence d'eau dans ledit bac d'égouttement (28) qui a fui des tubes.
     
    6. Serpentin d'échange thermique selon la revendication 1, ledit serpentin d'échange thermique (10) étant un serpentin de refroidissement de transformateur marin.
     
    7. Serpentin d'échange thermique selon la revendication 1, dans lequel les extrémités desdits tubes externes (20a) au niveau d'une extrémité dudit serpentin (10) sont scellées sur des surfaces externes de tubes internes correspondants (16a) de sorte que l'eau provenant de fuites dans lesdits tubes internes s'échappe desdits tubes externes uniquement au niveau d'une autre extrémité dudit serpentin.
     
    8. Système de refroidissement de transformateur, comprenant :

    un système de déplacement d'air pour déplacer de l'air sur un serpentin d'échange thermique (10), et un détecteur de fuite, le serpentin d'échange thermique étant configuré pour guider de l'eau en circulation, et comprenant :

    une pluralité de tubes à double paroi traversant un trajet d'écoulement d'air recherché, lesdits tubes à double paroi comprenant chacun un tube interne (16a) et un tube externe (20a), le système étant caractérisé en ce qu'une pluralité de tubes de retour à simple paroi (18a ; 18b) raccordent lesdits tubes à double paroi ; lesdits tubes à courbes de retour étant placés à l'extérieur dudit trajet d'écoulement d'air recherché, et le système de refroidissement de transformateur comprend en outre des boîtes à courbes de retour (30a, 30b) configurées pour accueillir lesdits tubes à courbes de retour (18a ; 18b) et les extrémités desdits tubes externes, et le système de refroidissement comprend le détecteur de fuite (40) pour détecter la présence d'eau dans au moins l'une desdites boîtes à courbes de retour (30a).


     
    9. Système de refroidissement de transformateur selon la revendication 8, comprenant en outre :

    des ailettes (22) fixées auxdits tubes externes (20a) pour augmenter la capacité d'échange thermique dudit serpentin d'échange thermique.


     
    10. Système de refroidissement de transformateur selon la revendication 8, comprenant en outre un bac d'égouttement (28) situé pour collecter l'eau s'égouttant d'une ou de plusieurs extrémités desdits tubes externes (20a).
     
    11. Système de refroidissement de transformateur selon la revendication 8, dans lequel les extrémités desdits tubes externes (20a) au niveau d'une extrémité dudit serpentin (10) sont scellées sur des surfaces externes de tubes internes correspondants (16a) de sorte que l'eau provenant de fuites dans lesdits tubes internes s'échappe desdits tubes externes uniquement au niveau d'une autre extrémité dudit serpentin.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description