|
(11) | EP 2 843 127 A1 |
| (12) | EUROPEAN PATENT APPLICATION |
|
|
|
|
|||||||||||||||||||||||
| (54) | Method of waterless processing of textile materials using supercritical fluid |
| (57) The present application is directed to a method of waterless processing of textile
materials using supercritical fluid, including the use of supercritical fluid to dye
the textile materials, the use of supercritical fluid for a pre-processing procedure
of cleansing the textile materials, and the use of supercritical fluid to wash off
unfixed dyes and cleansing of the textile materials and to perform the post-processing
procedure of adding functional materials after the use of supercritical fluid to dye
the textile materials. The present application provides an integrated technology of
pre-processing, dyeing and post-processing of textile materials using supercritical
fluid. At the same time, cleansing and dyeing are performed which effectively raises
the efficiency.
|
FIELD OF THE TECHNOLOGY
BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is an illustrative diagram of a pre-processing cleansing procedure according to an embodiment of the present application;
Figure 2 is an illustrative diagram of a dyeing and functional material adding procedure according to an embodiment of the present application;
Figure 3 is a flow chart of the cleansing, dyeing, washing off unfixed dyes procedures according to an embodiment of the present application.
DETAILED DESCRIPTION
Figure 1 is an illustrative diagram of a pre-processing cleansing procedure according to an embodiment of the present application. The present application provides a method of waterless processing of textile materials using supercritical fluid, including the pre-processing procedure of cleansing the textile materials using supercritical fluid before the process of dyeing of the textile materials using supercritical fluid. An embodiment of the procedure of the cleansing process is illustrated in Figure 1 and is described as follows:
Step 1: Carbon dioxide in a carbon dioxide storage can 1 can be cooled to a temperature at about 0∼10°C (preferably at 5°C) by a first cooler 2. At this time, the carbon dioxide is in liquid form. It is then pressurized by a carbon dioxide pressurizing pump 3, causing the pressure to reach about 8∼10Mpa. Thereafter, the temperature can be raised to about 50∼100°C by a heat exchanger 4, causing the carbon dioxide to reach a supercritical state. An upper part of the carbon dioxide storage can 1 may be provided with a pressure meter 12.
Step 2: The carbon dioxide in the supercritical state can be passed into a high-pressure cauldron 5 to rinse textile materials 6 inside the high-pressure cauldron 5. An upper part of the high-pressure cauldron 5 may be provided with a pressure meter 7. Through the rinsing of the textile materials by the supercritical carbon dioxide, grease on the textile materials can be removed from the textile materials and dissolved in the supercritical carbon dioxide. The rinsing time may be about 20∼50 minutes (e.g. 30 minutes) and can be specifically determined according to the textile materials to be cleansed. A small amount of an organic solvent such as acetone, isopropanol and methanol etc. can be added in advance in the high-pressure cauldron 5. The added organic solvent can be in an amount of about 0.1-10% (preferably at 0.5%) by weight of the textile materials. This can effectively increase the cleansing efficiency and reduce the cleansing time.
Step 3: The supercritical carbon dioxide carrying the grease after rinsing can be depressurized by a depressurizing valve 8, causing the pressure to be reduced to about 4∼7Mpa. The heat that is required to be absorbed in the process can be replenished by a heat exchanger 9, causing the temperature in the process to be maintained at about 40∼60°C. The depressurized process would cause the carbon dioxide in the supercritical state to be converted to gaseous carbon dioxide. The gaseous carbon dioxide after being depressurized can be passed into a carbon dioxide separating can 10. In particular, the dissolved grease can be released and present in liquid or solid form, and kept at the bottom of the carbon dioxide separating can 10. The gaseous carbon dioxide at an upper layer of the carbon dioxide separating can 10 would be released and enter into a second cooler 11, causing the temperature to be dropped and maintained at about 0∼10°C (preferably at 5°C). Only at this time the carbon dioxide can be converted to liquid form and recycled to the carbon dioxide storage can 1 for second round cleansing. This forms a continuous cleansing procedure using supercritical fluid.
Step 1: Carbon dioxide in a carbon dioxide storage can 13 can be dropped and maintained at a temperature of about 0∼10°C (preferably at 5°C) by a third cooler 14. At this time, the carbon dioxide is in liquid form. In a supercritical process, the carbon dioxide in liquid form can be pressurized by a carbon dioxide pressurizing pump 15, causing the pressure to reach 20∼28Mpa. At this stage, the carbon dioxide reaches a supercritical state. Then, the temperature can be raised to about 70∼120°C by a heat exchanger 16. A top part of the carbon dioxide storage can 13 may be provided with a pressure meter 28.
Step 2: The supercritical carbon dioxide may enter a dyeing can 17. The dyeing can 17 may be provided therein with dyeing material and functional material. The functional material can be silicon-type of oily compound or fluorine-type of oily compound, such as hexafluoroethane, perfluorohexane, dimethyl chlorosilane or silicon tetrachloride etc, which can cause the textile materials to possess water resistant capability. The added dying material and functional material may be in an amount of 0.5∼5% (preferably at 1%) by weight of the textile materials. This can cause the supercritical carbon dioxide to dissolve the dyeing material and the functional material. These materials may then be passed into a high-pressure cauldron 18. Textile materials 19 are then dyed and the functional material can be absorbed by the textile materials in the high-pressure cauldron 18. An upper part of the high-pressure cauldron 18 can be provided with a pressure meter 20. During the process, the carbon dioxide with the dissolved dyeing material and functional material can be led back to the dyeing can 17 through a back flow control valve 21, a flow meter 22 and a high-pressure cycling pump 23, to thereby repeatedly perform dyeing and absorbing of the functional material until the dyeing material and functional material are fully absorbed by the textile materials. In particular, a top part of the high-pressure cauldron 18 can be connected with the back flow control valve 21. The back flow control valve 21 may be connected to an entry port of the dyeing can 17 through the flow meter 22 and the high-pressure cycling pump 23, resulting in a circulating flow path. The duration of the whole dyeing process may be about 20∼50 minutes, e.g. 30 minutes, and can be lengthened or shortened according to actual need.
Step 3: After the dyes and functional materials have been absorbed, a depressurizing valve 24 connected to a top part of the high-pressure cauldron 18 can depressurize the carbon dioxide with the dissolved dyeing material and functional material to about 4∼6Mpa (preferably at 5Mpa). At this time, the heat absorbed can be replenished by a heat exchanger 25, causing the temperature to be maintained at about 40∼60°C, and further causing the carbon dioxide with the dissolved dyeing material and functional material in the high-pressure cauldron 18 to enter a carbon dioxide separating can 26 through the depressurizing valve 24 and heat exchanger 25. At this time, the carbon dioxide is in gaseous form. The remaining dyeing and functional materials in the carbon dioxide separating can 26 can be released in solid form or liquid form and kept at the bottom of the carbon dioxide separating can 26. The gaseous carbon dioxide can be released from an upper layer of the carbon dioxide separating can 26 and can then enter a forth cooler 27, causing the temperature to drop to about 0∼10°C (preferably at 5°C). Only at this time the carbon dioxide can be converted to liquid form and be recycled to the carbon dioxide storage can 13 for re-use.
After textile materials 30 are placed in a high-pressure cauldron, the temperature of carbon dioxide can first be dropped and maintained at about 0∼10°C (preferably at 5°C) by a cooler. The carbon dioxide is in liquid form, and can be pressurized to a supercritical state by a carbon dioxide pressurizing pump 31. During the cleansing process 32, the pressure can be controlled at about 8∼10Mpa, and the temperature can be raised to about 50∼100°C by a heat exchanger 33. After entering into the high-pressure cauldron, the textile materials provided therein can be rinsed. Upon rinsing, the carbon dioxide carrying the grease can be depressurized to about 4∼6Mpa by a depressurizing valve, and the temperature can be maintained at about 40∼60°C. It then enters a carbon dioxide separating can. At this time, the carbon dioxide is in gaseous form. The grease can be released in liquid form or solid form and kept at the bottom of the carbon dioxide separating can 34. The gaseous carbon dioxide can be released from an upper portion of the carbon dioxide separating can and can then enter a cooler, causing the temperature to be dropped and maintained at a temperature of about 0∼10°C (preferably at 5°C) 35. Only at this time the carbon dioxide can be converted to liquid form and be recycled by a carbon dioxide storage can for a second round cleansing 36. This forms a continuous cleansing procedure using supercritical fluid.
After cleansing, the procedure of dyeing and adding of functional materials may begin 37. The pressure can be maintained at about 20∼30Mpa and the temperature can be raised to about 70∼120°C 38. The textile materials may then enter a dyeing can in which dyeing material and functional material are added. During the process, the carbon dioxide with the dissolved dyeing material and functional material can repeatedly perform dyeing and adding of functional materials in the high-pressure cauldron through the use of a flow meter and a high-pressure cycling pump, until the dyeing material and the functional material are fully absorbed by the textile materials. Through a depressurizing valve, the pressure can be lowered to about 4∼6Mpa, and the temperature can be maintained at about 40∼60°C. The carbon dioxide can enter into a carbon dioxide separating can. At this time, the carbon dioxide is in gaseous form. The remaining dyeing and functional materials can be released in solid or liquid form and kept at the bottom of the carbon dioxide separating can. The gaseous carbon dioxide can be released from an upper portion of the carbon dioxide separating can and can then enter into a cooler, causing the temperature to be dropped and maintained at about 0∼10°C (preferably at 5°C). Only at this time, the carbon dioxide is in liquid form and can be recycled by the carbon dioxide storage can for re-use.
After dyeing and adding of functional material, the procedure of washing off unfixed dyes may begin 39. The pressure of the carbon dioxide in the supercritical state can be maintained at about 7∼10Mpa, and the temperature can be raised to 50∼100°C by a heat exchanger. The textile materials can enter a high-pressure cauldron and the rinsing of unfixed dyes may begin. After rinsing, the carbon dioxide carrying the unfixed dyes can be depressurized to about 4∼6Mpa by a depressurizing valve, causing the temperature to be maintained at about 40∼60°C, and can then enter a carbon dioxide separating can. At this time, the carbon dioxide is in gaseous form. The unfixed dyes can be released in liquid or solid form and kept at the bottom of the carbon dioxide separating can 40. The carbon dioxide after separation 41 can be the same as that in the pre-processing procedure of cleansing, and it can be recycled for re-use 42.
Embodiment 1:
Liquid carbon dioxide is stored in a storage can with a temperature at moderate level and pressure at about 5Mpa. The carbon dioxide enters into a cooler and the temperature is maintained at about 0∼10°C (preferably at 5°C). At this stage, the carbon dioxide is in a fully liquid form. The pressure is maintained at about 5Mpa. During a supercritical process, the carbon dioxide is pressurized to a suitable pressure by a high-pressure pump, and the pressure can be maintained at about 10Mpa to thereby reach a supercritical state. The temperature is raised to 50∼100°C by a heat exchanger and the carbon dioxide then enters into a high-pressure cauldron, which rinses textile materials provided therein. The carbon dioxide carrying the grease would be depressurized to about 5Mpa by a depressurizing valve. At this time, the heat absorbed can be replenished by a heat exchanger, allowing the temperature to be maintained at about 40°C. The carbon dioxide can then enter into a carbon dioxide separating can. At this time, the carbon dioxide is in gaseous form. The grease dissolved can be released in liquid or solid form and kept at the bottom of the carbon dioxide separating can. The gaseous form carbon dioxide can be released at an upper layer of the carbon dioxide separating can and may then enter a cooler, causing the temperature to be dropped and maintained at about 0∼10°C (preferably at 5°C). Only at this time the carbon dioxide can be converted to liquid form and be recycled to the carbon dioxide storage can for second round cleansing. This forms a continuous cleansing procedure using supercritical fluid. The whole procedure takes about half an hour. After cleansing, the textile materials may enter into a dyeing procedure or use for other purposes.
The present embodiment provides a method of processing textile materials using supercritical fluid. Before using supercritical fluid to dye the textile materials, the supercritical fluid is used in a pre-processing procedure of cleansing the textile materials. The pre-processing procedure of cleansing is exactly the same as that in embodiment 1. A specific procedure of dyeing and adding of functional materials is described as follows:
The liquid carbon dioxide is stored in the storage can at a moderate temperature and pressure at about 5Mpa. The carbon dioxide enters a cooler and the temperature is maintained at about 0∼10°C (preferably at 5°C). At this stage, the carbon dioxide is in a fully liquid form. The carbon dioxide can be raised to a suitable pressure by a high-pressure pump, allowing the carbon dioxide to reach a supercritical liquid condition.
The pressure can be maintained at about 28Mpa, and the temperature can be raised to about 70∼120°C by a heat exchanger. The carbon dioxide may then enter into a dyeing can, which can be provided therein in advance with dye material and functional material (such as silicon-type or fluorine-type of oily materials). Then it may enter into a high-pressure cauldron and may perform dyeing and adding of functional material to the textile materials. In the dyeing process, the carbon dioxide with the dissolved dyeing material and functional material can repeatedly perform dyeing and adding of functional material through the use of a flow meter and a high-pressure cycling pump, until the dyeing material and the functional material are fully absorbed by the textile materials. The pressure is then lowered to about 5Mpa by a depressurizing valve. At this time, the absorbed heat can be replenished by a heat exchanger, causing the temperature to be maintained at about 40°C. The carbon dioxide may then enter a carbon dioxide separating can which is at this time in gaseous form. The remaining dyeing and functional materials can be released in solid or liquid form and kept at the bottom of the carbon dioxide separating can. The gaseous carbon dioxide may be released from an upper portion of the carbon dioxide separating can, and may enter into a cooler, causing the temperature to be dropped and maintained at about 0∼10°C (preferably at 5°C). Only at this time, the carbon dioxide can be converted into liquid form and be recycled through the carbon dioxide storage can for re-use. The whole procedure takes about half an hour. The cleansing pre-processing procedure and dyeing procedure in the present embodiments are performed in order. That is, after completing the cleansing pre-process procedure, the dyeing procedure can be performed under different condition but along the same path. After the dyeing process is completed, the condition can be changed, and can then be followed by a post-processing of washing off unfixed dyes and cleansing. As such, the work flow in this order can effectively raise the efficiency and reduce the operation time.
Embodiment 3:
treating gaseous carbon dioxide by a supercritical process so that the gaseous carbon dioxide reaches a supercritical state;
passing the supercritical carbon dioxide through a high-pressure cauldron with the textile material provided therein, thereby rinsing the textile material and removing grease therefrom; and
depressurizing and separating the grease from the carbon dioxide, and collecting the carbon dioxide in gaseous state for re-use.
treating gaseous carbon dioxide by a supercritical process so that the gaseous carbon dioxide reaches a supercritical state;
passing the supercritical carbon dioxide through a high-pressure cauldron with the textile material provided therein, thereby washing the textile material and removing theunfixed dyes therefrom; and
depressurizing and separating the unfixed dyes from the carbon dioxide, and collecting the carbon dioxide in gaseous state for re-use.
treating gaseous carbon dioxide by a supercritical process so that the gaseous carbon dioxide reaches a supercritical state;
passing the supercritical carbon dioxide into a functional material can with the functional material provided therein so that the functional material is dissolved in the supercritical carbon dioxide;
passing the supercritical carbon dioxide with the dissolved functional material into a high-pressure cauldron with the textile material provided therein, thereby performing sedimentation of the functional material in the textile material; and
depressurizing and separating the functional material from the carbon dioxide, and collecting the carbon dioxide in gaseous state for re-use.
adding a functional material into a dyeing can containing a dyeing material,
passing supercritical carbon dioxide into the dyeing can so that it dissolves the dyeing material and the functional material; and
passing the supercritical carbon dioxide with the dissolved dyeing material and functional material into a high-pressure cauldron with the textile material provided therein, thereby performing sedimentation of the dyeing material and the functional material in the textile material.
REFERENCES CITED IN THE DESCRIPTION
Patent documents cited in the description