
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

84
6

21
7

A
1

TEPZZ 846 _7A_T
(11) EP 2 846 217 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
11.03.2015 Bulletin 2015/11

(21) Application number: 14174593.5

(22) Date of filing: 26.06.2014

(51) Int Cl.:
G06F 1/32 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30) Priority: 26.06.2013 US 201313927746

(71) Applicant: Intel Corporation
Santa Clara, CA 95054 (US)

(72) Inventors:
• Cooper, Barnes

Tigard, OR 97223 (US)

• Wilcox, Jeffrey
El Dorado Hills, CA 95762 (US)

• Derr, Michael
El Dorado Hills, CA 95762 (US)

• Songer, Neil
Santa Clara, CA 95051 (US)

• Forbell, Craig
Los Gatos, CA 95032 (US)

(74) Representative: Hufton, David Alan
HGF Limited
Fountain Precinct
Balm Green
Sheffield S1 2JA (GB)

(54) Controlling reduced power states using platform latency tolerance

(57) In an embodiment, a processor includes a plu-
rality of cores and power management logic. The power
management logic may be to, in response to a first break
event during a reduced power state in the processor, set
an exit timer based on a platform latency tolerance, block

a first plurality of break events from interrupting the re-
duced power state, and in response to a expiration of the
exit timer, terminate the reduced power state. Other em-
bodiments are described and claimed.

EP 2 846 217 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

Technical Field

[0001] Embodiments relate generally to power man-
agement of electronic devices.

Background

[0002] Conventionally, an electronic device may in-
clude one or more power states. Each power state may
correspond to a particular performance level and power
consumption. Further, each power state may be associ-
ated with a particular level of power consumption. The
use of such power states may decrease the total amount
of electrical power consumed by the electronic device.

Brief Description of the Drawings

[0003]

FIG. 1 is a block diagram in accordance with one or
more embodiments.

FIGs. 2A-2B are timing diagrams in accordance with
one or more embodiments.

FIG. 3 is a sequence in accordance with one or more
embodiments.

FIG. 4 is a block diagram of a processor in accord-
ance with an embodiment of the present invention.

FIG. 5 is a block diagram of a multi-domain processor
in accordance with another embodiment of the
present invention.

FIG. 6 is a block diagram of an embodiment of a
processor including multiple cores.

FIG. 7 is a block diagram of a system in accordance
with an embodiment of the present invention.

FIG. 8 is a block diagram of a system on a chip in
accordance with an embodiment of the present in-
vention.

Detailed Description

[0004] Some computing systems include functionality
to determine a power state based on latency tolerance.
Conventionally, such systems may select the deepest
(i.e., least power consumption) power state to be entered
by determining an overall system latency tolerance, and
then rounding off to the deepest power state that has a
response time less than the overall platform latency tol-
erance. Further, such systems typically return to a full
power state upon receiving a break event. Thus, conven-

tional systems may not use all available time in a low
power state. Therefore, some potential power savings
may not be not realized.
[0005] In accordance with some embodiments, a com-
puter system may include functionality to defer an exit
from a reduced power state based on a negotiated plat-
form latency tolerance. Further, the computer system
may include functionality to block some types of break
events during the period of the reduced power state. In
this manner, a forced delay may be imposed on some
break events. Therefore, embodiments may increase the
time spent in the reduced power state, and thereby re-
duce overall power consumption.
[0006] Although the following embodiments are de-
scribed with reference to energy conservation and ener-
gy efficiency in specific integrated circuits, such as in
computing platforms or processors, other embodiments
are applicable to other types of integrated circuits and
logic devices. Similar techniques and teachings of em-
bodiments described herein may be applied to other
types of circuits or semiconductor devices that may also
benefit from better energy efficiency and energy conser-
vation. For example, the disclosed embodiments are not
limited to any particular type of computer systems, and
may be also used in other devices, such as handheld
devices, systems on chip (SoCs), and embedded appli-
cations. Some examples of handheld devices include cel-
lular phones, Internet protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications typically include a microcontrol-
ler, a digital signal processor (DSP), network computers
(NetPC), set-top boxes, network hubs, wide area network
(WAN) switches, or any other system that can perform
the functions and operations taught below.
[0007] Moreover, the apparatus, methods, and sys-
tems described herein are not limited to physical com-
puting devices, but may also relate to software optimiza-
tions for energy conservation and efficiency. As will be-
come readily apparent in the description below, the em-
bodiments of methods, apparatus, and systems de-
scribed herein (whether in reference to hardware,
firmware, software, or a combination thereof) are vital to
a ’green technology’ future, such as for power conserva-
tion and energy efficiency in products that encompass a
large portion of the US economy.
[0008] Note that embodiments described herein may
be independent of and/or complementary to an operating
system (OS)-based mechanism, such as the Advanced
Configuration and Power Interface (ACPI) standard (e.g.,
Rev. 3.0b, published October 10, 2006). According to
ACPI, a processor can operate at various performance
states or levels, namely from P0 to PN. In general, the
P1 performance state may correspond to the highest
guaranteed performance state that can be requested by
an OS. In addition to this P1 state, the OS can further
request a higher performance state, namely a P0 state.
This P0 state may thus be an opportunistic state in which,
when power and/or thermal budget is available, proces-

1 2

EP 2 846 217 A1

3

5

10

15

20

25

30

35

40

45

50

55

sor hardware can configure the processor or at least por-
tions thereof to operate at a higher than guaranteed fre-
quency. In many implementations a processor can in-
clude multiple so-called bin frequencies above a guar-
anteed maximum frequency, also referred to as a P1 fre-
quency. In addition, according to ACPI, a processor can
operate at various power states or levels. With regard to
power states, ACPI specifies different power consump-
tion states, generally referred to as C-states, C0, C1 to
Cn states. When a core is active, it runs at a C0 state,
and when the core is idle it may be placed in a core low
power state, also called a core non-zero C-state (e.g.,
C1-C6 states), with each C-state being at a lower power
consumption level (such that C6 is a deeper low power
state than C1, and so forth).
[0009] Referring to FIG. 1, shown is a block diagram
of a system 100 in accordance with one or more embod-
iments. In some embodiments, the system 100 may be
all or a portion of an electronic device or component. For
example, the system 100 may be a cellular telephone, a
computer, a server, a network device, a controller, an
appliance, etc. In another example, the system 100 may
be a multicore processor or a System on a Chip (SoC).
[0010] As shown in FIG. 1, the system 100 may include
processor(s) 110, PM logic 120, memory 150, chipset
160, and devices 130a-130n. The memory 150 may be
any type of computer memory (e.g., dynamic random ac-
cess memory (DRAM), static random-access memory
(SRAM), non-volatile memory, etc.). In some embodi-
ments, the processor(s) 110 may include multiple cores.
Further, in embodiments in which the system 100 is a
processor or SoC, the processor(s) 110 may be process-
ing cores.
[0011] In some embodiments, the devices 130a-130n
may be any hardware/software components associated
with the system 100. The devices 130a-130n may include
external devices coupled to the system 100, internal de-
vices installed in the system 100, software installed or
executing on the system 100, etc. For example, in some
embodiments, the devices 130a-130n may include one
or more of a peripheral device, a printer, a scanner, a
storage drive, a camera, a network adapter, a host con-
troller, a memory controller, a network controller, a graph-
ics controller, a hard disk controller (HDD), an audio con-
troller, a software application, a device driver, an oper-
ating system, etc.
[0012] In one or more embodiments, the chipset 160
may include functionality to support the processor 110,
memory 150, and/or devices 130a-130n. For example,
the chipset 160 may include functionality such as in-
put/output control, memory access, display/audio inter-
face, clocking, etc. In some embodiments, the chipset
160 may include a platform controller hub (PCH).
[0013] In one or more embodiments, the PM logic 120
may include functionality to receive latency time informa-
tion from the various components of the system 100 (e.g.,
devices 130, memory 150, chipset 160, etc.). In some
embodiments, the latency time information for each com-

ponent may be based at least in part on the maximum
response latency that the component may tolerate with-
out adversely affecting its functionality and/or perform-
ance. Further, in some embodiments, the PM logic 120
may receive the latency time information via a latency
tolerance messaging (LTM) system (e.g., using special-
ized notification packets to communicate latency toler-
ance information).
[0014] In one or more embodiments, the PM logic 120
may include functionality to determine an overall platform
latency tolerance (PLT) based on the received latency
time information. For example, in some embodiments,
the PM logic 120 may compare the latency time require-
ments of various components of the system 100, and
may determine the PLT based on the tightest latency
constraint (e.g., the component having the smallest la-
tency time).
[0015] In one or more embodiments, the PM logic 120
may control the duration of a power state based on the
negotiated PLT. For example, the PM logic 120 may set
an exit timer to transition out of a reduced power state in
the system 100. In some embodiments, the PM logic 120
may initiate the exit timer in response to break event.
Further, in some embodiments, the PM logic 120 may
set the exit timer to a time value equal to the PLT minus
a wake time (e.g., the time required to return to a normal
power state). Thus, in some embodiments, the PM logic
120 may enable the reduced power state to be main-
tained as long as possible under the constraint of the PLT.
[0016] In one or more embodiments, the PM logic 120
may include functionality to block break events. For ex-
ample, in some embodiments, the PM logic 120 may
block a first type of break event from interrupting a current
power state until the exit timer expires. Further, in some
embodiments, the PM logic 120 may allow a second type
of break event to interrupt or terminate the current power
state before the exit timer expires. In some embodiments,
the first type of break event may be non-critical or defer-
rable break events. For example, the first type of break
event may include direct memory access (DMA) access-
es, non-critical interrupts, non-critical device traffic, etc.
Further, in some embodiments, the second type of break
event may be critical or non-deferrable break events. For
example, the second type of break event may include
critical timers (e.g., advanced programmable interrupt
controller (APIC) timer, time stamp counter (TSC) dead-
line timer, virtualization timers, high precision event timer
(HPET)), critical interrupts (e.g., vertical blanking interval
interrupt (VBI)), critical device traffic, etc. In one or more
embodiments, the PM logic 120 may unblock the first
type of break event after terminating or exiting a reduced
power state. The unblocked break events may then be
granted or processed in a normal manner.
[0017] Note that, while the PM logic 120 is depicted in
FIG. 1 as being separate from other components of the
system 100, embodiments are not limited in this regard.
For example, in some embodiments, all or a part of the
PM logic 120 may be included in the processor 110 and/or

3 4

EP 2 846 217 A1

4

5

10

15

20

25

30

35

40

45

50

55

the chipset 160. The functionality of the PM logic 120 is
described further below with reference to FIGs. 2A, 2B,
and 3.
[0018] Referring now to FIG. 2A, shown are example
timing diagrams in accordance with one or more embod-
iments. In particular, FIG. 2A illustrates an example of
the functionality of the PM logic 120 shown in FIG. 1.
[0019] As shown, FIG. 2A includes a power diagram
220, a request diagram 230, and a grant diagram 240,
which all correspond to the same time period. The power
diagram 220 illustrates the power state (PS) of a device
(along the vertical axis) at various points in time (along
the horizontal axis). Initially, the device (e.g., system 100
shown in FIG. 1) is at a normal power state PS0. As
shown, a transition to a reduced power state PS1 is com-
pleted at time T0. The device remains at the reduced
power state PS1 between times T0 and T3. Further, a
transition to the normal power state PS0 is initiated at
time T3, and is completed at time T4. The device remains
at the normal power state PS0 until time T5, at which
time a transition back to the reduced power state PS1 is
initiated.
[0020] In the example of FIG. 2A, the request diagram
230 shows non-critical break events 201-205 at the times
that they are requested. Further, the grant diagram 240
shows the same break events 201-205 at the times that
they are granted (i.e., processed or executed).
[0021] As shown, the non-critical break event 201 is
requested prior to T1, and thus is requested during the
normal power state PS0. Further, the non-critical break
event 206 is requested between T4 and T5, and thus is
also requested during the normal power state PS0. In
some embodiments, during a normal power state, the
PM logic 120 does not block or defer non-critical break
events. Thus, as shown in the grant diagram 240, the
non-critical break events 201 and 206 are not deferred,
and are thus granted at substantially the same times that
they were requested.
[0022] As shown, the non-critical break event 202 is
requested at time T1, and is the first non-critical event to
occur during the reduced power state PS1. In one or more
embodiments, the PM logic 120 may respond to the first
non-critical event to occur during a reduced power state
by scheduling an exit from the reduced power state based
on a platform latency time ("PLT") for the device. For
example, in some embodiments, the PM logic 120 may
set an exit timer equal to the PLT minus a response time
("RT1") to transition from PS1 to PS0. Thus, in the ex-
ample shown in FIG. 2A, the transition from PS1 to PS0
is initiated at time T3, and is completed at time T4 (i.e.,
after the response time RT1).
[0023] As shown, in this example, the non-critical break
events 202, 203, 204 and 205 are requested during the
reduced power state PS1 (i.e., between T0 and T3). In
some embodiments, the PM logic 120 may cause non-
critical break events to be deferred until transitioning out
of a reduced power state. Thus, as shown in the grant
diagram 240, the non-critical break events 202, 203, 204

and 205 are deferred until time T4 (i.e., when the device
fully returns to the normal power state PS0). In this man-
ner, a forced delay equal is imposed on the non-critical
break events 202, 203, 204 and 205.
[0024] Note that, conventionally, the transition from
PS1 to PS0 may be initiated at the request time of the
first non-critical event (e.g., the request time T1 for the
non-critical event 202), and may thus be completed at
time T2. Thus, by deferring the transition to complete at
T4 rather than at T2, the PM logic 120 may enable the
reduced power state PS1 to be maintained for an addi-
tional time ("AT"). In some embodiments, the additional
time AT in the reduced power state PS1 may result in
reduced power consumption for the device.
[0025] Referring now to FIG. 2B, shown are example
timing diagrams in accordance with one or more embod-
iments. In particular, FIG. 2B illustrates an example sim-
ilar to the example shown in FIG. 2A. For instance, FIG.
2B includes a power diagram 225, a request diagram
235, and a grant diagram 245, corresponding respective-
ly to diagrams 220, 230, and 240 of FIG. 2A.
[0026] Assume that, in the example shown in FIG. 2B,
the reduced power state PS1 is again initiated at time
T0. Further, as in the example shown in FIG. 2A, the non-
critical break event 202 is the first non-critical event to
occur during the reduced power state PS1. Thus, an exit
timer is again set to complete the transition by the PLT
(i.e., at time T4). However, as shown in the request dia-
gram 235, the critical break event 207 is requested at
time T6. As discussed above, in some embodiments, the
PM logic 120 may terminate a reduced power state in
response to a critical break event. Thus, as shown in the
power diagram 225, a transition out of PS1 is initiated at
T6, and is then completed at time T7. Further, as shown
in the grant diagram 245, the critical break event 207 and
the non-critical break events 202, 203, 204, and 205 are
granted at time T7.
[0027] Referring now to FIG. 3, shown is a sequence
300 for managing a power state, in accordance with one
or more embodiments. In one or more embodiments, the
sequence 300 may be part of the PM logic 120 shown in
FIG. 1. The sequence 300 may be implemented in hard-
ware, software, and/or firmware. In firmware and soft-
ware embodiments it may be implemented by computer
executed instructions stored in a non-transitory computer
readable medium, such as an optical, semiconductor, or
magnetic storage device.
[0028] At step 310, a reduced power state may be in-
itiated. For example, referring to FIGs. 1 and 2A, the PM
logic 120 may initiate a transition from the normal power
state PS0 to the reduced power state PS1 at time T1. In
some embodiments, the reduced power state may asso-
ciated with a lower power consumption level than a nor-
mal or higher power state.
[0029] At step 320, a determination is made about
whether the reduced power state is below a defined
threshold level. For example, referring to FIG. 1, the PM
logic 120 may determine whether the reduced power

5 6

EP 2 846 217 A1

5

5

10

15

20

25

30

35

40

45

50

55

state is a deeper (e.g., provides less power consumption)
than a specific power state. In some embodiments, the
defined threshold level may correspond to, e.g., the C2
power state. Further, in some embodiments, the thresh-
old level may be defined based on the amount of power
efficiency which is estimated to be available in a specific
reduced power state.
[0030] If it is determined at step 320 that the new power
state is not below the defined threshold level, then the
sequence 300 may be terminated. However, if it is de-
termined at step 320 that the new power state is below
the defined threshold level, then the sequence 300 con-
tinues at step 325.
[0031] At step 325, a determination is made about
whether bus traffic is below a defined threshold level. For
example, referring to FIG. 1, the PM logic 120 may de-
termine whether a bus and/or backbone of the system
100 has not had any traffic for at least a minimum time
period (e.g., 5 microseconds, 10 microseconds, etc.).
[0032] If it is determined at step 325 that the bus traffic
is not below the defined threshold level, then the se-
quence 300 may terminate. However, if it is determined
at step 325 that the bus traffic is below the defined thresh-
old level, then the sequence 300 continues at step 327.
[0033] At step 327, non-critical break events may be
blocked. For example, referring to FIG. 1, the PM logic
120 may block non-critical break events from interrupting
the reduced power state. Such blocking of non-critical
break events may include blocking data in a bus or inter-
face (e.g., the internal bus of the I/O controller or back-
bone) of the system 100. Further, the blocked break
events may include, e.g., a DMA transfer, non-critical in-
terrupts, non-critical device traffic, etc.
[0034] At step 330, a determination is made about
whether a non-critical break event has occurred during
the reduced power state (initiated at step 310). For ex-
ample, referring to FIGs. 1 and 2A, the PM logic 120 may
detect the first non-critical break event 202 to occur dur-
ing the reduced power state PS1. If it is determined at
step 330 that a non-critical break event has not occurred
during the reduced power state, step 330 may be repeat-
ed to continue monitoring for a non-critical break event.
However, if it is determined at step 330 that a non-critical
break event has occurred, then the sequence 300 con-
tinues at step 335.
[0035] At step 335, a determination is made about
whether an exit timer would expire prior to any existing
timer. In some embodiments, the exit timer may be based
on a PLT value. For example, referring to FIG. 1, the PM
logic 120 may determine the PLT for the system 100 (e.g.,
based on the component having the smallest latency
time). The PM logic 120 may calculate the period of the
exit timer as the PLT value minus a wake time. Further,
the PM logic 120 may compare the exit timer to the ex-
isting timer. If the exit timer is shorter than the existing
timer, the PM logic 120 may determine that the exit timer
would expire sooner than the existing timer.
[0036] If it is determined at step 335 that the exit timer

would expire prior to any existing timer, then at step 340,
the exit timer may be initiated. For example, referring to
FIG. 1, the PM logic 120 may set a exit timer equal to the
PLT value minus a wake time.
[0037] At step 345, a determination is made about
whether the exit timer has expired. For example, referring
to FIG. 1, the PM logic 120 may determine whether the
exit timer has expired. If it is determined at step 345 that
the exit timer has expired, then the sequence 300 con-
tinues at step 370 (described below). Otherwise, if it is
determined at step 345 that the exit timer has not expired,
then the sequence 300 continues at step 350.
[0038] At step 350, a determination is made about
whether a critical break event has occurred. For example,
referring to FIGs. 1 and 2B, the PM logic 120 may deter-
mine whether any critical break events (e.g., critical break
event 207) have occurred. If it is determined at step 350
that a critical break event has not occurred, the sequence
300 may return to step 345 to continue monitoring expi-
ration of the exit timer. However, if it is determined at step
350 that a critical break event has occurred, then the
sequence 300 continues at step 370 (described below).
[0039] Returning to step 335, if it is determined that
the exit timer would not expire prior to an existing timer,
then at step 360, a determination is made about whether
the existing timer has expired. If it is determined at step
360 that the existing timer has expired, then the sequence
300 continues at step 370 (described below). Otherwise,
if it is determined at step 360 that the existing timer has
not expired, then the sequence 300 continues at step
365.
[0040] At step 365, a determination is made about
whether a critical break event has occurred. If it is deter-
mined at step 365 that a critical break event has not oc-
curred, the sequence 300 may return to step 360 to con-
tinue monitoring expiration of the existing timer. Howev-
er, if it is determined at step 365 that a critical break event
has occurred, then the sequence 300 continues at step
370.
[0041] At step 370, the reduced power state (initiated
at step 310) may be terminated. For example, referring
to FIGs. 1 and 2A, the PM logic 120 may initiate a tran-
sition from the reduced power state PS1 to the normal
power state PS0 at time T3.
[0042] At step 380, non-critical events may be un-
blocked. For example, referring to FIG. 1, the PM logic
120 may unblock non-critical break events. Further, in
some embodiments, any deferred events may be han-
dled/processed. For example, referring to FIG. 2A, the
deferred break events 202, 203, 204, and 205 may be
granted or processed when the transition to the normal
power state PS0 is completed at time T4. After step 380,
the sequence 300 may terminate.
[0043] Note that the examples shown in FIGs. 1, 2A,
2B, and 3 are provided for the sake of illustration, and
are not intended to limit any embodiments. For instance,
while embodiments may be shown in simplified form for
the sake of clarity, embodiments may include any number

7 8

EP 2 846 217 A1

6

5

10

15

20

25

30

35

40

45

50

55

and/or arrangement of additional components (e.g.,
processors, cores, buses, storage media, connectors,
power components, buffers, interfaces, etc.). Further, in
some embodiments, the system 100 may be a multi-core
processor or a System on a Chip (SoC) integrated on a
single die or integrated circuit. It is contemplated that
specifics in the examples shown in FIGs. 1, 2A, 2B, and
3 may be used anywhere in one or more embodiments.
[0044] Referring now to FIG. 4, shown is a block dia-
gram of a processor in accordance with an embodiment
of the present invention. As shown in FIG. 4, the proces-
sor 400 may be a multicore processor including first die
405 having a plurality of cores 410a - 410n of a core
domain. The various cores 410a - 410n may be coupled
via an interconnect 415 to a system agent or uncore do-
main that includes various components. As seen, the un-
core domain may include a shared cache 430. In addition,
the uncore may include an integrated memory controller
440, a power control unit (PCU) 470, and various inter-
faces 450.
[0045] With further reference to FIG. 4, the processor
400 may communicate with a system memory 460, e.g.,
via a memory bus. In addition, by interfaces 450, con-
nection can be made to another processor, or various
off-package components such as peripheral devices,
mass storage and so forth. In some embodiments, the
processor 400 may include some or all of the functionality
of the PM logic 120 shown in FIG. 1. While shown with
this particular implementation in the embodiment of FIG.
4, the scope of the present invention is not limited in this
regard.
[0046] Referring now to FIG. 5, shown is a block dia-
gram of a multi-domain processor in accordance with an-
other embodiment of the present invention. As shown in
the embodiment of FIG. 5, processor 500 includes mul-
tiple domains. Specifically, a core domain 510 can in-
clude a plurality of cores 510a-510n, a graphics domain
520 can include one or more graphics engines, and a
system agent domain 550 may further be present. Note
that while only shown with three domains, understand
the scope of the present invention is not limited in this
regard and additional domains can be present in other
embodiments. For example, multiple core domains may
be present each including at least one core.
[0047] In general, each core 510 may further include
low level caches in addition to various execution units
and additional processing elements. In turn, the various
cores may be coupled to each other and to a shared
cache memory formed of a plurality of units of a last level
cache (LLC) 540a - 540n. In various embodiments, LLC
540 may be shared amongst the cores and the graphics
engine, as well as various media processing circuitry.
[0048] As seen, a ring interconnect 530 thus couples
the cores together, and provides interconnection be-
tween the cores, graphics domain 520 and system agent
circuitry 550. In some embodiments, the ring interconnect
530 may be a multiplexor or crossbar device. In the em-
bodiment of FIG. 5, system agent domain 550 may in-

clude display controller 552 which may provide control
of and an interface to an associated display. As further
seen, system agent domain 550 may also include a pow-
er control unit 555 to allocate power to the CPU and non-
CPU domains.
[0049] As further seen in FIG. 5, processor 500 can
further include an integrated memory controller (IMC)
570 that can provide for an interface to a system memory,
such as a dynamic random access memory (DRAM).
Multiple interfaces 580a - 580n may be present to enable
interconnection between the processor and other circuit-
ry. For example, in one embodiment at least one direct
media interface (DMI) interface may be provided as well
as one or more Peripheral Component Interconnect Ex-
press (PCI Express™ (PCIe™)) interfaces. Still further,
to provide for communications between other agents
such as additional processors or other circuitry, one or
more interfaces in accordance with an Intel® Quick Path
Interconnect (QPI) protocol may also be provided. As
further seen, a peripheral controller hub (PCH) 590 may
also be present within the processor 500, and can be
implemented on a separate die, in some embodiments.
Alternatively, in some embodiments, the PCH 590 may
be external to the processor 500. In some embodiments,
the processor 500 may include some or all of the func-
tionality of the PM logic 120 shown in FIG. 1. Although
shown at this high level in the embodiment of FIG. 5,
understand the scope of the present invention is not lim-
ited in this regard.
[0050] Referring to FIG. 6, an embodiment of a proc-
essor including multiple cores is illustrated. Processor
1100 includes any processor or processing device, such
as a microprocessor, an embedded processor, a digital
signal processor (DSP), a network processor, a handheld
processor, an application processor, a co-processor, a
system on a chip (SOC), or other device to execute code.
Processor 1100, in one embodiment, includes at least
two cores-cores 1101 and 1102, which may include
asymmetric cores or symmetric cores (the illustrated em-
bodiment). However, processor 1100 may include any
number of processing elements that may be symmetric
or asymmetric. In some embodiments, the processor
1100 may include some or all of the functionality of the
PM logic 120 shown in FIG. 1.
[0051] In one embodiment, a processing element re-
fers to hardware or logic to support a software thread.
Examples of hardware processing elements include: a
thread unit, a thread slot, a thread, a process unit, a con-
text, a context unit, a logical processor, a hardware
thread, a core, and/or any other element, which is capa-
ble of holding a state for a processor, such as an execu-
tion state or architectural state. In other words, a process-
ing element, in one embodiment, refers to any hardware
capable of being independently associated with code,
such as a software thread, operating system, application,
or other code. A physical processor typically refers to an
integrated circuit, which potentially includes any number
of other processing elements, such as cores or hardware

9 10

EP 2 846 217 A1

7

5

10

15

20

25

30

35

40

45

50

55

threads.
[0052] A core often refers to logic located on an inte-
grated circuit capable of maintaining an independent ar-
chitectural state, wherein each independently main-
tained architectural state is associated with at least some
dedicated execution resources. In contrast to cores, a
hardware thread typically refers to any logic located on
an integrated circuit capable of maintaining an independ-
ent architectural state, wherein the independently main-
tained architectural states share access to execution re-
sources. As can be seen, when certain resources are
shared and others are dedicated to an architectural state,
the line between the nomenclature of a hardware thread
and core overlaps. Yet often, a core and a hardware
thread are viewed by an operating system as individual
logical processors, where the operating system is able
to individually schedule operations on each logical proc-
essor.
[0053] Physical processor 1100, as illustrated in FIG.
6, includes two cores, cores 1101 and 1102. Here, cores
1101 and 1102 are considered symmetric cores, i.e.
cores with the same configurations, functional units,
and/or logic. In another embodiment, core 1101 includes
an out-of-order processor core, while core 1102 includes
an in-order processor core. However, cores 1101 and
1102 may be individually selected from any type of core,
such as a native core, a software managed core, a core
adapted to execute a native instruction set architecture
(ISA), a core adapted to execute a translated ISA, a co-
designed core, or other known core. Yet to further the
discussion, the functional units illustrated in core 1101
are described in further detail below, as the units in core
1102 operate in a similar manner.
[0054] As shown, core 1101 includes two hardware
threads 1101 a and 1101 b, which may also be referred
to as hardware thread slots 1101 a and 1101 b. There-
fore, software entities, such as an operating system, in
one embodiment potentially view processor 1100 as four
separate processors, i.e., four logical processors or
processing elements capable of executing four software
threads concurrently. As alluded to above, a first thread
is associated with architecture state registers 1101 a, a
second thread is associated with architecture state reg-
isters 1101 b, a third thread may be associated with ar-
chitecture state registers 1102a, and a fourth thread may
be associated with architecture state registers 1102b.
Here, each of the architecture state registers (1101 a,
1101 b, 1102a, and 1102b) may be referred to as
processing elements, thread slots, or thread units, as de-
scribed above.
[0055] As illustrated, architecture state registers 1101
a are replicated in architecture state registers 1101 b, so
individual architecture states/contexts are capable of be-
ing stored for logical processor 1101 a and logical proc-
essor 1101 b. In core 1101, other smaller resources, such
as instruction pointers and renaming logic in allocator
and renamer block 1130 may also be replicated for
threads 1101 a and 1101 b. Some resources, such as

re-order buffers in reorder/retirement unit 1135, ILTB
1120, load/store buffers, and queues may be shared
through partitioning. Other resources, such as general
purpose internal registers, page-table base register(s),
low-level data-cache and data-TLB 1115, execution
unit(s) 1140, and portions of out-of-order unit 1135 are
potentially fully shared.
[0056] Processor 1100 often includes other resources,
which may be fully shared, shared through partitioning,
or dedicated by/to processing elements. In FIG. 6, an
embodiment of a purely exemplary processor with illus-
trative logical units/resources of a processor is illustrated.
Note that a processor may include, or omit, any of these
functional units, as well as include any other known func-
tional units, logic, or firmware not depicted. As illustrated,
core 1101 includes a simplified, representative out-of-
order (OOO) processor core. But an in-order processor
may be utilized in different embodiments. The OOO core
includes a branch target buffer 1120 to predict branches
to be executed/taken and an instruction-translation buffer
(I-TLB) 1120 to store address translation entries for in-
structions.
[0057] Core 1101 further includes decode module
1125 coupled to fetch unit 1120 to decode fetched ele-
ments. Fetch logic, in one embodiment, includes individ-
ual sequencers associated with thread slots 1101 a, 1101
b, respectively. Usually core 1101 is associated with a
first ISA, which defines/specifies instructions executable
on processor 1100. Often machine code instructions that
are part of the first ISA include a portion of the instruction
(referred to as an opcode), which references/specifies
an instruction or operation to be performed. Decode logic
1125 includes circuitry that recognizes these instructions
from their opcodes and passes the decoded instructions
on in the pipeline for processing as defined by the first
ISA. As a result of the recognition by decoders 1125, the
architecture or core 1101 takes specific, predefined ac-
tions to perform tasks associated with the appropriate
instruction. It is important to note that any of the tasks,
blocks, operations, and methods described herein may
be performed in response to a single or multiple instruc-
tions; some of which may be new or old instructions.
[0058] In one example, allocator and renamer block
1130 includes an allocator to reserve resources, such as
register files to store instruction processing results. How-
ever, threads 1101 a and 1101 b are potentially capable
of out-of-order execution, where allocator and renamer
block 1130 also reserves other resources, such as reor-
der buffers to track instruction results. Unit 1130 may
also include a register renamer to rename program/in-
struction reference registers to other registers internal to
processor 1100. Reorder/retirement unit 1135 includes
components, such as the reorder buffers mentioned
above, load buffers, and store buffers, to support out-of-
order execution and later in-order retirement of instruc-
tions executed out-of-order.
[0059] Scheduler and execution unit(s) block 1140, in
one embodiment, includes a scheduler unit to schedule

11 12

EP 2 846 217 A1

8

5

10

15

20

25

30

35

40

45

50

55

instructions/operation on execution units. For example,
a floating point instruction is scheduled on a port of an
execution unit that has an available floating point execu-
tion unit. Register files associated with the execution
units are also included to store information instruction
processing results. Exemplary execution units include a
floating point execution unit, an integer execution unit, a
jump execution unit, a load execution unit, a store exe-
cution unit, and other known execution units.
[0060] Lower level data cache and data translation
buffer (D-TLB) 1150 are coupled to execution unit(s)
1140. The data cache is to store recently used/operated
on elements, such as data operands, which are poten-
tially held in memory coherency states. The D-TLB is to
store recent virtual/linear to physical address transla-
tions. As a specific example, a processor may include a
page table structure to break physical memory into a plu-
rality of virtual pages.
[0061] Here, cores 1101 and 1102 share access to
higher-level or further-out cache 1110, which is to cache
recently fetched elements. Note that higher-level or fur-
ther-out refers to cache levels increasing or getting fur-
ther away from the execution unit(s). In one embodiment,
higher-level cache 1110 is a last-level data cache-last
cache in the memory hierarchy on processor 1100-such
as a second or third level data cache. However, higher
level cache 1110 is not so limited, as it may be associated
with or includes an instruction cache. A trace cache-a
type of instruction cache-instead may be coupled after
decoder 1125 to store recently decoded traces. In the
depicted configuration, processor 1100 also includes bus
interface module 1105 and a power controller 1160,
which may perform power management in accordance
with an embodiment of the present invention.
[0062] Historically, controller 1170 has been included
in a computing system external to processor 1100. In this
scenario, bus interface 1105 is to communicate with de-
vices external to processor 1100, such as system mem-
ory 1175, a chipset (often including a memory controller
hub to connect to memory 1175 and an I/O controller hub
to connect peripheral devices), a memory controller hub,
a northbridge, or other integrated circuit. And in this sce-
nario, bus 1105 may include any known interconnect,
such as multi-drop bus, a point-to-point interconnect, a
serial interconnect, a parallel bus, a coherent (e.g. cache
coherent) bus, a layered protocol architecture, a differ-
ential bus, and a GTL bus.
[0063] Memory 1175 may be dedicated to processor
1100 or shared with other devices in a system. Common
examples of types of memory 1175 include DRAM,
SRAM, non-volatile memory (NV memory), and other
known storage devices. Note that device 1180 may in-
clude a graphic accelerator, processor or card coupled
to a memory controller hub, data storage coupled to an
I/O controller hub, a wireless transceiver, a flash device,
an audio controller, a network controller, or other known
device.
[0064] Note however, that in the depicted embodiment,

the controller 1170 is illustrated as part of processor
1100. Recently, as more logic and devices are being in-
tegrated on a single die, such as SOC, each of these
devices may be incorporated on processor 1100. For ex-
ample in one embodiment, memory controller hub 1170
is on the same package and/or die with processor 1100.
Here, a portion of the core (an on-core portion) includes
one or more controller(s) 1170 for interfacing with other
devices such as memory 1175 or a graphics device 1180.
The configuration including an interconnect and control-
lers for interfacing with such devices is often referred to
as an on-core (or un-core configuration). As an example,
bus interface 1105 includes a ring interconnect with a
memory controller for interfacing with memory 1175 and
a graphics controller for interfacing with graphics proc-
essor 1180. Yet, in the SOC environment, even more
devices, such as the network interface, coprocessors,
memory 1175, graphics processor 1180, and any other
known computer devices/interface may be integrated on
a single die or integrated circuit to provide small form
factor with high functionality and low power consumption.
[0065] Embodiments may be implemented in many dif-
ferent system types. Referring now to FIG. 7, shown is
a block diagram of a system in accordance with an em-
bodiment of the present invention. As shown in FIG. 7,
multiprocessor system 600 is a point-to-point intercon-
nect system, and includes a first processor 670 and a
second processor 680 coupled via a point-to-point inter-
connect 650. As shown in FIG. 7, each of processors 670
and 680 may be multicore processors, including first and
second processor cores (i.e., processor cores 674a and
674b and processor cores 684a and 684b), although po-
tentially many more cores may be present in the proces-
sors. In some embodiments, the processors 670, 680
may include some or all of the functionality of the PM
logic 120 shown in FIG. 1.
[0066] Still referring to FIG. 7, first processor 670 fur-
ther includes a memory controller hub (MCH) 672 and
point-to-point (P-P) interfaces 676 and 678. Similarly,
second processor 680 includes a MCH 682 and P-P in-
terfaces 686 and 688. As shown in FIG. 7, MCH’s 672
and 682 couple the processors to respective memories,
namely a memory 632 and a memory 634, which may
be portions of system memory (e.g., DRAM) locally at-
tached to the respective processors. First processor 670
and second processor 680 may be coupled to a chipset
690 via P-P interconnects 652 and 654, respectively. As
shown in FIG. 7, chipset 690 includes P-P interfaces 694
and 698.
[0067] Furthermore, chipset 690 includes an interface
692 to couple chipset 690 with a high performance graph-
ics engine 638, by a P-P interconnect 639. In turn, chipset
690 may be coupled to a first bus 616 via an interface
696. As shown in FIG. 7, various input/output (I/O) de-
vices 614 may be coupled to first bus 616, along with a
bus bridge 618 which couples first bus 616 to a second
bus 620. Various devices may be coupled to second bus
620 including, for example, a keyboard/mouse 622, com-

13 14

EP 2 846 217 A1

9

5

10

15

20

25

30

35

40

45

50

55

munication devices 626 and a data storage unit 628 such
as a disk drive or other mass storage device which may
include code 630, in one embodiment. Further, an audio
I/O 624 may be coupled to second bus 620. Embodi-
ments can be incorporated into other types of systems
including mobile devices such as a smart cellular tele-
phone, tablet computer, netbook, Ultrabook™, or so
forth.
[0068] It should be understood that a processor core
may support multithreading (executing two or more par-
allel sets of operations or threads), and may do so in a
variety of ways including time sliced multithreading, si-
multaneous multithreading (where a single physical core
provides a logical core for each of the threads that phys-
ical core is simultaneously multithreading), or a combi-
nation thereof (e.g., time sliced fetching and decoding
and simultaneous multithreading thereafter such as in
the Intel® Hyperthreading technology).
[0069] Any processor described herein may be a gen-
eral-purpose processor, such as a Core™ i3, i5, i7, 2
Duo and Quad, Xeon™, Itanium™, XScale™ or Strong-
ARM™ processor, which are available from Intel Corpo-
ration, of Santa Clara, Calif. Alternatively, the processor
may be from another company, such as ARM Holdings,
Ltd, MIPS, etc.. The processor may be a special-purpose
processor, such as, for example, a network or commu-
nication processor, compression engine, graphics proc-
essor, co-processor, embedded processor, or the like.
The processor may be implemented on one or more
chips. The processor may be a part of and/or may be
implemented on one or more substrates using any of a
number of process technologies, such as, for example,
BiCMOS, CMOS, or NMOS.
[0070] It is contemplated that the processors described
herein are not limited to any system or device. Other sys-
tem designs and configurations known in the arts for lap-
tops, desktops, handheld PCs, personal digital assist-
ants, engineering workstations, servers, network devic-
es, network hubs, switches, embedded processors, dig-
ital signal processors (DSPs), graphics devices, video
game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In gen-
eral, a huge variety of systems or electronic devices ca-
pable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.
[0071] Turning next to FIG. 8, an embodiment of a sys-
tem on-chip (SOC) design in accordance with the inven-
tions is depicted. As a specific illustrative example, SOC
2000 is included in user equipment (UE). In one embod-
iment, UE refers to any device to be used by an end-user
to communicate, such as a hand-held phone, smart-
phone, tablet, ultra-thin notebook, notebook with broad-
band adapter, or any other similar communication device.
Often a UE connects to a base station or node, which
potentially corresponds in nature to a mobile station (MS)
in a GSM network. In some embodiments, SOC 2000
may include some or all of the functionality of the PM

logic 120 shown in FIG. 1.
[0072] Here, SOC 2000 includes 2 cores-2006 and
2007. The cores 2006 and 2007 may conform to an In-
struction Set Architecture, such as an Intel® Architecture
Core™-based processor, an Advanced Micro Devices,
Inc. (AMD) processor, a MIPS-based processor, an
ARM-based processor design, or a customer thereof, as
well as their licensees or adopters. Cores 2006 and 2007
are coupled to cache control 2008 that is associated with
bus interface unit 2009 and L2 cache 2011 to communi-
cate with other parts of system 2000. Interconnect 2010
includes an on-chip interconnect, such as an IOSF, AM-
BA, or any other interconnect, which potentially imple-
ments one or more aspects of the described invention.
[0073] Interface 2010 provides communication chan-
nels to the other components, such as a Subscriber Iden-
tity Module (SIM) 2030 to interface with a SIM card, a
boot rom 2035 to hold boot code for execution by cores
2006 and 2007 to initialize and boot SOC 2000, a SDRAM
controller 2040 to interface with external memory (e.g.
DRAM 2060), a flash controller 2045 to interface with
non-volatile memory (e.g. Flash 2065), a peripheral con-
trol Q1650 (e.g. Serial Peripheral Interface) to interface
with peripherals, video codecs 2020 and Video interface
2025 to display and receive input (e.g. touch enabled
input), GPU 2015 to perform graphics related computa-
tions, etc.
[0074] In addition, the system illustrates peripherals for
communication, such as a Bluetooth module 2070, 3G
modem 2075, GPS 2085, and WiFi 2085. Note that a UE
includes a radio for communication. As a result, these
peripheral communication modules are not all required.
However, in a UE some form a radio for external com-
munication is to be included.
[0075] Embodiments may be implemented in code and
may be stored on a non-transitory storage medium hav-
ing stored thereon instructions which can be used to pro-
gram a system to perform the instructions. The storage
medium may include, but is not limited to, any type of
disk including floppy disks, optical disks, solid state drives
(SSDs), compact disk read-only memories (CD-ROMs),
compact disk rewritables (CD-RWs), and magneto-opti-
cal disks, semiconductor devices such as read-only
memories (ROMs), random access memories (RAMs)
such as dynamic random access memories (DRAMs),
static random access memories (SRAMs), erasable pro-
grammable read-only memories (EPROMs), flash mem-
ories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.
[0076] The following clauses and/or examples pertain
to further embodiments. In one example embodiment
may be a processor including a plurality of cores and
power management logic. The power management logic
may be to: in response to a first break event during a
reduced power state in the processor, set an exit timer
based on a platform latency tolerance; block a first plu-

15 16

EP 2 846 217 A1

10

5

10

15

20

25

30

35

40

45

50

55

rality of break events from interrupting the reduced power
state; and in response to a expiration of the exit timer,
terminate the reduced power state.
[0077] In an example, the power management logic
may be further to: obtain latency tolerance requirements
for each of the plurality of hardware devices; and deter-
mine the platform latency tolerance using the latency tol-
erance requirements.
[0078] In an example, the power management logic
may be to obtain the latency tolerance requirements us-
ing a latency tolerance messaging (LTM) system.
[0079] In an example, the power management logic
may be to set the exit timer to a time value based at least
in part on the platform latency tolerance and a wake time.
[0080] In an example, the power management logic
may be further to unblock the first plurality of break events
after termination of the reduced power state.
[0081] In an example, the first plurality of break events
comprises non-critical break events. The non-critical
break events may include at least one of a direct memory
access (DMA) transfer and a non-critical interrupt.
[0082] In an example, the power management logic
may be further to, in response to one or more critical
break events, terminate the reduced power state prior to
the expiration of the exit timer. The one or more critical
break events may include at least one of an advanced
programmable interrupt controller (APIC) timer, a time
stamp counter (TSC) deadline timer, a virtualization tim-
er, a high precision event timer (HPET), and a vertical
blanking interval interrupt (VBI).
[0083] In an example, the power management logic
may be further to determine whether the reduced power
state is below a specific threshold power state.
[0084] In an example, the power management logic
may be further to determine whether bus traffic is below
a defined threshold level.
[0085] In another example embodiment may be a proc-
essor including a plurality of cores and power manage-
ment logic. The power management logic may be to: de-
termine a platform latency tolerance for a system com-
prising a plurality of components; set, based on the plat-
form latency tolerance, an exit timer for a reduced power
state; defer one or more non-critical break events until a
termination of the reduced power state; and terminate
the reduced power state in response to an expiration of
the exit timer.
[0086] In an example, the power management logic
may be further to initiate the reduced power state in the
system.
[0087] In an example, the power management logic
may be further to: obtain a plurality of latency tolerance
requirements from the plurality of components; and de-
termine the platform latency tolerance based on the plu-
rality of latency tolerance requirements.
[0088] In an example, the power management logic
may be to set the exit timer by subtracting a wake time
from the platform latency tolerance.
[0089] In an example, the power management logic

may be further to terminate the reduced power state in
response to one or more critical break events.
[0090] In another example embodiment may be a
method, the method including: obtaining, by power man-
agement logic of a computing system, latency tolerance
information for a plurality of devices associated with the
computing system; determining a platform latency toler-
ance based on the latency tolerance information; initiat-
ing an exit timer to a time period based on the platform
latency tolerance; delaying at least one non-critical break
event while the computer system is in a reduced power
state; and in response to an expiration of the exit timer,
terminating the reduced power state.
[0091] In an example, the method may further include
calculating the time period by subtracting a wake time
from the platform latency tolerance, wherein the wake
time is an amount of time to transition from the reduced
power state to a normal power state.
[0092] In an example, obtaining the latency tolerance
information for the plurality of devices may include re-
ceiving a plurality of latency tolerance messages from
the plurality of devices.
[0093] In an example, the method may further include,
in response to a critical break event: terminating the re-
duced power state prior to the expiration of the exit timer;
processing the critical break event; and processing the
delayed at least one non-critical break event.
[0094] In an example, the method may further include
initiating the reduced power state in the system.
[0095] In an example, the method may further include
determining whether the reduced power state is below a
specific threshold power state.
[0096] In an example, the method may further include
determining whether bus traffic is below a defined thresh-
old level.
[0097] In an example, the at least one non-critical
break event is one of a direct memory access (DMA)
transfer and a non-critical interrupt.
[0098] References throughout this specification to
"one embodiment" or "an embodiment" mean that a par-
ticular feature, structure, or characteristic described in
connection with the embodiment is included in at least
one implementation encompassed within the present in-
vention. Thus, appearances of the phrase "one embod-
iment" or "in an embodiment" are not necessarily refer-
ring to the same embodiment. Furthermore, the particular
features, structures, or characteristics may be instituted
in other suitable forms other than the particular embod-
iment illustrated and all such forms may be encompassed
within the claims of the present application.
[0099] While the present invention has been described
with respect to a limited number of embodiments for the
sake of illustration, those skilled in the art will appreciate
numerous modifications and variations therefrom. It is
intended that the appended claims cover all such modi-
fications and variations as fall within the true spirit and
scope of this present invention.

17 18

EP 2 846 217 A1

11

5

10

15

20

25

30

35

40

45

50

55

Claims

1. A processor comprising:

a plurality of cores;
power management logic to:

in response to a first break event during a
reduced power state in the processor, set
an exit timer based on a platform latency
tolerance;
block a first plurality of break events from
interrupting the reduced power state; and
in response to a expiration of the exit timer,
terminate the reduced power state.

2. The processor of claim 1, wherein the power man-
agement logic is further to:

obtain latency tolerance requirements for each
of the plurality of hardware devices; and
determine the platform latency tolerance using
the latency tolerance requirements.

3. The processor of claim 2, wherein the power man-
agement logic is to obtain the latency tolerance re-
quirements using a latency tolerance messaging
(LTM) system.

4. The processor of claim 1, wherein the power man-
agement logic is to set the exit timer to a time value
based at least in part on the platform latency toler-
ance and a wake time.

5. The processor of claim 1, wherein the first plurality
of break events comprises non-critical break events.

6. A method, comprising:

obtaining, by power management logic of a com-
puting system, latency tolerance information for
a plurality of devices associated with the com-
puting system;
determining a platform latency tolerance based
on the latency tolerance information;
initiating an exit timer to a time period based on
the platform latency tolerance;
delaying at least one non-critical break event
while the computer system is in a reduced power
state; and
in response to an expiration of the exit timer,
terminating the reduced power state.

7. The method of claim 6, further comprising:

calculating the time period by subtracting a wake
time from the platform latency tolerance, where-
in the wake time is an amount of time to transition

from the reduced power state to a normal power
state.

8. The method of claim 6, wherein obtaining the latency
tolerance information for the plurality of devices com-
prises receiving a plurality of latency tolerance mes-
sages from the plurality of devices.

9. The method of claim 6, further comprising,
in response to a critical break event:

terminating the reduced power state prior to the
expiration of the exit timer;
processing the critical break event; and
processing the delayed at least one non-critical
break event.

10. The method of claim 6, further comprising:

initiating the reduced power state in the system.

11. The method of claim 6, wherein the at least one non-
critical break event is one of a direct memory access
(DMA) transfer and a non-critical interrupt.

12. A communication device arranged to perform the
method of any one of claims 6 to 11.

13. At least one machine readable medium comprising
a plurality of instructions that in response to being
executed on a computing device, cause the comput-
ing device to carry out a method according to any
one of claims 6 to 11.

14. An apparatus for processing instructions, configured
to perform the method of any one of claims 6 to 11.

15. An apparatus comprising means for performing the
method of any one of claims 6 to 11.

19 20

EP 2 846 217 A1

12

EP 2 846 217 A1

13

EP 2 846 217 A1

14

EP 2 846 217 A1

15

EP 2 846 217 A1

16

EP 2 846 217 A1

17

EP 2 846 217 A1

18

EP 2 846 217 A1

19

EP 2 846 217 A1

20

EP 2 846 217 A1

21

5

10

15

20

25

30

35

40

45

50

55

EP 2 846 217 A1

22

5

10

15

20

25

30

35

40

45

50

55

EP 2 846 217 A1

23

5

10

15

20

25

30

35

40

45

50

55

EP 2 846 217 A1

24

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• Rev. 3.0b, 10 October 2006 [0008]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

