Field of the Invention
[0001] This invention relates to internal combustion engines and more particularly to internal
combustion engines and methods of operating the engines with a new fuel saving cycle.
Background of the Invention
[0002] The present economic condition is particularly bad with respect to gasoline and diesel
fuel for cars and heavy trucks. While efforts are being made to provide hybrid automobiles
that can operate on rechargeable batteries at least part of the time, nevertheless
most still have engines as well that must rely upon gasoline or diesel fuel. The need
to make engines more efficient still exists particularly because of rising gasoline
and diesel fuel costs.
Brief Description of the Invention
[0003] It is an object of the present invention to provide an internal combustion engine
which achieves a measure of fulfillment of the need for more efficient and fuel saving
engines.
[0004] In accordance with the principles of this inventions this objective is achieved by
providing an engine which includes at least two piston and cylinder assemblies preferably
adjacent to one another, at least one of which includes a fuel injector and both of
which are connected to a crank shaft so that the pistons of both assemblies move simultaneously
through repetitive cycles each, including simultaneous compression strokes and immediately
following simultaneous power drive strokes. The two assemblies, when operating with
the new fuel savings cycle, establish at the end of the simultaneous compression strokes
a charge of compressed air in one cylinder of one of the assemblies and a charge of
compressed air fuel mixture in the other cylinder of the other assembly. When the
air fuel mixture is ignited, the high pressure conditions in the other cylinder are
immediately communicated through a passage to the one cylinder to accomplish a double
expansion during the simultaneous power drive strokes thus using much of the pressure
energy before exhaust occurs by the pistons themselves rather than to dump it as is
usually done.
[0005] Preferably, the engine includes a second fuel injector which is controlled selectively
with respect to the first fuel injector to operate in accordance with a normal mode
where both assemblies are simultaneously operated alike in which case both cylinders
establish a charge of compressed air-fuel mixture at the ends of the simultaneous
compression strokes so that in effect a double charge can be ignited to act on both
pistons simultaneously.
[0006] The invention can be embodied in engines in which the injections made by the injectors
cause the ignition (as in conventional compression ignition) or in which the injections
are made during simultaneously intake strokes and ignition is made by a spark ignition
system. In the case of spark ignition, under normal mode operation the ignition of
the second air fuel charge is ignited by a high pressure flame resulting from the
ignition in the first cylinder extending through the passage.
[0007] The engines embodying the principles of the present invention can be operated either
on a four cycle basis or a two cycle basis.
[0008] The invention is most easily applicable to engines of the opposed piston type. A
particularly efficient embodiment utilizes the opposed pistons in one cylinder type
of setup utilized in the new Eco Motors (located in Allen Park, MI) engine. The Eco
Motors set up includes two cylinders disposed on opposite sides of a central portion
of the crankshaft. The central portion of the crankshift is connected to a pair of
connecting rods so as to move a pair of pistons one within each cylinder in two stroke
cycles out of phase 180° with respect to one another. An opposing piston is mounted
in the cylinders, each of which is constrained to move in a cooperating two stroke
cycle by a pair of parallel elongated connecting rods pivoted to an opposing piston
and to the crankshaft so as to be 180° out of phase with respect to one another.
[0009] The Eco Motors engine is advertised as being modular. A dual modular engine includes
two modular engines connected together by a clutch assembly. The dual modular engine
is comparable to the eight cylinder engines capable of operating on four cylinders
only to save fuel. Thus, instead of four non-fueled piston and cylinder assemblies
simply going through the motions, the clutch makes it possible to render one modular
engine totally inoperable.
[0010] One of the objects of the present invention is to reconfigure the Eco Motors dual
modular with clutch engine (or another similar such engine) and achieve selective
normal operation and fuel saving operation in an improved new cycle way so that the
reconfiguration saves parts and the new cycle is more efficient when compared with
the dual modular Eco Motors engine and its operation in fuel saving mode.
[0011] In accordance with the principles of the present invention the above objective is
achieved by abandoning the modular idea and mounting two side by side cylinders on
opposite sides of a single central crank shaft so that in each pair of cylinders a
pair of opposed pistons move simultaneously through the same two stroke cycle. In
this way the events occurring in each pair of side by side cylinders are the same
but 180° out of phase with one another. The fuel saving mode is accomplished simply
by providing a passage between each pair of side by side cylinders at the central
combustion chamber areas, and then reprogramming the computer operated fuel injectors
so that one of the two injectors for the two cylinders does not inject instead of
both injecting as in normal operation. Consequently, in fuel saving mode the one cylinder
which receives an injection when ignited will immediately communicate the resulting
high pressure conditions through the passage to the other cylinder to raise the charge
of air therein at compression pressure. With the pressure created by the one ignition
acting on two pistons to effect simultaneous power drive strokes of two pistons a
double working pressure expansion occurs, thus utilizing much of the pressure energy
that usually is dumped to exhaust.
[0012] Another related aspect of the invention provides an internal combustion engine comprising:
a frame structure, a pair of piston and cylinder assemblies mounted on said frame
structure including two side by side cylinders and pistons movably mounted in the
cylinders for simultaneous movements through repetitive cycles, each including simultaneous
compression strokes and immediately following simultaneous power drive strokes, and
an output shaft connected with said pistons so as to be moved by the pistons through
a predetermined number of rotational movements during each cycle of movement of the
pistons. A fuel injection and charge ignition system includes an injector operatively
associated with one of the piston and cylinder assemblies and another injector operatively
associated with the other of the piston and cylinder assemblies. The fuel injection
and charge ignition system is constructed and arranged in one mode of operation to
establish at the beginning of the simultaneous power drive strokes of the pistons
of both cylinders a charge of ignitable compressed air fuel mixture in one of the
cylinders and a charge of unignitable compressed air in the other of the cylinders.
A passage between the side-by-side cylinders communicates the high pressure conditions
created by the ignition of the charge of ignitable air-fuel mixture in the one of
the cylinders with the charge of compressed air to raise the pressure in the other
of the cylinders during the one mode to move the number of the pistons associated
therewith through the simultaneous drive stroke thereof.
[0013] The fuel injection and charge ignition system is constructed and arranged to operate
in a second mode of operation to establish at the beginning of the simultaneous power
drive strokes a charge of ignitable compressed air-fuel mixture in both cylinders
so that the ignition of both ignitable charges moves the pistons of both assemblies
together through the simultaneous power drive strokes thereof. A controller is provided
for selecting between the first and second modes of operation for the fuel injection
and charge ignition system.
[0015] A typical Pinnacle type engine as disclosed in the cited disclosures includes a plurality
of opposed piston and cylinder assemblies in which the cylinder of the assembly is
made up of two cylinder sections movable separately toward and away from one another
to seal off and open a centrally located inlet by one cylinder section and a centrally
located outlet to the other cylinder section. A distinct feature of the Pinnacle engine
is the ability to move one of the crankshaft driven piston units of one assembly toward
and away from the opposed crankshaft piston driven unit of the other assembly to thereby
change the compression ratio within the cylinders as between the two assemblies. While
the patent disclosures of the Pinnacle type engine attributes various advantages to
these features, the arrangement does not provide for selective operation in a normal
mode or in a fuel saving mode where fuel injection is cut off.
[0016] In a fuel saving mode, one example of this type of dual mode operation is the type
presently built into eight cylinder engines wherein four of the eight cylinders are
not fed fuel as they go through their cyclical movements. Another example is to provide
two unitized engines with a clutch between them enabling one to be completely shut
down. See, for example,
US Pat. Appln. Pub. No. 2010/0056327. Both of these examples involve disruption of operation and non use of parts.
[0017] The present invention contemplates the provision in a Pinnacle type engine of a dual
mode of operation in an improved manner where all parts function in both modes; which
renders the engine in fuel saving mode to be more efficient while allowing full variable
Pinnacle operation. The improvement of the present invention contemplates the use
of the underlying principles of the dual mode of operation discussed above and with
respect to example embodiments disclosed below, and also disclosed in my pending
U.S. Patent Application Ser. No. filed 13/475,253 filed May 18, 2012. Thus, two piston and cylinder assemblies which in normal mode operate separately
in usual fashion have a fuel saving mode wherein only one assembly fed fuel is fired
and the high pressure conditions created by the firing are transmitted to the other
assembly to drive it simultaneously, the increased expansion being more efficient.
[0018] The present invention contemplates allowing each one of two parallel piston and cylinder
assemblies of a Pinnacle type engine to operate at all times 180° out of phase with
each other with all variables and to add a two stroke piston and cylinder assembly
valved by piston movement between the two four stroke pinnacle assemblies. The two
stroke assembly is constructed (1) so that the fuel component normally fed thereto
can be selectively cut off, leaving the internal pressure condition at normal firing
time simply air under compression pressure, and (2) so that alternately this compression
air pressure condition can be alternately communicated with the combustion chamber
of a 4 stroke assembly during the firing stroke thereof so as to drive the two stroke
assembly through a simultaneous increased pressure drive stroke.
[0019] The two stroke assembly preferably has a displacement greater than the four stroke
assemblies. It can be seen that in normal operation, the two stroke assembly is fed
fuel twice during one feed of fuel to each 4 stroke assembly. Consequently, when the
fuel saving mode is in operation the two fuel feeds to the two stroke assembly are
saved, and there is a fuel saving of at least one half when compared with normal.
Moreover, the added expansion by the two stroke assembly during each four stroke assembly
cycle serves as an efficiency booster in the fuel saving mode.
[0020] Others objects, features and advantages of the present disclosure will become apparent
from the following detailed description, the accompanying drawings, and the appended
claims.
Brief Description of the Drawings
[0021]
Figure 1 is a horizontal sectional view of an internal combustion engine embodying
the principles of the present invention;
Figure 2 is a section view taken alone the line 2-2 of Figure 1;
Figure 3 is a schematic view showing a pressurized air intake system;
Figure 4 is a schematic view showing a computer controlled fuel injection system;
Figure 5 is a top plan view of another engine embodying the principles of the present
invention with parts broken away and shown in horizontal section for purposes of clearer
illustration;
Figure 6 is an enlarged horizontal sectional view of one end portion of the engine
of Figure 5 showing the position of the parts in mid stroke;
Figure 7 is a view similar to Figure 6 showing the position of the parts after a 180°
turn of the output shaft from the position show in Figure 6 shaft;
Figure 8 is a view similar to Figure 5 showing the position of the parts after another
180° turn of the output shaft from the position shown in Figure 7;
Figure 9 is a view similar to Figure 5 showing the position of the parts after another
180° turn of the output shaft from the position shown in Figure 8;
Figure 9A is a schematic diagrammatic view of a preferred computerized system for
controlling the fuel injectors of the engine shown in Figures 5-9;
Figure 10 is a horizontal sectional view of a spark ignited engine embodying the principles
of the present invention which operates on a two stroke cycle;
Figure 11 is a top plan view of an internal combustion engine embodying the principles
of the present invention showing the three opposed crankshaft driven opposed pistons
and cylinder assemblies of the engine in horizontal section arranged with a two stroke
assembly between two four stroke assemblies with the opposed pistons of the three
assemblies two 4 stroke assemblies in minimum spaced apart combustion chamber defining
limiting positions;
Figure 12 is a view similar to Figure 11 wherein the opposed pistons are disposed
in a maximum spaced apart limiting position;
Figure 13 is a diagrammatical view showing the components of the engine shown in Figures
11 and 12 which enable the combustion ratio of the two four stroke assemblies to be
varied;
Figure 14 is a block diagram view of a computer controlled operating system forming
a part of the engine shown in Figures 11 and 12 when embodied in an automotive vehicle
as a drive motor for the vehicle;
Figure 15 is a schematic line diagram view of one modification of the internal combustion
engine shown in Figure 11; and
Figure 16 is a view similar to Figure 5 showing another modification.
DETAILED DESCRIPTION OF THE INVENTION
[0022] Referring more particularly to the drawings, there is shown in Figures 1 and 2 there
of an internal combustion engine, generally indicated at 10, that embodies the principles
of the present invention.
[0023] The engine 10 includes a main frame structure 12 shown illustratively as one piece
in the drawings. In actuality, the frame may be made up of many conventional pieces.
In the illustrative one piece embodiment shown the frame structure defines pairs of
side by side cylinders 14L and 14R disposed in general alignment on opposite sides
of an output crank shaft 16. Mounted within the pairs of cylinders 14L and 14R are
pairs of opposed pistons 18L and 20L and 18R and 20R respectively.
[0024] The pair of pistons 18L are slidably sealingly mounted in the pair of cylinders 14L
for simultaneous movements together toward and away from the crank shaft 16 by a pair
of connecting rods 22L pivotally connected at one of their ends to the pair of pistons
18L (as by wrist pins not shown) with their opposite ends rotatably mounted on two
aligned interior cranks 24 of the crank shaft 16.
[0025] The pair of pistons 18R are slidably sealingly mounted in the pair of cylinders 14
R for simultaneous movements together toward and away from the crank shaft 16 by a
pair of connecting rods 22R pivotally connected at one of their ends to the pair of
pistons 18R (as by wrist pins not shown) with their opposite forked ends rotatably
mounted on the two interior cranks 24.
[0026] The pair of pistons 20L are slidably sealingly mounted in the pair of side by side
cylinders 14L outwardly of the pair of pistons 18L therein for simultaneous movements
toward the pistons 18L as the pistons 18L move away from the crankshaft 16 and away
from the pistons 18L as the pistons 18L move toward the crank shaft 16.
[0027] The simultaneous movements of the pair of pistons 20L is accomplished by a pair of
fixed rods 26L extending outwardly of the pair of pistons 20L and having a shaft 28L
extending transversely therethrough so as to be relatively pivoted with respect to
the piston rods 26L about the axis of the shaft 28L. The shaft 28L moves within three
axially spaced slots 30L formed in the adjacent end of the frame structure 12 as shown,
the central portion of the shaft 28L extending between the spaced connecting rods
26L slides in the central slot 30L and opposite ends of the shaft 29L extend outwardly
of the rods 26L through the outer two slots 30L and then beyond the adjacent frame
structure 12.
[0028] Pivoted to the outwardly extending ends of the shaft 28L are one of the ends of a
pair of exterior connecting rod's 32L. The pair of exterior connecting rods 32L extend
inwardly toward the crank shaft 16 and have their inner ends rotatably connected to
two exterior cranks 34 on the opposite ends of the crank shaft 16 transversely outwardly
of the adjacent frame structure 12.
[0029] The pair of outer pistons 20R are related to the pair of inner pistons 18R and move
simultaneously together and away from one another by a similar assembly of components
including piston rods 26R, shaft 28R moving in slots 30R and a pair of exterior connecting
rods 32R having their inner ends rotatably connected to the cranks 34 of the crank
shaft 16 and their outer ends pivotally connected with outer ends of the shaft 28R.
[0030] It can be seen from the connection of the connecting rods 22L and 22R, between the
crank shaft 16 and inner pairs of pistons 18L and 18R and the connection of the exterior
connecting rods 32L and 32R between the crank shaft 16 and the outer pairs of pistons
20L and 20R, the pairs of pistons 18L and 20L move simultaneously trough two stroke
repetitive cycles each including (1) a compression stroke wherein the pairs of pistons
18L and 20L move from an outer limiting position spaced widely apart toward one another
into inner limiting position spaced apart but almost together and (2) a power drive
stroke wherein the pairs of pistons 18L and 20L move from the inner limiting position
to the outer limiting position away from one another.
[0031] The pairs of pistons 18R and 20R have a similar two stroke repetitive cycle. However,
since they are connected to the same cranks of the crank shaft 16 (i.e., at the same
crank axis), the two stroke cycle thereof is displaced 180° from the two stroke cycle
of the pairs of pistons 18L and 20L. Stated differently, the pistons 18L and 20L move
through a compression stroke while the pistons 18R and 20R move through a power drive
stroke and when the pistons 18L and 20L move through a power drive stroke the pistons
18R and 20R move through a compression stroke.
[0032] The pistons 18L-20L and 18R-20R are moved through repetitive out of phase two stroke
cycles during each revolution of the crankshaft 16 because during the time when the
pistons are near the outer limiting positions a flow of air under pressure is made
to pass into one end of each pair of side by side cylinders 14L or 14R through an
inlet opening 36 in each cylinder 14 and out an outlet opening 38 at the opposite
end of each cylinder. Conversely, the pistons in the other cylinders are in the inner
limiting position and the openings 36, 36 are closed off.
[0033] Figure 3 illustrates schematically how a pump 41 (suitable to be driven by the output
shaft 16) feeds a pressurized flow of air through tubes to each inlet opening 36 when
the inlet openings and outlet openings 38 are opened in accordance with known practice
by the movement of the associated pistons 18 or 20 thereby near the end of the power
drive strokes thereof.
[0034] As the pistons 18 and 20 move through the initial portion of their compression stroke,
the pressurized air that has moved into the cylinders 14 is trapped therein because
the pistons move past the openings 36 and 38 in the opposite direction to close them.
The trapped air is then pressurized as pistons 18 and 20 move together in their compression
stroke.
[0035] In the embodiment shown, the compression ratio is chosen so that when the pistons
18 and 20 reach near or at their inner limiting positions, the pressure and temperature
conditions of the air is such that an injection of fuel also causes compression ignition
to occur.
[0036] As shown in the drawings, there is a fuel injector 42 carried by the frame structure
12 in association with each cylinders 14 is positions so that its nozzle enters within
the cylinder 14 in the combustion chamber space between the pistons 18 and 20 when
in their inner limiting positions.
[0037] Figure 4 illustrates schematically the four fuel injectors 42 having high pressure
fuel lines 44 leading thereto from a conventional source, indicated schematically
by the numeral 46. The fuel injectors 42 are constructed and arranged with electrically
operated valves shown schematically at 48 which open to inject fuel into the cylinder
14 and close to stop injection. Electrical lines 50 are shown schematically connected
to the valves 48. The lines 50 are shown connected to a controller, such as a computer,
shown schematically by the numeral 52. The lines 50 transmit signals to the valves
48 to open and close them with the interval between the opening signal and the closing
signal determining the amount of fuel injected.
[0038] Also, each pair of side by side cylinders 14 are made to communicate with one another
by a passage 54 extending between each side by side pair at central portions thereof
opposite the injectors 42. The computer 52 is programmed to selectively cause one
injector 42 associated with one cylinder of each pair of side by side cylinders 14
to inject zero fuel or in other words not to inject.
[0039] The computer 52 normally operates the four injectors 42 to inject the same amount
of fuel into both of each same-side pair of cylinders 14L or 14R to cause ignition
to occur therein bearing in mind that the injection in the one pair of cylinders 14L
or 14R is 180° out of phase with other pair of cylinders 14L or 14R. It will be noted
that simultaneous ignition occurs in both cylinders of a pair so that passage 54 is
not significantly in play as the high pressure created by ignition in both cylinders
14 will act on both pairs of opposed pistons 18 and 20.
[0040] When the computer 52 signals one of the two injectors 42 of each same-side pair of
cylinders 14 not to inject, the ignition of the fuel in the other that receives fuel
causes high pressure to rise in that cylinder 14, which high pressure is immediately
communicated by the passage 54 to the other cylinder 14 at the lower compression pressure
so that both pairs of opposed pistons 18 and 20 are moved through power drives strokes
together. In effect, the single ignition results in double working expansion of the
pressure energy created.
[0041] This fuel saving mode of operation which can be selected by the computer 52 reduces
the fuel used by the engine in half just as is done with the V-8 that can selectively
operate on four cylinders or the dual modular Eco Motor with clutch. The fuel saving
mode of the present invention operates all moving components of the engine with a
more efficient use of the lesser fueled ignitions.
[0042] In order for the computer 52 to select the fuel saving mode in automobile usage,
the function of the automobile must be electrically sensed and transmitted to the
computer 52. Known sensors exist in automobiles equipped with the V-8 Engine that
operates fuel savings with four cylinders. For example, normal operation is selected
when the gas pedal movement to accelerate the car is sensed and fuel saving mode is
selected when brake pedal movement is sensed. Cruise control when sensed to be on
could be used to select fuel saving mode. Sensing motor rotation without wheels turning
(idling) would select fuel saving mode.
[0043] Referring again more particularly to the drawings there is shown in Figures 5-9 thereof
a spark ignite internal combustion engine, generally indicated at 110, embodying the
principles of the present invention. The engine 110 includes a frame structure, generally
indicated at 112, which is shown, in Figure 5 as being of three piece construction
including a main body structure 114 with a head structure 116 on opposite ends of
the main body structure 114. It will be understood that the three piece construction
is illustrative only and that the frame structure 114 would be actually constructed
in many pieces in accordance with known practice.
[0044] As shown in Figure 5, the engine 110 is opposed piston configuration having opposed
duplicate operative piston and cylinder assemblies connected to opposite sides of
a centrally located output crankshaft 124 so that the assembles are 180° out of phase
with respect to one another.
[0045] Since the piston and cylinder assemblies are duplicates of one another, a description
of one will suffice to give an understanding of both, keeping in mind that they are
180° out of phase with respect to one another.
[0046] Referring now more particularly to the drawings there thereof as best shown in Figures
5-8, the body structure 114 includes structures defining four inline cylinders, designated
by the numeral 118 with added letters A through D respectively. Slid ably sealingly
mounted in the four cylinders 118 are four pistons, designated by the numeral 120
with added letters A through D respectively.
[0047] Each piston 120 has one end of a connecting rod 122 pivotally connected thereto as
by a conventional wrist pin (not shown). The opposite end of each connecting rod 122
is rotatably connected to the output shaft 124. The output shaft 124 is formed with
four U-shaped crank portions, designated by the numeral 126 with added letters A through
D respectively, spaced apart by straight bearing portions 128 journalled in bearings
suitably mounted on the body structure 114. The crank portions 126A and 126D are oriented
to extend outwardly from the adjacent bearing portions 128 in the same directions
and the crank portions 126B and 126C are oriented to extend outwardly from the adjacent
bearing portions 128 in the same direction but disposed 180° from the direction of
extent of the crank portions 128.
[0048] Each connection between the ends of the piston rods 122 with the output crank shaft
124 is accomplished by journaling an end of a respective piston rod 122 rotationally
on the right of a respective U-shaped crank portion 126. As a result of the orientation
of the crank portions 126 and the connection of the piston rods 122 rotatably connected
thereto and to the pistons 120 for pivotal movement, the pistons 120A and 122D will
move together through simultaneous strokes in one direction while the pistons 120B
and 120C move together through simultaneous strokes in an opposite direction.
[0049] The head structure 116 which defines an end wall closure for all four cylinders 118
has formed therein an air supply passage designated by the numeral 132 with added
letters A through D respectively which communicates with the four cylinders 118 through
four inwardly facing valve seat defining inlet openings designated by the numeral
134 with added letters A through D respectively. The head structure 116 also has formed
therein four exhaust passages designated by the numeral 136 with added letters A through
D respectively which communicate with the four cylinders 118 through four inwardly
facing valve seat defining outlet openings, designated by the numeral 138 with added
letters A through D respectively.
[0050] Mounted on the head structure 116 for movements toward the inlet openings 134 into
sealing relation thereto and away from the inlet openings 134 into opening relation
thereto are four stem operated poppet valves, designated by the numeral 140 with added
letters A through D respectively. Also mounted on the head structure 116 for movements
toward the outlet openings 138 into sealing relation thereto and away from the outlet
openings 138 into opening relation thereto are four stem operated poppet valves, designated
by the numeral 142 with added letters A through D respectively.
[0051] The poppet valves 140 and 142 are spring biased to move into sealing relation with
their associated openings 134 and 138 by conventional springs 139 and are moved against
the spring bias into opening relation to their associated openings 134 and 138 by
a camshaft 144 rotatably mounted on the head structure 116 in a position overlying
the valves 140 and 142 and the openings 134 and 138. The camshaft 144 is rotationally
moved at a rotational speed one half the rotational speed of the output shaft 124
by a conventional rotational movement transmitting mechanism 145 connected between
the output shaft 124 and the camshaft 144 so that during every two revolutions of
the output shaft 124 the camshaft 144 is driven thereby through one revolution. In
this way, the camshaft 144 is able to move the valves 140 and 142 through one cycle
of movement while the pistons 120 are moving through a four consecutive 180° strokes
of movement.
[0052] The sequence of the cycle of movements of the valves 140 and 142 is determined by
four inlet opening and closing cam portions, designated by the numeral 146 with added
letter A through D respectively.
[0053] Formed on the camshaft 144 in axially spaced relation in alignment with and to engage
the stem end of the four inlet valves 140 are four outlet opening and closing cam
portions, designated by the numeral 148 with added letters A through D respectively.
The cam portions 148 are formed on the camshaft 144 in axially spaced relation in
alignment with and to engage the stem ends of the four outlet valves 142. Each cam
portion 146 and 148 is configured to provide (1) leading surfaces which when engaged
with a valve stem moves the valve 142 or
[0054] 144 in opening relation to the associated opening, (2) a trailing surface which when
engaged with a valve stem moves the valve 140 or 142 into sealing relation to the
associated opening and (3) a central surface between the leading and trailing surfaces
which when engaged with a valve stem holds the valve 140 or 142 in opening relation
to the associated opening. The four stroke cycle of movement of each piston 120 controlled
by the rotation of the output shaft 124 through two revolutions are as shown in Figures
6-9 and indentified in order as an intake stroke, a compression stroke, a power drive
stroke, and an exhaust stroke. The coordinated movements of each inlet valve 140 and
outlet valve 142 during the four identified piston strokes of the associated piston
120 is as follows (1) during the intake stroke inlet valve 140 is opened and outlet
valve 142 is closed (2) during the compression and power drive strokes both valves
140 and 142 are closed and during the exhaust stroke inlet valve 140 is closed and
outlet valve 142 is opened. The exact timing of the required valve movement within
the associated strokes is in accordance with known practice.
[0055] It will be understood that the four supply passages 132 are communicated with a source
of filtered air similar to that shown in Figure 3 and the four exhaust passage 136
are communicated with a muffled exhaust manifold (not shown).
[0056] The engine 110 also includes four fuel injectors, designated generally by the numeral
150 with added letters A through D respectively. The four fuel injectors 150 are of
known construction and embody a known control system similar to the one shown in Figure
4 an example, is embodied in a 4 cylinder, four cycle GM engine. Each injector 150
is communicated with a pressurized fuel containing manifold (not shown) through a
opening in an upper end 152 thereof. Each upper open end 152 communicates the fuel
under pressure received therein to a lower discharge nozzle 154. Each injector 150
also includes an electrically controlled valve similar to the valves between the upper
ends 152 of Figure 4 and lower nozzle 154, which allows fuel under pressure to flow
from the nozzle 154, when open, and to prevent the flow of fuel under pressure from
the nozzle 154 when closed. The timing between the opening of the control valve and
the closing of the control valve determines the amount of fuel injected. The electrically
operated control valves are operated by electrical signals from a computerized system
as shown in Fig. 9A.
[0057] In accordance with the principles of the present invention, the frame structure 116
has a passage 156 formed therein that communicates cylinder 118B to cylinder 118C
(the two middle cylinders) adjacent the valve ends thereof.
[0058] A conventional distributor - spark plug ignition system is provided for the engine
110, the distributor components of which also not shown, the ignition system includes
a spark plug 162 associated with cylinder 118B and spark plugs 164A and 164D associated
with cylinders 18A and 18D.
[0059] In the normal operation of the engine 110, the pistons 120A and 120D in cylinders
118A and 118D have simultaneous intake strokes during which the injectors 150A and
150B inject the same amount of fuel into the air being drawn into the respective cylinder
118A or 118D. The charges of air fuel mixture within the cylinders 118A and 118D established
at the end of the simultaneous intake strokes of pistons 120A and 120D therein are
compressed during the following simultaneous compression stroke of the pistons 120A
and 120D into compressed charges of mixed fuel and air. When the spark plugs 164A
and 164D are simultaneously activated, the pistons 120A and 120D will be moved through
their simultaneous power drive strokes, followed by simultaneous exhaust strokes.
[0060] In normal operation, the injectors 150B and 150C in cylinders 118B and 118C are also
injected with the same amount of fuel as cylinders 118A and 118D. When pistons 120B
and 120C establish charges of compressed air and fuel mixture therein at the end of
the simultaneous compression strokes thereof, the charges of compressed air and fuel
mixture in cylinders 118B is ignited by spark plug 162 and the resulting ignition
creates a pressurized flame in cylinder 118B which passes through passage 156 into
cylinder 118C to ignite the charge of compressed air and fuel mixture in cylinder
118C.
[0061] In accordance with the principles of the present invention, during the fuel saving
cycle of a fuel saving mode, the injector 150C associated the cylinder 118C does not
go through an injection cycle but injector 150B does. Thus, when the pistons 120B
and 120C reach the end of their simultaneous compression strokes, cylinder 118B will
have established therein a charge of compressed air and fuel mixture while cylinder
118C will have established therein a charge of compressed air.
[0062] When the charge of compressed air and fuel mixture in cylinder 118B is ignited by
spark plug 164B, the high pressure conditions created as a result thereof are immediately
communicated by means of passage 156 with the charge of compressed air in cylinder
118C to raise the pressure acting on pistons 120C during the simultaneous power drive
stroke thereof with piston 120B.
[0063] Since the pistons 120A and 120D together are 180° out of phase with the pistons 120B
and 120C together. The simultaneous power drive strokes of both pairs will fall within
one rotation of the output shaft 124. It will be remembered that the opposite duplicate
bank is also 180 ° out of phase with the first bank so that the simultaneous power
drive strokes of both duplicate pairs in the duplicate bank will occur within the
other full rotation of the out put shaft 124 in each two rotational cycle. Thus, a
pair of simultaneous power drive strokes will be applied to the shaft 124 during each
half revolution therof. In normal mode operation all of the power drive strokes will
be of the same force. During the fuel saving mode of operation, the outer pair of
pistons in each bank have equal power drive strokes equal to those of normal operation,.
However, the power drive stroke of the inner pair of each bank are powered by one
half the fuel and go through twice the expansion.
[0064] It should be noted that with spark ignition in normal mode operation, the time delay
between the ignition in the first cylinder and the time the ignition of the first
takes to ignite the second could move peak pressures in the second nearer the most
efficient crank angle.
[0065] It is also within the contemplation of the present invention to provide either a
one bank or two bank internal combustion engine which operates at all items within
the gas saving cycle of the present invention.
[0066] Referring now more particularly to Figure 9A there is shown therein a preferred embodiment
of a computerized system for controlling the injectors 150 A-D associated with each
bank of four piston and cylinder assemblies. To distinguish between the two banks,
the injectors of bank 1 have the designation (1) added and the injectors of bank 2
have the designation (2) added.
[0067] The system includes a computer 52 (1 & 2) which receives electrical signals from
a switch panel having three switches S(1), S(2), and S(3). The three switches as shown
are manually actuatable but it would be possible to actuate them in response to sensed
conditions such as the vehicle going onto an upgrade, or the cruise control being
activated and the like.
[0068] With the three button panel as shown, when switch S(1) is activated, the computer
52 (1 & 2) is programed to operate all of the injectors 150 A-D (1 & 2) in properly
timed relation. When all injectors are injecting fuels the engine 110 is operating
at full power mode useful when the vehicle is on an upgrade or any time a burst of
power is needed. It is noted that when in this mode, a double firming will occur during
each stroke or 180° turn of the output shaft.
[0069] When switch S(2) is activated, the computer is programmed to inject fuel alternately
to injectors 150 B(1) and 150 C(1) and alternatively to injectors 150 B(2) and 150
C(2) all in properly timed relation. Injectors 150 A (1 & 2) and 150 D (1 & 2) are
allowed to inject fuel in normally timed relation to their respective cylinders. Depending
upon whether the new crankshaft is configured to allow the two remaining cylinders
of each bank to operate 180° out of phase with respect to one another or in phase
with respect to another, the delivery of fuel by the respective injectors 150 A (1
& 2) and 150 D (1& 2) will result in two double firmings out of phase with respect
to one another and with respect to the firming of injectors 150 B (1 &2) and 150 C
(1 & 2). In this mode of operation two fuel injector jets of fuel are simply not injected
during each cycle and yet all assemblies involved have a power stroke. On this basis,
there are still two power strokes per 180° turn of the crankshaft with a saving of
one quarter of the amount of fuel injected as compared with the full power mode. This
mode is useful except when the full power mode is chosen or except when a full fuel
saving mode is chosen by activating button S(3). When switch button S(3) is activated
the computer 52 (1 and 2) is programmed to alternately activate either injectors 150
A(1) and 150 A(2) and injectors 150 D(1) and 150 D(2) or to alternately activate either
injectors 150 A(1) and 150 D(1) and injectors 150 A(2) and 150 D(2) depending upon
the configuration of the new crankshaft. In this full fuel saving mode two of the
remaining four assemblies simply are not fed a supply of fuel with the pistons of
the no fuel assemblies moving through their cycles. This "skipped" injection arrangement
is well known per se. It is noted that the skipped cylinders are those that previously
had entered into double firing either fully as in the full power mode or in conjunction
with the fuel cutting of cylinders 150 B and 150 C. The result is an actual single
injection and firing every stroke or 180° turn of the crankshaft even,though the single
injections with respect to the injectors 150 B and C results in double firings.
[0070] Referring now to Figure 10 there is shown therein an engine 210 embodying the principles
of the present invention which operates on a two stroke cycle rather than on a four
stroke cycle. As shown similar parts have been given numbers with a leading 2 rather
than the leading 1 as in figures 5-9 so that the description will be concerned only
with the differences.
[0071] First, the exhaust outlets 136 are changed to inlets designed by the numeral 282
with added letters A through D respectively. Thus outlet valves 142 A-D become inlet
valves 254A-D that are moved simultaneously with the inlet valves 240 A-D respectively.
[0072] Second, the cylinders 220 are formed with a series of annularly spaced outlets, designated
by the numeral 286 with added letters A through D respectively, as before, the inlets
232 and 282 communicate with a filtered air manifold (source not shown) and the outlets
286 communicate with a muffled exhaust manifold not shown.
[0073] The four piston and cylinder assemblies of the engine 210 are provided with a different
cam shaft 288 for controlling each assembly to go through a two stroke cycle of movement
during each revolution of output shaft 224. The rotational motion transmission assembly
145 is changed to effect this change as indicated at 290 so that the rotation of the
cam shaft 288 is driven through one revolution during each rotation of the output
shaft 224. Each cycle includes a gaseous charge exchange portion which establishes
that each piston has an appropriate charge of compressed gas therein either an air-fuel
mixture or air without fuel mixed therein at the end of a first compression stroke.
The charges of compressed air-fuel mixture are then ignited to begin a return power
drive stroke at the end of which the gaseous charge exchange portion begins when the
associated piston 220 moves below the outlets 286 and inlet valves 243 and 284 are
opened. The gaseous charge exchange portion ends with the movement of the piston 220
upwardly beyond the outlets 286 after which the rest of the stroke is compression.
[0074] The crank shaft 224 is the same as far as piston movements are concerned. The piston
220B and 220C move together while pistons 220A and 220D move together. With the cycle
the same and thereof 180° out of phase with respect to simultaneous cycles of pistons
220B and 220C.
[0075] Figure 10 shows the position of the parts with the pistons at respective mid positions
of movement corresponding to the middle of the power drive strokes of pistons 220B
and 220C and the middle of the compressing strokes of piston 220A and 220D, with all
valves closed. When the engine 210 with spark ignition is in a fuel saving mode, the
two middle piston and cylinder assemblies B and C go through a gas exchange portion
together but only cylinder 218B receives a fuel charge during gas exchange so that
at the end of the compression stroke cylinder 218B has a charge of compressed air-fuel
mixture therein while cylinder 218C has a charge of compressed air therein. As before
the ignition of the charge in cylinder 218B is communicated through passage 256 to
raise the air compression pressure in cylinder 218C and effect the power drive stroke
thereof together with the drive stroke of piston 220B.
[0076] The same cycle is carried out in cylinders 220A and 220D only 180° out of phase with
respect to one another. The operation in normal mode operation is that both cylinders
receive a charge of air-fuel mixture which are both ignited as before. The engine
210 has the advantage that a double power drive stroke is applied every half turn
of the output shaft 224. The fuel saving mode achieves the advantage previously noted.
[0077] Referring now more particularly to Pinnacle type embodiment, there is shown in Figures
11 and 12 an internal combustion engine partially in horizontal section which embodies
the principles of the present invention. The engine is designated generally by the
reference numeral 310. Basically, the engine 310 includes Pinnacle engine components
including first and second opposed piston and cylinder assemblies 312 and 314 and
an added third opposed piston and cylinder assembly 316 disposed between the first
and second assemblies 312 and 314.
[0078] The first and second opposed piston and cylinder assemblies 312 and 314 may be constructed
in accordance with the aforesaid patent disclosures owned by Pinnacle. As such, each
assembly 312 and 314 is carried by a frame assembly 318 and includes a pair of opposed
pistons 320 and 322 and a further letter designation R or L depending on which is
shown at the right (R) or left (L) in Figure 11. Each piston 320 or 322 includes a
further letter designation I for Inlet or E for Exhaust. The pistons 320 are slidably
mounted in a cylinder section designated by the numeral 324 with a further similar
letter designation and the pistons 322 are slidably mounted in a cylinder section
designated by the numeral 326 with a further similar letter designation.
[0079] Cylinder sections 324 and 326 constitute valve elements which are each mounted in
a fixed main frame section 328 of the frame assembly 318 for cooperating reciprocating
movement with respect to a swirl control valve structure, generally indicated at 330.
Each swirl control structure 330 is disposed between the associated cylinder sections
324 and 326 and extends outwardly therefrom in fixed relation to the main frame section
328.
[0080] Each swirl control valve structure 330R or 330L has interior surfaces which provide
valve seats and define the exterior of a centrally located combustion chamber 332R
or 332L which communicates with the interior of the associated cylinder sections 324R
and 326R or 324L and 326L. Each swirl control valve structure 330R or 330L also provides
an inlet 334R or 334L which leads to the combustion chamber 332R or 332L and is opened
thereto or closed there from by the position of reciprocating movement of the associated
cylinder section 324RI or 324LI and an outlet 336R or 336L which leads from the combustion
chamber 332R or 332L and is opened there to or closed there from by the position of
reciprocating movement of the associated cylinder section 326RE or 326LE.
[0081] In accordance with the teachings of the aforesaid Pinnacle Pat Appln Pubs, each swirl
control valve structure 330 also includes air and fuel supply valving (not shown in
the drawings) capable of establishing an air-fuel mixture of a controlled fuel richness
or leanness in a swirl formation to the combustion chamber 332R or 332L in timed relation
to the cyclical movement of the pistons 320 and 322 within their respective cylinder
section 324 and 326. The pistons 320 and 322 are cyclically moved within their respective
cylinder sections 324 and 326 by means of opposed crankshafts 338 and 340, each having
a pair of axially spaced similarly radially directed crank portions 342. One end of
a connecting rod 344 is pivoted to each crank portion 342 the opposite end of which
is pivoted to an associated piston 320 or 322.
[0082] The opposed crankshaft and connecting rod arrangement has the effect of moving the
pistons 320 and 322 within their respective cylinder sections 324 and 326 toward and
away from each other and toward and away from the associated centrally located combustion
chamber 332.
[0083] The timing of the cyclical movements of the pistons 320 and 322 is related to the
reciprocating movements of the cylindrical sections 324 and 326 by a camshaft assembly
(not shown) suitably driven by the crankshaft rotation and constructed in accordance
with the aforesaid Pinnacle Pat. Appln. Pubs. The components which transmit the rotational
movement of the camshaft assembly to the reciprocating movements of the cylinder sections
are not shown in the drawings except for a flange portion 346 on the exterior of each
cylinder section 324 and 326 by which each cylinder section 324 and 326 is reciprocatingly
moved.
[0084] The timing establishes a conventional four stroke cycle for each assembly 312 and
314 which are essentially 180° out of phase with respect to one another. Each four
stroke cycle includes the usual intake stroke where the pistons 320 and 322 move apart
to take into the cylinder volume between the pistons 320 and 322 a charge of air fuel
mixture provided by the associated swirl control valve structure 332 with a cylinder
section 324 opening an inlet 334. After the pistons 320 and 322 reach a limiting position
apart, the inlet is closed by movement of the cylinder section 324 and they begin
a movement toward one another through a compression stroke into a limiting position
in closely spaced relation to one another wherein the air-fuel mixture is compressed
within the combustion chamber 332 to a compression pressure. In appropriately timed
relation toward the end of the compression stroke, a spark plug 348, provided by the
associated swirl control valve structure 330, is energized to ignite the air fuel
mixture. The increased pressure conditions of the ignition drive the pistons 320 and
322 away from each other through a power stroke. The cycle is completed by a movement
of the pistons 320 and 322 toward each other through an exhaust stroke during which
the associated cylinder section 326 opens the outlet 336 provided by the swirl control
valve structure 330. Each stroke of the cycle is accomplished during one half of one
revolution of the crankshafts 338 and 340, with each cycle taking place in two revolutions
of the crankshafts 338 and 340. The four consequative events that take place in four
consequative strokes are accomplished by the camshaft assembly which is geared to
rotate at half the rotational speed of the crankshaft 338 or 340.
[0085] In accordance with the disclosure of the cited Pinnacle Pat. Appln. Pubs., the assemblies
312 and 314 are constructed so that the compression ratio of each can be varied, which
varies the compression pressure in the combustion chamber 332 at the end of each compression
stroke of the assembly 312 or 314. This variation is accomplished by connecting the
crankshafts 338 and 340 rotationally together by a gear train 350 and mounting the
cranskshaft 340 on a frame assembly subframe 352 pivotally mounted on the main frame
assembly 318.
[0086] Referring now more particularly to Figure 13, the gear train 350 includes a first
gear 354 fixed to the crankshaft 338 which, in turn, is journaled on the main frame
assembly 318 for rotation about a fixed axis of rotation. The first gear 354 meshes
with a second gear 356 suitably joumaled on the main frame assembly 318 for rotational
movement about a fixed axis. The second gear 355 is preferably double the size of
first gear 354 and meshes with it and with a third gear 358 of the gear train 346
of the same size. Third gear 358 is suitably joumaled on the main framed assembly
318 for rotational movement about a fixed axis of rotation.
[0087] The gear train 350 includes a fourth and final gear 360 which meshes with third gear
358 and is fixed to the crankshaft 340. The crankshaft 340 is mounted on the subframe
352 of the main frame assembly 318 which is pivotally mounted for pivotal movement
about the rotational axis of movement of the third gear 358. When the subframe 352
is moved about its pivotally axis by an activator 362, shown in block diagram in Figure
14, the compression ratio of the first and second opposed piston and cylinder assemblies
312 and 314 can be varied.
[0088] As best shown in Figures 11 and 12, the third opposed piston and cylinder assembly
316 includes a pair of opposed pistons 364 and 366 mounted for movement toward and
away from each other within a cylinder 368 fixedly mounted on the frame section 328
between the spaced assemblies 312 and 314. The pistons 364 and 336 are moved by the
crankshafts 338 and 340 respectively by means of connecting rods 370 and 372 each
having one end pivoted to the associated piston 364 or 366 and an opposite end to
a central crank portion 372 or 376 on the respective crankshaft 338 or 340.
[0089] The cylinder 368 has spaced inlet and outlet openings 378 and 380 (Fig. 14) formed
in the wall thereof which are valved by the passage of the pistons 364 and 366 there
over. When the inlet opening 378 is connected with a source of air-fuel mixture, as
shown in Figure 14, the third assembly can operate as a two stroke engine.
[0090] As best shown in Figures 11 and 12, in accordance with the principles of the present
invention, the combustion chamber 332 of each assembly 312 and 314 is communicated
with central piston defined combustion chamber of the assembly 316. As shown the communication
is accomplished by passages 382 R and 382 L extending from each combustion chamber
332, through the associated swirl valve control structure 330 to the center of cylinder
332 by means of an opening 383 therein. Each passage 382 R or 382L is provided with
a check valve 384R or 384L respectively which allow gas pressure to flow from the
assemblies 312 and 314 to the assembly 316 while preventing gas flow in the opposite
direction.
[0091] Referring now more particularly to Figure 14, there is shown therein a block diagram
of a computer controlled system for an automobile driven by the engine 310. The system
includes a computer 386 powered by the car battery (not shown). The computer 386 receives
signals sensed by a knock sensor 388 for each assembly 312 and 314. The computer 386
also receives signals from other sensors indicated by block diagram 390. Such sensors
may include ignition key on and off, output shaft rotational speed, wheel rotational
speed, gas and brake pedal movements and the like.
[0092] In accordance with the teaching of the aforesaid Pinnacle Pat. Appln. Pubs., the
system includes a combustion chamber size-varying activator 392 under the control
of computer 386 which controls the movement of the combustion size varying structure
350-352 and a swirl valve control activator 394 which controls the swirl valve control
structure 330. These components function in the dual manner disclosed in the cited
Pinnacle Pat. Appln. Pubs. Specifically,
US 2011/0220058 discloses two modes of operation. The first mode is a power mode for medium to high
loads and the second is an efficiency mode for low to medium loads. The activators
392 and 394 control the combustion size varying structure 350-352 and the swirl valve
control structures 330 to feed a lean air-fuel mixture under low compression in the
efficiency mode, which mixture is made richer under high compression pressures for
more power in the power mode. These pinnacle components of the system can also use
ignition timing to allow the first and second modes to be at the same air-fuel mixture.
[0093] The components of the system which are added in accordance with the principles of
the present invention include a pressurized air assembly valve 396 with its activator
398 and a pressurized fuel injector 3100 with its activator 3102. These components
operate in known conventional fashion to normally deliver a variably determined amount
of mixed air and fuel to the inlet opening 378 of the assembly 316 at the start of
the inlet stroke of the pistons 364 and 366.
[0094] Since the air-fuel mixture initially delivered to assembly 316 is at a pressure greater
than the pressure of the air fuel mixture initially delivered to the assemblies 312
and 314, gas pressure flow passed the check valves 384 from the combustion chambers
of the assemblies 312 and 314 to the combustion chamber of the assembly 316 will not
occur until firing occurs in the assemblies 312 and 314 and no firing occurs in the
combustion chamber of the assembly 316.
[0095] The no firing condition within the assembly 316 is accomplished by the activator
3102 of the pressurized fuel injector 3100. The present invention contemplates operating
in either one of two computer controls of the activator 3102. The first is that the
injector 3100 is activated to supply fuel when the Pinnacle components are in the
second mode and to cut off the supply of fuel from the injector 3100 when the Pinnacle
components are in the first mode. The second is that the injector 3100 is activated
to cut off the supply of fuel during both the first and second modes of the Pinnacle
components and is activated to supply fuel only in response to a different signal
such as an uphill sensing switch actuation or a switch actuation in response to a
floor boarding of the gas pedal.
[0096] In the first instance there will be no firing in the combustion chamber of the assembly
316 when the Pinnacle components are operating in the first mode, however, because
the four stroke cycles of assemblies 312 and 314 are 180° out of phase with respect
to one another, one of the assemblies 312 or 314 is fired simultaneously to each firing
stroke of the assembly 316 and the increased pressure conditions resulting from the
alternate firings in assemblies 312 and 314 will be communicated through passages
382 passed check valves 384 to the combustion chamber of the assembly 316 to add to
the air compression pressure therein and drive the pistons through their power strokes
simultaneously with the corresponding drive stroke of the assembly 312 or 314.
[0097] In the first instance when the Pinnacle components are operating in the second mode,
the combustion chamber of the assembly 316 will contain a compressed air-fuel charge
simultaneous with one of the assemblies 312 and 314. The firing of the air-fuel charge
in the combustion chamber of the assembly 312 or 314 is utilized to ignite the air-fuel
charge in the assembly 316 by fire passing through the associated passage 382 beyond
the associated check valve 384.
[0098] In the second instance, when the Pinnacle components are in either first or second
mode, the assembly 316 with cut off fuel operates to provide added working expansion
for the alternate firing of the assemblies 312 and 314. When fuel is fed to the assembly
316 its power strokes are simply added to the alternate power strokes of the assemblies
312 and 314.
[0099] The first instance has the advantage that the first mode of the Pinnacle components
is made more efficient while the second mode is made more powerful. The second instance
has the advantage that both the first and second modes of the Pinnacle components
are made more efficient and power can be added only when needed.
[0100] When the two stroke assembly 316 is operating with fuel it will be fired once each
revolution of the crankshafts, whereas the two four stroke assemblies 312 and 314
provide one firing each revolution between them. The result is that at maximum power
in the power mode there will be four jets of fuel during a cycle of two revolutions
of the crankshafts 338 and 340 and at maximum efficiency in the fuel saving mode half
of the fuel injected at maximum power is saved by never being injected. Moreover,
it is to be noted, that even when the fuel is cut off, all of the components of the
engine 310 are operating and functioning to achieve the efficiency or power boost
results.
[0101] It is within the contemplation of the present invention to provide an added third
assembly 316 which is never fired and simply functions as an efficiency booster for
the other two assemblies 312 and 314.
[0102] It is noted that in either of the two instances described above, the firing during
four consequative strokes will be 2 fires, no fires, 2 fires, no fires. Thus while
balanced, there is lacking the usual completely balanced firing of one fire per stroke.
[0103] The engine 310 can be made to fire completely balanced by two fires each stroke by
adding three more piston and cylinder assemblies. When added, the three new piston
and cylinder assemblies are operated 180° out of phase with respect to the first three
piston and cylinder assemblies.
[0104] Fig. 15 schematically illustrates a modified engine 310
1 wherein like added parts are designated by the same reference characters with an
added 1 (prime). As shown in Figure 15, when the three new added assemblies 312
1, 314
1 and 316
1 are placed in opposed relation to the original three assemblies 312, 314 and 316
the added three assemblies 312
1, 314
1 and 316
1 are automatically made to move 180° out of phase with the original assemblies 312,
314 and 316, this movement by virtue of having one set of pistons 322
1 and 364
1 being moved by the crankshaft 338 which moves one set of pistons 322 and 364 of the
original three assemblies 312, 314,316.
[0105] Figure 16 schematically illustrates a modified engine
1310 wherein like added parts are designated by the same reference characters with
a prime added in the front of the numeral. Figure 6 schematically shows the three
added piston and cylinder assemblies
1312,
1314, and
1316 in an inline relationship with respect to the first three assemblies 312, 314
and 316. It will be noted that the crankshafts
1338 and
1340 are integral with respect to the crankshafts 338 and 340 and configured to be
180° out of phase with respect thereto.
[0106] The reference herein to a computer, programming, or software may be substituted by
any type of controller, including those where the functionality is provided in circuitry
with or without the use of software.
1. An internal combustion engine (10) comprising:
a frame structure (12),
a pair of piston and cylinder assemblies (14,18, 20) mounted on said frame structure
including two side by side cylinders and pistons movably mounted in said cylinders
for simultaneous movements through repetitive cycles, each including simultaneous
compression strokes and immediately following simultaneous power drive strokes,
an output shaft (16) connected with said pistons so as to be moved by said pistons
through a predetermined number of rotational movements during each cycle of movement
of said pistons,
a fuel injection and charge ignition system (42, 44) including an injector operatively
associated with one of said piston and cylinder assemblies and another injector operatively
associated with the other of said piston and cylinder assemblies, said fuel injection
and charge ignition system being constructed and arranged in one mode of operation
to establish at the beginning of the simultaneous power drive strokes of the pistons
of both cylinders a charge of ignitable compressed air fuel mixture in one of said
cylinders and a charge of unignitable compressed air in the other of said cylinders,
characterized by a passage (54) between said side-by-side cylinders constructed and arranged to communicate
the high pressure conditions created by the ignition of the charge of ignitable air-fuel
mixture in said one of said cylinders with the charge of compressed air to raise the
pressure in the other of said cylinders during said one mode to move the number of
said pistons associated therewith through the simultaneous drive stroke thereof;
said fuel injection and charge ignition system being constructed and arranged to operate
in a second mode of operation to establish at the beginning of the simultaneous power
drive strokes a charge of ignitable compressed air-fuel mixture in both cylinders
so that the ignition of both ignitable charges moves the pistons of both assemblies
together through the simultaneous power drive strokes thereof; and
a controller (52) for selecting between the first and second modes of operation for
the fuel injection and charge ignition system.
2. An internal combustion engine (10) as defined in claim 1 wherein said controller (52)
comprises a computer.
3. An internal combustion engine (10) as defined in claim 2 wherein said pair of piston
and cylinder assemblies (14, 18, 20) form one bank of piston and cylinders disposed
on one side of said output shaft (16) and a second bank of a second pair of piston
and cylinder assemblies (14, 18, 20) constructed and arranged similar to said first
pair are disposed on an opposite side of said output shaft (16) and connected therewith
so that the repetitive movement cycles of the pistons thereof are disposed 180° out
of phase with respect to the repetitive movement cycles of said first mentioned pistons;
wherein the piston of each piston and cylinder assembly (14, 18, 20) constitutes an
inner piston of a pair of inner and outer pistons mounted in a corresponding cylinder,
the outer pistons being connected to said output shaft so as to move together with
the associated inner piston respectively toward and away from one another.
4. An internal combustion engine (10) as defined in either claim 2 or 3 wherein the connection
between said pistons and said output shaft (16) is constructed and arranged so that
the output shaft (16) is moved through one rotational movement by each movement cycle
of said pistons each cycle including a simultaneous exchange of the products of combustion
with air between the power drive strokes and compression strokes of the pistons.
5. An internal combustion engine (10) as defined in claim 2 wherein the connection between
said pistons and said output shaft (16) is constructed and arranged so that the output
shaft (16) is moved through two rotational movements by each movement cycle of said
pistons, each cycle including simultaneous exhaust strokes following the simultaneous
power drive strokes and simultaneous intake strokes before the simultaneous compression
strokes.
6. An internal combustion engine (10) as defined in either claim 4 or 5 wherein said
fuel injection and charge ignition system (42,44) is constructed and arranged to establish
the charges of ignitable compressed air fuel mixture and the ignition thereof by said
injectors injecting fuel into a charge of compressed air at a compression ignition
condition.
7. An internal combustion engine (10) as defined in claim 4 wherein said fuel injection
and charge ignition system (42,44) is constructed and arranged to ignite each charge
of ignitable air-fuel mixture in said one of said cylinders by a spark ignition assembly,
the charge of ignitable air-fuel mixture in said other of said cylinders being ignited
by pressurized flame passing from the ignition in said one of said cylinders through
said passage to ignite the charge of ignitable compressed air-fuel mixture in the
other of said cylinders during said second mode of operation.
8. An internal combustion engine (10) as defined in claim 2 wherein each pair of piston
and cylinder assemblies (14, 18, 20) has a corresponding opposite pair of piston and
cylinder assemblies (14, 18, 20) with the same movement cycles connected to said output
shaft (16) so as to be out of phase 180° with respect to movement cycle of the corresponding
opposite pair, each corresponding opposite pair of assemblies (14, 18, 20) having
a passage between the cylinders thereof.
9. An internal combustion engine (10) as defined in claim 8 wherein each piston and cylinder
assembly (14, 18, 20) has a single piston in a single cylinder.
10. An internal combustion engine (10) as defined in claim 8 wherein each piston and cylinder
assembly (14, 18, 20) includes a pair of opposed piston movable toward and away from
one another in a single cylinder.
11. An internal combustion engine (10) defined in either claim 1 or 2 wherein said pair
of piston and cylinder assemblies (14, 18, 20) constitute an inner two of four in
line piston and cylinder assemblies (14, 18, 20) which also include two outer piston
and cylinder assemblies (14, 18, 20) including two outer cylinders and two outer pistons
mounted in said two outer cylinders for simultaneous movements through repetitive
cycles, each including simultaneous compression strokes and immediately following
simultaneous power drive strokes, said two outer pistons being connected to said output
shaft so that the repetitive movement cycles thereof are 180° out of phase with respect
to the repetitive movement cycles of said first mentioned pistons, said fuel injecting
and charge ignition system (42,44) including two outer fuel injectors operatively
associated with said two outer cylinders for causing simultaneous ignition of charges
of compressed air-fuel mixture therein to move the two outer pistons through simultaneous
drive strokes during each movement cycle thereof
12. An internal combustion engine as defined in claim 11 wherein said four in line piston
and cylinder assemblies form one bank of assemblies on one side of said output shaft
and a second bank of assemblies of similar construction and arrangement are disposed
on an opposite side of said output shaft.
13. An internal combustion engine as defined in claim 11 wherein each piston and cylinder
assembly of said pair of assemblies includes a second piston in each cylinder connected
with said output shaft to (1) move toward the output shaft as the associated piston
moves away from the output shaft and (2) move away from the output shaft as the associated
piston moves toward the output shaft.
14. An internal combustion engine as defined in claim 1
wherein the cycle of said one of said piston and cylinder assemblies occurs during
two output shaft revolutions and includes an intake stroke immediately before said
compression stroke and an exhaust stroke immediately after said power stroke;
wherein the cycle of said the other of said piston and cylinder assemblies occurs
during one output shaft revolution and includes a purge of products of combustion
following the power stroke by the insertion of a charge of gas under pressure prior
to the compression stroke;
the combustion chambers of said assemblies being communicated by said passage such
that in said one mode of operation a firing during the power stroke of said one assembly
produces increased pressure conditions in the combustion chamber thereof which when
communicated to the air pressure in the combustion chamber of other of the said assemblies
accomplishes the power stroke of the other of said assemblies.
15. An internal combustion engine as defined in claim 14 wherein the gas under pressure
inserted in the cycle of said other assembly is air and said other assembly includes
a fuel injector selectively operable in said second mode of operation to inject fuel
into said air so that the resultant mixture of air and fuel when ignited accomplishes
the power stroke thereof and in said one mode of operation to not inject fuel into
the air so that the increase in pressure in the combustion chamber of said one assembly
resulting from the firing of the air-fuel mixture therein when communicated with the
combustion chamber of said other assembly accomplishes the power stroke thereof.
16. An internal combustion engine (10) as defined in claim 15 wherein during said second
mode the ignition of the mixture of air and fuel in the combustion chamber of said
other assembly is accomplished by the communication of the firing in the combustion
chamber of said one assembly.
17. An internal combustion engine (10) as defined in claim 14, wherein said frame structure
(12) includes a third piston and cylinder assembly constructed as said one assembly
to have a repetitive two output shaft revolution cycle like said one assembly which
is 180° out of phase with respect to the cycle of said one assembly, said third assembly
having a combustion chamber closely spaced by and communicating with the combustion
chamber of said other assembly so that when said injector of said other assembly is
selectively operable in said one mode of operation to not inject fuel increased pressure
conditions resulting from a firing in the combustion chamber of said third assembly
accomplishes alternately every other power stroke of said other assembly.
18. A method of operating an engine (10) in two modes of operations to accommodate different
conditions during use; the engine (10) including two adjacent piston and cylinder
assemblies connected with crank shaft structure so that during a predetermined number
of rotations of the crank structure the pistons of both assemblies are moved simultaneously
through repetitive cycles each of which includes a compression stroke and an immediately
following a power drive stroke; the method comprising:
selectively establishing during a time in each cycle before the power drive stroke
(1) in a first mode of operation an ignitable charge of compressed air-fuel mixture
in both cylinders of both assemblies or (2) in a second mode of operation an ignitable
charge of compressed air-fuel mixture in the cylinder of one of said assemblies and
a charge of compressed air in the cylinder of the other of said assemblies;
igniting each ignitable charge in the cylinders of the assemblies so that (1) during
the first mode of operation the pistons of both assemblies as a result of the ignition
are moved in both cylinders through successive power drive strokes of successive cycles
of both pistons and (2) during the second mode of operation the piston of the one
of said assemblies is moved as the result of the ignition of the charge in the cylinder
of the one of said assemblies through successive power drive strokes of successive
cycles and
during the second mode of operation communicating the cylinder of the one of said
assemblies with the cylinder of the other of said assemblies so that the rise in pressure
resulting from the ignition in the cylinder of the one of said assemblies is transmitted
to the cylinder of the other of said assemblies to move the piston of the other of
said assemblies assembly through the power drive stroke of each cycle.
19. A method a defined in claim 18 wherein the ignition of the charges of air fuel mixture
in both modes of operation is accomplished by compression ignition in response to
the injection of fuel into a charge of compressed air.
20. A method as defined in claim 18 wherein the ignition of the charge of compressed air-fuel
mixture in the cylinder of the one of said assemblies assembly is accomplished by
spark ignition in both modes of operation and in the first mode of operation the ignition
of the charge of compressed air-fuel mixture in the cylinder of the other of said
assemblies is accomplished by communicating the ignition in the cylinder of the one
of the assemblies with the cylinder of the other of the assemblies and allowing a
pressurized flame resulting from the ignition in the cylinder of the one of the assemblies
to ignite the charges of compressed air-fuel mixture in the cylinder of the other
of said assemblies.
1. Ein Verbrennungsmotor (10), umfassend:
einen Rahmenaufbau (12),
ein Paar Kolben- und Zylinderbaugruppen (14, 18, 20), befestigt an dem genannten Rahmenaufbau,
einschließend zwei parallel zueinander liegende Zylinder und in den genannten Zylindern
beweglich befestigte Kolben für gleichzeitige Bewegungen durch wiederholte Zyklen,
jeder umfassend gleichzeitige Verdichtungshübe und unmittelbar darauffolgende gleichzeitige
Kraftantriebshübe,
eine mit den genannten Kolben verbundene Ausgangswelle (16), um von den genannten
Kolben während jedes einzelnen Bewegungszyklus der genannten Kolben durch eine vorgegebene
Anzahl von Drehbewegungen hindurch bewegt zu werden,
ein Kraftstoffeinspritz- und Füllungszündsystem (42, 44) einschließlich einer wirksam
mit einer der genannten Kolben- und Zylinderbaugruppen angeschlossenen Einspritzdüse
und einer anderen wirksam mit der anderen der genannten Kolben- und Zylinderbaugruppen
angeschlossenen Einspritzdüse, wobei das genannte Kraftstoffeinspritz- und Füllungszündsystem
in einer Betriebsart so aufgebaut und eingerichtet ist, dass es am Beginn der gleichzeitigen
Kraftantriebshübe der Kolben der beiden Zylinder eine Füllung eines zündbaren verdichteten
Luft-Kraftstoffgemischs in einem der genannten Zylinder und eine Füllung nicht zündbarer
verdichteter Luft in dem anderen der genannten Zylinder herstellt,
gekennzeichnet durch einen Durchlass (54) zwischen den genannten parallel zueinander liegenden Zylindern,
so aufgebaut und eingerichtet, um die durch die Zündung der Füllung des zündbaren Luft-Kraftstoffgemischs in dem genannten einen
der genannten Zylinder hergestellten Hochdruckbedingungen an die Füllung von verdichteter
Luft weiterzugeben, um den Druck in dem anderen der genannten Zylinder während der
genannten einen Betriebsart zu erhöhen, um die Anzahl der ihr zugehörigen genannten
Kolben durch die gleichzeitigen Antriebshübe derselben hindurch zu bewegen;
wobei das genannte Kraftstoffeinspritz- und Füllungszündsystem so aufgebaut und eingerichtet
ist, um in einer zweiten Betriebsart zu wirken, um am Beginn der gleichzeitigen Kraftantriebshübe
eine Füllung eines zündbaren verdichteten Luft-Kraftstoffgemischs in beiden Zylindern
herzustellen, so dass die Zündung beider zündbarer Füllungen die Kolben beider Baugruppen
zusammen durch die gleichzeitigen Kraftantriebshübe derselben hindurch bewegt, und
ein Steuergerät (52) für das Wählen zwischen der ersten und der zweiten Betriebsart
für das Kraftstoffeinspritz- und Füllungszündsystem.
2. Verbrennungsmotor (10) nach Anspruch 1, wobei das genannte Steuergerät (52) einen
Computer umfasst.
3. Verbrennungsmotor (10) nach Anspruch 2, wobei das genannte Paar von Kolben- und Zylinderbaugruppen
(14, 18, 20) eine an einer Seite der genannten Ausgangswelle (16) angeordnete Reihe
von Kolben und Zylindern bildet und eine zweite Reihe eines ähnlich zu dem ersten
Paar aufgebauten und eingerichteten zweiten Paares von Kolben- und Zylinderbaugruppen
(14, 18, 20) auf einer gegenüberliegenden Seite der genannten Ausgangswelle (16) angeordnet
und mit dieser verbunden sind, so dass die wiederholten Bewegungszyklen der Kolben
desselben in Bezug auf die wiederholten Bewegungszyklen der genannten ersten erwähnten
Kolben um 180° phasenversetzt sind; wobei der Kolben einer jeden Kolben- und Zylinderbaugruppe
(14, 18, 20) einen inneren Kolben eines Paares in einem entsprechenden Zylinder angebrachter
innerer und äußerer Kolben darstellt und die äußeren Kolben mit der genannten Ausgangswelle
so verbunden sind, dass sie sich zusammen mit dem dazugehörigen inneren Kolben jeweils
aufeinander zu- und voneinander wegbewegen.
4. Verbrennungsmotor (10) nach Anspruch 2 oder 3, wobei die Verbindung zwischen den genannten
Kolben und der genannten Ausgangswelle (16) so aufgebaut und eingerichtet ist, dass
die Ausgangswelle (16) durch jeden Bewegungszyklus der genannten Kolben durch eine
Drehbewegung hindurch bewegt wird und jeder Zyklus zwischen den Kraftantriebshüben
und den Verdichtungshüben der Kolben einen gleichzeitigen Austausch der Verbrennungsprodukte
mit der Luft einschließt.
5. Verbrennungsmotor (10) nach Anspruch 2, wobei die Verbindung zwischen den genannten
Kolben und der genannten Ausgangswelle (16) so aufgebaut und eingerichtet ist, dass
die Ausgangswelle (16) durch jeden Bewegungszyklus der genannten Kolben durch zwei
Drehbewegungen hindurch bewegt wird und jeder Zyklus gleichzeitige Auslasshübe nach
gleichzeitigen Kraftantriebshüben und gleichzeitige Ansaughübe vor den gleichzeitigen
Verdichtungshüben einschließt.
6. Verbrennungsmotor (10) nach Anspruch 4 oder 5, wobei das genannte Kraftstoffeinspritz-
und Füllungszündsystem (42, 44) so aufgebaut und eingerichtet ist, dass es die Füllungen
des zündbaren verdichteten Luft-Kraftstoffgemischs und die Zündung desselben durch
die genannten Einspritzdüsen herstellt, welche Kraftstoff in eine Füllung verdichteter
Luft unter einer Kompressionszündbedingung einspritzen.
7. Verbrennungsmotor (10) nach Anspruch 4, wobei das genannte Kraftstoffeinspritz- und
Füllungszündsystem (42, 44) so aufgebaut und eingerichtet ist, um jede Füllung des
zündbaren Luft-Kraftstoffgemischs in dem genannten einen der genannten Zylinder durch
eine Funkenzündungsbaugruppe zu zünden, wobei die Füllung des zündbaren Luft-Kraftstoffgemischs
in dem genannten anderen der genannten Zylinder durch eine druckbeaufschlagte Flamme
gezündet wird, welche von der Zündung in dem genannten einen der genannten Zylinder
den genannten Durchlass passiert, um die Füllung des zündbaren verdichteten Luft-Kraftstoffgemischs
in dem anderen der genannten Zylinder während der genannten zweiten Betriebsart zu
zünden.
8. Verbrennungsmotor (10) nach Anspruch 2, wobei jedes Paar von Kolben- und Zylinderbaugruppen
(14, 18, 20) ein entsprechendes gegenüberliegendes Paar von Kolben- und Zylinderbaugruppen
(14, 18, 20) mit denselben Bewegungszyklen aufweist und mit der genannten Ausgangswelle
(16) verbunden ist, so dass es in Bezug auf den Bewegungszyklus des entsprechenden
gegenüberliegenden Paares um 180° phasenversetzt ist, wobei jedes entsprechende gegenüberliegende
Paar von Baugruppen (14, 18, 20) zwischen den Zylindern derselben einen Durchlass
aufweist.
9. Verbrennungsmotor (10) nach Anspruch 8, wobei jede Kolben- und Zylinderbaugruppe (14,
18, 20) einen einzelnen Kolben in einem einzelnen Zylinder aufweist.
10. Verbrennungsmotor (10) nach Anspruch 8, wobei jede Kolben- und Zylinderbaugruppe (14,
18, 20) ein Paar entgegengesetzter Kolben in einem einzelnen Zylinder aufweist, die
aufeinander zu- und voneinander wegbewegbar sind.
11. Verbrennungsmotor (10) nach Anspruch 1 oder 2, wobei das genannte Paar von Kolben-
und Zylinderbaugruppen (14, 18, 20) die inneren zwei von vier in Reihe liegenden Kolben-
und Zylinderbaugruppen (14, 18, 20) darstellt, welche auch zwei äußere Kolben- und
Zylinderbaugruppen (14, 18, 20) einschließlich zwei äußerer Zylinder und in den genannten
zwei äußeren Zylindern für gleichzeitige Bewegungen durch wiederholte Zyklen befestigte
äußere Kolben umfassen, wobei jeder Zyklus gleichzeitige Verdichtungshübe und unmittelbar
auf diese folgende gleichzeitige Kraftantriebshübe umfasst und die genannten zwei
äußeren Kolben mit der genannten Ausgangswelle verbunden sind, so dass die wiederholten
Bewegungszyklen derselben in Bezug auf die wiederholten Bewegungszyklen der genannten
ersten erwähnten Kolben um 180° phasenversetzt sind; das genannte Kraftstoffeinspritz-
und Füllungszündsystem (42, 44) umfassend zwei äußere Kraftstoffeinspritzdüsen, wirksam
zugehörig zu den genannten zwei äußeren Zylindern, um die gleichzeitige Zündung der
Füllungen des darin befindlichen verdichteten Luft-Kraftstoffgemischs zu veranlassen
und dadurch die zwei äußeren Kolben während eines jeden ihrer Bewegungszyklen durch
gleichzeitige Antriebshübe hindurch zu bewegen.
12. Verbrennungsmotor nach Anspruch 11, wobei die genannten vier in Reihe liegenden Kolben-
und Zylinderbaugruppen eine Reihe von Baugruppen an der einen Seite der genannten
Ausgangswelle bilden und eine zweite Reihe von Baugruppen ähnlichen Aufbaus und ähnlicher
Anordnung an einer gegenüberliegenden Seite der genannten Ausgangswelle angeordnet
ist.
13. Verbrennungsmotor nach Anspruch 11, wobei jede Kolben- und Zylinderbaugruppe des genannten
Baugruppenpaares einen zweiten Kolben in jedem Zylinder umfasst, verbunden mit der
genannten Ausgangswelle, um (1) sich auf die genannte Ausgangswelle zuzubewegen, wenn
sich der zugehörige Kolben von der Ausgangswelle wegbewegt, und (2) sich von der genannten
Ausgangswelle wegzubewegen, wenn sich der zugehörige Kolben auf die Ausgangswelle
zubewegt.
14. Verbrennungsmotor nach Anspruch 1,
wobei der Zyklus der genannten einen der genannten Kolben- und Zylinderbaugruppen
während zwei Umdrehungen der Ausgangswelle stattfindet und einen Ansaughub unmittelbar
vor dem genannten Verdichtungshub und einen Auslasshub unmittelbar nach dem genannten
Krafthub umfasst;
wobei der Zyklus der genannten anderen der genannten Kolben- und Zylinderbaugruppen
während einer Umdrehung der Ausgangswelle stattfindet und eine Abfuhr von Verbrennungsprodukten
im Anschluss an den Krafthub durch Einführen einer druckbeaufschlagten Gasfüllung
vor dem Verdichtungshub umfasst;
wobei die Verbrennungskammern der genannten Baugruppen durch den genannten Durchlass
so in Verbindung stehen, dass in der genannten einen Betriebsart eine Zündung während
des Krafthubs der genannten einen Baugruppe in ihrer Verbrennungskammer erhöhte Druckbedingungen
erzeugt, welche, wenn sie an den Luftdruck in der Verbrennungskammer der anderen der
genannten Baugruppen weitergegeben werden, den Krafthub der anderen der genannten
Baugruppen erzielen.
15. Verbrennungsmotor nach Anspruch 14, wobei das unter Druck in den Zyklus der genannten
anderen Baugruppe eingeführte Gas Luft ist und die genannte andere Baugruppe eine
Kraftstoffeinspritzdüse umfasst, gezielt in der genannten zweiten Betriebsart betreibbar,
um Kraftstoff in die genannte Luft einzuspritzen, so dass das daraus entstehende Gemisch
von Luft und Kraftstoff, wenn es gezündet wird, den Krafthub derselben erzielt, und
in der genannten einen Betriebsart keinen Kraftstoff in die Luft einzuspritzen, so
dass der Anstieg des Drucks in der Verbrennungskammer der genannten einen Baugruppe,
der aus dem Zünden des in ihr befindlichen Luft-Kraftstoffgemischs entsteht, den Krafthub
derselben erzielt, wenn er an die Verbrennungskammer der genannten anderen Baugruppe
weitergegeben wird.
16. Verbrennungsmotor (10) nach Anspruch 15, wobei während der genannten zweiten Betriebsart
die Zündung des Gemischs von Luft und Kraftstoff in der Verbrennungskammer der genannten
anderen Baugruppe durch Weitergeben der Zündung in der Verbrennungskammer der genannten
einen Baugruppe erzielt wird.
17. Verbrennungsmotor (10) nach Anspruch 14, wobei der genannte Rahmenaufbau (12) eine
dritte Kolben- und Zylinderbaugruppe umfasst, aufgebaut wie die genannte eine Baugruppe,
um einen wiederholten Zyklus von zwei Umdrehungen der Ausgangswelle wie die genannte
eine Baugruppe aufzuweisen, welcher in Bezug auf den Zyklus der genannten einen Baugruppe
um 180° phasenversetzt ist, wobei die genannte dritte Baugruppe eine räumlich nahe
an der Verbrennungskammer der genannten anderen Baugruppe angeordnete und mit dieser
in Kommunikation stehende Baugruppe aufweist, so dass, sobald die genannte Einspritzdüse
der genannten anderen Baugruppe gezielt in der genannten einen Betriebsart betreibbar
ist, um keinen Kraftstoff einzuspritzen, erhöhte Druckbedingungen aufgrund der Zündung
in der Verbrennungskammer der genannten dritten Baugruppe abwechselnd jeden zweiten
Krafthub der genannten anderen Baugruppe erzielen.
18. Verfahren des Betreibens eines Motors (10) in zwei Betriebsarten, um unterschiedlichen
Bedingungen während des Gebrauchs Rechnung zu tragen, wobei der Motor (10) zwei aneinander
angrenzende und mit einem Kurbelwellenaufbau verbundene Kolben- und Zylinderbaugruppen
umfasst, so dass die Kolben der beiden Baugruppen während einer vorgegebenen Anzahl
von Umdrehungen des Kurbelwellenaufbaus gleichzeitig durch wiederholte Zyklen hindurch
bewegt werden, von denen jeder einen Verdichtungshub und einen unmittelbar darauffolgenden
Kraftantriebshub umfasst, wobei das Verfahren Folgendes umfasst:
gezieltes Herstellen während einer Zeit in jedem Zyklus vor dem Kraftantriebshub (1)
in einer ersten Betriebsart einer zündbaren Füllung eines verdichteten Luft-Kraftstoffgemischs
in beiden Zylindern beider Baugruppen, oder (2) in einer zweiten Betriebsart einer
zündbaren Füllung eines verdichteten Luft-Kraftstoffgemischs in dem Zylinder einer
der genannten Baugruppen und einer Füllung verdichteter Luft in dem Zylinder der anderen
der genannten Baugruppen;
Zünden jeder zündbaren Füllung in den Zylindern der Baugruppen, so dass (1) während
der ersten Betriebsart die Kolben beider Baugruppen aufgrund der Zündung in beiden
Zylindern durch aufeinanderfolgende Kraftantriebshübe aufeinanderfolgender Zyklen
beider Kolben und (2) während der zweiten Betriebsart der Kolben der einen der genannten
Baugruppen aufgrund der Zündung der Füllung in dem Zylinder der einen der genannten
Baugruppen durch aufeinanderfolgende Kraftantriebshübe aufeinanderfolgender Zyklen
hindurch bewegt werden, und
Versetzen des Zylinders der einen der genannten Baugruppe während der zweiten Betriebsart
in Kommunikation mit dem Zylinder der anderen der genannten Baugruppen, so dass der
durch die Zündung in dem Zylinder der einen der genannten Baugruppen hervorgerufene
Druckanstieg zu dem Zylinder der anderen der genannten Baugruppen übertragen wird,
um den Kolben der anderen der genannten Baugruppen durch den Kraftantriebshub eines
jeden Zyklus hindurch zu bewegen.
19. Verfahren nach Anspruch 18, wobei die Zündung der Füllungen des Luft-Kraftstoffgemischs
in beiden Betriebsarten durch Kompressionszündung als Reaktion auf die Einspritzung
von Kraftstoff in eine Füllung verdichteter Luft erzielt wird.
20. Verfahren nach Anspruch 18, wobei die Zündung der Füllung des verdichteten Luft-Kraftstoffgemischs
in dem Zylinder der einen der genannten Baugruppen durch Funkenzündung in beiden Betriebsarten
erzielt wird; und in der ersten Betriebsart die Zündung der Füllung des verdichteten
Luft-Kraftstoffgemischs in dem Zylinder der anderen der genannten Baugruppen durch
Weitergeben der Zündung in dem Zylinder der einen der Baugruppen an den Zylinder der
anderen der Baugruppen erzielt wird, und es zugelassen wird, dass eine aufgrund der
Zündung in dem Zylinder der einen der Baugruppen entstandene druckbeaufschlagte Flamme
die Füllung des verdichteten Luft-Kraftstoffgemischs in dem Zylinder der anderen der
genannten Baugruppen zündet.
1. Moteur à combustion interne (10) comprenant :
une structure de bâti (12),
une paire d'ensembles de pistons et cylindres (14, 18, 20) montés sur ladite structure
de bâti incluant deux cylindres juxtaposés et des pistons montés de manière amovible
dans lesdits cylindres pour des mouvements simultanés sur des cycles répétitifs, chacun
incluant des courses de compression simultanées et des courses d'entraînement simultanées
suivant immédiatement,
un arbre de sortie (16) connecté auxdits pistons de manière à être déplacé par lesdits
pistons par le biais d'un nombre prédéterminé de mouvements de rotation pendant chaque
cycle de déplacement desdits pistons,
un système d'injection de carburant et d'allumage de charge (42, 44) incluant un injecteur
associé de manière opérationnelle à l'un desdits ensembles de pistons et cylindres
et un autre injecteur associé de manière opérationnelle à l'autre desdits ensembles
de pistons et cylindres, ledit système d'injection de carburant et d'allumage de charge
étant conçu et agencé dans un mode de fonctionnement pour établir au début des courses
d'entraînement de puissance simultanées des pistons des deux cylindres une charge
de mélange air comprimé - carburant allumable dans l'un desdits cylindres et une charge
d'air comprimé non-allumable dans l'autre desdits cylindres,
caractérisé par un passage (54) entre lesdits cylindres juxtaposés conçu et agencé pour communiquer
les conditions de haute pression créées par l'allumage de la charge du mélange air
- carburant allumable dans ledit l'un desdits cylindres avec la charge d'air comprimé
pour élever la pression dans l'autre desdits cylindres pendant ledit un mode de fonctionnement
pour déplacer le nombre desdits pistons associés avec celui-ci sur la course d'entraînement
simultanée de celui-ci ;
ledit système d'injection de carburant et d'allumage de charge étant conçu et agencé
pour fonctionner dans un deuxième mode de fonctionnement pour établir au début des
courses d'entraînement de puissance simultanées une charge de mélange air comprimé
- carburant allumable dans les deux cylindres de manière à ce que l'allumage des deux
charges allumables déplace les pistons des deux ensembles conjointement, sur les courses
d'entraînement simultanée de ceux-ci ; et
une unité de commande (52) pour sélectionner parmi le premier et le deuxième modes
de fonctionnement du système d'injection de carburant et d'allumage de charge.
2. Moteur à combustion interne (10) selon la revendication 1, dans lequel ladite unité
de commande (52) comprend un calculateur.
3. Moteur à combustion interne (10) selon la revendication 2, dans lequel ladite paire
d'ensembles de pistons et cylindres (14, 18, 20) forme une rangée de pistons et cylindres
agencés sur un côté dudit arbre de sortie (16) et une deuxième rangée d'une deuxième
paire d'ensembles de pistons et cylindres (14, 18, 20) conçue et agencée de façon
similaire à ladite première paire sont agencés sur un côté opposé dudit arbre de sortie
(16) et connectés avec celui-ci de manière à ce que les cycles de mouvement répétitifs
des pistons de celui-ci soient disposés en décalage de 180° par rapport aux cycles
de mouvement répétitifs desdits pistons mentionnés en premier ; dans lequel le piston
de chaque ensemble de pistons et cylindres (14, 18, 20) constitue un piston interne
d'une paire de pistons interne et externe montés dans un cylindre correspondant, les
pistons externes étant connectés audit arbre de sortie de manière à se déplacer conjointement
avec le piston interne associé respectivement en direction et en éloignement l'un
de l'autre.
4. Moteur à combustion interne (10) selon la revendication 2 ou 3, dans lequel la connexion
entre lesdits pistons et ledit arbre de sortie (16) est conçue et agencée de manière
à ce que l'arbre de sortie (16) soit déplacé à travers un mouvement de rotation par
chaque cycle de mouvement desdits pistons, chaque cycle incluant un échange simultané
des produits de combustion avec l'air entre les courses d'entraînement de puissance
et les courses de compression des pistons.
5. Moteur à combustion interne (10) selon la revendication 2 ou 3, dans lequel la connexion
entre lesdits pistons et ledit arbre de sortie (16) est conçue et agencée de manière
à ce que l'arbre de sortie (16) soit déplacé par le biais de deux mouvements de rotation
par chaque cycle de mouvement desdits pistons, chaque cycle incluant des courses d'échappement
simultanées suivant les courses d'entraînement de puissance simultanées et les courses
d'admission simultanées avant les courses de compression simultanées.
6. Moteur à combustion interne (10) selon l'une quelconque des revendications 4 ou 5,
dans lequel ledit système d'injection de carburant et d'allumage de charge (42, 44)
est conçu et agencé pour établir les charges de mélange air compressé - carburant
allumable et l'allumage de celui-ci par lesdits injecteurs injectant le carburant
dans une charge d'air comprimé à une condition d'allumage par compression.
7. Moteur à combustion interne (10) selon la revendication 4, dans lequel ledit système
d'injection de carburant et d'allumage de charge (42, 44) est conçu et agencé pour
allumer chaque charge de mélange air - carburant allumable dans ledit l'un desdits
cylindres par un ensemble d'allumage par étincelle, la charge de mélange air - carburant
allumable dans ledit l'autre desdits cylindres étant allumée par une flamme sous pression
passant depuis l'allumage dans l'un desdits cylindres à travers ledit passage pour
allumer la charge de mélange air comprimé - carburant allumable dans l'autre desdits
cylindres pendant ledit deuxième mode de fonctionnement.
8. Moteur à combustion interne (10) selon la revendication 2, dans lequel chaque paire
d'ensembles de pistons et cylindres (14, 18, 20) possède une paire opposée correspondante
d'ensembles de pistons et cylindres (14, 18, 20) avec les mêmes cycles de mouvement
connectés audit arbre de sortie (16) de manière à être déphasé de 180° par rapport
au cycle de mouvement de la paire opposée correspondante, chaque paire opposée correspondante
d'ensembles (14, 18, 20) possédant un passage entre les cylindres de ceux-ci.
9. Moteur à combustion interne (10) selon la revendication 8, dans lequel chaque ensemble
de pistons et cylindres (14, 18, 20) possède un piston unique dans un cylindre unique.
10. Moteur à combustion interne (10) selon la revendication 8, dans lequel chaque ensemble
de pistons et cylindres (14, 18, 20) possède une paire de pistons opposés mobiles
en direction et en éloignement l'un de l'autre dans un cylindre unique.
11. Moteur à combustion interne (10) selon l'une quelconque des revendications 1 ou 2,
dans lequel ladite paire d'ensembles de pistons et cylindres (14, 18, 20) constitue
un ensemble interne de deux sur quatre pistons et cylindres en ligne (14, 18, 20)
qui incluent également deux ensembles de pistons et cylindres externes (14, 18, 20)
incluant deux cylindres externes et deux pistons externes montés dans lesdits deux
cylindres externes pour des mouvements simultanés sur des cycles répétitifs, chaque
cycle incluant des courses de compression simultanées et suivant immédiatement des
courses d'entraînement de puissance simultanées, lesdits deux pistons externes étant
connectés audit arbre de sortie de manière à ce que les cycles de mouvement répétitifs
de ceux-ci soient décalés de 180° par rapport aux cycles de mouvement répétitifs desdits
pistons mentionnés en premier, ledit système d'injection de carburant et d'allumage
de charge (42, 44) incluant deux injecteurs de carburant externes associés de manière
opérationnelle avec lesdits deux cylindres externes pour entraîner l'allumage simultané
des charges du mélange air comprimé - carburant dans ceux-ci pour déplacer les deux
pistons externes par le biais de courses d'entraînement simultanées pendant chaque
cycle de mouvement de ceux-ci.
12. Moteur à combustion interne selon la revendication 11, dans lequel lesdits quatre
ensembles de pistons et cylindres en ligne forment une rangée d'ensembles sur un côté
dudit arbre de sortie et une deuxième rangée d'ensembles de conception et agencement
similaires sont agencés sur un côté opposé dudit arbre de sortie.
13. Moteur à combustion interne selon la revendication 11, dans lequel chaque ensemble
de pistons et cylindres de ladite paire d'ensembles inclut un deuxième piston dans
chaque cylindre connecté avec ledit arbre de sortie pour (1) se déplacer en direction
de l'arbre de sortie tandis que le piston associé se déplace en éloignement de l'arbre
de sortie et (2) s'éloigner de l'arbre de sortie tandis que le piston associé se déplace
en direction de l'arbre de sortie.
14. Moteur à combustion interne selon la revendication 1, dans lequel le cycle dudit l'un
desdits ensembles de pistons et cylindres se produit lors de deux révolutions de l'arbre
de sortie et inclut une course d'admission immédiatement avant ladite course de compression
et une course d'échappement immédiatement après ladite course de puissance ;
dans lequel le cycle dudit l'autre des ensembles de pistons et cylindres se produit
lors d'une révolution de l'arbre de sortie et inclut une purge de produits de combustion
suivant la course de puissance par l'insertion d'une charge de gaz sous pression avant
la course de compression ;
les chambres de combustion desdits ensembles étant mises en communication par ledit
passage de telle sorte que dans ledit un mode de fonctionnement un allumage pendant
la course d'entraînement dudit un ensemble produit des conditions de pression augmentée
dans la chambre de combustion de celui-ci qui lorsqu'il est mis en communication avec
la pression d'air dans la chambre de combustion de l'autre desdits ensembles accomplit
la course de puissance de l'autre desdits ensembles.
15. Moteur à combustion interne selon la revendication 14, dans lequel le gaz sous pression
inséré dans le cycle dudit autre ensemble est de l'air et ledit autre ensemble inclut
un injecteur de carburant opérable de manière sélective dans ledit deuxième mode de
fonctionnement pour injecter du carburant dans ledit air de sorte que le mélange résultant
d'air et carburant une fois allumé accomplisse la course de puissance de celui-ci,
et dans ledit un mode de fonctionnement pour ne pas injecter de carburant dans l'air
de sorte que l'augmentation de la pression dans la chambre de combustion dudit un
ensemble résultant de l'allumage du mélange air - carburant dans celui-ci une fois
mis en communication avec la chambre de combustion dudit autre ensemble accomplisse
la course de puissance de celui-ci.
16. Moteur à combustion interne (10) selon la revendication 15, dans lequel pendant ledit
deuxième mode de fonctionnement, l'allumage du mélange d'air et carburant dans la
chambre de combustion dudit autre ensemble est accompli par la communication de l'allumage
dans la chambre de combustion dudit un ensemble.
17. Moteur à combustion interne (10) selon la revendication 14, dans lequel ladite structure
de bâti (12) inclut un troisième ensemble de pistons et cylindres conçu comme ledit
premier ensemble pour avoir un cycle répétitif de deux révolutions d'arbre de sortie
comme ledit un ensemble qui est déphasé à 180° par rapport au cycle dudit un ensemble,
ledit troisième ensemble ayant une chambre de combustion rapprochée par et en communication
avec la chambre de combustion dudit autre ensemble de sorte que lorsque ledit injecteur
dudit autre ensemble est sélectivement opérable dans ledit un mode de fonctionnement
pour ne pas injecter de carburant les conditions de pression augmentée résultant d'un
allumage dans la chambre de combustion dudit troisième ensemble accomplissent de manière
alternée une course de puissance sur deux dudit autre ensemble.
18. Procédé de fonctionnement d'un moteur (10) dans deux modes de fonctionnement pour
supporter différentes conditions en cours d'utilisation ; le moteur (10) incluant
deux ensembles adjacents de pistons et cylindres connectés avec une structure de vilebrequin
de sorte que pendant un nombre prédéterminé de rotations de la structure de vilebrequin,
les pistons des deux ensembles soient déplacés simultanément sur des cycles répétitifs,
chacun desquels inclut une course de compression et une course d'entraînement de puissance
suivant immédiatement ; le procédé comprenant :
l'établissement sélectif pendant une période dans chaque cycle avant la course d'entraînement
de puissance (1) dans un premier mode de fonctionnement d'une charge allumable de
mélange air comprimé - carburant dans les deux cylindres des deux ensembles ou (2)
dans un deuxième mode de fonctionnement d'une charge allumable de mélange air comprimé
- carburant dans le cylindre de l'un desdits ensembles et d'une charge d'air comprimé
dans le cylindre de l'autre desdits ensembles ;
l'allumage de chaque charge allumable dans les cylindres des ensembles de sorte que
(1) pendant le premier mode de fonctionnement, les pistons des deux ensembles en résultat
de l'allumage sont déplacés dans les deux cylindres par le biais des courses d'entraînement
de puissance successives de cycles successifs des deux pistons et (2) pendant le deuxième
mode de fonctionnement le piston de l'un desdits ensembles est déplacé en résultat
de l'allumage de la charge dans le cylindre de l'un desdits ensembles par le biais
des courses d'entraînement de puissance successives de cycles successifs et
pendant le deuxième mode de fonctionnement la mise en communication du cylindre de
l'un desdits ensembles avec le cylindre de l'autre desdits ensembles de sorte que
l'élévation de pression résultant de l'allumage dans le cylindre de l'un desdits ensembles
soit transmise au cylindre de l'autre desdits ensembles pour déplacer le piston de
l'autre desdits ensembles par le biais de la course d'entraînement de puissance de
chaque cycle.
19. Procédé selon la revendication 18, dans lequel l'allumage des charges du mélange air
- carburant dans les deux modes de fonctionnement est accompli par allumage par compression
en réponse à l'injection de carburant dans une charge d'air comprimé.
20. Procédé selon la revendication 18, dans lequel l'allumage de la charge du mélange
air comprimé - carburant dans le cylindre de l'un desdits ensembles est accompli par
un allumage par étincelle dans les deux modes de fonctionnment et dans le premier
mode de fonctionnement l'allumage de la charge du mélange air comprimé - carburant
dans le cylindre de l'autre desdits ensembles est accompli par la mise en communication
de l'allumage dans le cylindre de l'un des ensembles avec le cylindre de l'autre des
ensembles et l'admission d'une flamme sous pression résultant de l'allumage dans le
cylindre de l'un des ensembles pour allumer les charges du mélange air comprimé -
carburant dans le cylindre de l'autre desdits ensembles.