Technical Field
[0001] The present method relates to an equalizing method in a receiver node of a cellular
wireless communication system. Furthermore, the invention also relates to a receive
device, a computer program, and a computer program product thereof.
Background of the Invention
[0002] Heterogeneous Network (HetNet) is a strategy introduced in LTE-A with the purpose
of improving network capacity. In a HetNet depicted in Fig. 1 many pico-cells with
low transmit power (∼ 250 mW) overlay on a macro-cell with higher transmit power (1-40
W). The advantage of this layout is to perform off-loading macro-cell data traffic
to smaller pico-cells and thus improving network capacity. Moreover, these cells are
using the same frequency resources implying that a receiver node can suffer high interference
from macro-cell(s) leading to performance degradation. Therefore, interference management
is a crucial aspect in any HetNet.
[0003] LTE Release 10 has adopted enhanced-inter-cell interference coordination (e-ICIC)
as part of the interference management. One key feature in e-ICIC is time domain interference
management or also known as almost blank sub-frame (ABS) transmission. An ABS contains
common reference symbols (CRS), broadcast channel (BCH), and synchronization signals
(PSS/SSS). As shown in Fig. 1, while the UE in cell range expansion maintains data
transmission to a pico-cell (serving cell), the macro cell (neighbor cell) transmits
an ABS sub-frame. Depending on the cell-IDs, the CRS of the neighbor cell can be colliding
with CRS of a serving cell (known as colliding CRS scenario) or it can be colliding
with the data/control channels of the serving cell (known as non-colliding CRS scenario).
Thus, in a non-colliding CRS scenario, the interference level of the control/data
channel of the downlink serving cell is limited to the CRS from macro/neighbor cell(s).
To combat the inter-cell interference at the receiver some prior art techniques have
been proposed.
[0004] Successive interference cancellation (SIC) is a well-known technique within the CRS
interference cancellation (CRS-IC) area. SIC performs interference cancellation from
dominant interferences (often neighbor cells) successively. The typical operation
at a receiver node, such as a UE, with CRS-SIC is as follows:
- Estimating the channel frequency response (CFR) of the first dominant neighbor cell;
- Creating a replica of the dominant interference by multiplying the locally generated
CRS of neighbor cell with the estimated CFR;
- Removing the dominant interference by subtract the received signal with the re-created/replica
of the dominant interference;
- Repeating the previous steps whenever there is a need to cancel the second or subsequent
dominant interference; and
- Once the interference(s) have been removed, the receiver node continues to perform
demodulation of desired signal from serving cell.
[0005] The SIC technique, however, has at least the following technical issues:
- The interference cancellation is depending on the accuracy of the neighbor cell(s)
channel estimation.
- The error in the first cancellation is propagated to the subsequent cancellation and
thus increasing the residual error. Hence, the error propagation leads to performance
degradation.
- Implementation complexity and latency are expected to be linearly increasing with
the number of cell(s) to be cancelled.
[0006] Another prior art solution is so called log-likelihood ratio (LLR) muting at the
receiver. LLR muting attenuates the set of LLRs corresponding to the interfered data
symbols, or in some cases, even sets them to zero. This method requires only a negligible
computational effort at the receiver, but yields only minor gains.
[0007] Yet another prior art solution is the robust equalizer (RBE). In the RBE, the interference
from the neighbor cell(s) is treated as Gaussian noise with a known correlation matrix.
The correlation matrix is known since it is assumed that it follows the same distribution
as the serving cell channel. Thereafter the RBE performs minimum mean square error
(MMSE) equalization where the correlation of the interference is appropriately treated.
[0008] The technical drawback of the RBE is that it is limited to the MMSE detection which
is significantly worse in performance than near optimum detectors, such as maximum-likelihood
(ML) detection.
Summary of the Invention
[0009] An objective of the present invention is to provide a solution which mitigates or
solves the drawbacks and problems of prior art solutions.
[0010] Another objective of the present invention is to provide a receiver method which
provides improved performance compared to prior art solutions.
[0011] According to a first aspect of the invention, the above mentioned and other objectives
are achieved by an equalizing method in a receiver node of a cellular wireless communication
system, the cellular wireless communication system using time/frequency resource elements
for transmission of radio signals over a Multiple Input Multiple Output, MIMO, radio
channel, and the radio signals comprising different channels and/or pilot symbols;
the method comprising the steps of:
- a) receiving at least one radio signal comprising a plurality of resource elements;
- b) obtaining interference information associated with the plurality of resource elements;
- c) extracting resource elements from the plurality of resource elements carrying data
into a first set based on the interference information so that the first set comprises
resource elements carrying data and being affected by interference;
- d) dividing the resource elements in the first set into one or more sub-sets each
comprising T number of resource elements;
- e) filtering the resource elements in said one or more sub-sets by applying a balanced
whitening and energy focusing filter W so as to obtain filtered resource elements y; and
- f) equalizing the filtered resource elements y by applying at least one detector arranged to handle L MIMO layers.
[0012] According to an embodiment of the method, the interference information indicates
time/frequency location of the resource elements of the first set.
[0013] According to another embodiment of the method, said receiving node is served by a
serving cell, and the interference information comprises information about Almost
Blank Sub-frame, ABS, transmissions from interfering cell(s).
[0014] According to yet another embodiment of the method, the sub-set size
T is based on the channel conditions for the radio channel, is predetermined, or fixed.
According to this embodiment the channel conditions are coherence bandwidth and coherence
time for the radio channel. Further, according to this embodiment, the value for the
sub-set size
T is increased with increasing coherence bandwidth and coherence time, and vice versa.
[0015] According to yet another embodiment of the method, the filter
W is dependent on
L. According to this embodiment the filter
W has the form:
W =
(G*)-1(Γ +
I)H*
(HH* +
RWW)
-1, where
G is a
PTxPT block diagonal virtual MIMO matrix, where each block along the diagonal has dimension
LxL, Γ equals Γ =
G*G+I,
I is the identity matrix,
H is the
RTxPT channel matrix across all
T resource elements, and
RWW is the
RTxRT covariance matrix of the interference across the
T number of resource elements. R denotes the number of receive antennas while P denotes
the number of transmit antennas. Further, according to this embodiment
(HH* +
RWW)
-1 =
U[Λ⊕Φ]
-1U*, where
U is the left unitary matrix of the singular value decomposition of
HH*, Λ is the eigenvalues of the average channel

⊕ is the Kronecker summation operator, and Φ is a
TxT covariance matrix of the interference across the
T number of resource elements at one receiver antenna, i.e. Φ[
m,n] =
RWW[
R(
m - 1) + 1,
R(
n - 1) + 1].
[0016] According to yet another embodiment of the method, the step of equalizing involves
for m = 1:
M, where
M is the number of detectors:
- taking elements (m - 1)L + 1: mL of the filtered resource elements y;
- feeding the elements (m - 1)L + 1: mL to the detector.
[0017] According to this embodiment,
L > 1.
[0018] According to yet another embodiment of the method, the number of detectors is
M =
PT/
L, where
P is the number of transmit antennas.
[0019] According to yet another embodiment of the method, the at least one detector is a
near optimum detector for the linear Gaussian vector channel, such as a ML detector,
a MAP detector, or an M-detector.
[0020] According to yet another embodiment of the method, said plurality of resource elements
are allocated in one or more Resource Block, RB, pairs.
[0021] According to yet another embodiment of the method, said cellular wireless communication
system, such as 3GPP communication systems.
[0022] According to yet another embodiment of the method, said receiver node is a relay
node station or a user node station, such as a User Equipment, UE, and the radio signal
is transmitted in the downlink of the wireless communication system.
[0023] According to yet another embodiment of the method, the resource elements in the first
set carries user data or control data.
[0024] The present invention also relates to a computer program, characterized in code means,
which when run by processing means causes said processing means to execute the present
methods.
[0025] According to a second aspect of the invention, the above mentioned and other objectives
are achieved with receiver device of a cellular wireless communication system, said
receiver device being arranged to receive radio signals; and the cellular wireless
communication system using time/frequency resource elements for transmission of radio
signals over a Multiple Input Multiple Output, MIMO, radio channel, and the radio
signals comprising different channels and/or pilot symbols; the receiver comprising
a processor arranged to:
- a) receive at least one radio signal comprising a plurality of resource elements;
- b) obtain interference information associated with the plurality of resource elements;
- c) extract resource elements from the plurality of resource elements carrying data
into a first set based on the interference information so that the first set comprises
resource elements carrying data and being affected by interference;
- d) divide the resource elements in the first set into one or more sub-sets each comprising
T number of resource elements;
- e) filter the resource elements in said one or more sub-sets by applying a balanced
whitening and energy focusing filter W so as to obtain filtered resource elements y; and
- f) equalize the filtered resource elements y by applying at least one detector arranged to handle L MIMO layers.
[0026] According to an embodiment of the receiver device, said receiver device is a relay
node station or a user node station, such as a User Equipment, UE.
[0027] The present invention provides a solution which allows the use of near optimum detector
in a receiver node which therefore is capable of implicitly cancel the dominant CRS
interference(s), e.g., in HetNet scenarios. This will improve the performance of detection.
[0028] Furthermore, in case of more than one interfering cell the proposed method does not
require successive estimation and cancellation of each interfering cell and thus,
the implementation complexity and latency can be kept low with the present invention.
[0029] Moreover, a scalable robust detector is proposed which offer a good trade-off between
performance and implementation complexity. Scalability is based on the size of the
resource element sub-set size and the dimensions of the detector algorithm which can
be chosen.
[0030] Further applications and advantages of the invention will be apparent from the following
detailed description.
Brief Description of the Drawings
[0031] The appended drawings are intended to clarify and explain different embodiments of
the present invention in which:
- Fig. 1 illustrates heterogeneous networks, HetNet;
- Fig. 2 illustrates the RE allocation in one RB pair in left and extracted REs in right;
- Fig. 3 illustrates RE extracted according to the invention;
- Fig. 4 illustrates the choice of the sub-set size;
- Fig. 5 shows a block diagram of an embodiment of the present invention;
- Fig. 6 illustrates an embodiment of a receiver device according to the invention;
and
- Fig. 7 illustrates an alternative embodiment of a receiver device according to the
invention.
Detailed Description of the Invention
[0032] The RBE equalizing method is good in the sense that it can adequately address the
color of the interference. However, since the subsequent detection step is carried
out by a single symbol MMSE detector, the pre-filtering cannot fully whiten the interference.
This is so since full whitening would render too much off dependencies among the data
symbols, a situation which the single symbol MMSE detector is not capable of dealing
with. In brief, the present invention proposes a method that filters the signal in
a way such that the interference is much whiter (loosely speaking) that what is possible
with the RBE. The created, but controlled, dependencies among the data symbols are
then dealt with by a group-wise near optimum detector with a complexity that can be
designed.
[0033] The present method therefore relates to an equalizing method in a receiver node arranged
for receiving radio signals and processing them in a suitable fashion. The cellular
wireless communication system uses time/frequency resource elements for transmission
of radio signals over a Multiple Input Multiple Output (MIMO) radio channel. The radio
signals comprise different channels and/or pilot symbols, and examples of such systems
are LTE, LTE Advanced, etc. The basic method comprises the steps of:
- a) receiving at least one radio signal comprising a plurality of resource elements;
- b) obtaining interference information associated with the plurality of resource elements;
- c) extracting resource elements from the plurality of resource elements carrying data
into a first set based on the interference information so that the first set comprises
resource elements carrying data and being affected by interference, which means that
it is the non-colliding scenario described above;
- d) dividing the resource elements in the first set into one or more sub-sets each
comprising T number of resource elements - the rationale behind forming these sub-sets is that
the receiver node will exploit the fact that interference is correlated in the sub-sets.
The larger the size T, the better the performance. In the case of T = 1, then there is only per-RE processing, and no gains can be obtained;
- e) filtering the resource elements in the one or more sub-sets by applying a balanced
whitening and energy focusing filter W so as to obtain filtered resource elements y; and
- f) equalizing the filtered resource elements y by applying at least one detector arranged to handle L MIMO layers - typically, there is already a detector implemented in the chipset of
the receiver so in that case L will automatically be specified. If the chipset is designed so that it can support
4x4 MIMO, then L = 4. The choice of L also specifies the number of sub-sets which becomes M = PT/L, where we remind the reader that P denotes the number of transmit antennas. In the case of PT/L not evaluating to an integer, special arrangements have to be done. Since a detector
designed for L layers can typically handle also < L layers, we propose to use [PT/L] sub-sets of size L and one sub-set of size PT - L└PT/L┘.
[0034] The detector algorithm used in the present invention is any detector algorithm that
synthesizes a near optimal detector of a linear Gaussian vector channel of the form
y=Hx+n, where
H is any LxL matrix,
x is a Lx1 vector of data symbols, and
n is white Gaussian noise. Further, the detector algorithm can either be of soft-input
or hard input type, meaning that in the former case, the outputted values from the
detector belongs to the same constellation that
x does, and in the latter case that probabilities of what
x may be is outputted. The detector algorithm can also accept soft-input of the data
symbols
x. Examples of detector algorithms are: ML detection, MAP detection, the M-algorithm,
etc.
[0035] The present invention therefore provides a much improved RBE algorithm allowing the
use of near optimal detectors instead of MMSE which means that the performance is
substantially increased. Moreover, the complexity can also be designed according to
the present invention thereby providing flexibility.
[0036] As mentioned above the present invention is applicable to the non-colliding scenarios.
In case of a HetNet with non-colliding CRS, the CRS interferences from neighbor cells
are colliding with the control/data channels of the downlink signal from serving cell.
Fig. 2 (left) illustrates the LTE MIMO RE allocation within one resource block (RB)
pair in a non-colliding CRS scenario. The CRS interferences (right part of Fig. 2)
are located in certain REs in OFDM symbols carrying CRS from serving cell and colliding
with control and data channels.
[0037] The activation of non-colliding CRS interference cancellation can e.g., be based
on the fact that a non-colliding CRS scenario is detected, i.e., the resource elements
in the first set carries user data or control data. This can be easily identified
by the cell-ID of neighbor cell(s). In view of Fig. 2, non-colliding means that the
REs marked with dots (neighbor CRS) in the right part do not overlap with the black
REs (serving cell CRS) in the left part. Whether the CRS is colliding or not can be
identified when a receiver node receives the ABS macro-cell pattern information from
higher layers of the system.
[0038] The present method needs to separate the data demodulation between the REs that are
interfered with (i.e., the REs marked with "+" where REs marked with dots overlap)
and the REs that are not interfered with (i.e., the rest of the REs marked with "+").
The present method applies only to the REs that are interfered with. The next step
is to isolate the REs of interest for the present algorithm. This is illustrated in
Fig. 3, in the left part of the figure, only the REs marked with "+" are of interest
to us as the blank REs can be detected by standard methods since there is no interference
present at these REs (due to the ABS transmission mode).
[0039] Once the detection algorithm is activated, it will require the measured power and
delay of interfering cell(s), i.e., interference information associated with the plurality
of the REs such that the interference information indicates the time/frequency location
of the resource elements of the first set. These parameters can be obtained from other
measurement units (which are quite common in LTE e.g.,: RSRP measurement block).
[0040] Thereafter, the size
T of the RE sub-set
T must be determined, and is according to an embodiment based/dependent on the channel
coherence bandwidth and coherence time. For example, an UE is typically equipped with
channel parameters estimation which provides such information. In a large coherence
bandwidth and time, a large RE sub-set size
T is expected to further improve the performance with the cost of implementation complexity,
and vice versa. The rationale behind this performance increase with
T is that the interference is heavily correlated over the
T REs and by a pre-filtering of the signals across the T REs, the interference and
the signal parts can be separated. However, it is also realized that the sub-set size
can be predetermined or fixed. The advantage with predetermined or fixed sub-set size
is that the complexity of implementing the present algorithm is reduced. The drawback
in comparison with an adaptive algorithm is that the performance is reduced.
[0041] A particular choice for grouping the interfered REs is shown in Fig. 4. In this case
the sub-set size is
T = 6. The upper sub-set 1 will be treated separately from sub-set 2. Better performance
will be obtained if group 1 and group 2 were merged into a single sub-set, at the
expense of complexity.
[0042] Furthermore, in the following disclosure an in-depth description of the theory and
mathematical models behind the invention is presented together with preferred embodiments.
It should be noted that throughout this disclosure a boldface lowercase letter denotes
a vector valued variable, and a boldface uppercase letter denotes a matrix valued
variable, and further the symbol "*" denotes the Hermitian transpose operator.
[0043] The channel model for the received signal for RE
t is in this case,

where
yt is the received Rx1 vector,
Ht is the
RxP channel matrix which is assumed to be known,
xt is the Px1 data vector to be estimated,

is the channel matrix of the kth neighbor cell,

is the CRS vector of the kth neighbor cell, and
nt is thermal noise.
[0044] Although the interfering cell channel matrices

are unknown, they are heavily correlated according to an assumed model. We assume
that two channels from different cells are independent so there is no correlation
over the index
k. A natural choice is to assume the same second order statistics as for the serving
cell channel model. If we assume spatially uncorrelated channels, we get,

[0045] From the initial measurement units, the values of

and

would be known. If we include all the
K neighbor cells, and use that assumption that these are assumed independent, we obtain
a correlation model for the interference which reads,

[0046] Let us now stack the received signals at the T REs on top of each other which yields,

where
w is the interference plus noise with the correlation model,

[0047] From the last equation, it is straightforward to obtain the optimal detector, i.e.,
the maximum likelihood (ML) detector. The first step would be to whiten the noise
w by a whitening filter,

[0048] Now,
w̃ is white. However, such whitening process would destroy the block diagonal structure
of the channel matrix
G, which will now become,

[0049] Thus, the ML detection complexity will be
O(Ω
PT), where Ω is the cardinality of the input constellation. The RBE, on the other hand,
obtains a detection complexity of
PTO(Ω) by applying the MMSE filter,

where
D is a diagonal matrix.
[0050] These two cases, i.e., ML and MMSE detectors are two extremes, both in terms of performance
and complexity, and we next describe how to reach solutions in between mentioned detector
types. The complexity of the present invention is (PT/L)
O(Ω
L) where
L can be interpreted as a design parameter. Our objective is to construct a filter
W such that we obtain,

[0051] Here, the matrix
Gm is a virtual MIMO matrix of dimension
LxL, and
x̃m is an
Lx1 vector comprising data symbols. The noise vector is not white. Note that there may
very well be leakage from
x̃m to
rn,
n ≠
m, but such leakage is modeled in the noise
wn.
[0052] Two questions arise: how to find
W, and for a given
W, how to find the virtual matrices
Gm. This is now solved under the following two assumptions: (i) independent complex
Gaussian inputs
x, and (ii) a mutual information cost function.
[0053] Start by constructing the matrix,

and define,

[0054] Now, make the definitions,

and

[0055] Construct an upper triangular matrix
U where the values at the kth row are,

[0056] Given
U, construct a matrix Γ as, Γ ≡
UU* - I and
G as the Cholesky decomposition of Γ, i.e., Γ
= G*G
[0057] The matrix
G is the channel matrix in Eq. (4), i.e., it is block-diagonal and contain

along its main diagonal.
[0058] The matrix
W in Eq. (1) is constructed as,

[0059] Hence, it is observed that the filter is dependent on
L and also on the interference information. More precisely, the value
L specifies the structure of the matrix
G, while the interference information determines the covariance matrix
RWW.
[0060] According to a preferred embodiment of the invention the method involves:
- 1. Estimate the radio channel parameters needed, i.e.,:
- a. The noise density at the receiver node.
- b. The serving cell channel type and channel strength.
- c. Number of neighbor cells.
- d. Whether the neighbor cells are transmitting ABS frames or not.
- e. Are the neighbor cells' CRS colliding with the serving cell pilots or not.
- f. From the cell-search procedure, find the CRS signals of the neighbor cells.
- 2. If the following outcomes of 1c-1e all hold true, i.e.,:
1.c: is at least one neighbor cell.
1.d: ABS frames are transmitted.
1.e: they are not colliding, i.e., the non-colliding case.
Then, activate the method in this invention, and move on to step 3.
- 3. Estimate the channel of the serving cell. This is a standard procedure, and can
be facilitated by standard means as the serving cell CRS is not interfered with.
- 4. Assume that the neighbor cell obey the same correlation model as the serving cell
channel. This correlation model is estimated in (the first part of) 1.b.
- 5. Determine system parameters (up to the user to decide) for the detector(s), i.e.,
the sub-set size T, and the dimension L of the detector algorithm to be used.
- 6. Extract the interfered REs and stack them in a vector y according to Eq. (2).
- 7. Compute the correlation of the noise plus interference Rww according to Eq. (1) and Eq. (3). This step requires the input of 1.c, 1.f and 4.
- 8. Follow the procedure in Eq. (3) to Eq. (10) to find the virtual block diagonal
channel matrix G that comprises

along its main diagonal and zeros elsewhere.
- 9. Compute the filter matrix W according to Eq. (11).
- 10. Construct the vector r in Eq. (4) as r=Wy.
- 11. Express the PTx1 vector r as

where x'denotes the transpose of x. Each sub-vector rk is now an Lx1 vector.
- 12. Apply the detector algorithms to all the vectors

This yields estimated symbol vectors

or soft information thereof.
- 13. Stack the estimated symbol vectors

in a PTx1 vector x̂ and output the symbols in this vector as the detected symbols at the T REs. In the
case of a soft-output detector in step 12, the vector x̂ comprises soft values, typically in the form of LLRs.
[0061] A block diagram of this embodiment is shown in Fig. 5. Steps 1-6 are carried out
in the box labeled A, while steps 7-11 are carried out in the box labeled B. Steps
12-13 are carried out in the detector(s) boxes coupled to box B.
[0062] The present invention further provides a solution for complexity reduction of the
matrix inverse (
HH* +
Rww) needed in Eq. (11). The main computational complexity lies in the
PTxPT matrix inversion of needed in Eq. (11). We propose a complexity reduction that assumes
the serving cell channel to be almost constant across the group. This yields
P TxT matrix inversions instead of one
PTxPT matrix inverse. This reduces the computational cost by a factor of
P2.
[0063] We need to invert a matrix of the form
(HH* +
Rww) where
HH* is block-diagonal. From inspection of Eq. (1) and Eq. (3) it can be seen that
Rww has the form
R = Φ
⊗ I where
I is the identity matrix of size
TxT, Φ can be read of from Eq.(3), and
⊗ denotes the Kronecker product. We now assume that the block-diagonal matrix
H contains the same block along its main diagonal. This assumption is justified in
practice if the Doppler spread of the terminal is slow, so that the channel is quasi-constant
across the group size
T. The larger the group size, the less accurate this assumption becomes. But for group
sizes within one PRB the assumption is not too strong. Further, if the channel matrices
cannot be said to be constant, one can base the matrix inverse upon a block diagonal
matrix, where each block equals the "average matrix":

[0064] We can now write the inverse as,

where
UΣ
U* is the SVD of
HH*. Due to the assumption of the same block along the diagonal of
H, the diagonal matrix Σ contains
T replicas of
P distinct numbers. It is also important to note that Σ is sorted along its diagonal.
Given these structures of
HH* and
Rww we directly obtain:

where Λ is a
PxP diagonal matrix with the singular values of one of the diagonal blocks in
HH*. We get Σ +
U*Rww,
U = Λ ⊕ Φ where
⊕ is the Kronecker summation operator. This is a block diagonal matrix where each block
is of size
TxT, and there is
P such blocks. Note that only the main diagonals of the blocks differ. This gives us,

[0065] Hence according to an embodiment of the inventon the computation of the inverse involves
the following steps:
- 1. Establish the matrix Φ from the assumed correlation model. This can be read out
directly from Eq. (3);
- 2. Compute the SVD of the PxP matrix H (here H denotes the average channel matrix, but if all channel matrices at the REs of interest
are the same, one can pick any of them), denote the singular values by Λ, and the
unitary matrix by U1. These are both PxP matrices;
- 3. Form U, as a PTxPT block diagonal matrix where the block all equal U1;
- 4. Form the Kronecker summation [Λ ⊕ Φ] This is a block diagonal matrix, with P block, each of dimension TxT. The P blocks are all distinct;
- 5. Invert [Λ ⊕ Φ.]This requires P TxT matrix inverses; and
- 6. Form the desired matrix inverse as (HH* + Rww)-1 = U[Λ ⊕ Φ]-1 U*
[0066] Moreover, as understood by the person skilled in the art, any method according to
the present invention may also be implemented in a computer program, having code means,
which when run by processing means causes the processing means to execute the steps
of the method. The computer program is included in a computer readable medium of a
computer program product. The computer readable medium may comprises of essentially
any memory, such as a ROM (Read-Only Memory), a PROM (Programmable Read-Only Memory),
an EPROM (Erasable PROM), a Flash memory, an EEPROM (Electrically Erasable PROM),
or a hard disk drive.
[0067] Furthermore, the present method can be implemented and executed in suitable receiver
devices. It is realized by the skilled person that the present receiver device may
comprise the necessary communication capabilities in the form of e.g., functions,
means, units, elements, etc., for executing the methods according to the invention
which means that the devices can be modified,
mutatis mutandis, according to any method of the present invention. Examples of other such means,
units, elements and functions are: memory, encoders, decoders, mapping units, multipliers,
interleavers, deinterleavers, modulators, demodulators, inputs, outputs, antennas,
amplifiers, DSPs, etc. which are suitably arranged together.
[0068] Especially, the processors of the present receiver device may comprise, e.g., one
or more instances of a Central Processing Unit (CPU), a processing unit, a processing
circuit, a processor, an Application Specific Integrated Circuit (ASIC), a microprocessor,
or other processing logic that may interpret and execute instructions. The expression
"processor" may thus represent a processing circuitry comprising a plurality of processing
circuits, such as, e.g., any, some or all of the ones mentioned above. The processing
circuitry may further perform data processing functions for inputting, outputting,
and processing of data comprising data buffering and device control functions, such
as call processing control, user interface control, or the like.
[0069] The present receiver device comprises a processor which is arranged to: receive at
least one radio signal comprising a plurality of resource elements; obtain interference
information associated with the plurality of resource elements; extract resource elements
from the plurality of resource elements carrying data into a first set based on the
interference information so that the first set comprises resource elements carrying
data and being affected by interference; divide the resource elements in the first
set into one or more sub-sets each comprising
T number of resource elements; filter the resource elements in said one or more sub-sets
by applying a balanced whitening and energy focusing filter
W so as to obtain filtered resource elements
y; and equalize the filtered resource elements
y by applying at least one detector arranged to handle
L MIMO layers. This embodiment is illustrated in Fig. 7 in which the receiver comprises
a processor arranged for executing the different steps of the present method.
[0070] A receiver device or node may be any suitable user communication device/node arranged
for communication in a wireless communication system, preferably a relay station or
a user node station. Examples of a user node station is a mobile communication device,
an actuator device, a mobile phone, a portable computer (laptop), a stationary computer,
a sensor device, a device for machine-type communication, a device for machine-to-machine
communication, etc.
[0071] Alternatively, according to another embodiment of the invention the present receiver
device comprises a receiver unit, interference information unit, extracting unit,
dividing unit, filtering unit, equalizing unit. The receiver device is arranged such
that: the receiver unit is arranged to receive at least one radio signal comprising
a plurality of resource elements; the interference information unit is arranged to
obtain interference information associated with the plurality of resource elements;
the extracting unit is arranged to extract resource elements from the plurality of
resource elements carrying data into a first set based on the interference information
so that the first set comprises resource elements carrying data and being affected
by interference; the dividing unit is arranged to divide the resource elements in
the first set into one or more sub-sets each comprising
T number of resource elements; the filtering unit is arranged to filter the resource
elements in said one or more sub-sets by applying a balanced whitening and energy
focusing filter
W so as to obtain filtered resource elements
y; and the equalizing unit is arranged to equalize the filtered resource elements
y by applying at least one detector arranged to handle
L MIMO layers. This embodiment is illustrated in Fig. 8 in which the receiver comprises
dedicated units for the corresponding method steps.
[0072] The present cellular system in which the present method may be used is a 3GPP system,
such as LTE or LTE Advanced, or any other suitable cellular system, which is well
understood by the skilled person.
[0073] Finally, it should be understood that the present invention is not limited to the
embodiments described above, but also relates to and incorporates all embodiments
within the scope of the appended independent claims.
1. Equalizing method in a receiver node of a cellular wireless communication system,
the cellular wireless communication system using time/frequency resource elements
for transmission of radio signals over a Multiple Input Multiple Output, MIMO, radio
channel, and the radio signals comprising different channels and/or pilot symbols;
the method comprising:
receiving at least one radio signal comprising a plurality of resource elements;
obtaining interference information associated with the plurality of resource elements;
extracting resource elements from the plurality of resource elements carrying data
into a first set based on the interference information so that the first set comprises
resource elements carrying data and being affected by interference;
dividing the resource elements in the first set into one or more sub-sets each comprising
T number of resource elements;
filtering the resource elements in said one or more sub-sets by applying a balanced
whitening and energy focusing filter W so as to obtain filtered resource elements y; and
equalizing the filtered resource elements y by applying at least one detector arranged to handle L MIMO layers.
2. Method according to claim 1, wherein the interference information indicates time/frequency
location of the resource elements of the first set.
3. Method according to claim 1 or 2, wherein said receiving node is served by a serving
cell, and the interference information comprises information about Almost Blank Sub-frame,
ABS, transmissions from one or more interfering cells.
4. Method according to any of the preceding claims, wherein the sub-set size T is based on the channel conditions for the radio channel, is predetermined, or fixed.
5. Method according to claim 4, wherein the channel conditions are coherence bandwidth
and coherence time for the radio channel.
6. Method according to claim 5, wherein the value for the sub-set size T is increased with increasing coherence bandwidth and coherence time; and
the value for the sub-set size T is decreased with decreasing coherence bandwidth and coherence time.
7. Method according to any of the preceding claims, wherein the filter W is dependent on L.
8. Method according to claim 7, wherein the filter
W has the form:

where
G is the virtual MIMO matrix having dimension
LxL, Γ equals Γ=
G*G+
I,
I is the identity matrix,
H is the channel matrix of all
T resource elements, and
RWW is the covariance matrix of the interference across the
T number of resource elements.
9. Method according to claim 8, wherein (
HH* +
RWW)
-1 =
U[Λ⊕Φ]
-1U*, where
U is the left unitary matrix of the singular value decomposition of
HH*, where Λ is the eigenvalues of the average channel

⊕ is the Kronecker summation operator, and Φ is a
TxT covariance matrix of the interference across the
T number of resource elements at one receiver antenna, i.e. Φ[
m,n] =
RWW[
R(
m - 1) + 1,
R(
n - 1) + 1], where
R is the number of receiver antennas at said receiver node.
10. Method according to any of the preceding claims, wherein the step of equalizing involves
for
m = 1:
M, where
M is the number of detectors:
- taking elements (m - 1)L + 1: mL of the filtered resource elements y;
- feeding the elements (m - 1)L + 1: mL to the detector.
11. Method according to claim 10, wherein L > 1.
12. Method according to claim 10 or 11, wherein the number of detectors is M = PT/L, where P is the number of transmit antennas and T is the sub-set size.
13. Computer program, characterized in code means, which when run by processing means causes said processing means to execute
said method according to any of claims 1-12.
14. Computer program product comprising a computer readable medium and a computer program
according to claim 13, wherein said computer program is included in the computer readable
medium, and comprises of one or more from the group: ROM (Read-Only Memory), PROM
(Programmable ROM), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically EPROM)
and hard disk drive.
15. Receiver device of a cellular wireless communication system, said receiver device
being arranged to receive radio signals; and the cellular wireless communication system
using time/frequency resource elements for transmission of radio signals over a Multiple
Input Multiple Output, MIMO, radio channel, and the radio signals comprising different
channels and/or pilot symbols; the receiver comprising a processor arranged to:
receive at least one radio signal comprising a plurality of resource elements;
obtain interference information associated with the plurality of resource elements;
extract resource elements from the plurality of resource elements carrying data into
a first set based on the interference information so that the first set comprises
resource elements carrying data and being affected by interference;
divide the resource elements in the first set into one or more sub-sets each comprising
T number of resource elements;
filter the resource elements in said one or more sub-sets by applying a balanced whitening
and energy focusing filter W so as to obtain filtered resource elements y; and
equalize the filtered resource elements y by applying at least one detector arranged to handle L MIMO layers.
Amended claims in accordance with Rule 137(2) EPC.
1. Equalizing method in a receiver node of a cellular wireless communication system,
the cellular wireless communication system using time/frequency resource elements
for transmission of radio signals over a Multiple Input Multiple Output, MIMO, radio
channel, and the radio signals comprising different data and/or pilot symbols; the
method comprising:
receiving at least one radio signal comprising a plurality of resource elements;
obtaining interference information associated with the plurality of resource elements;
isolating resource elements from the plurality of resource elements carrying data
into a first set based on the interference information so that the first set comprises
resource elements carrying data and being affected by interference;
dividing the resource elements in the first set into one or more sub-sets each comprising
T number of resource elements;
filtering the resource elements in said one or more sub-sets by applying a balanced
whitening and energy focusing filter W so as to obtain filtered resource elements y; and
equalizing the filtered resource elements y by applying at least one detector arranged to handle L MIMO layers, wherein the filter W is dependent on L, wherein the filter W has the form:

where G is the virtual MIMO matrix having dimension LxL, Γ equals Γ = G*G + I , I is the identity matrix, H is the channel matrix of all T resource elements, and RWW is the covariance matrix of the interference across the T number of resource elements.
2. Method according to claim 1, wherein the interference information indicates time/frequency
location of the resource elements of the first set.
3. Method according to claim 1 or 2, wherein said receiving node is served by a serving
cell, and the interference information comprises information about Almost Blank Sub-frame,
ABS, transmissions from one or more interfering cells.
4. Method according to any of the preceding claims, wherein the sub-set size T is based on the channel conditions for the radio channel, is predetermined, or fixed.
5. Method according to claim 4, wherein the channel conditions are coherence bandwidth
and coherence time for the radio channel.
6. Method according to claim 5, wherein the value for the sub-set size T is increased with increasing coherence bandwidth and coherence time; and
the value for the sub-set size T is decreased with decreasing coherence bandwidth and coherence time.
7. Method according to any of claims 1-6 , wherein
(HH* + R
WW)
-1 =
U[Λ⊕Φ]-1U*, where
U is the left unitary matrix of the singular value decomposition of
HH*, where
A is the eigenvalues of the average channel

⊕ is the Kronecker summation operator, and
Φ is a
TxT covariance matrix of the interference across the
T number of resource elements at one receiver antenna, i.e. Φ[
m, n] =
RWW[
R(
m - 1) + 1,
R(n - 1)+ 1], where
R is the number of receiver antennas at said receiver node.
8. Method according to any of the preceding claims, wherein the step of equalizing involves
for
m = 1:
M, where
M is the number of detectors:
- taking elements (m - 1)L + 1: mL of the filtered resource elements y;
- feeding the elements (m - 1)L + 1: mL to the detector.
9. Method according to claim 8, wherein L > 1.
10. Method according to claim 8 or 9, wherein the number of detectors is M = PT/L, where P is the number of transmit antennas and T is the sub-set size.
11. Computer program, characterized in code means, which when run by processing means causes said processing means to execute
said method according to any of claims 1-10.
12. Computer program product comprising a computer readable medium and a computer program
according to claim 11, wherein said computer program is included in the computer readable
medium, and comprises of one or more from the group: ROM (Read-Only Memory), PROM
(Programmable ROM), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically EPROM)
and hard disk drive.
13. Receiver device of a cellular wireless communication system, said receiver device
being arranged to receive radio signals; and the cellular wireless communication system
using time/frequency resource elements for transmission of radio signals over a Multiple
Input Multiple Output, MIMO, radio channel, and the radio signals comprising different
data and/or pilot symbols; the receiver comprising a processor arranged to:
receive at least one radio signal comprising a plurality of resource elements;
obtain interference information associated with the plurality of resource elements;
isolate resource elements from the plurality of resource elements carrying data into
a first set based on the interference information so that the first set comprises
resource elements carrying data and being affected by interference;
divide the resource elements in the first set into one or more sub-sets each comprising
T number of resource elements;
filter the resource elements in said one or more sub-sets by applying a balanced whitening
and energy focusing filter W so as to obtain filtered resource elements y; and
equalize the filtered resource elements y by applying at least one detector arranged to handle L MIMO layers, wherein the filter W is dependent on L, wherein the filter W has the form:

where G is the virtual MIMO matrix having dimension LxL, Γ equals Γ = G*G+I, I is the identity matrix, H is the channel matrix of all T resource elements, and RWW is the covariance matrix of the interference across the T number of resource elements.