(11) **EP 2 883 989 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 17.06.2015 Bulletin 2015/25

(21) Application number: 13827252.1

(22) Date of filing: 26.07.2013

(51) Int Cl.: D06F 25/00 (2006.01) D06F 39/08 (2006.01)

D06F 39/04 (2006.01)

(86) International application number: **PCT/JP2013/004545**

(87) International publication number: WO 2014/024408 (13.02.2014 Gazette 2014/07)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States: **BA ME**

(30) Priority: 09.08.2012 JP 2012177033

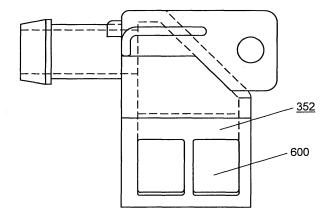
(71) Applicant: Panasonic Intellectual Property Management Co., Ltd. Osaka-shi, Osaka 540-6207 (JP) (72) Inventors:

 ITOU, Gou Osaka 540-6207 (JP)

 KOBAYASHI, Shinichiro Osaka 540-6207 (JP)

FUKUDA, Tsuyoshi
 Osaka 540-6207 (JP)

(74) Representative: Schwabe - Sandmair - Marx Patentanwälte
Stuntzstraße 16


81677 München (DE)

(54) CLOTHES TREATMENT DEVICE

(57) A clothes treatment device according to the present invention includes a housing tub for housing clothing, and a steam supply mechanism for supplying steam to the housing tub. The steam supply mechanism includes a steam generator having a wall surface which defines a chamber for generating steam, a heater for heating the wall surface, a water supply mechanism for injecting water to the wall surface, a nozzle (352) mounted on the housing tub, an impurity removing part (600)

having an open hole formed on the nozzle (352), and a guide pipe which guides the steam to the nozzle (352) from the steam generator. In the steam supply mechanism, the steam injected from the nozzle (352) is supplied to the inside of the housing tub through the impurity removing part (600). Accordingly, the clothes treatment device which can properly remove an impurity contained in the steam can be realized.

FIG. 17A

EP 2 883 989 A1

TECHNICAL FIELD

[0001] The present invention relates to a clothes treatment device for washing, spin-drying and/or drying clothing.

1

BACKGROUND ART

[0002] Recently, there has been developed a washing machine which sterilizes clothing by supplying steam to clothing (see PTL 1, for example).

[0003] The washing machine described in PTL 1 is configured such that water which flows in a tube passage is heated by a heater, steam is generated by a steam generator, and the steam is supplied to a housing tub in which clothing is housed. Due to such a constitution, the inside of the housing tub is filled with the steam.

[0004] However, in general, water to be heated contains an impurity. When water is evaporated so as to generate steam, the impurity in water precipitates on the steam generator or the like. In such a state, the precipitation of the impurity in a steam generation system which generates and supplies steam induces the adhesion of the impurity on clothing disposed inside the housing tub. Accordingly, the conventional washing machine has drawbacks such as a drawback that a person who wears clothing to which impurity is adhered feels discomfort due to a contact of clothing with his/her skin and a drawback that adhered impurities form stains on clothing.

Citation List

Patent Literature

[0005] PTL 1: European Patent No.1863968 specification

SUMMARY OF THE INVENTION

[0006] To overcome the above-mentioned drawbacks, a clothes treatment device according to the present invention includes a housing tub for housing clothing, and a steam supply mechanism for supplying steam to the housing tub. The steam supply mechanism includes a steam generator having a wall surface which defines a chamber for generating the steam, a heater for heating the wall surface, a water supply mechanism for injecting water to the wall surface, a nozzle mounted on the housing tub, an impurity removing part having an open hole formed on the nozzle, and a guide pipe which guides the steam to the nozzle from the steam generator. In the steam supply mechanism, the steam injected from the nozzle is supplied to an inside of the housing tub through the impurity removing part.

[0007] Due to such a constitution, unlike the prior art where clothing is subjected to steam atmosphere by leak-

ing steam, steam having a high pressure is injected from the nozzle into the housing tub such that the steam traverses the housing tub. Thus, the steam is directory supplies to the clothing which faces the nozzle in an opposed manner. Further, by allowing the steam to pass through the impurity removing part, an impurity, for example, a solid material such as a scale contained in water used for generating the steam can be removed from the steam supplied into the inside of the housing tub. As a result, the steam from which impurity is removed can be supplied to the clothing.

BRIEF DESCRIPTION OF DRAWINGS

15 [0008]

20

25

35

40

45

50

55

FIG. 1 is a schematic longitudinal cross-sectional view of a washing machine exemplified as a clothes treatment device according to an exemplary embodiment of the present invention.

FIG. 2 is a schematic perspective view of the washing machine according to the exemplary embodiment with a part shown in a see-through manner.

FIG. 3 is a schematic perspective view of a steam supply mechanism which is housed in a casing of the washing machine according to the exemplary embodiment.

FIG. 4A is a schematic perspective view of a steam generating part of the steam supply mechanism of the exemplary embodiment.

FIG. 4B is a schematic perspective view of the steam generating part of the steam supply mechanism of the exemplary embodiment.

FIG. 5 is a schematic perspective view of a mounting structure for connecting a lid portion of the steam generating part and the casing to each other in the exemplary embodiment.

FIG. 6A is a schematic perspective view of a steam generator in the steam generating part of the exemplary embodiment.

FIG. 6B is a schematic perspective view of the steam generator in the steam generating part of the exemplary embodiment.

FIG. 7 is a schematic perspective view of a body portion of the steam generator of the exemplary embodiment.

FIG. 8 is a schematic developed perspective view of the steam generator of the exemplary embodiment. FIG. 9 is a schematic perspective view of a lid member of the steam generator of the exemplary embodiment

FIG. 10 is a schematic plan view of the body portion of the steam generator of the exemplary embodiment.

FIG. 11 is a schematic view of a water supply mechanism of the steam supply mechanism of the exemplary embodiment.

FIG. 12 is a schematic back view of a front portion

of a housing tub of the washing machine of the exemplary embodiment.

FIG. 13 is an explanatory view schematically showing the relationship between an intermittent operation of a pump of the water supply mechanism and a temperature inside a chamber space in the exemplary embodiment.

FIG. 14 is an explanatory view schematically showing a change in a temperature of water which is supplied to a water tub of the washing machine of the exemplary embodiment.

FIG. 15A is a schematic timing chart showing timing of supplying steam in a spin-drying step according to this exemplary embodiment.

FIG. 15B is a schematic timing chart showing timing of supplying steam in the spin-drying step according to this exemplary embodiment.

FIG. 15C is a schematic timing chart showing timing of supplying steam in the spin-drying step according to this exemplary embodiment.

FIG. 16 is a block diagram schematically showing a control applied to a door body based on a temperature of the steam generator according to this exemplary embodiment.

FIG. 17A is a schematic view of a nozzle disposed on a front portion of the housing tub of the washing machine according to this exemplary embodiment. FIG. 17B is a cross-sectional view of the nozzle disposed on the front portion of the housing tub of the washing machine according to this exemplary embodiment.

FIG. 17C is a schematic view of an impurity removing part mounted on the nozzle disposed on the front portion of the housing tub of the washing machine according to this exemplary embodiment.

DESCRIPTION OF EXEMPLARY EMBODIMENT

[0009] Hereinafter, a clothes treatment device of an exemplary embodiment of the present invention is described with reference to drawings. The present invention is not limited by the exemplary embodiment. Hereinafter, the description is made by taking a washing machine as an example of a clothes treatment device. Further, terms indicating the directions used in the description made hereinafter such as "upward", "downward", "leftward" and "rightward" are used merely for the clarification of the description and do not limit the principle of the clothes treatment device in any way. Further, the principle of the clothes treatment device is also applicable to a device which has an ability of washing and drying clothing and a device which dries clothing.

<EXEMPLARY EMBODIMENT>

<Washing machine>

[0010] Hereinafter, the constitution of a washing ma-

chine of an exemplary embodiment of the present invention is described by referencing FIG. 1.

[0011] FIG. 1 is a schematic longitudinal cross-sectional view of a washing machine exemplified as a clothes treatment device of the exemplary embodiment of the present invention.

[0012] As shown in FIG. 1, washing machine 100 of this exemplary embodiment includes at least: casing 110; and housing tub 200 for housing clothing inside casing 110. Housing tub 200 includes rotary drum 210 having peripheral wall 211 which surrounds axis of rotation RX and which has an approximately circular cylindrical shape (including a circular cylindrical shape), and water tub 220 which houses rotary drum 210.

[0013] Casing 110 is constituted of: front wall 111 in which a put-in opening through which clothing is put into housing tub 200 is formed; rear wall 112 disposed opposite to front wall 111; casing ceiling wall 113 which extends approximately horizontally (including horizontally); casing bottom wall 114 disposed opposite to casing ceiling wall 113; a left wall and a right wall described later and the like. In such structure, rotary drum 210 and water tub 220 of housing tub 200 are opened toward front wall 111.

[0014] Washing machine 100 further includes door body 120 which is mounted on front wall 111 of casing 110. Door body 120 is rotatable between a closed position where door body 120 closes the put-in opening formed in front wall 111 and an open position where door body 120 opens the put-in opening. Due to such a constitution, a user can put clothing into housing tub 200 through the put-in opening formed in front wall 111 after rotating door body 120 to the open position. Thereafter, the user moves door body 120 to the closed position, and the washing machine 100 washes the clothing already put into washing machine 100. FIG. 1 shows a state where door body 120 is at the closed position.

[0015] Rotary drum 210 includes peripheral wall 211 and bottom wall 212, and is rotated about axis of rotation RX which extends between front wall 111 and rear wall 112 of casing 110. Clothing put into housing tub 200 moves inside rotary drum 210 along with the rotation of rotary drum 210. Due to such an operation, clothing is subjected to various processing such as washing processing, rinsing processing and/or spin-drying processing. Bottom wall 212 of rotary drum 210 is disposed in a state where bottom wall 212 faces door body 120 at the closed position.

[0016] Water tub 220 is constituted of at least bottom portion 221, and front portion 222. Bottom portion 221 surrounds bottom wall 212 and a portion of peripheral wall 211 of rotary drum 210. Front portion 222 is disposed between bottom portion 221 of water tub 220 and door body 120, and surrounds a remaining portion of peripheral wall 211 of rotary drum 210 which front portion 222 faces.

[0017] Housing tub 200 includes rotary shaft 230 which is mounted on bottom wall 212 of rotary drum 210, and

40

40

50

extends toward rear wall 112 of casing 110 along axis of rotation RX. Accordingly, rotary shaft 230 is provided such that rotary shaft 230 penetrates bottom portion 221 of water tub 220 and projects into a space formed between water tub 220 and rear wall 112.

[0018] Washing machine 100 includes motor 231 which is mounted on a lower side of water tub 220, pulley 232 which is mounted on rotary shaft 230 which is exposed to the outside of water tub 220, and belt 233 which transmits power of motor 231 to pulley 232. Further, when motor 231 is operated, power of motor 231 is transmitted to rotary shaft 230 by way of belt 233 and pulley 232. As a result, rotary drum 210 rotates inside water tub 220.

[0019] Washing machine 100 further includes packing structure 130 disposed between front portion 222 of water tub 220 and door body 120. When door body 120 is rotated to the closed position, packing structure 130 is compressed by door body 120. As a result, due to compressed packing structure 130, the watertight sealing structure is formed between door body 120 and front portion 222.

[0020] Washing machine 100 includes water supply port 140 which is connected to a faucet (not shown in the drawing), and distribution part 141 for distributing water introduced into washing machine 100 through water supply port 140. Water supply port 140 is disposed in a state where the water supply port 140 projects upward from casing ceiling wall 113, and distribution part 141 is disposed between casing ceiling wall 113 and housing tub

[0021] As shown in FIG. 1, washing machine 100 includes a detergent housing part (not shown in the drawing) in which a detergent is housed, and steam supply mechanism 300 which injects steam to housing tub 200 (described later). Distribution part 141 includes a plurality of water supply valves for selectively supplying water to housing tub 200, detergent housing part and steam supply mechanism 300 through water supply passages (not shown in the drawing). It is needless to say that known techniques applied to washing machines are preferably applicable to the supply of water to housing tub 200 and the detergent housing part.

<Constitution of steam supply mechanism>

[0022] Hereinafter, the constitution of the steam supply mechanism of the washing machine according to the exemplary embodiment of the present invention is described with reference to FIG. 1 while using FIG. 2, FIG. 3 and FIG. 17A to FIG. 17C.

[0023] FIG. 2 is a schematic perspective view of the washing machine according to the exemplary embodiment with a part shown in a see-through manner. FIG. 3 is a schematic perspective view of the steam supply mechanism which is housed in a casing of the washing machine according to the exemplary embodiment. FIG. 17A is a schematic view of a nozzle disposed on a front portion of the housing tub of the washing machine ac-

cording to the exemplary embodiment. FIG. 17B is a cross-sectional view of the nozzle disposed on the front portion of the housing tub of the washing machine according to the exemplary embodiment. FIG. 17C is a schematic view of an impurity removing part mounted on the nozzle disposed on the front portion of the housing tub of the washing machine according to the exemplary embodiment.

[0024] Casing 110 is indicated by a dotted line in FIG. 2 and FIG. 3, and housing tub 200 is not shown in FIG. 3. An arrow in FIG. 3 schematically shows the water supply passages which connect the respective parts to each other.

[0025] As shown in FIG. 2 and FIG. 3, steam supply mechanism 300 includes at least water supply valve 310 which is used as a part of distribution part 141, and water storage tank 320 which is disposed below housing tub 200. Water supply valve 310 controls the supply of water to water storage tank 320. That is, when water supply valve 310 is opened, water is supplied to water storage tank 320 from water supply port 140. When water supply valve 310 is closed, the supply of water to water storage tank 320 is stopped.

[0026] Steam supply mechanism 300 further includes pump 330 which is mounted on water storage tank 320, and steam generating part 400 which receives water discharged from pump 330. Pump 330 performs an operation to supply water to steam generating part 400 intermittently or continuously. During an intermittent water supply operation, pump 330 supplies a proper amount of water which is adjusted such that steam is generated instantaneously, to steam generating part 400 described later. On the other hand, when water is continuously supplied to steam generating part 400 by pump 330, it is possible to wash away an impurity (scale) or the like contained in water used for steam generation from steam generating part 400.

[0027] As shown in FIG. 2, steam supply mechanism 300 further includes steam communication tube 340 which extends downward from steam generating part 400. As described above by referencing FIG. 1, front portion 222 of water tub 220 includes peripheral wall portion 223 which surrounds peripheral wall 211 of rotary drum 210, and annular portion 224 shown in FIG. 2 which forms the watertight sealing structure in cooperation with packing structure 130. Steam communication tube 340 of steam supply mechanism 300 is connected to peripheral wall portion 223 of front portion 222. Due to such a constitution, the steam generated in steam generating part 400 is supplied to housing tub 200 through steam communication tube 340. It is preferable that steam communication tube 340 be formed such that at least a portion of steam communication tube 340 is formed into a bellows shape, for example, so as to prevent vibrations generated by the rotation of housing tub 200 from being transmitted to steam generating part 400.

[0028] As described above, in steam supply mechanism 300 of this exemplary embodiment, it is possible to

20

25

35

40

45

50

forcibly supply water to steam generator 420 (see FIG. 8) disposed inside steam generating part 400 from water storage tank 320 by pump 330. Accordingly, steam generator 420 can be disposed above water storage tank 320. On the other hand, when the supply of water to steam generator 420 from water storage tank 320 is performed without providing pump 330, it is necessary to feed water in water storage tank 320 to steam generator 420 by the action of gravity. Accordingly, it is always necessary to dispose steam generator 420 below water storage tank 320. That is, by disposing pump 330, water can be forcibly supplied to steam generator 420 from water storage tank 320 by making use of pressure generated by pump 330. Accordingly, the restriction imposed on the relationship in the vertical direction between steam generator 420 and water storage tank 320 in disposing steam generator 420 and water storage tank 320 can be eliminated. As a result, the degree of freedom in the arrangement of water storage tank 320 and steam generator 420 is increased and hence, the space inside casing 110 can be effectively utilized.

[0029] Although steam generator 420 is disposed above water storage tank 320 as shown in FIG. 2, water can be supplied to steam generator 420 from water storage tank 320 by pump 330 without causing any problems. [0030] When water flows into steam generator 420 inadvertently due to a factor such as an unexpected failure, steam more than necessary is generated. However, by disposing pump 330 as in the case of this exemplary embodiment, water storage tank 320 can be disposed below steam generator 420. Accordingly, even when pump 330 stops due to a trouble such as a failure so that the supply of water to steam generator 420 cannot be controlled, there is no possibility that water stagnating in a hose which makes water storage tank 320, pump 330 and steam generator 420 communicate with each other flows into steam generator 420 inadvertently. As a result, the generation of steam more than necessary can be prevented in advance.

[0031] On the other hand, in the constitution where pump 330 is not provided, it is always necessary to dispose steam generator 420 below water storage tank 320. Accordingly, when a failure occurs in a control part such as an open/close valve for controlling the supply of water to steam generator 420 from water storage tank 320, for example, the supply of water to steam generator 420 cannot be controlled. Further, water is inadvertently supplied to steam generator 420 from water storage tank 320 which is disposed above steam generator 420 due to the action of gravity. However, by disposing pump 330 as in the case of this exemplary embodiment, it is possible to prevent the occurrence of the case in advance where water is inadvertently supplied from steam generator 420 disposed above water storage tank 320.

[0032] In this exemplary embodiment, as shown in FIG. 2, steam generator 420 of steam generating part 400 is arranged above housing tub 200. In this case, usually, an impurity contained in water supplied to steam gener-

ator 420 adheres to or precipitates on a wall surface of chamber space 430 (also referred to as "chamber") formed of outer chamber wall 431, inner chamber wall 432 and upper surface 429 of body portion 423 which constitutes steam generating part 400 and lower surface 434 of lid member 424 which constitutes steam generating part 400 when water is evaporated. Then, the impurity is deposited on the wall surface which forms chamber space 430 by adhesion or precipitation. In this case, heat transfer is not properly performed between the wall surface of chamber space 430 and supplied water due to impurity and hence, water supplied to steam generator 420 is difficult to be evaporated.

[0033] However, by disposing steam generator 420 above housing tub 200, an impurity which adheres to or precipitates on the wall surface is discharged or falls below steam generator 420 due to a pressure or the action of gravity at the time of evaporating water. Accordingly, an impurity can be easily discharged to housing tub 200 from the inside of chamber space 430. As a result, it is possible to prevent the deposition of an impurity which adheres to or precipitates on the wall surface of chamber space 430 of steam generator 420. Further, the lowering of an ability of evaporating water caused by the deposition of an impurity can be prevented in advance.

[0034] Further, precipitated impurity (for example, scale) is removed as the impurity passes through impurity removing part 600 when the impurity is injected into housing tub 200 together with steam due to an action of pressure generated at the time of evaporation. Accordingly, steam from which impurity is removed is supplied to housing tub 200. Impurity removing part 600 may be formed of a plate-like member such as a perforated metal where a large number of circular holes are formed in the platelike member, a grid-shaped plate-like member or the like where a large number of open holes 601 are formed. That is, impurity removing part 600 may have a shape and a size so that impurity can be properly removed. An optimum material such as metal or a resin may be selected as a material of the impurity removing part mounted on nozzle 352.

[0035] As shown in FIG. 17A, FIG. 17B and FIG. 17C, impurity removing part 600 is integrally formed with nozzle 352. For example, impurity removing part 600 is manufactured such that a metal plate-like member in which a large number of open holes 601 are formed is provided, and impurity removing part 600 is formed by insert molding at the time of forming nozzle 352 made of a resin material by injection molding. Impurity removing part 600 and nozzle 352 may be manufactured as an integral body by injection molding using the same resin material. Accordingly, the structure can be realized at a low cost and hence, a manufacturing cost is reduced and, at the same time, an assembling operation is also facilitated.

[0036] Further, in this exemplary embodiment, as shown in FIG. 2, as viewed from front wall 111 of casing 110, water storage tank 320 is disposed in a left lower space of casing 110, and steam generator 420 is dis-

25

35

40

45

50

posed in a right upper space of casing 110. That is, steam generator 420 and water storage tank 320 are disposed at approximately symmetrical positions (including completely symmetrical positions) with respect to the center axis of housing tub 200 (axis of rotation RX).

[0037] In the case of a general washing machine, a detergent housing part (not shown in the drawing) which houses a detergent is disposed on either a left side or a right side of an upper front portion of casing 110. Accordingly, a space which is defined by casing 110 and housing tub 200 having approximately circular cylindrical shape (including a circular cylindrical shape) excluding a position occupied by the detergent housing part can be effectively used as a space for disposing water storage tank 320 and steam generator 420. For example, in the case where the detergent housing part is disposed on a left side of the upper front portion of casing 110, as shown in FIG. 2, water storage tank 320 is disposed on a rear side of the left lower portion of casing 110. In this case, when steam generator 420 is disposed on a front side of the right upper portion of casing 110, a space defined between an inner surface of casing 110 having an approximately rectangular box shape (including a rectangular box shape) and an outer peripheral surface of housing tub 200 can be effectively used for disposing water storage tank 320 and steam generator 420. As a result, a design size of water storage tank 320 and a design size of steam generator 420 can be set to values which allow housing of water storage tank 320 and steam generator 420 having maximally large sizes in the space defined in washing machine 100.

[0038] In the case where the detergent housing part is at the position described above, water storage tank 320 may be disposed at a position approximately symmetrical with the detergent housing part with respect to the center axis of housing tub 200 (axis of rotation RX), and steam generator 420 may be disposed at a position approximately symmetrical with water storage tank 320 with respect to horizontal plane HP which includes axis of rotation RX of housing tub 200. Also in this case, the space inside casing 110 can be effectively used in the same manner as described above.

[0039] In the case where the detergent housing part is at the position described above, water storage tank 320 may be disposed below the detergent housing part, and steam generator 420 may be disposed above water storage tank 320. In this case, steam generator 420 may be disposed at a position approximately symmetrical with water storage tank 320 with respect to a vertical plane which includes axis of rotation RX of housing tub 200. As a result, the space inside casing 110 can be effectively used in the same manner as described above.

[0040] In the case where axis of rotation RX of housing tub 200 is inclined in the longitudinal direction of casing 110 (for example, in the case where axis of rotation RX of rotary drum 210 is inclined upward from rear wall 112 to front wall 111), water storage tank 320 and steam generator 420 may be disposed at approximately symmetri-

cal positions with respect to axis of rotation RX of housing tub 200 or with respect to horizontal plane HP which includes axis of rotation RX. For example, water storage tank 320 and steam generator 420 are disposed at approximately symmetrical positions with respect to a vertical plane which passes the approximately center (including the center) in the longitudinal direction of casing 110. Due to such an arrangement, an inner space defined between the inner surface of casing 110 and the outer peripheral surface of housing tub 200 can be effectively used for disposing water storage tank 320 and steam generator 420.

[0041] Next, the constitution of steam generating part 400 of steam supply mechanism 300 is described using FIG. 4A and FIG. 4B while referencing FIG. 3.

[0042] FIG. 4A and FIG. 4B are schematic perspective views of the steam generating part of the steam supply mechanism of the exemplary embodiment.

[0043] As shown in FIG. 4A and FIG. 4B, steam generating part 400 includes casing 410 having an approximately rectangular box shape (including rectangular box shape), and steam generator 420 which is housed in casing 410. Casing 410 includes: vessel portion 411 which has bottom wall portion 414 and houses steam generator 420; and lid portion 412 which is constituted of upper wall 415 covering vessel portion 411 and lid portion peripheral wall 416 on which projecting member 417.

[0044] Steam generator 420 is connected to pump 330 by way of connection tube 421 and a tube (not shown in the drawing), and is connected to steam communication tube 340 by way of discharge tube 422. Opening portion 413 is formed on bottom wall portion 414 of vessel portion 411. Connection tube 421 and discharge tube 422 are disposed so as to project downward through opening portion 413 formed on bottom wall portion 414 of vessel portion 411.

[0045] Next, the mounting structure for mounting steam generating part 400 of steam supply mechanism 300 on casing 110 of washing machine 100 is described using FIG. 5 by also referencing FIG. 3 and FIG. 4A.

[0046] FIG. 5 is a schematic perspective view of the mounting structure for connecting the lid portion and the casing of the steam generating part of this exemplary embodiment to each other.

[0047] Firstly, as shown in FIG. 3, casing 110 is constituted of at least: front wall 111; rear wall 112; right wall 115 which is formed in a raised manner between front wall 111 and rear wall 112; and left wall 116 which is formed opposite to right wall 115. Casing 110 further includes first reinforcing frame 117 which is disposed along an upper edge of right wall 115, and second reinforcing frame 118 which is disposed along an upper edge of front wall 111.

[0048] As shown in a lower side of FIG. 5, lid portion 412 which forms a portion of steam generating part 400 includes: upper wall 415 having an approximately rectangular shape (including a rectangular shape); lid portion peripheral walls 416 which project downward (toward

a casing 410 side) from edge portions of upper wall 415; and projecting member 417 which projects frontward (toward a front wall 111 side of casing 110) from lid portion peripheral wall 416.

[0049] Then, first reinforcing frame 117 which is mounted on casing 110 of washing machine 100 and upper wall 415 of lid portion 412 of steam generating part 400 are connected to each other by first mounting member 151 shown at an upper right side of FIG. 5. On the other hand, second reinforcing frame 118 and projecting member 417 are connected to each other by second mounting member 152 shown at an upper left side of FIG. 5.

[0050] That is, lid portion 412 of steam generating part 400 and casing ceiling wall 113 of casing 110 are mounted in a spaced-apart manner from each other by way of first mounting member 151 and second mounting member 152 which are mounted on lid portion 412 in an upwardly projecting manner. As a result, it is possible to alleviate (suppress) the transfer of heat generated by steam generating part 400 to casing 110.

[0051] Next, the constitution of steam generator 420 of steam generating part 400 of steam supply mechanism 300 is described in detail using FIG. 6A and FIG. 6B.

[0052] FIG. 6A and FIG. 6B are schematic perspective views of the steam generator of the steam generating part of the exemplary embodiment.

[0053] Firstly, as shown in FIG. 6A and FIG. 6B, steam generator 420 is constituted of: body portion 423 having an approximately rectangular shape (including a rectangular shape); lid member 424 which is disposed on body portion 423; and a linear heater 425 such as a sheathed heater which is disposed inside body portion 423 through peripheral surface 428 of body portion 423, for example. In this exemplary embodiment, body portion 423 and lid member 424 are formed using a material such as aluminum, for example. Due to such a constitution, body portion 423 and lid member 424 are efficiently and properly heated by heater 425.

[0054] As shown in FIG. 6B, thermister 426 is further mounted on body portion lower surface 427 of body portion 423 of steam generator 420. In the same manner, the above-mentioned connection tube 421 and discharge tube 422 are also mounted on body portion 423 which constitutes steam generator 420.

[0055] Heater 425 is controlled based on temperature information obtained by thermister 426. Due to such a control, a temperature of body portion 423 and a temperature of lid member 424 are held at approximately fixed temperatures (including fixed temperatures). A thermostat which controls the turning on and off of electricity power to heater 425 at a predetermined temperature may be used in place of thermister 426. In this case, the substantially the same effect can be obtained.

[0056] Next, the constitution of body portion 423 which constitutes steam generator 420 is described using FIG. 6B and FIG. 7.

[0057] FIG. 7 is a schematic perspective view of the body portion of the steam generator of this exemplary

embodiment.

[0058] As shown in FIG. 6B and FIG. 7, body portion 423 includes body portion lower surface 427, peripheral surface 428, and upper surface 429. Thermister 426, connection tube 421 and discharge tube 422 are mounted on body portion lower surface 427. Heater 425 is disposed on peripheral surface 428.

[0059] Further, body portion 423 is formed on upper surface 429 in a raised manner toward lid member 424 which constitutes one side of steam generator 420 thus forming chamber space 430 having an approximately triangular shape (including a triangular shape), for example. Chamber space 430 is formed in such a manner that the chamber space 430 is defined by outer chamber wall 431 and inner chamber wall 432 having an approximately J shape (including a J shape), for example, which defines a steam flow passage inside chamber space 430.

[0060] Next, the constitution and the operation of steam generator 420 are described using FIG. 8 and FIG. 9 by also referencing FIG. 3, FIG. 6B and FIG. 7.

[0061] FIG. 8 is a schematic developed perspective view of the steam generator of this exemplary embodiment. FIG. 9 is a schematic perspective view of the lid member of the steam generator of this exemplary embodiment.

[0062] As shown in FIG. 8, steam generator 420 includes packing ring 433 made of a heat-resistance rubber or the like, for example, which is mounted on body portion 423 in a state where packing ring 433 surrounds outer chamber wall 431.

[0063] As shown in FIG. 8 and FIG. 9, lid body 424 includes lower surface 434 which faces body portion 423, and outer shield wall 435 which has the substantially same shape (including the same shape) as outer chamber wall 431 of body portion 423.

[0064] By pushing lid member 424 to body portion 423, outer shield wall 435 of lid member 424 compresses packing ring 433. As a result, air-tightness of chamber space 430 of steam generator 420 is maintained.

[0065] Inlet port 437 is formed in body portion 423. Inlet port 437 is formed so as to allow water supplied through connection tube 421 connected to body portion lower surface 427 to flow into the inside of chamber space 430. Inlet port 437 is formed at the approximately center of chamber space 430, and the periphery of inlet port 437 is surrounded by inner chamber wall 432.

[0066] Steam generator 420 of this exemplary embodiment is constituted as described above.

[0067] Next, the operation of steam generator 420 is described in detail.

[0068] Firstly, when a predetermined amount of water is supplied to steam generator 420 from water storage tank 320 by pump 330, water is injected upward (toward lid member 424 side) through connection tube 421 and inlet port 437. Water injected into chamber space 430 of steam generator 420 impinges on inner chamber wall 432, upper surface 429 of body portion 423 surrounded by inner chamber wall 432 and/or lower surface 434 of

lid member 424 which is positioned above inlet port 437. At this point of time, steam generator 420 is heated by heater 425 (for example, approximately 200°C) thus having high thermal energy.

[0069] Then, the water supply operation is performed intermittently using pump 330 of steam supply mechanism 300 so that a proper amount of water is supplied into the inside of chamber space 430 of steam generator 420 (for example, approximately 2cc/time). Accordingly, water injected upward from inlet port 437 of steam generator 420 is instantaneously evaporated by thermal energy which steam generator 420 possesses.

[0070] Further, due to the instantaneous evaporation of water, an inner pressure of chamber space 430 is sharply increased. An impurity which is contained in water supplied to steam generator 420 adheres to or precipitates on the wall surface which constitutes chamber space 430 when water evaporates. However, the adhered or precipitated impurity receives an action of pressure generated by the sharp rise of an inner pressure of chamber space 430 at the time of evaporation of water. As a result, the impurity is easily discharged outside chamber space 430.

[0071] Next, the constitution of the heater mounted on body portion 423 of steam generator 420 is described in detail using FIG. 10 by also referencing FIG. 6B.

[0072] FIG. 10 is a schematic plan view of the body portion of the steam generator of this exemplary embodiment.

[0073] As shown in FIG. 10, heater 425 is disposed so as to extend along an approximately U-shape (including a U-shape) passage formed inside body portion 423. Due to such an arrangement, heater 425 surrounds inlet port 437 to which connection tube 421 is mounted. Accordingly, a temperature of inner chamber wall 432 and a temperature of a region surrounded by inner chamber wall 432 become the highest temperature inside chamber space 430 due to heating by heater 425. As a result, water injected into the inside of chamber space 430 through inlet port 437 is instantaneously evaporated.

[0074] Inner chamber wall 432 is disposed inside chamber space 430 defined by outer chamber wall 431 in a state where inner chamber wall 432 extends in an approximately J-shape (including a J-shape). That is, a spiral-shaped flow passage is formed in chamber space 430 by inner chamber wall 432. Discharge port 438 is formed in body portion 423 at a position in the vicinity of a terminal end of the flow passage through which water or steam passes. Due to such a constitution, the steam generated in the space surrounded by inner chamber wall 432 moves toward discharge port 438 along with the increase of an inner pressure of chamber space 430. Then, the steam which arrives at discharge port 438 is discharged downward in the vertical direction through discharge tube 422 mounted on discharge port 438.

[0075] Heater 425 is disposed such that heater 425 extends in an approximately U-shape (including a U-shape) along an outside passage of the spiral-shaped

flow passage. Due to such a constitution, the steam generated in the space surrounded by inner chamber wall 432 moves toward discharge tube 422 while being heated. Accordingly, high-temperature steam is discharged from discharge tube 422 of steam generator 420.

[0076] Further, steam generator 420 of this exemplary embodiment can instantaneously evaporate water by injecting water to the heated wall surface. Accordingly, compared to the conventional case where steam is generated by a heater immersed in water, power consumption required for generating the same amount of steam can be reduced. As a result, it is possible to realize the clothes treatment device with low power consumption.

<Constitution of water supply mechanism>

[0077] Hereinafter, the constitution and the operation of the water supply mechanism of the washing machine of the exemplary embodiment of the present invention are described with reference to FIG. 11.

[0078] FIG. 11 is a schematic view of the water supply mechanism of the steam supply mechanism of this exemplary embodiment.

[0079] As shown in FIG. 11, water supply mechanism 500 which injects water to chamber space 430 of steam generator 420 includes water supply valve 310, water storage tank 320, pump 330, connection tube 421, water level sensor 321 for measuring a water level in water storage tank 320 and the like all of which are described previously. Water supply valve 310 performs the supply of water to water storage tank 320 or the cutting off of the supply of water to water storage tank 320 corresponding to a water level detected by water level sensor 321. [0080] Water supply valve 310 may be controlled corresponding to an operation time and/or an operation pattern (an intermittent water supply operation and/or a continuous water supply operation) of pump 330. For example, an amount of water supplied from water supply valve 310 may be adjusted such that water storage tank 320 becomes empty when an operation of pump 330 is fin-

ished. Due to such a constitution, even when an outside

air temperature becomes low, water in water storage tank

320 is minimally frozen. As a result, the reliability of wash-

ing machine 100 can be further enhanced.

45 [0081] Pump 330 supplies water stored inside water storage tank 320 to chamber space 430 of steam generator 420 through connection tube 421. In the intermittent water supply operation performed using pump 330, for example, a supply amount, a supply time, a supply interval and the like are adjusted such that water injected into the inside of chamber space 430 is instantaneously evaporated.

[0082] On the other hand, as described above, when water is evaporated inside chamber space 430 of steam generator 420, there exists a possibility that an impurity contained in water is deposited inside chamber space 430. In this case, the continuous water supply operation by pump 330 is adjusted such that water flows inside

25

40

45

chamber space 430 at a flow speed sufficient for washing away the deposited impurity. Due to such a constitution, it is possible to effectively remove an impurity. As a result, it is possible to prevent lowering of a heat exchange efficiency between steam generator 420 and water in advance.

[0083] Discharge tube 422 of steam generator 420 is connected to steam communication tube 340. Due to such a constitution, steam generated inside chamber space 430 due to the intermittent water supply operation by pump 330 and water which flows inside chamber space 430 due to the continuous water supply operation of pump 330 can be made to flow into the housing tub 200 through discharge tube 422 and steam communication tube 340.

[0084] The water supply mechanism of the steam supply mechanism of washing machine 100 of this exemplary embodiment is configured as described above.

<Supply of steam and water to housing tub>

[0085] Hereinafter, the operation of supplying steam and water to be supplied to the housing tub of the washing machine of the exemplary embodiment of the present invention is described using FIG. 12 and FIG. 17A to FIG. 17C by also referencing FIG. 1 and FIG. 11.

[0086] FIG. 12 is a schematic back view of a front portion of the housing tub of the washing machine of this exemplary embodiment.

[0087] Firstly, as shown in FIG. 1, annular portion 224 of front portion 222 of water tub 220 includes: inner surface 225 which faces rotary drum 210; and outer surface 226 which faces front wall 111 of casing 110. FIG. 12 mainly shows inner surface 225 of annular portion 224 formed on front portion 222 of water tub 220 .

[0088] As shown in FIG. 12, the above-mentioned steam supply mechanism 300 further includes: branched tube 351 which is mounted on inner surface 225; nozzle 352 having impurity removing part 600 which is disposed above branched tube 351; and steam tube 353 which connects branched tube 351 and nozzle 352 to each other. Steam communication tube 340 is connected to branched tube 351 through peripheral wall portion 223 of water tub 220. Due to the above-mentioned constitution, steam and water generated by steam generator 420 are supplied to the inside of housing tub 200.

[0089] Next, the flow operation of steam and water generated by steam generator 420 is described.

[0090] Firstly, steam generated inside chamber space 430 of steam generator 420 flows into steam communication tube 340 through discharge tube 422 along with the increase of a pressure inside chamber space 430. Thereafter, the steam flows into branched tube 351 from steam communication tube 340.

[0091] Steam having a high temperature which arrives at branched tube 351 is guided to steam tube 353 and flows into nozzle 352 disposed above branched tube 351 through impurity removing part 600. At this stage, an im-

purity contained steam is removed by impurity removing part 600. Lastly, steam from which an impurity is removed is injected downward into the inside of rotary drum 210 of housing tub 200 from nozzle 352.

[0092] In this exemplary embodiment, steam generated inside chamber space 430 is guided to nozzle 352 through discharge tube 422, steam communication tube 340, branched tube 351 and steam tube 353.

[0093] That is, pump 330 which performs intermittent water supply operation injects a proper amount of water into chamber space 430 which is heated by heater 425 and has a high temperature and hence, water is instantaneously evaporated. At this point of time, an inner pressure of chamber space 430 of steam generator 420 is sharply increased due to the evaporation of the water. Accordingly, the generated steam is injected from nozzle 352 at a high pressure through the impurity removing part 600. As a result, as shown in FIG. 12, the steam injected from nozzle 352 traverses an inner space of housing tub 200 in the vertical direction.

[0094] During drying, clothing which is stirred due to the rotation of rotary drum 210 is liable to be collected to an area in the vicinity of a lower end of rotary drum 210 by its own weight. Then, as described previously, the steam which is injected from nozzle 352 mounted on an upper portion of housing tub 200 such that the steam transverses the inner space of housing tub 200 in the vertical direction reaches clothing collected to the area in the vicinity of the lower end of rotary drum 210. As a result, the steam is efficiently supplied to the clothing.

[0095] Next, the constitution and the manner of operation of impurity removing part 600 which constitutes the gist of this exemplary embodiment is described by reference to Fig. 17A to Fig. 17C.

[0096] FIG. 17A is a schematic view of the nozzle disposed on the front portion of the housing tub of the washing machine according to this exemplary embodiment. FIG. 17B is a cross-sectional view of the nozzle disposed on the front portion of the housing tub of the washing machine according to this exemplary embodiment. FIG. 17C is a schematic view of the impurity removing part mounted on the nozzle disposed on the front portion of the housing tub of the washing machine according to this exemplary embodiment.

[0097] As can be understood from Fig. 17A to Fig. 17C, impurity removing parts 600 are disposed in the vicinity of the distal end portion of the nozzle 352, and a large number of open holes 601 are formed in each impurity removing part 600. In such a constitution, open holes 601 formed in impurity removing parts 600 are formed of holes having a size of approximately several mm such as circular holes having a diameter of $\phi 1.5$ mm or elongated holes of 1.5mm x 2.4mm, for example. Impurity removing part 600 may be formed using a metal mesh or a heat resistant resin in which similar open holes 601 are formed besides the above-mentioned perforated metal.

[0098] Further, impurity removing part 600 removes an impurity in water injected in a state where the impurity is

mixed in steam, for example, a solid material made of a mineral component called a scale.

17

[0099] To be more specific, when a size of an impurity injected from nozzle 352 in a state where the impurity is mixed into steam is larger than a size of each one of the large number of open holes 601 formed as impurity removing part 600, the impurity cannot pass through open hole 601 so that the impurity can be removed by impurity removing part 600. Accordingly, as described previously, a size of open holes 601 formed in impurity removing part 600 is set to a value not larger than the size of open hole 601 which can be easily visually recognized. Accordingly, these is no possibility that an impurity of a size which allows easy visual recognition of the impurity adheres to clothing. Further, by forming a large number of open holes 601 in impurity removing part 600, it is possible to prevent the occurrence of a case where the supply of steam into housing tub 200 is obstructed by the impurity. As a result, the visually recognizable impurity can be removed and, at the same time, it is possible to effectively supply steam to clothing.

[0100] Impurity removing part 600 may be integrally formed with nozzle 352 or may be formed as a separate body and be assembled into nozzle 352. By forming impurity removing part 600 integrally with nozzle 352, the steam generator can be assembled easily at a low cost. On the other hand, by forming impurity removing part 600 as a separate part from nozzle 352, even when an impurity clogs open hole 601 of impurity removing part 600, the impurity can be easily removed by detaching impurity removing part 600 from nozzle 352.

[0101] Impurity removing part 600 according to this exemplary embodiment is constituted as described above. [0102] As shown in FIG. 12, branched tube 351 which introduces steam into steam tube 353 from steam communication tube 340 includes: main tube 354 which is connected to steam communication tube 340; upper sub tube 355 which is bent upward from main tube 354; and lower sub tube 356 which is bent downward from main tube 354. Steam or water flows into main tube 354 through steam communication tube 340. Upper sub tube 355 is connected to steam tube 353, and forms an upwardly extending passage through which steam moves toward nozzle 352.

[0103] On the other hand, different from upper sub tube 355, lower sub tube 356 forms a downwardly extending passage. To be more specific, when the continuous water supply operation is performed by pump 330, mainly water flows into branched tube 351 through steam communication tube 340. Then, water which flows into branched tube 351 flows downward through lower sub tube 356 due to the action of gravity.

[0104] As shown in FIG. 12, main tube 354 and upper sub tube 355 of branched tube 351 are connected to each other at included angle θ 1 which is an obtuse angle, while main tube 354 and lower sub tube 356 are connected to each other at included angle θ 2 which is an acute angle. Since included angle θ 2 is an acute angle,

a flow loss from main tube 354 to lower sub tube 356 is relatively large. Accordingly, steam which flows into the inside of main tube 354 minimally flows into lower sub tube 356, and the steam mainly flows into upper sub tube 355. On the other hand, upper sub tube 355 forms the upwardly extending flow passage and hence, due to the action of gravity, water which flows into main tube 354 minimally flows into upper sub tube 355 and the water mainly flows into lower sub tube 356. As a result, the flow passage for steam and the flow passage for water can be properly separated from each other by branched tube 351.

<Intermittent operation by pump>

[0105] Hereinafter, the intermittent operation of the pump which supplies water to the steam generating part of the washing machine of the exemplary embodiment of the present invention is described using FIG. 13 by also referencing FIG. 8 and FIG. 11.

[0106] FIG. 13 is an explanatory view schematically showing the relationship between an intermittent operation by the pump of the water supply mechanism and a temperature inside the chamber space in the exemplary embodiment.

[0107] As shown in FIG. 13, in this exemplary embodiment, a period during which pump 330 is operated (ON period) is set shorter than a period during which pump 330 is stopped (OFF period). Accordingly, a proper amount of water can be injected into the inside of chamber space 430 of steam generator 420 in steam generating part 400. It is needless to say that a length of the ON period and a length of the OFF period in Fig. 13 are relative values, and these lengths may be changed corresponding to a capacity of chamber space 430, an amount of heating by the heater, and a required amount of steam.

[0108] To be more specific, pump 330 supplies a predetermined amount of water to chamber space 430 in the ON period. The supplied water is evaporated so as to generate steam. At this point of time, as shown in FIG. 13, due to heat of vaporization attributed to a change in phase from water to steam, a temperature in chamber space 430 is temporarily lowered. However, in this exemplary embodiment, by setting the OFF period to a relatively long period, heater 425 can sufficiently increase a temperature in chamber space 430 during the OFF period. As a result, it is possible to continue the supply of high-pressure steam to housing tub 200 during a period where pump 330 performs the intermittent operation.

[0109] That is, a temperature in chamber space 430 is sufficiently increased during the OFF period. Then, in the ON period, a proper amount of water which can be evaporated instantaneously by thermal energy which steam generator 420 including chamber space 430 possesses is supplied to chamber space 430 (for example, approximately 2cc/time). Accordingly, it is possible to favorably continue the supply of high-pressure steam to housing

40

20

40

45

tub 200.

<Effect of steam in washing step>

[0110] Hereinafter, effects of steam supplied to the housing tub through the steam supply mechanism of the exemplary embodiment of the present invention, particularly, such effects of steam in washing step are described using FIG. 14 by also referencing FIG. 1, FIG. 8, and FIG. 11.

[0111] FIG. 14 is an explanatory view schematically showing a temperature change in water supplied to the water tub of the washing machine of the exemplary embodiment.

[0112] Firstly, as shown in FIG. 1, hot water heater 160 for heating water supplied to the inside of water tub 220 is disposed in a lower portion of water tub 220.

[0113] As shown in FIG. 14, when washing step is started, a predetermined amount of water is supplied to water tub 220. During the supply of water, a temperature of water contained in clothing inside water tub 220 takes an approximately fixed value (including a fixed value).

[0114] Thereafter, water inside water tub 220 is heated using hot water heater 160. At this point of time, hot water heater 160 generates a large amount of heat value and hence, a temperature of water contained in clothing inside water tub 220 is sharply increased. When a temperature of water reaches a predetermined temperature, heating of water inside water tub 220 is stopped.

[0115] Thereafter, in this exemplary embodiment, washing step is carried out by introducing steam into the inside of housing tub 200 through steam supply mechanism 300.

[0116] A dotted line after heating is stopped shown in FIG. 14 indicates a change in temperature of water contained in clothing when the heating by hot water heater 160 is stopped so that steam is not supplied. A solid line after heating is stopped indicates a change in temperature of water contained in clothing when heating by hot water heater 160 is stopped so that steam is supplied to housing tub 200.

[0117] That is, in this exemplary embodiment, in washing step, high-temperature steam is directly supplied to housing tub 200 in a state where the steam is injected to clothing. Accordingly, lowering of a temperature of water contained in clothing inside water tub 220 is alleviated (suppressed) by high-temperature steam. Further, power consumption of heater 425 used in steam generator 420 is smaller than that of hot water heater 160 mounted on water tub 220. As a result, heat retention by the supply of high-temperature steam can be realized with low power consumption compared to the case where heat retention of water inside water tub 220 is performed using hot water heater 160. Accordingly, in washing step, it is preferable that high-temperature steam be supplied to the housing tub by performing intermittent water supply operation using pump 330 after hot water heater 160 is stopped.

<Use of steam in spin-drying step>

[0118] Hereinafter, effects of steam supplied to the housing tub through the steam supply mechanism of the exemplary embodiment of the present invention, particularly, such effects of steam in spin-drying step are described with reference to FIG. 1, FIG. 11 and FIG. 12.

[0119] In spin-drying step, rotary drum 210 is rotated at a high speed by motor 231. As shown in FIG. 1, a large number of small holes 219 are formed in peripheral wall 211 of rotary drum 210.

[0120] Accordingly, clothing housed inside rotary drum 210 is pressed to peripheral wall 211 due to a centrifugal force generated by the rotation of rotary drum 210, and moisture contained in clothing is discharged to the outside of rotary drum 210 through small holes 219. As a result, clothing is properly spin-dried.

[0121] At this point of time, fibers of spin-dried clothing are liable to be bonded together by hydrogen bonding. Hydrogen bonding of fibers becomes a factor which causes wrinkles in clothing.

[0122] In view of the above, in this exemplary embodiment, steam is supplied to the inside of rotary drum 210 in spin-drying step. Due to such supply of steam, hydrogen bonding of fibers can be released by steam. As a result, the generation of wrinkles in clothing can be decreased.

[0123] That is, during a period where clothing is subjected to spin-drying processing, it is preferable to supply high-temperature steam to the inside of rotary drum 210 by performing an intermittent water supply operation using pump 330. To be more specific, by performing the intermittent water supply operation using pump 330, steam is injected into the inside of rotary drum 210 from nozzle 352 at a high pressure. Steam injected from nozzle 352 traverses housing tub 200. Then, the injected steam is uniformly blown out to clothing which is rotating in a state where clothing is stuck on peripheral wall 211 of rotary drum 210. Due to such processing, hydrogen bonding of fibers can be released by steam over the whole clothing inside rotary drum 210. As a result, the generation of wrinkles in clothing can be effectively suppressed.

[0124] Hereinafter, timing of supplying steam generated by the steam generator into the housing tub in the clothes treatment device of this exemplary embodiment is described with reference to FIG.15A to FIG.15C by taking three patterns as an example.

[0125] FIG. 15A to FIG. 15C are schematic timing charts showing timing of supplying steam in the spin-drying step of this exemplary embodiment.

[0126] Firstly, in the first pattern, as shown in FIG. 15A, the supply of steam is started by steam supply mechanism 300 after a lapse of a predetermined period (T1) from the start of the spin-drying step. In this case, moisture contained in clothing is small and hence, it is possible to efficiently make the clothing wet by a heat value of steam and moisture.

35

40

45

[0127] In the second pattern, as shown in FIG. 15B and FIG. 15C, steam may be supplied by steam supply mechanism 300 in synchronism with the start of the spindrying step. In this case, a temperature of the clothing is elevated at an initial stage of the spin-drying and hence, it is possible to effectively make the clothing wet at a high temperature.

[0128] In the third pattern, as shown in FIG. 15A and FIG. 15B, steam may be supplied by steam supply mechanism 300 for a partial period from the start of the spindrying step, for example, after a lapse of a predetermined time (T1) or until a predetermined time (T2). In this case, as shown in FIG. 15C, a period during which steam is supplied by steam supply mechanism 300 may be the whole period from the start to the finish of the spin-drying step.

[0129] It is needless to say that timing of supplying steam to the housing tub is not limited to the above-mentioned three patterns.

<Cooling step of steam generator>

[0130] Hereinafter, step of cooling the steam generator of the exemplary embodiment of the present invention is described using FIG. 8 and FIG. 11.

[0131] Usually, it is preferable to cool steam generator 420 when processing of clothing using steam is finished. [0132] In view of the above, to cool steam generator 420, the unnecessary injection of high-temperature steam into the inside of housing tub 200 is prevented.

[0133] To be more specific, firstly, to cool steam generator 420, the supply of electric power to heater 425 is stopped. Thereafter, continuous water supply operation is started using pump 330. Due to such a water supply operation, water continuously flows into the inside of chamber space 430 of steam generator 420 from water storage tank 320. Water which flows into the inside of chamber space 430 takes heat away from steam generator 420 and, thereafter, flows into the inside of housing tub 200 from steam communication tube 340 through branched tube 351. As a result, it is possible to cool steam generator 420 within a short period.

[0134] Next, a control of the door body of the exemplary embodiment of the present invention is described using FIG. 16 by also referencing FIG. 1 and FIG. 6B. Such a control is performed for preventing door body 120 from being inadvertently opened by a user when high-temperature steam is present inside housing tub 200.

[0135] FIG. 16 is a block diagram schematically showing the control of the door body based on a temperature of the steam generator of this exemplary embodiment.
[0136] As shown in FIG. 16, washing machine 100 of this exemplary embodiment includes: locking mechanism 121 which locks door body 120 at a closed position; and control part 122 for controlling locking using locking mechanism 121 and releasing of such locking. It is need-

less to say that the known structures of washing ma-

chines are utilized as mechanical and electric mecha-

nisms used in locking mechanism 121.

[0137] As shown in FIG. 6B, steam generator 420 includes thermister 426.

[0138] As shown in FIG. 16, thermister 426 detects a temperature of body portion 423 of steam generator 420, and outputs a signal corresponding to a detected temperature to control part 122.

[0139] At this point of time, control part 122 maintains locking of door body 120 using locking mechanism 121 until a signal outputted from thermister 426 becomes a signal corresponding to a predetermined temperature or below. Due to such an operation, until a temperature of steam generator 420 becomes a predetermined temperature or below, the inner space of housing tub 200 is isolated from the outside. As a result, it is possible to prevent a user from being exposed to high-temperature steam in advance thus realizing safe and highly reliable washing machine 100.

[0140] As has been described heretofore, the clothes treatment device according to the present invention includes the housing tub for housing clothing, and the steam supply mechanism for supplying steam to the housing tub. The steam supply mechanism includes the steam generator having the wall surface which defines the chamber for generating steam, the heater for heating the wall surface, the water supply mechanism for injecting water to the wall surface, the nozzle mounted on the housing tub, the impurity removing part having the open holes formed on the nozzle, and the guide pipe which guides the steam to the nozzle from the steam generator. The steam supply mechanism may also have the constitution for supplying steam injected from the nozzle into the inside of the housing tub through the impurity removing part.

[0141] According to the above-mentioned constitution, the steam generator has the wall surface which defines the chamber for generating steam. The water supply mechanism injects water to the wall surface heated by the heater. The injected water impinges on the wall surface heated by the heater so that the water is turned into steam. Due to an evaporation pressure generated when water is turned into steam, a pressure in the chamber of the steam generator is rapidly increased. Pressure-increased steam is guided to the nozzle mounted on the housing tub through the guide pipe. Then, guided steam passes through the impurity removing part mounted on the nozzle, and is injected into the housing tub in which clothing is housed.

[0142] Due to such a constitution, unlike the prior art where clothing is subjected to steam atmosphere by leaking steam, steam having a high pressure is injected from the nozzle into the housing tub such that the steam traverses the housing tub. Thus the steam is directory supplied to the clothing which faces the nozzle in an opposed manner. Further, by allowing the steam to pass through the impurity removing part, an impurity, for example, a solid material such as a scale contained in water used for generating the steam can be removed from the

steam communication tube

330

340

351

352

353

354

355

356

400

410

411

412

413

414

415

416

417

420

421

10

pump

nozzle

casing

branched tube

upper sub tube

lower sub tube

vessel portion

opening portion

bottom wall portion

projecting member

steam generator

connection tube

lid portion peripheral wall

lid portion

upper wall

steam generating part

steam tube

main tube

steam supplied into the inside of the housing tub. As a result, the steam from which an impurity is removed can be supplied to the clothing.

[0143] Further, in the clothing dryer of the present invention, the impurity removing part may be integrally formed with the nozzle. Due to such a constitution, it is possible to realize the clothes treatment device which can be manufactured at a low cost and can be easily assembled.

INDUSTRIAL APPLICABILITY

[0144] The present invention is preferably applicable to a device which processes clothing using steam.

REFERENCE MARKS IN THE DRAWINGS

[0145]

212

219

220

221

222

223

224

225

226

230

231

232

233

300

310

320

321

bottom wall

bottom portion

annular portion

inner surface

outer surface

rotary shaft

motor

pulley

belt

peripheral wall portion

front portion

small hole

water tub

100	washing machine	20	422	discharge tube	
110	casing		423	body portion	
111	front wall		424	lid member	
112	rear wall		425	heater	
113	casing ceiling wall		426	thermister	
114	casing bottom wall	25	427	body portion lower surface	
115	right wall		428	peripheral surface	
116	left wall		429	upper surface	
117	first reinforcing frame		430	chamber space	
118	second reinforcing frame		431	outer chamber wall	
120	door body	30	432	inner chamber wall	
121	locking mechanism		433	packing ring	
122	control part		434	lower surface	
130	packing structure		435	outer shield wall	
140	water supply port		437	inlet port	
141	distribution part	35	438	discharge port	
151	first mounting member		500	water supply mechanism	
152	second mounting member		600	impurity removing part	
160	hot water heater		601	open hole	
200	housing tub				
210	rotary drum	40			
211	peripheral wall		Claims		

1. A clothes treatment device comprising:

45 a housing tub for housing clothing; and a steam supply mechanism for supplying steam to the housing tub, wherein the steam supply mechanism includes: a steam generator having a wall surface which defines a 50 chamber for generating the steam; a heater for heating the wall surface; a water supply mechanism for injecting water to the wall surface; a nozzle mounted on the housing tub; an impurity removing part having an open hole formed on 55 the nozzle; and a guide pipe which guides the steam to the nozzle from the steam generator,

the steam injected from the nozzle is supplied

Claims

water level sensor

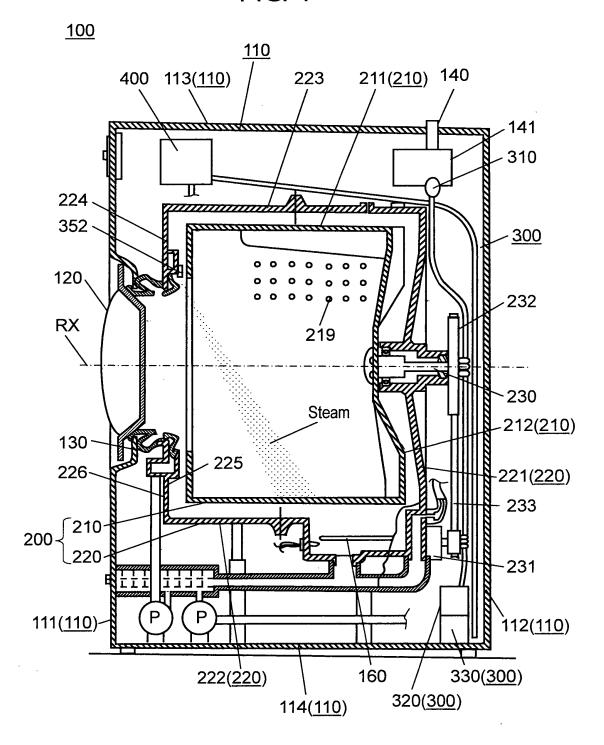
water supply valve

water storage tank

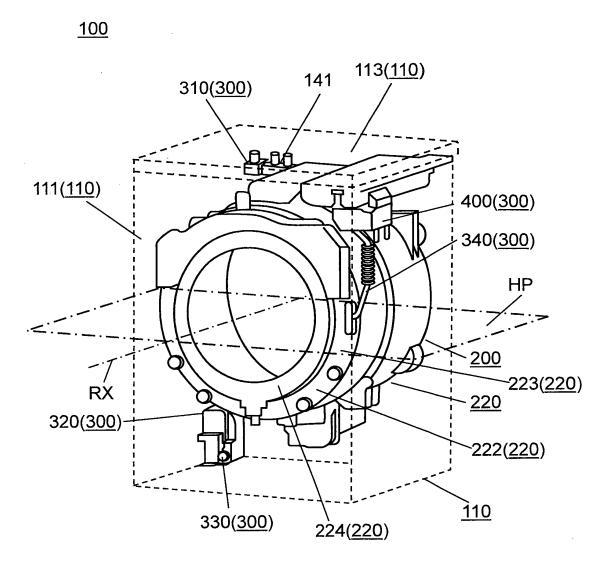
steam supply mechanism

to an inside of the housing tub through the impurity removing part.

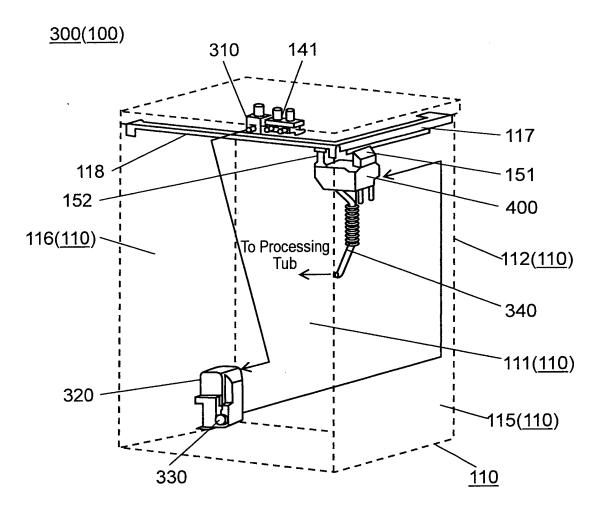
2. The clothes treatment device according to claim 1, wherein the impurity removing part is integrally formed with the nozzle.


3. The clothes treatment device according to claim 1, wherein the impurity removing part is a plate-like member having a number of open holes.

4. The clothes treatment device according to claim 3, wherein the plate-like member is a perforated metal.


5. The clothes treatment device according to claim 3, wherein the plate-like member has grid-like open holes.

6. The clothes treatment device according to claim 1, wherein the impurity removing part is a metal mesh. ²⁰


FIG. 1



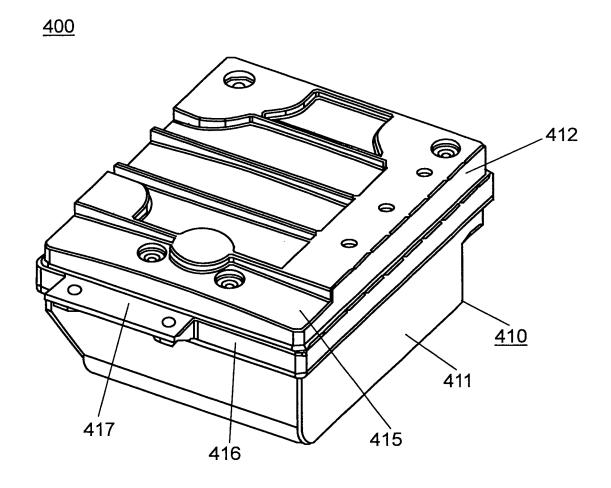


FIG. 4B

<u>400</u>

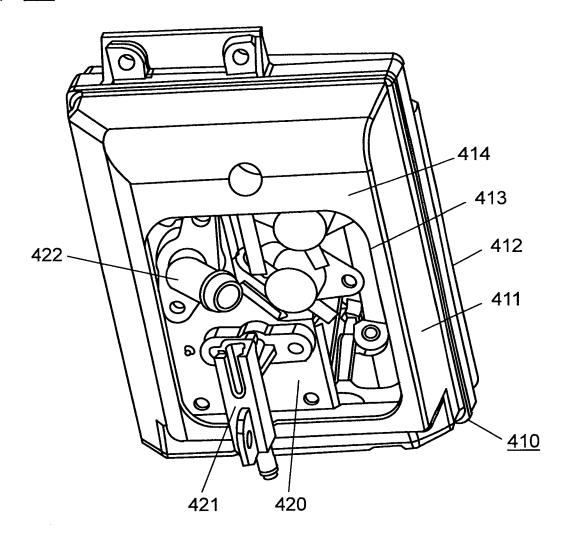
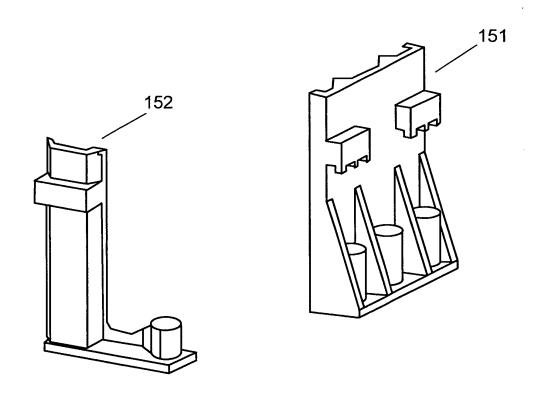
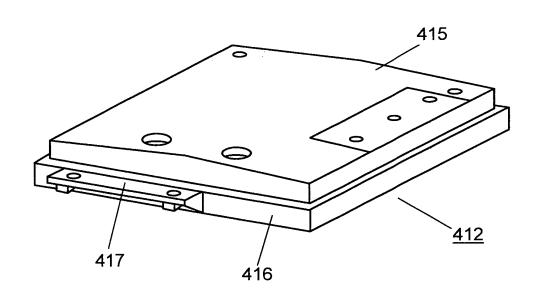




FIG. 5

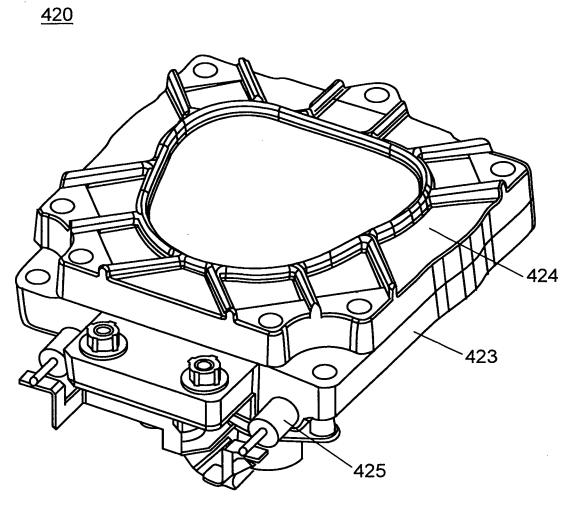


FIG. 6B

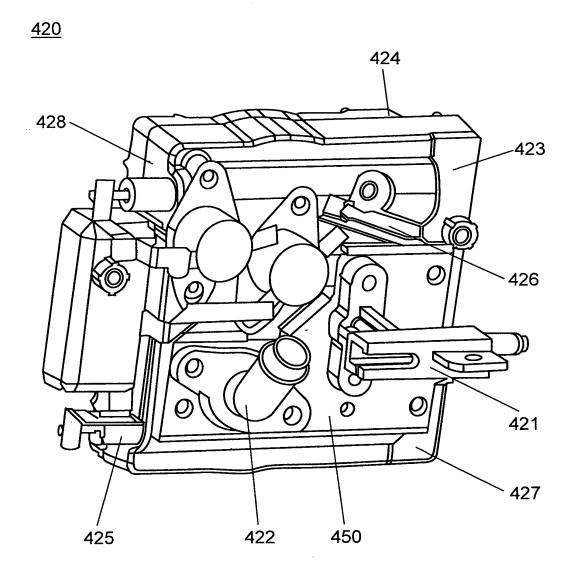


FIG. 7

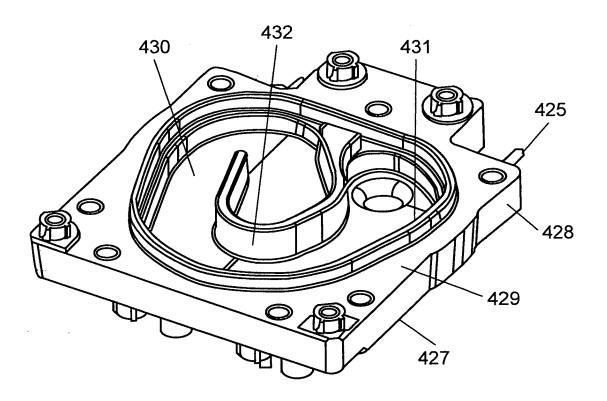
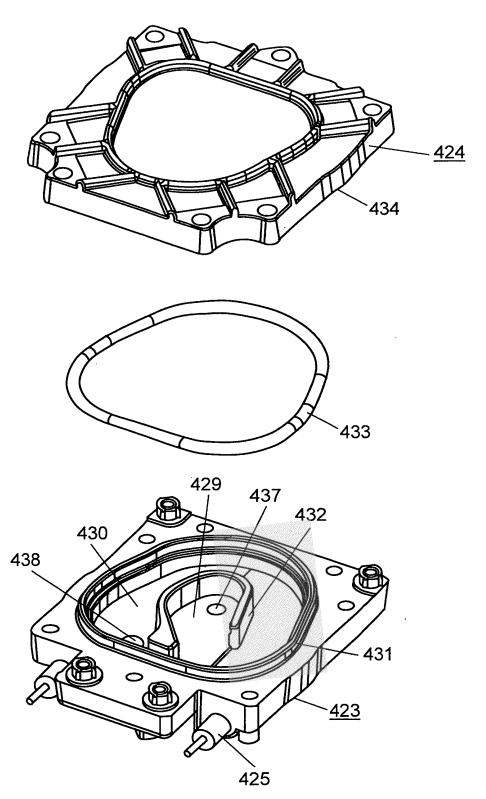



FIG. 8

<u>420</u>

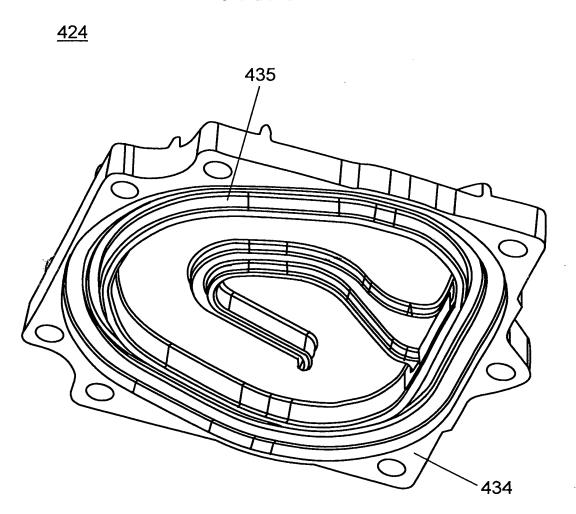


FIG. 10

<u>423</u>

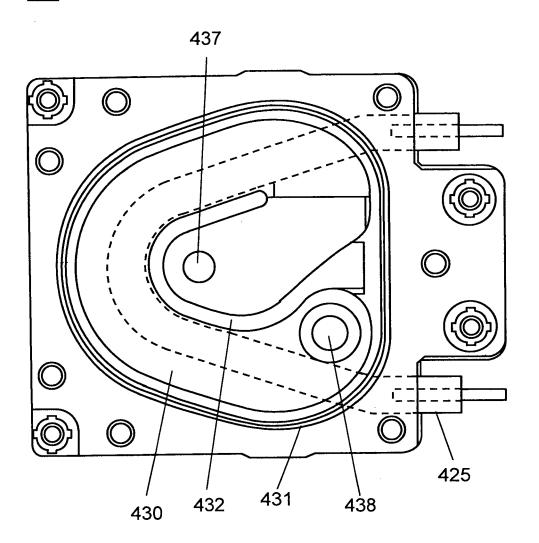


FIG. 11

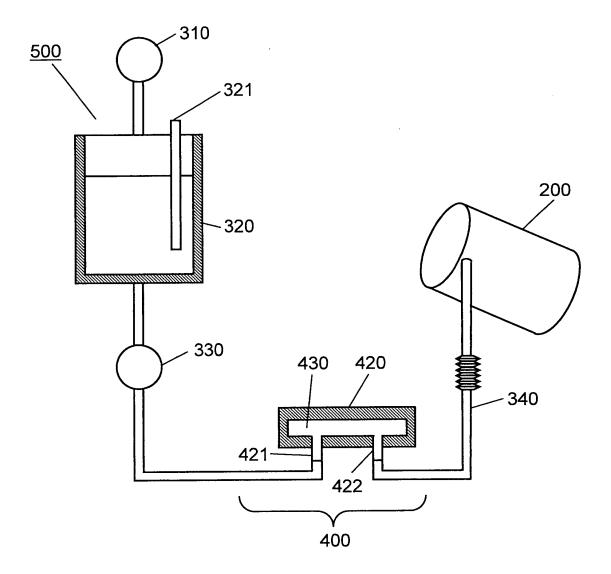


FIG. 12

<u>222(220)</u>

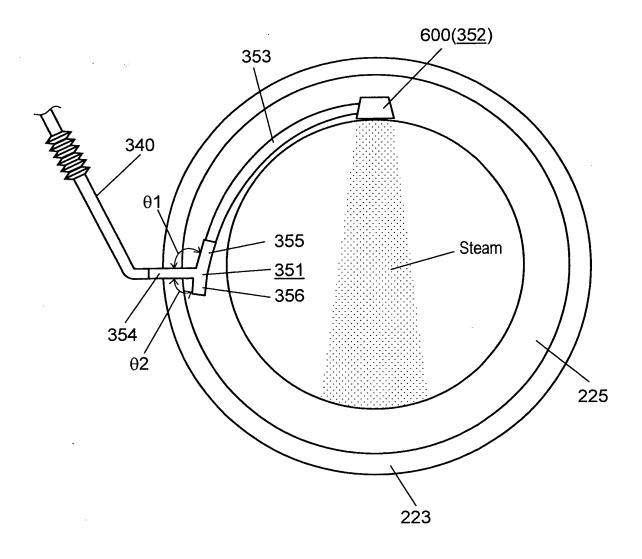
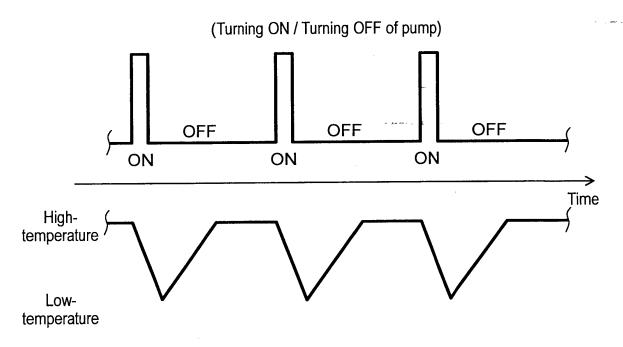



FIG. 13

(Temperature of chamber space)

FIG. 14

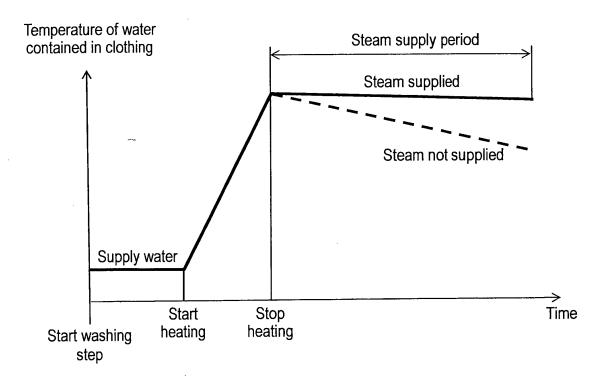


FIG. 15A

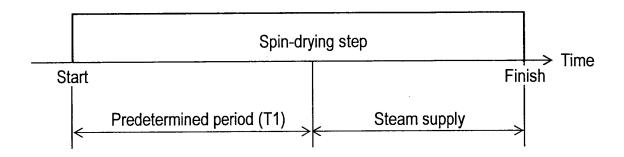


FIG. 15B

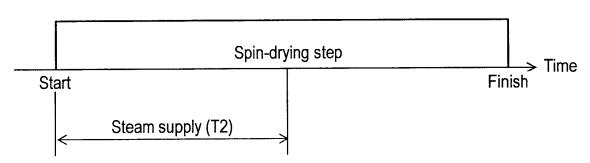


FIG. 15C

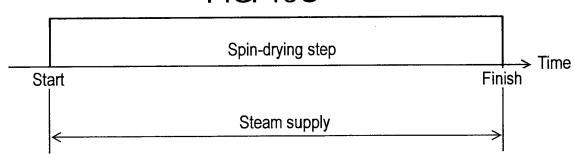


FIG. 16

<u>100</u>

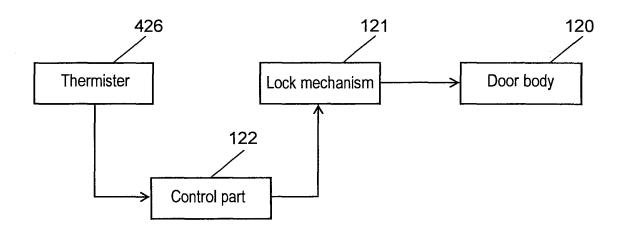


FIG. 17A

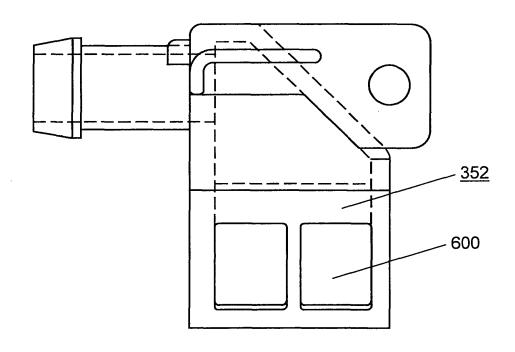


FIG. 17B

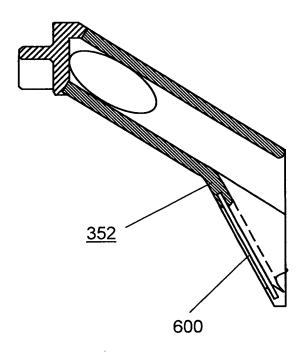
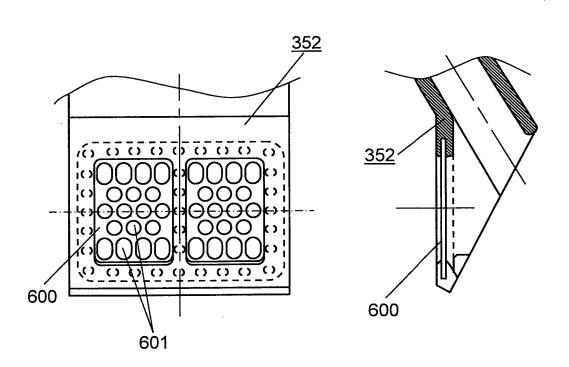



FIG. 17C

EP 2 883 989 A1

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2013/004545 CLASSIFICATION OF SUBJECT MATTER 5 D06F25/00(2006.01)i, D06F39/04(2006.01)i, D06F39/08(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) D06F25/00, D06F39/04, D06F39/08 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho Kokai Jitsuyo Shinan Koho 1971-2013 Toroku Jitsuyo Shinan Koho 1994-2013 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) 20 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 2011-92540 A (Sharp Corp.), 1-6 12 May 2011 (12.05.2011), paragraphs [0033], [0034], [0038], [0040], 25 [0041], [0056]; fig. 2, 3 & CN 102051794 A JP 2009-213693 A (Toshiba Corp.), 1-6 Υ 24 September 2009 (24.09.2009), paragraph [0029]; fig. 2, 3 30 (Family: none) Υ JP 60-34498 A (Matsushita Electric Industrial 1-6 Co., Ltd.), 22 February 1985 (22.02.1985), 35 fig. 3 to 5 (Family: none) X Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered to the principle or theory underlying the invention be of particular relevance "E" earlier application or patent but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is 45 "O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than the document member of the same patent family priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 15 October, 2013 (15.10.13) 29 October, 2013 (29.10.13) 50 Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No. Facsimile No. 55 Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2013/004545

5	PCT/JP2013/004545						
Č	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT						
	Category*	Citation of document, with indication, where appropriate, of the releva		Relevant to claim No.			
10	Y	JP 2007-218248 A (General Electric Co.), 30 August 2007 (30.08.2007), paragraph [0019]; fig. 1 & US 2009/0320478 A1 & EP 1870146 A2 & MX 2007000121 A & TW 200802408 A		1-6			
15	Y	JP 2011-217641 A (Nepuree Corp.), 04 November 2011 (04.11.2011), paragraph [0044] (Family: none)		1-6			
20	А	JP 2007-195942 A (Samsung Electronics Co Ltd.), 09 August 2007 (09.08.2007), & US 2007/0169279 A1 & EP 1813709 A2 & KR 10-2007-0078319 A & CN 101008148 A & RU 2006124329 A		1-6			
25							
30							
35							
40							
45							
50							
55	E DOT/IC A /O.	10 (continuation Control about) (L1 2000)					

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

EP 2 883 989 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1863968 A [0005]