| (19) |
 |
|
(11) |
EP 2 888 385 B2 |
| (12) |
NEW EUROPEAN PATENT SPECIFICATION |
|
After opposition procedure |
| (45) |
Date of publication and mentionof the opposition decision: |
|
13.11.2024 Bulletin 2024/46 |
| (45) |
Mention of the grant of the patent: |
|
11.04.2018 Bulletin 2018/15 |
| (22) |
Date of filing: 19.08.2013 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/EP2013/002498 |
| (87) |
International publication number: |
|
WO 2014/032779 (06.03.2014 Gazette 2014/10) |
|
| (54) |
COATED STEEL STRIP OR SHEET HAVING ADVANTAGEOUS PROPERTIES
VORBESCHICHTETER STAHLSTREIFEN ODER -BLECH MIT VORTEILHAFTEN EIGENSCHAFTEN
FEUILLE OU BANDE D'ACIER REVÊTUE PRÉSENTANT DES PROPRIÉTÉS AVANTAGEUSES
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (30) |
Priority: |
27.08.2012 EP 12006076 14.09.2012 EP 12006485
|
| (43) |
Date of publication of application: |
|
01.07.2015 Bulletin 2015/27 |
| (73) |
Proprietor: Tata Steel IJmuiden B.V. |
|
1970 CA IJmuiden (NL) |
|
| (72) |
Inventors: |
|
- BLEEKER, Robert
NL-1951 JV Velsen-Noord (NL)
- VRENKEN, Jurgen, Wilhelmus
NL-1951 JV Velsen-Noord (NL)
- VLOT, Margot Julia
NL-1951 JV Velsen-Noord (NL)
|
| (74) |
Representative: Group Intellectual Property Services |
|
c/o Tata Steel Nederland Technology B.V.
P.O. Box 10000 - 3G.37 1970 CA IJmuiden 1970 CA IJmuiden (NL) |
| (56) |
References cited: :
WO-A1-2006/002843 WO-A1-2008/102009 JP-A- 2009 173 996 US-A- 5 433 976
|
WO-A1-2007/031276 DE-A1- 10 016 181 US-A- 5 292 549 US-A1- 2006 099 332
|
|
| |
|
|
|
|
| |
|
[0001] The invention relates to a strip or sheet of cold formable cold rolled steel coated
with a zinc alloy layer containing aluminium and magnesium. The invention also relates
to a method for producing such a steel strip or sheet, to a method for producing a
part from the strip or sheet, and to a product comprising a part made from the steel
strip or sheet.
[0002] Steel strip and sheet coated with a zinc or zinc alloy layer are well known and often
used in the automotive industry. In recent years zinc alloy coatings containing aluminium
and magnesium are often used in view of their improved corrosion and galling resistance
in comparison to galvanized or galvannealed coatings. These zinc alloy layers often
contain 0.3 - 5 weight% Al and 0.3 - 5 weight% Mg, the remainder being zinc and unavoidable
impurities, and optionally at most 0.2 weight % in total of one or more additional
elements selected from the group consisting of Pb, Sb, Ti, Ca, Mn, Sn, La, Ce, Cr,
Ni, Zr, Bi, Si and Fe.
[0003] This aluminium and magnesium containing zinc coated steel however has the drawback
that the adhesive bonding thereof is less then the adhesive bonding of normal hot
dip zinc coated steel. Also the spot weldability of hot dip coatings is often less
than that of electrogalvanised steel. Moreover, the aluminium and magnesium containing
zinc coatings have a somewhat higher coefficient of friction than normal zinc coatings.
[0004] It is an object of the invention to provide a steel strip or sheet coated with a
zinc alloy layer containing aluminium and magnesium with a good adhesive bonding.
[0005] It is another object of the invention to provide a steel strip or sheet coated with
a zinc alloy layer containing aluminium and magnesium with a good spot weldability.
[0006] It is a further object of the invention to provide a steel strip or sheet coated
with a zinc alloy layer containing aluminium and magnesium having an improved coefficient
of friction.
[0007] It is moreover an object of the invention to provide a method for producing such
a steel strip or sheet coated with a zinc alloy layer containing aluminium and magnesium.
[0008] It is also an object of the invention to provide a method for producing a part from
such a steel strip or sheet according to the invention.
[0009] Furthermore it is an object of the invention to provide a product produced from a
part made from the steel strip or sheet according to the invention and at least one
other part, having good joining properties between the parts.
[0010] According to a first aspect of the invention, one or more of these objects is reached
with a strip or sheet of cold formable cold rolled steel coated with a zinc alloy
layer, having the features of claim 1.
[0011] The inventors have surprisingly found that with the siloxane or polysiloxane layer
as specified above, the joining behaviour of the zinc alloy coated steel is better
than the joining behaviour without such a layer, especially the adhesive bonding behaviour,
but also the spot weldability. The strength and failure mode of adhesive bonded joints
of the zinc alloy coated steel provided with a siloxane or polysiloxane layer is better
than that of the zinc alloy coated steel without such a siloxane or polysiloxane layer.
Furthermore the friction of the zinc alloy coated steel is reduced with at least 10
% with the application of the siloxane or polysiloxane layer, which is advantageous
for for instance deep drawing operations. The galling behaviour of the zinc alloy
coated steel with the siloxane or polysiloxane layer is at least as good as that of
the material without such a layer. Phosphate coverage of the zinc alloy coated steel
that has been coated with a siloxane or polysiloxane layer is as good as phosphate
coverage of zinc alloy coated steel without siloxane or polysiloxane layer.
[0012] Use of siloxane or polysiloxane to improve adhesive bonding of aluminium parts is
known, but it is not known to use siloxane or polysiloxane for improving the adhesive
bonding of zinc or zinc alloy coated steel parts. Siloxane or polysiloxane on zinc
coated steels is well known to improve corrosion resistance and lacquer adhesion,
but for automotive purposes this has not been an option because of spot welding and
phosphate forming limitations.
US 5,433,976 discloses a cold rolled steel strip coated with siloxane. Moreover,
WO 2008/102009 A1 discloses a hot dip galvanised cold rolled steel strip coated with a zinc alloy coating
layer comprising magnesium and aluminium. According to an earlier filed, not pre-published
patent application with filing number
PCT/EP2012/002416 a siloxane or polysiloxane layer is used on a hot formable zinc or zinc alloy coated
steel strip, sheet or blank resulting in a reduction of the oxidation of the zinc
layer and a reduction of zinc losses during the hot forming process. The siloxane
or polysiloxane according to the older patent application is thus used for a different
type of steel and for a different process. The present invention in contrast relates
to cold formable cold rolled steel, not being a steel for hot forming at a temperature
of 600° C or above.
[0014] Preferably, the steel strip or sheet has a tensile strength of at most 600 MPa, such
as an Interstitial Free steel (IF-steel), a bakehardenable steel or a dual phase steel
(DP steel). This type of steel is frequently used in the automotive industry for parts
that are bonded to other parts.
[0015] According to a preferred embodiment, the zinc alloy layer on the steel has a thickness
of 20 - 140 g/m
2 on each side. These zinc alloy thicknesses are generally used in the automotive industry
on steel.
[0016] The siloxane or polysiloxane layer has a layer thickness corresponding with 1 - 8
mg/m
2 Si, preferably a thickness of 1 - 5 mg/m
2 Si. It has been found that with these thicknesses the advantages are retained, while
it is preferred to use thin layers from an economic perspective.
[0017] According to a preferred embodiment the siloxane or polysiloxane layer has been formed
from a bis-tri(m)ethoxysilylalkane, preferably a bis-triethoxysilylethane (BTSE),
and preferably in combination with another silane such as γ-aminopropyltriethoxysilane
(γAPS), bis-aminosilane (BAS), bis-diaminosilane (BDAS), vinyltriacetoxysilane (VTAS),
γ-ureidopropyltrimethoxysilane (γUPS) and/or bis-trimethoxysilylpropylurea (BUPS).
These silane chemicals can be used as a water based solution that is relatively easy
to apply on a zinc alloy coated steel strip or sheet. In water the silane chemicals
will hydrolyze to form silanols.
[0018] According to a preferred embodiment the zinc alloy layer contains 1.0 - 3.5 weight%
Al and 1.0 - 3.5 weight% Mg, preferably 1.4 - 2.2 weight% Al and 1.4 - 2.2 weight%
Mg. These amounts of Al and Mg in the zinc layer usually provide a corrosion protection
that is suitable for automotive purposes. Higher amounts make the zinc alloy comparatively
expensive and less easy to weld.
[0019] The siloxane or polysiloxane layer is covered by an oil. Zinc or zinc alloy coated
strip is usually provide with a thin layer of oil before it is supplied to the automotive
industry.
[0020] According to a second aspect of the invention a method for producing a strip or sheet
according to the first aspect of the invention is provided in accordance with claim
9.
[0021] In this way it is relatively easy to apply the siloxane or polysiloxane layer to
the zinc alloy coated steel strip or sheet in an environmentally friendly way.
[0022] Preferably the silane/silanol containing water based solution contains a fluoride,
preferably hydrogen fluoride, fluorosilicic acid, fluorozirconic acid and/or fluorotitanic
acid. Such fluorides are added to improve the adhesion of the siloxane or polysiloxane
layer to the zinc alloy layer on the steel strip or sheet.
[0023] According to a third aspect of the invention a method for producing a part from a
zinc alloy coated cold rolled steel strip or sheet with a siloxane or polysiloxane
layer according to the first aspect of the invention is provided, wherein
- a blank is cut from the strip or sheet
- the blank is placed in a forming tool such as a press
- the blank is cold formed into a part.
[0024] Using this method, the friction of the blank against the forming tool is reduced
due to the presence of the siloxane or polysiloxane layer. This is an advantage for
all steels that are cold formed using a forming tool, also for the use of high strength
steels which suffer from poor deep drawing properties.
[0025] According to a fourth aspect of the invention there is provided a product produced
from a part made from the strip or sheet according to the first aspect of the invention
and one or more other parts, wherein the part made from the strip or sheet is joined
to at least one of the other parts using spot welding and/or a sealant or adhesive.
The joining is improved due to the siloxane or polysiloxane layer.
[0026] Preferably one or more other parts are made from a strip or sheet according to the
first aspect of the invention. These parts provide a product that has good joining
properties, provided by the siloxane or polysiloxane layer that has been provided
on the zinc alloy coated steel strip or sheet. An additional advantage is the improved
cold forming property of the blanks cut from the steel strip or sheet due to the improved
coefficient of friction.
[0027] According to a preferred embodiment the product is provided with a phosphate layer,
and subsequently with a paint layer. For automotive purposes, where the product is
part of a car, the car is usually alkaline cleaned and phosphated to provide a good
adhesion for the application of a paint layer. A good adhesion will only be obtained
when the zinc alloy coating is not hampered by remaining surface contaminants, because
the zinc alloy layer must give a good electrochemical reaction with the phosphate
solution to result in a fine crystalline, pore-free phosphate layer. It has been found
that the applied siloxane or polysiloxane layer does not hinder the forming of a good
phosphate layer.
[0028] The invention will be elucidated with reference to the following non-limiting examples.
Figure 1 shows the friction behaviour of zinc alloy coated steels with and without
a siloxane or polysiloxane layer.
Figure 2 shows the paint delamination of painted zinc alloy steel with and without
a siloxane or polysiloxane layer.
[0029] Experiments have been performed wherein a zinc alloy coated steel sheet has been
coated with a siloxane or polysiloxane layer in two different thicknesses. Samples
of the thus coated sheets have been tested and compared with zinc alloy coated sheet
without a siloxane or polysiloxane layer.
[0030] For the experiments two types of steel sheet have been used. Steel grade 1 was a
cold rolled boron steel having a gauge of 0.7 mm. Steel grade 2 was a cold rolled
formable steel having a gauge of 0.7 mm.
[0031] The ZnAlMg coating on both steel types was applied on a continuous hot dip galvanising
production line where the coating thickness was regulated by nitrogen wiping to about
70 mg/m2 per side (approximately 10 µm per side). The composition of the coating was
approximately 1.6 weight% Al and 1.6 weight% Mg, with a small amount of Fe by reaction
of the aluminium with the steel strip during hot dip galvanising (about 0.005 - 0.02
weight% Fe), the remainder being zinc with inevitable impurities. The coated steel
was temper rolled with about 0.8% elongation, with Electro Discharge Texturing (EDT)
roughness.
[0032] A water based solution containing both bis-triethoxysilylethane (BTSE) and aminopropyltriethoxysilane
(APS) has been applied on the ZnAlMg coated steel with a chem. coater to provide a
(poly)siloxane layer having a thickness of 2 and 12 mg/m
2 Si respectively after drying and/or curing. In the remainder of the description,
both siloxane layer are polysiloxane layer will be referred to as 'siloxane layer'.
[0033] The specimens for the lap shear test were prepared according to the StahlEisen SEP
1160 Teil 5 procedure:
- Size of steel coupons: 100 mm x 25 mm
- Cleaning: US degreased in heptane for 10 minutes
- Oil application (if applied): 2 g/m2 MULTIDRAW PL61 of Zeller&Gmelin (standard automotive
Prelube)
- Overlap: 10 mm
- Adhesive thickness: 0.2 to 0.3 mm, controlled using glass beads
- Excess adhesive removed before curing
- Cure: 15 minutes at 180°C object temperature
- Test length: 110 mm
- Test speed: 10 mm/min.
[0034] The adhesive used was Betamate 1496V of DOW Chemical. Some samples were not re-oiled
after cleaning to evaluate the interaction with the oil separately. In general, the
oil will be absorbed by the adhesive, making it slightly less strong.
[0035] The strength upon failure of the bond is given in Table 1. This strength depends
heavily on the steel grade and its gauge, and can only be compared to a similar reference
sample. The bond can break in the adhesive (cohesive failure), which is the preferred
failure mode. It can also break between the adhesive and the metallic coating (adhesive
failure), which is less favourable. Often, the broken bond shows a combination of
both failure modes, and the amount of each is estimated visually (in % of the overlap
area).
[0036] Results (see Table 1) show that both strength and failure mode of the ZnAlMg coated
steel with a thin (2 mg/m
2 Si) siloxane layer are better than ZnAlMg coated steel without siloxane (ref1 versus
#1 and ref3 versus #2 and ref4 versus #3). The best failure mode is achieved for oiled
conditions.
[0037] At thickness of the siloxane layer with Si >10 mg/m
2 there is no improvement, on the contrary (see ref2 versus #1), although now some
cohesive failure is obtained.
Table 1: adhesive properties
| |
Steel grade |
Silane (mg/m2) |
Oil (prelube) |
Strength bond (kN) of |
Standard Deviation (kN) |
% cohesive |
% adhesive |
| ref1 |
1 |
0 |
no |
8,1 |
0,6 |
0 |
100 |
| ref2 |
1 |
12 |
no |
7,2 |
1,1 |
10 |
90 |
| #1 |
|
2 |
no |
9,7 |
0,2 |
30 |
70 |
| ref3 |
2 |
0 |
no |
4,4 |
0,1 |
0 |
100 |
| ref4 |
2 |
0 |
yes |
4,2 |
0,1 |
0 |
100 |
| #2 |
2 |
2 |
no |
4,8 |
0,1 |
60 |
40 |
| #3 |
2 |
2 |
yes |
4,7 |
0,1 |
70 |
30 |
| #1 and #2 are not according to the invention. |
[0038] The friction and galling of siloxane (2 mg/m
2 Si) coated ZnAlMg coated steel (steel grade 2) has also been evaluated in a Linear
Friction Test.
[0039] The test uses one flat tool and one round tool to develop a high-pressure contact
with the sample surfaces. The tool material used was DIN 1.3343. 1 g/m2 of Multidraw
PL61 of Zeller & Gmelin prelube oil was applied on the samples.
[0040] For each material/lubrication system, strips of 50 mm width and 300 mm length were
pulled at a speed 20 mm/min between a set of tools pushed together with a normal force
of 5 kN. The strips were drawn through the tools six times (passes) along a testing
distance of 55mm; after each stroke the tools were released and the strips returned
to the original starting position in preparation for the next stroke. All tests were
conducted at 20°C and performed in triplicate.
[0041] Figure 1 shows the number of passes on the horizontal axis and the friction coefficient
on the vertical axis. The continuous line shows the results of the tests with a siloxane
coating, the interrupted line shows the results without siloxane coating. The results
in Figure 1 show that the thin siloxane layer reduces friction, which means a better
drawing behaviour. Galling behaviour of ZnAlMg coated steel, which is normally good
and much better than of hot dip zinc coated steel, electro galvanized steel and galvannealled
steel, is even better now.
[0042] Samples having a size of 100x200 mm were phosphated according to automotive standards,
with a standard automotive alkaline cleaner, activation and phosphate of Chemetall.
The amount of resulting phosphate was determined (by weighing) and the crystal size
and homogeneity was checked (by secondary electron microscopy).
[0043] The results can be found in Table 2. All results are good and the presence of the
thin layer of siloxane does not have a negative impact on the phosphate-ability, except
for the phosphate-ability of steel grade 1 provided with a siloxane layer having a
thickness of 12 mg/m
2.
Table 2: Phosphating
| |
Steel grade type |
Silane (mg/m2) |
Phosphate type (Chemetall) |
Amount phosphate (g/m2) |
of Phosphate crystal size and homogeneity |
| ref1 |
1 |
0 |
Spray phosphate GB R2830E3 with 100 -200 ppm F |
3,3 |
OK |
| ref2 |
1 |
12 |
Spray phosphate GB R2830E3 with 100 -200 ppm F |
2,4 |
Not OK |
| #1 |
1 |
2 |
Spray phosphate GB R2830E3 with |
3,5 |
OK |
| |
|
|
100 - 200 ppm F |
|
|
| ref3 |
2 |
0 |
Dip phosphated with GB R2600 |
2,6 |
OK |
| #2 |
2 |
2 |
Dip phosphated with GB R2600 |
2,3 |
OK |
[0044] For testing the spot welding behaviour, the welding range was determined according
to StahlEisen SEP 1220 Teil 2 for a sample without siloxane and in duplicate for a
sample with a thin layer of siloxane (2 mg/m
2 Si) on steel grade 2. A standard prelube (1 g/m2 Quaker N6130) was applied on all
samples.
[0045] The welding range is the range between the current (Imin) necessary to achieve the
minimum welding nugget and the maximum current (Imax) before splashing occurs during
welding. A larger welding range is a strong indication for a better electrode life,
the number of welds before an electrode needs to be replaced to achieve a good weld.
[0046] The minimum and maximum welding currents and the welding range are given in Table
3. The welding range of the ZnAlMg coating with the silane (#2 and #3) is larger than
the welding range on the same samples without the silane (ref3).
Table 3: Welding range
| |
Steel grade |
Silane (mg/m2) |
Imin (kA) |
Imax (kA) |
Range (kA) |
| ref3 |
2 |
0 |
8,4 |
10,1 |
1,7 |
| #2 |
2 |
2 |
6,8 |
10,5 |
3,7 |
| #3 |
2 |
2 |
8,1 |
10,6 |
2,5 |
[0047] The phosphated samples (ref3 and #2 from Table 2) were additionally E-coated with
20-25 µm Cathoguard 500 from BASF for the following tests:
For a corrosion test scribes were made on (duplicate) panels with a Van Laar pencil,
down to the steel. The panels were subjected to 10 weeks of an accelerated cyclic
corrosion test according to VDA 621-415. The paint delamination was evaluated according
to Volvo STD 1029.
[0048] For an E-coat adhesion test panels were scribed by a cross hatch pattern (6 vertical,
6 horizontal, Gitterschnitt) and an Andreas Cross (into the steel). These panels were
put first 120 hours in a humidity test according to GMW 14829 and checked for delamination
along the scribes. After that, they were put for 300 hours in a water immersion test
(ISO 13523-9). Evaluation was done according to ISO 4628 - 3: 2003 (E).
[0049] The corrosion results can be found in Figure 2. On the vertical axis, the delamination
of the E-coat after the corrosion test is given in millimetres. The samples with siloxane
layer are denominated A, the samples without siloxane layer are denominated B. The
visible delamination is indicated in the white stave, the visible plus non-visible
delamination is indicated by the dark stave. The variance in delamination is indicated
in the figure. As can be seen, the difference in corrosion resistance of the ZnAlMg
coated steel with and without the siloxane layer is small.
[0050] The E-coat adhesion was good after the humidity test (no delamination). The results
after the water immersion test are given in Table 4. The results of the siloxane treated
sample and the reference were almost the same.
Table 4: E-coat adhesion after the water immersion test
| |
Cross hatch |
Andreas cross |
| |
Size |
Quantity |
Size |
Quantity |
| With siloxane |
3 |
5 |
3 |
3 |
| Without siloxane |
3-4 |
5 |
3 |
4 |
1. Strip or sheet of cold formable cold rolled steel coated with a zinc alloy layer,
wherein the zinc alloy layer contains 0.3 - 5 weight% Al and 0.3 - 5 weight% Mg, the
remainder being zinc and unavoidable impurities and optionally at most 0.2 weight
% in total of one or more additional elements selected from the group consisting of
Pb, Sb, Ti, Ca, Mn, Sn, La, Ce, Cr, Ni, Zr, Bi, Si and Fe, wherein the zinc alloy
layer is coated with a siloxane or polysiloxane layer, the siloxane or polysiloxane
layer having a layer thickness corresponding with 1-8 mg/m2 Si, and wherein the siloxane or polysiloxane layer is covered by an oil.
3. Strip or sheet according to claim 1 or 2, wherein the steel has a tensile strength
of at most 600 MPa, such as an Interstitial Free steel (IF-steel), a bakehardenable
steel or a dual phase steel (DP steel).
4. Strip or sheet according to claim 1, 2 or 3, wherein the zinc alloy layer on the steel
has a thickness of 20 - 140 g/m2 on each side.
5. Strip or sheet according to anyone of the preceding claims, wherein the siloxane or
polysiloxane layer has a layer thickness corresponding with 1 - 5 mg/m2 Si.
6. Strip or sheet according to any one of the preceding claims, where the siloxane or
polysiloxane layer has been formed from a bis-tri(m)ethoxysilylalkane, preferably
a bis-triethoxysilylethane (BTSE), and preferably in combination with another silane
such as γ-aminopropyltriethoxysilane (yAPS), bis-aminosilane (BAS), bis-diaminosilane
(BDAS), vinyltriacetoxysilane (VTAS), γ-ureidopropyltrimethoxysilane (yUPS) and/or
bis-trimethoxysilylpropylurea (BUPS).
7. Strip or sheet according to any one of the preceding claims, wherein the zinc alloy
layer contains 1.0 - 3.5 weight% Al and 1.0 - 3.5 weight% Mg, preferably 1.4 - 2.2
weight% Al and 1.4 - 2.2 weight% Mg.
8. Method for producing a strip or sheet according to any one of the preceding claims,
wherein the siloxane or polysiloxane layer is formed by providing the zinc alloy layer
with a silane/silanol containing water based solution applied by dipping and/or spraying
with additional squeezing, or by rolling, followed by drying and/or curing.
9. Method according to claim 8, wherein the silane/silanol containing water based solution
contains a fluoride, preferably hydrogen fluoride, fluorosilicic acid, fluorozirconic
acid and/or fluorotitanic acid.
10. Method for producing a part from a strip or sheet according to any one of the claims
1-7, wherein
- a blank is cut from the strip or sheet
- the blank is placed in a forming tool such as a press
- the blank is cold formed into a part.
11. Product produced from a part made from the strip or sheet according to any one of
the claims 1 - 7 and one or more other parts, wherein the part made from the strip
or sheet is joined to at least one of the other parts using spot welding and/or a
sealant or adhesive.
12. Product according to claim 11, wherein one or more other parts are made from a strip
or sheet according to the invention as well.
13. Product according to claim 11 or 12, wherein the product is provided with a phosphate
layer, and subsequently with a paint layer.
1. Band oder Blech aus kaltverformbarem kaltgewalztem Stahl, das oder der mit einer Zinklegierungsschicht
beschichtet ist, wobei die Zinklegierungsschicht 0,3 - 5 Gew.-% Al und 0,3 - 5 Gew.-%
Mg enthält, wobei der Rest Zink und unvermeidbare Unreinheiten und optional höchstens
0,2 Gew.-% insgesamt von einem oder mehreren zusätzlichen Elementen, die ausgewählt
sind aus der Gruppe bestehend aus Pb, Sb, Ti, Ca, Mn, Sn, La, Ce, Cr, Ni, Zr, Bi,
Si und Fe, sind, wobei die Zinklegierungsschicht mit einer Siloxan- oder Polysiloxanschicht
beschichtet ist, wobei die Siloxan- oder Polysiloxanschicht eine Schichtdicke entsprechend
1-8 mg/m2 Si aufweist, und wobei die Siloxan- oder Polysiloxanschicht durch ein Öl abgedeckt
ist.
3. Band oder Blech nach Anspruch 1 oder 2, wobei der Stahl eine Zugfestigkeit von höchstens
600 MPa aufweist, wie ein Interstitiell Freier Stahl (IF-Stahl), ein Bake-Hardening-Stahl
oder ein Dualphasenstahl (DP-Stahl).
4. Band oder Blech nach Anspruch 1, 2 oder 3, wobei die Zinklegierungsschicht auf dem
Stahl eine Dicke von 20 - 140 g/m2 auf jeder Seite aufweist.
5. Band oder Blech nach einem der vorhergehenden Ansprüche, wobei die Siloxan- oder Polysiloxanschicht
eine Schichtdicke entsprechend 1-5 mg/m2 Si aufweist.
6. Band oder Blech nach einem der vorhergehenden Ansprüche, wo die Siloxan- oder Polysiloxanschicht
aus einen Bis-tri(m)ethoxysilylalkan, vorzugsweise einem Bistriethoxysilylethan (BTSE),
und vorzugsweise in Kombination mit einem weiteren Silan, wie γ-Aminopropyltriethoxysilan
(yAPS), Bis-aminosilan (BAS), Bis-diaminosilan (BDAS), Vinyltriacetoxysilan (VTAS),
γ-Ureidopropyl-trimethoxysilan (γUPS) und/oder Bis-trimethoxysilylpropylurea (BUPS),
gebildet worden ist.
7. Band oder Blech nach einem der vorhergehenden Ansprüche, wobei die Zinklegierungsschicht
1,0 - 3,5 Gew.-% Al und 1,0 - 3,5 Gew.-% Mg, vorzugsweise 1,4 - 2,2 Gew.-% Al und
1,4 - 2,2 Gew.% Mg enthält.
8. Verfahren zum Herstellen eines Bandes oder Blechs nach einem der vorhergehenden Ansprüche,
wobei die Siloxan- oder Polysiloxanschicht gebildet wird durch Versehen der Zinklegierungsschicht
mit einer Silane/Silanol enthaltenden wasserbasierten Lösung, die durch Eintauchen
und/oder Sprühen mit zusätzlichem Pressen, oder durch Walzen, gefolgt von Trocknen
und/oder Aushärten aufgetragen wird.
9. Verfahren nach Anspruch 8, wobei die Silan/Silanol enthaltende wasserbasierte Lösung
ein Fluorid, vorzugsweise Wasserstofffluorid, eine Fluorkieselsäure, Fluorzirkonsäure
und/oder Fluortitansäure enthält.
10. Verfahren zum Fertigen eines Teils aus einem Band oder Blech nach einem der Ansprüche
1-7, wobei
- eine Platine aus dem Band oder Blech geschnitten wird
- die Platine in einem Umformwerkzeug, wie eine Presse, platziert wird
- die Platine zu einem Teil kaltumgeformt wird.
11. Produkt, das aus einem Teil, das aus dem Band oder Blech nach einem der Ansprüche
1 - 7 hergestellt ist, und einem oder mehreren anderen Teilen gefertigt ist, wobei
das Teil, das aus dem Band oder Blech hergestellt ist, mit mindestens einem von den
anderen Teilen unter Verwendung von Punktschweißen und/oder einem Dichtungsmittel
oder Klebstoff verbunden ist.
12. Produkt nach Anspruch 11, wobei ein oder mehrere Teile aus einem Band oder Blech nach
einem der Ansprüche 1-7 hergestellt ist.
13. Produkt nach Anspruch 11 oder 12, wobei das Produkt mit einer Phosphatschicht und
anschließend mit einer Farbschicht versehen ist.
1. Bande ou feuille d'acier laminé à froid, formable à froid, revêtue d'une couche d'alliage
de zinc, la couche d'alliage de zinc contenant 0,3 - 5 % en poids d'Al et 0,3 - 5
% en poids de Mg, le reste étant le zinc et les impuretés inévitables, et optionnellement
un maximum de 0,2 % en poids en tout d'un ou plusieurs éléments additionnels sélectionnés
dans le groupe constitué de Pb, Sb, Ti, Ca, Mn, Sn, La, Ce, Cr, Ni, Zr, Bi, Si et
Fe, la couche d'alliage de zinc étant revêtue d'une couche de siloxane ou de polysiloxane,
la couche de siloxane ou de polysiloxane ayant une épaisseur de couche correspondant
à 1-8 mg/m2 Si, et dans laquelle la couche de siloxane ou de polysiloxane est couverte d'une
huile.
3. Bande ou feuille selon la revendication 1 ou 2, dans laquelle l'acier a une résistance
maximale à la traction de 600 MPa, tel qu'un acier sans interstitiels (IFS), un acier
durcissable à la cuisson ou un acier biphasé (acier DP).
4. Bande ou feuille selon la revendication 1, 2 ou 3, dans laquelle la couche d'alliage
de zinc sur l'acier a une épaisseur de 20 - 140 g/m2 de chaque côté.
5. Bande ou feuille selon l'une quelconque des revendications précédentes, dans laquelle
la couche de siloxane ou de polysiloxane a une épaisseur de couche correspondant à
1 - 5 mg/m2 Si.
6. Bande ou feuille selon l'une quelconque des revendications précédentes, où la couche
de siloxane ou de polysiloxane a été formée à partir d'un bis-tri(m)éthoxysilylalkane,
de préférence un bis-triéthoxysilyléthane (BTSE), et de préférence en combinaison
avec un autre silane tel que : γ-aminopropyltriéthoxysilane (γAPS), bis-aminosilane
(BAS), bisdiaminosilane (BDAS), vinyltriacétoxysilane (VTAS), γ-ureidopropyl-triméthoxysilane
(yUPS) et/ou bis-triméthoxysilylpropylurée (BUPS).
7. Bande ou feuille selon l'une quelconque des revendications précédentes, dans laquelle
la couche d'alliage de zinc contient 1,0 - 3,5 % en poids d'Al et 1,0 - 3,5 % en poids
de Mg, de préférence 1,4 - 2,2 % en poids d'Al et 1,4 - 2,2 % en poids de Mg.
8. Procédé de production d'une bande ou feuille selon l'une quelconque des revendications
précédentes, dans lequel la couche de siloxane ou de polysiloxane est formée en fournissant
à la couche d'alliage de zinc une solution à base d'eau contenant du silane/silanol
appliquée par immersion et/ou pulvérisation avec compression additionnelle, ou par
laminage suivi de séchage et/ou durcissement.
9. Procédé selon la revendication 8, dans lequel la solution à base d'eau contenant du
silane/silanol contient un fluorure, de préférence : fluorure d'hydrogène, acide fluorosilicique,
acide fluorozirconique et/ou acide fluorotitanique.
10. Procédé pour produire une pièce à partir d'une bande ou feuille selon l'une quelconque
des revendications 1-7, dans lequel
- un flan est découpé dans la bande ou la feuille
- le flan est placé dans un outil de formage, tel qu'une presse
- le flan est formé à froid pour devenir une pièce.
11. Produit réalisé à partir d'une pièce fabriquée à partir de la bande ou feuille selon
l'une quelconque des revendications 1-7 et d'une ou plusieurs autres pièces, dans
lequel la pièce réalisée à partir de la bande ou de la feuille est jointe à au moins
une des autres pièces au moyen d'un soudage par points et/ou d'un mastic ou d'un adhésif.
12. Produit selon la revendication 11, dans lequel une ou plusieurs autres pièces sont
fabriquées à partir d'une bande ou feuille selon l'une quelconque des revendications
1-7.
13. Produit selon la revendication 11 ou 12, le produit recevant une couche de phosphate,
puis une couche de peinture.

REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description