(19)
(11) EP 2 905 348 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
12.08.2015  Patentblatt  2015/33

(21) Anmeldenummer: 14154354.6

(22) Anmeldetag:  07.02.2014
(51) Internationale Patentklassifikation (IPC): 
C21D 9/46(2006.01)
C22C 38/02(2006.01)
C22C 38/06(2006.01)
C22C 38/18(2006.01)
C22C 38/32(2006.01)
C22C 38/24(2006.01)
C22C 38/00(2006.01)
C22C 38/04(2006.01)
C22C 38/12(2006.01)
C22C 38/22(2006.01)
C22C 38/20(2006.01)
C22C 38/40(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME

(71) Anmelder: ThyssenKrupp Steel Europe AG
47166 Duisburg (DE)

(72) Erfinder:
  • Kern, Prof. Dr.-Ing. Andreas
    40885 Ratingen (DE)
  • Schaffnit, Elena
    40489 Düsseldorf (DE)
  • Tschersich, Hans-Joachim
    46282 Dorsten (DE)

(74) Vertreter: Cohausz & Florack 
Patent- & Rechtsanwälte Partnerschaftsgesellschaft mbB Bleichstraße 14
40211 Düsseldorf
40211 Düsseldorf (DE)

   


(54) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts


(57) Ein erfindungsgemäßes Stahlflachprodukt, das nicht nur optimale mechanische Eigenschaften, wie eine hohe Festigkeit bei gleichzeitig guter Zähigkeit, besitzt, sondern auch eine gute Schweißeignung aufweist, weist im warmgewalzten Zustand ein ferritfreies Gefüge, das zu ≥ 95 Vol.-% aus Martensit und Bainit mit einem Martensitanteil ≥ 5 Vol.-% und in Summe ≤ 5 Vol.-% Restaustenit sowie herstellungsbedingt unvermeidbaren Gefügebestandteilen besteht. Neben Fe und unvermeidbaren Verunreinigungen enthält das erfindungsgemäße Stahlflachprodukt zudem (in Gew.-%) 0,08 - 0,10 % C, 0,015 - 0,50 % Si, 1,20 - 2,00 % Mn, 0,020 - 0,040 % Al, 0,30 - 1,00 % Cr, 0,20 - 0,30 % Mo, 0,020 - 0,030 % Nb, 0,0015 - 0,0025 % B, bis zu 0,025 % P, bis zu 0,010 % S, bis zu 0,006 % N, insbesondere 0,001 - 0,006 % N. Zu den Verunreinigungen zählen bis zu 0,12 % Cu, bis zu 0,090 % Ni, bis zu 0,0030 % Ti, bis zu 0,009 % V, bis zu 0,0090 % Co, bis zu 0,004 % Sb und bis zu 0,0009 % W. Die Erfindung stellt zusätzlich ein Verfahren zur Verfügung, mit dem sich ein erfindungsgemäßes Stahlflachprodukt betriebssicher und mit vermindertem Aufwand herstellen lässt.
Die Zusammenfassung soll ohne Figur veröffentlicht werden.


Beschreibung


[0001] Die Erfindung betrifft ein hochfestes Stahlflachprodukt mit einem ferritfreien Gefüge, das zum überwiegenden Teil aus Martensit und Bainit besteht, wobei im Gefüge zusätzlich geringe Mengen an Restaustenit vorhanden sein können.

[0002] Darüber hinaus betrifft die Erfindung ein Verfahren zum Herstellen eines erfindungsgemäßen Stahlflachprodukts.

[0003] Bei Stahlflachprodukten der hier in Rede stehenden Art handelt es sich typischerweise um Walzprodukte, wie Stahlbänder oder Bleche sowie daraus hergestellte Zuschnitte und Platinen.

[0004] Alle Angaben zu Gehalten der in der vorliegenden Anmeldung angegebenen Stahlzusammensetzungen sind auf das Gewicht bezogen, sofern nicht ausdrücklich anders erwähnt. Alle nicht näher bestimmten, im Zusammenhang mit einer Stahllegierung stehenden "%-Angaben" sind daher als Angaben in "Gew.-%" zu verstehen.

[0005] Hochfeste Bandbleche haben eine wachsende Bedeutung, da heute nicht nur technische Leistungsfähigkeit, sondern auch Ressourceneffizienz und Klimaschutz eine wichtige Rolle spielen. Die Reduzierung des Eigengewichts einer Stahlkonstruktion kann durch die Steigerung der Festigkeitseigenschaften erreicht werden.

[0006] Neben hoher Festigkeit haben hochfeste Stahlbänder und -bleche hohe Anforderungen an die Zähigkeitseigenschaften und den Sprödbruchwiderstand, an das Verhalten beim Kaltumformen und an die Schweißeignung zu erfüllen.

[0007] Die konventionelle Herstellung der höchstfesten Stähle besteht aus Walzen und Vergüten. Dabei werden bei der Herstellung von hochfesten Flachprodukten, die eine Mindeststreckgrenze von 900 MPa besitzen, zunächst Brammen aus einer geeignet zusammengesetzten Stahlschmelze gegossen. Die Brammen werden dann zu Blechen oder Bändern warmgewalzt, welche anschließend an Luft abgekühlt werden. Die so erhaltenen Stahlflachprodukte besitzen ein ferritisch-perlitisches Gefüge. Um das gewünschte martensitisch-bainitische Gefüge einzustellen, werden die Stahlflachprodukte anschließend auf eine Temperatur oberhalb der Ac3-Temperatur erwärmt und mit Wasser abgeschreckt.

[0008] Zur Einstellung der Zähigkeit muss bei der konventionellen Vorgehensweise das Härtungsgefüge in einem weiteren Schritt einer Anlassbehandlung unterzogen werden. Der konventionelle Herstellprozess erfordert somit mehrere Stufen, um die geforderten mechanischen Eigenschaften des zu erzeugenden Stahlflachprodukts zu erreichen. Die mit der konventionellen Herstellweise verbundene große Zahl von Arbeitsschritten führt zu vergleichbar hohen Herstellkosten. Gleichzeitig sind trotz der aufwändigen Prozesskette die Zähigkeitseigenschaften und die Oberflächenqualität der auf konventionellem Wege erzeugten hochfesten Stahlflachprodukte häufig nicht optimal.

[0009] Aus der EP 1 669 470 A1 ist ein warmgewalztes Stahlblech mit einer Stahlzusammensetzung bekannt, die (in Gew.-%) 0,01 - 0,2 Gew.-% C, 0,01 - 2 % Si, 0,1 - 2 Mn, bis zu 0,1 % P, bis zu 0,03 % S, 0,001 - 0,1 % Al, bis zu 0,01 % N und als Rest Fe und unvermeidbare Verunreinigungen enthält. Dabei weist das Stahlflachprodukt eine im Wesentlichen homogen und kontinuierlich gekühlte Mikrostruktur mit einer mittleren Korngröße von 8 µm bis 30 µm auf. Um dies zu erreichen, wird eine Bramme mit der voranstehend angegebenen Zusammensetzung vorgewalzt. Die erhaltene vorgewalzte Bramme wird dann bei einer mindestens 50 °C oberhalb der Ar3-Temperatur des Stahls liegenden Warmwalzendtemperatur zu einem Warmband fertig warmgewalzt. Anschließend wird das fertig warmgewalzte Warmband nach einer Pause von mindestens 0,5 Sekunden mit einer Abkühlgeschwindigkeit von wenigstens 80 °C/sec von der Ar3-Temperatur auf eine weniger als 500 °C betragende Haspeltemperatur abgekühlt und schließlich zu einem Coil gewickelt.

[0010] Aus der WO 03/031669 A1 ist des Weiteren ein hochfestes dünnes Stahlblech bekannt, das tiefziehfähig ist und dabei eine ausgezeichnete Formhaltigkeit besitzt. Darüber hinaus ist in dieser Veröffentlichung ein Verfahren zur Herstellung eines solchen Stahlflachprodukts beschrieben. Das betreffende Stahlblech zeichnet sich durch ein bestimmtes Verhältnis der Röntgenintensitäten bestimmter kristallografischer Orientierungen aus und weist eine bestimmte Rauigkeit Ra sowie einen bestimmten Reibungskoeffizient der Stahlblechoberfläche bei bis zu 200 ° C auf und besitzt einen Schmiermitteleffekt. Zur Herstellung solcher Stahlflachprodukte wird ein in geeigneter Weise zusammengesetzes Warmband durch Warmwalzen mit einem Gesamtreduktionsverhältnis von mindestens 25 % bei einer Temperatur, die in einem Bereich zwischen der Ar3-Temperatur und der Ar3-Temperatur + 100 ° C liegt, erzeugt. Bei allen gemäß diesem Verfahren hergestellten Stahlflachprodukten ist Ferrit im Gefüge vorhanden.

[0011] Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Stahlflachprodukt zu schaffen, das sich mit vermindertem Aufwand herstellen lässt und dabei nicht nur optimale mechanische Eigenschaften, wie eine hohe Festigkeit bei gleichzeitig guter Zähigkeit, besitzt, sondern auch eine gute Schweißeignung aufweist.

[0012] Darüber hinaus sollte ein Verfahren zur kostengünstigen und betriebssicheren Herstellung eines solchen Stahlflachprodukts angegeben werden.

[0013] In Bezug auf das Stahlflachprodukt ist diese Aufgabe dadurch gelöst worden, dass ein solches Produkt die in Anspruch 1 angegebenen Merkmale besitzt.

[0014] In Bezug auf das Verfahren besteht die erfindungsgemäße Lösung der voranstehend angegebenen Aufgabe darin, dass bei der Herstellung erfindungsgemäßer Stahlflachprodukte die in Anspruch 6 aufgezählten Arbeitsschritte durchlaufen werden.

[0015] Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen genannt und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.

[0016] Ein erfindungsgemäßes Stahlflachprodukt hat im warmgewalzten Zustand ein Gefüge, das keinen Ferrit aufweist, sondern zu mindestens 95 Vol.-% aus Martensit und Bainit mit einem Martensitanteil von mindestens 5 Vol.-% besteht. Im Gefüge eines erfindungsgemäßen Stahlflachprodukts sind in Summe bis zu 5 Vol.-% Restaustenit sowie herstellungsbedingt unvermeidbare Gefügebestandteile zugelassen.

[0017] Dabei enthält ein erfindungsgemäßes Stahlflachprodukt neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) 0,08 - 0,10 % C, 0,015 - 0,50 % Si, 1,20 - 2,00 % Mn, 0,020 - 0,040 % Al, 0,30 - 1,00 % Cr, 0,20 - 0,30 % Mo, 0,020 - 0,030 % Nb, 0,0015 - 0,0025 % B, bis zu 0,025 % P, bis zu 0,010 % S, bis zu 0,006 % N, insbesondere 0,001 - 0,006 % N. Zu den Verunreinigungen zählen bis zu 0,12 % Cu, bis zu 0,090 % Ni, bis zu 0,0030 % Ti, bis zu 0,009 % V, bis zu 0,0090 % Co, bis zu 0,004 % Sb und bis zu 0,0009 % W.

[0018] Ein erfindungsgemäßes Stahlflachprodukt weist im warmgewalzten Zustand eine Mindeststreckgrenze von 900 MPa bei gleichzeitig guter Bruchdehnung auf. Typischerweise liegen die Streckgrenzen erfindungsgemäßer Stahlflachprodukte im Bereich von 900 - 1200 MPa. Die Bruchdehnung beträgt typischerweise mindestens 8 % und die Zugfestigkeit beträgt typischerweise 950 - 1300 MPa. Die Kerbschlagarbeit bei -20°C liegt ebenso typischerweise im Bereich von 65 - 115 J. Bei -40°C beträgt die Kerbschlagarbeit bei erfindungsgemäßen Stahlflachprodukten typischerweise 40 - 120 J.

[0019] Diese Eigenschaftskombination macht erfindungsgemäße Stahlflachprodukte besonders für den Leichtbau im Bereich der Nutzfahrzeugfertigung oder anderen Anwendungen geeignet, bei denen der jeweilige Baukörper bei geringem Eigengewicht hohe Kräfte aufnehmen muss, die statisch oder dynamisch wirken.

[0020] Ein wesentlicher Vorteil der Erfindung gegenüber dem bekannten Stand der Technik besteht dabei darin, dass ein erfindungsgemäßes Stahlflachprodukt die hohe Festigkeit und gute Zähigkeit im Warmwalzzustand ohne zusätzliche Wärmebehandlung erreicht.

[0021] Das in der voranstehend beschriebenen Weise optimierte Eigenschaftsspektrum wird dadurch erreicht, dass erfindungsgemäßer Stahl ein Gefüge aus Bainit und mindestens 5 Vol.-% Martensit besitzt, jedoch keinen Ferrit aufweist. Der Martensitanteil im Gefüge des erfindungsgemäßen Stahls trägt dabei entscheidend zu dessen Festigkeit bei.

[0022] Gleichzeitig ist das Gefüge des erfindungsgemäßen Stahlflachprodukts feinkörnig und gewährleistet so eine gute Bruchdehnung und Zähigkeit. So beträgt die mittlere Korngröße des Gefüges maximal 20 µm.

[0023] Voraussetzung für die optimierte Eigenschaftskombination eines erfindungsgemäßen Stahlflachprodukts ist eine in erfindungsgemäßer Weise entsprechend den nachfolgenden Maßgaben und Erläuterungen abgestimmte Stahlzusammensetzung:
C:
Ein erfindungsgemäßes Stahlflachprodukt enthält mindestens 0,08 Gew.-% Kohlenstoff, damit die gewünschten Festigkeitseigenschaften erzielt werden. Gleichzeitig ist der Kohlenstoffgehalt auf höchstens 0,10 Gew.-% beschränkt, um negative Einflüsse auf die Zähigkeitseigenschaften, die Schweißbarkeit und die Umformbarkeit zu vermeiden.
Si:
Silizium dient einerseits bei der Erzeugung des Stahls, aus dem ein erfindungsgemäßes Stahlflachprodukt besteht, als Desoxidationsmittel. Andererseits trägt es zur Steigerung der Festigkeitseigenschaften bei. Um dies zu erreichen, sind mindestens 0,015 Gew.-% Si im erfindungsgemäßen Stahlflachprodukt erforderlich. Wenn der Siliziumgehalt zu hoch ist, werden jedoch die Zähigkeitseigenschaften und die Zähigkeit in der Wärmeeinflusszone bzw. Schweißbarkeit stark beeinträchtigt. Aus diesem Grund sollte der Si-Gehalt bei einem erfindungsgemäßen Stahlflachprodukt die Obergrenze von 0,50 Gew.-% nicht überschreiten. Negative Einflüsse der Anwesenheit von Si auf die Oberflächenqualität können dabei dadurch sicher vermieden werden, dass der Si-Gehalt auf höchstens 0,25 Gew.-% beschränkt wird.
Mn:
Mangan in Gehalten von 1,20 - 2,0 Gew.-% trägt dazu bei, dass das erfindungsgemäße Stahlflachprodukt die gewünschten Festigkeitseigenschaften bei guten Zähigkeitseigenschaften hat. Wenn der Mn-Gehalt weniger als 1,20 Gew.-% beträgt, so werden die Festigkeitseigenschaften nicht erreicht. Überschreitet der maximale Mangangehalt 2,0 Gew.-%, so besteht die Gefahr, dass die Schweißbarkeit, die Zähigkeitseigenschaften, die Umformbarkeit und das Seigerungsverhalten verschlechtert werden.
P:
Höhere Gehalte an dem Begleitelement Phosphor würden die Kerbschlagarbeit und Umformbarkeit eines erfindungsgemäßen Stahlflachprodukts verschlechtern. Daher ist der Phosphorgehalt auf höchstens 0,025 Gew.-% beschränkt. Negative Einflüsse der Anwesenheit von P sind dabei dann besonders sicher ausgeschlossen, wenn der P-Gehalt auf weniger als 0,015 Gew.-% beschränkt ist.
S:
Auch durch höhere S-Gehalte kann die Kerbschlagarbeit und Umformbarkeit eines erfindungsgemäßen Stahlflachprodukts in Folge der Bildung von MnS beeinträchtigt werden. Aus diesem Grund ist der Schwefelgehalt eines erfindungsgemäßen Stahlflachprodukts auf höchstens 0,010 Gew.-%, insbesondere weniger als 0,010 Gew.-%, beschränkt, wobei negative Einflüsse von S dann besonders sicher ausgeschlossen sind, wenn der S-Gehalt auf höchstens 0,003 Gew.-% beschränkt ist. Die Entschwefelung kann während der Stahlerzeugung in bekannter Weise beispielsweise durch eine CaSi-Behandlung bewirkt werden.
Al:
Aluminium wird bei der Erschmelzung des Stahls, aus dem ein erfindungsgemäßes Stahlflachprodukt besteht, als Desoxidationsmittel verwendet und behindert infolge von AlN-Bildung die Vergröberung des Austenitkorns beim Austenitisieren. Auf diese Weise unterstützt die Anwesenheit von Al in den erfindungsgemäß vorgegebenen Mengen die Entstehung eines feinkörnigen, den mechanischen Eigenschaften eines erfindungsgemäßen Stahlflachprodukts zu Gute kommenden Gefüges. Liegt der Aluminiumgehalt unter 0,020 Gew.-%, so laufen die erforderlichen Desoxidationsprozesse nicht vollständig ab. Übersteigt der Aluminiumgehalt jedoch die Obergrenze von 0,040 Gew.-%, können sich Al2O3-Einschlüsse bilden. Diese würden sich wiederum negativ auf den Reinheitsgrad und die Zähigkeitseigenschaften des Stahlwerkstoffs auswirken, aus denen ein erfindungsgemäßes Stahlflachprodukt jeweils besteht.
N:
Das Begleitelement Stickstoff bildet zusammen mit Al Aluminiumnitrid. Wenn jedoch der Stickstoffgehalt zu hoch ist, werden die Zähigkeitseigenschaften verschlechtert. Um die vorteilhafte Wirkung von N zu nutzen, können im Stahl mindestens 0,001 Gew.-% N vorgesehen sein. Um gleichzeitig negative Einflüsse zu vermeiden, ist bei einem erfindungsgemäßen Stahlflachprodukt die Obergrenze der N-Gehalte auf 0,006 Gew.-% festgesetzt worden.
Cr:
Durch die Zugabe von Chrom zum Stahl, aus dem ein erfindungsgemäßes Stahlflachprodukt besteht, werden dessen Festigkeitseigenschaften verbessert. Zu diesem Zweck sind mindestens 0,30 Gew.-% Cr erforderlich. Wenn jedoch der Chromgehalt zu hoch ist, werden die Schweißbarkeit und Zähigkeit in der Wärmeeinflusszone negativ beeinflusst. Daher ist erfindungsgemäß die obere Grenze des Bereichs der Cr-Gehalte auf 1,0 Gew.-% gesetzt.
Mo:
Molybdän steigert die Festigkeit und verbessert die Härte. Um dies zu nutzen, sind im Stahl, aus dem ein erfindungsgemäßes Stahlflachprodukt besteht, erfindungsgemäß mindestens 0,20 Gew.-% Mo vorhanden. Wird Molybdän jedoch in einem zu hohen Anteil zugesetzt, dann verschlechtert sich bei einer Verschweißung die Zähigkeit im Bereich der Wärmeeinflusszone der jeweiligen Schweißnaht. Daher ist die Obergrenze für den Molybdängehalt erfindungsgemäß auf 0,30 % festgesetzt.
Nb:
Niob ist in einem erfindungsgemäßen Stahlflachprodukt vorhanden, um die Festigkeitseigenschaften durch Austenitkornfeinung zu unterstützen. Diese Wirkung tritt ein, wenn der Nb-Gehalt 0,020 - 0,030 Gew.-% beträgt. Wird die Obergrenze dieses Bereichs überschritten, verschlechtern sich Schweißbarkeit und Zähigkeit in der Wärmeeinflusszone einer an einem erfindungsgemäßen Stahlflachprodukt vorgenommenen Verschweißung.
B:
Der Borgehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts beträgt 0,0015 - 0,0025 Gew.-%, um die Festigkeitseigenschaft und die Härtbarkeit eines erfindungsgemäßen Stahlflachprodukts zu optimieren. Zu hohe Borgehalte verschlechtern die Zähigkeitseigenschaften, wogegen bei zu geringen B-Gehalten dessen positive Einflüsse nicht bemerkbar sind.


[0024] Kupfer, Nickel, Titan, Vanadin, Kobalt, Wolfram, Antimon werden dem Stahl, aus dem ein erfindungsgemäßes Stahlflachprodukt besteht, nicht gezielt zulegiert, sondern treten als herstellungsbedingt unvermeidbare Begleitelemente auf. Insbesondere der Cu-Gehalt ist auf 0,12 Gew.-% begrenzt, um negative Einflüsse auf die Schweißbarkeit und Zähigkeit in der Wärmeeinflusszone einer an dem Stahlflachprodukt vorgenommenen Verschweißung zu vermeiden. Die anderen herstellungsbedingt unvermeidbar vorhandenen, voranstehend genannten Legierungsbestandteile sind in ihren Gehalten ebenfalls jeweils so zu begrenzen, dass sie jeweils keinen Einfluss auf die Eigenschaften des erfindungsgemäßen Stahlflachprodukts haben.

[0025] Der jeweilige C-Gehalt %C, der jeweilige Mn-Gehalt %Mn, der jeweilige Cr-Gehalt %Cr, der jeweilige Mo-Gehalt %Mo, der jeweilige V-Gehalt %V, der jeweilige Cu-Gehalt %Cu und der jeweilige Ni-Gehalt %Ni der erfindungsgemäßen Stahlzusammensetzung sind dabei optimalerweise jeweils in Gew.-% so eingestellt, dass das gemäß der Formel


berechnete Kohlenstoffäquivalent CE||W die Bedingung erfüllt:



[0026] Durch eine derartige Abstimmung der Legierungsgehalte eines erfindungsgemäßen Stahlflachprodukts wird eine besonders gute Schweißbarkeit erreicht.

[0027] Für die Herstellung eines erfindungsgemäß beschaffenen Stahlflachprodukts werden erfindungsgemäß folgende Arbeitsschritte durchlaufen:
a) Vergießen einer Stahlschmelze, die neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)
C: 0,08 - 0,10 %
Si: 0,015 - 0,50%
Mn: 1,20 - 2,00 %
Al: 0,020 - 0,040 %
Cr: 0,30 - 1,00 %
Mo: 0, 20 - 0,30 %
Nb: 0,020 - 0,030 %
B: 0,0015 - 0,0025 %
P: bis zu 0,025 %
S: bis zu 0,010 %
N: bis zu 0,006 %, insbesondere 0,001 - 0,006 %,
enthält, zu einer Bramme.
b) erforderlichenfalls Erwärmen der Bramme auf eine 1200 - 1300 °C betragende Austenitisierungstemperatur.
c) Vorwalzen der derart erwärmten Bramme bei einer 950 - 1250 °C betragenden Vorwalztemperatur, wobei der über das Vorwalzen erzielte Gesamtumformgrad eV mindestens 50 % beträgt.
d) Fertigwarmwalzen der vorgewalzten Bramme zu einem Warmband, wobei die Endwalztemperatur des Warmwalzens 810 - 875 °C beträgt, der über das Fertigwalzen erzielte Gesamtumformgrad eF mindestens 70 % beträgt und das Warmwalzen ohne eine Benetzung des Walzguts mit Schmiermittel erfolgt.
e) Intensives Abkühlen des fertig warmgewalzten Warmbands mit einer Abkühlgeschwindigkeit von mindestens 40 K/s auf eine Haspeltemperatur von 200 - 500 °C, wobei die Kühlung innerhalb von 10 s nach dem Ende des Warmwalzens einsetzt.
f) Haspeln des auf die Haspeltemperatur abgekühlten Warmbands.

[0028] Im Zuge des erfindungsgemäßen Verfahrens werden somit zunächst aus einer Stahlschmelze, die nach Maßgabe der oben zusammengefassten Erläuterungen zu den Einflüssen der einzelnen Legierungselemente legiert ist, Brammen gegossen, die anschließend, soweit sie zuvor auf eine zu niedrige Temperatur abgekühlt sind, auf eine 1200 °C bis 1300 °C betragende Austenitisierungstemperatur wiedererwärmt. Der untere Grenzwert des für die Austenitisierungstemperatur erfindungsgemäß einzuhaltenden Bereichs ist dabei so festgesetzt, dass die vollständige Auflösung von Legierungselementen im Austenit und die Homogenisierung des Gefüges gewährleistet sind. Der obere Grenzwert des Bereichs der Austenitisierungstemperatur sollte nicht überschritten werden, um die Vergröberung des Austenitkorns und eine erhöhte Zunderbildung zu vermeiden.

[0029] Erfindungsgemäß liegt die Vorwalztemperatur im Temperaturbereich von 950°C bis 1250°C.

[0030] Das Vorwalzen erfolgt dabei mit einem Gesamtumformgrad eV von mindestens 50 %, wobei sich der Gesamtumformgrad eV, d.h. bei einem in mehreren Walzstichen durchgeführten Vorwalzen die Summe der über das Vorwalzen erzielten Stichabnahmen, nach folgender Formel bestimmt:


mit
h0:
Einlaufdicke des Walzgutes beim Vorwalzen in mm,
h1:
Auslaufdicke des Walzgutes beim Vorwalzen in mm.


[0031] Die untere Grenze des Bereichs der Vorwalztemperatur und der Mindestwert der Summe der über das Vorwalzen erzielten Stichabnahmen (Gesamtumformgrad eV) sind so festgesetzt, dass die Rekristallisationsvorgänge noch vollständig ablaufen können. Dadurch entsteht vor dem Fertigwalzen ein feinkörniger Austenit, der sich positiv auf die Zähigkeitseigenschaften sowie die Bruchdehnung auswirkt.

[0032] Erfindungsgemäß liegt die Endwalztemperatur des in einer üblicherweise mehrere Walzgerüste umfassenden Walzstaffel durchgeführten Warmwalzens bei 810 °C bis 875 °C. Die obere Grenze des erfindungsgemäß für die Endwalztemperatur vorgegebenen Bereichs ist dabei so festgesetzt, dass keine Rekristallisation des Austenits beim Walzen in der Fertigwarmwalzstraße stattfindet. Dementsprechend entsteht ein feinkörniges Gefüge nach der Phasenumwandlung. Die untere Grenze des Bereichs der Endwalztemperatur beträgt 810°C. Bei dieser Temperatur bildet sich beim Warmwalzen noch kein Ferrit, so dass das Warmband beim Austritt aus der Warmwalzstraße ferritfrei ist.

[0033] Der über die aufeinanderfolgenden Walzschritte des Fertigwarmwalzens insgesamt erzielte Gesamtumformgrad eF beträgt erfindungsgemäß mindestens 70 %, wobei hier der Gesamtumformgrad eF nach der Formel


mit
h0:
Dicke des Walzgutes beim Einlauf in die Fertigwarmwalzstaffel in mm,
h1:
Dicke des Walzgutes beim Auslauf aus der Fertigwarmwalzstaffel in mm.
berechnet wird. Durch den hohen erfindungsgemäß über das Fertigwarmwalzen zu erzielenden Gesamtumformgrad eF findet die Phasenumwandlung aus stark umgeformtem Austenit statt. Dies wirkt sich positiv auf die Feinkörnigkeit aus, so dass im Gefüge des erfindungsgemäß erzeugten Stahlflachprodukts geringe Korngrößen vorliegen.

[0034] Im Anschluss an das Warmwalzen erfolgt eine intensive Kühlung, die innerhalb von 10 s nach dem Ende des Warmwalzens einsetzt und mit Abkühlgeschwindigkeiten von mindestens 40 K/s solange fortgesetzt wird, bis die jeweils geforderte Haspeltemperatur von 200 °C bis 500 °C erreicht ist. Dabei entsteht gemäß der vorliegenden Erfindung ein bainitisch-martensitisches Gefüge mit einem Gefügeanteil an Bainit und Martensit, der in Summe mindestens 95 Vol.-% unmittelbar vor dem Haspeln beträgt. Die Abkühlung erfolgt dabei so schnell, dass auch auf dem Weg zum Haspeln im Gefüge des warmgewalzten Stahlflachprodukts kein Ferrit entsteht. Die Abkühlgeschwindigkeit sollte bei der nach dem Warmwalzen und vor dem Haspeln durchgeführten Abkühlung nicht weniger als 40 K/s betragen, um die Entstehung unerwünschter Gefügebestandteile, wie z.B. Ferrit zu vermeiden. Die obere Grenze für die Abkühlgeschwindigkeit liegt in der Praxis bei 75°K/s und sollte nicht überschritten werden, um eine optimale Ebenheit des erfindungsgemäß erzeugten Stahlflachprodukts zu sichern.

[0035] Die Pause zwischen dem Ende des Warmwalzens und dem Beginn des Abkühlens sollte 10 s nicht überschreiten, um auch hier zu verhindern, dass sich unerwünschte Gefügebestandteile im Stahlflachprodukt bilden.

[0036] Das Gefüge des so abgekühlten erfindungsgemäßen warmgewalzten Stahlflachprodukts besteht bei Ankunft in der Haspelstation, in der das Stahlflachprodukt zu einem Coil gewickelt wird, bereits regelmäßig zu mindestens 95 Vol.-% aus Bainit und Martensit.

[0037] Der erfindungsgemäß vorgeschriebene Bereich der Haspeltemperatur ist dabei so gewählt, dass das angestrebte bainitisch - martensitische Gefüge im fertigen erfindungsgemäßen Stahlflachprodukt sicher vorliegt. Bei einer oberhalb von 500°C liegenden Haspeltemperatur würde das gewünschte bainitisch - martensitische Gefüge nicht erreicht mit der Folge, dass auch die erfindungsgemäß angestrebten mechanischen Eigenschaften, wie hohe Festigkeit und Zähigkeit, nicht erreicht würden. Die untere Grenze der Haspeltemperatur soll nicht unterschritten werden, um eine optimale Ebenheit und Oberfläche des erfindungsgemäßen Stahlflachprodukts ohne nachträgliche Behandlung zu sichern und gleichzeitig den gewünschten Anlasseffekt im Coil zu erzielen.

[0038] Während des Haspelns und beim folgenden Abkühlen im Coil wandeln die bis dahin neben Bainit und Martensit vorhandenen restlichen Gefügeanteile in Martensit, Bainit oder Restaustenit sowie sonstige herstellungsbedingt unvermeidbare, jedoch im Hinblick auf die Eigenschaften des erfindungsgemäßen Stahlflachprodukts unwirksame Bestandteile um.

[0039] Die Dicke erfindungsgemäß erzeugter warmgewalzter Stahlflachprodukte beträgt typischerweise 2 - 12 mm.

[0040] Im Zuge der Herstellung von erfindungsgemäßen hochfesten Stahlflachprodukten wird das jeweils erzeugte Warmband folglich direkt aus der Walzhitze nach dem thermomechanischen Walzen, das durch die Kombination eines erfindungsgemäß durchgeführten Vorwalzens mit einem ebenso erfindungsgemäß durchgeführten Fertigwarmwalzen bewerkstelligt ist, mit hohen Abkühlgeschwindigkeiten gekühlt, und zwar so, dass das gewünschte Gefüge und folglich die mechanischen Eigenschaften ohne nachträgliche Wärmebehandlung eingestellt sind.

[0041] Da das Warmwalzen in der Warmwalzfertigstraße erfindungsgemäß gezielt ohne Auftrag von Schmiermittel auf das Warmband erfolgt, ist die Oberfläche des Stahlflachprodukts bei Austritt aus der Warmwalzstaffel schmiermittelfrei. Der Verzicht auf Schmiermittel hat den Vorteil, dass der mit dem Auftrag von Schmiermittel im Walzprozess verbundene Aufwand entfällt und so eine höhere Wirtschaftlichkeit des Gesamtprozesses gesichert ist. Gleichzeitig werden durch den Verzicht auf Schmiermittel Ressourcen geschont und die Umwelt- und Klimabelastung minimiert.

[0042] Dabei hat die erfindungsgemäße Vorgehensweise bei der Herstellung von erfindungsgemäßen Stahlflachprodukten den Vorteil, dass die Phasenumwandlung nach dem Ende des Warmwalzens aus einem versetzungsreichen Austenit mit hohen Abkühlgeschwindigkeiten stattfindet. Auf diese Weise werden ein feinkörniges bainitisch-martensitisches Gefüge und gute Zähigkeits- bzw. Bruchdehnungseigenschaften erzielt. Dabei setzt das erfindungsgemäße Verfahren eine Zusammensetzung des erfindungsgemäß erzeugten Stahlflachprodukts voraus, die sich durch in vergleichbar geringen Gehalten anwesende, kostengünstige Legierungselemente auszeichnet. Teure und seltene Legierungselemente sind für die Herstellung eines erfindungsgemäßen Stahlflachprodukts nicht erforderlich, so dass auch in dieser Hinsicht die mit der Erzeugung erfindungsgemäßer Stahlflachprodukte verbundenen Produktionskosten minimiert sind. Gleichzeitig trägt das erfindungsgemäß auf minimierte Legierungsgehalte setzende Legierungskonzept zu einer optimalen Schweißbarkeit erfindungsgemäßer Stahlflachprodukte bei.

[0043] Aufgrund des Wegfalls der Wärmebehandlung sind die Oberflächenbeschaffenheiten erfindungsgemäßer warmgewalzter Stahlflachprodukte gegenüber konventionell erzeugten hochfesten Warmbändern verbessert. Gleichzeitig sind die Produktionskosten verringert.

[0044] In Folge der geringen Anzahl der Arbeitsschritte und des Verzichts auf eine Schmierung während des Warmwalzens ist die mit der Herstellung erfindungsgemäßer Stahlflachprodukte verbundene Umweltbelastung ebenfalls reduziert.

[0045] Auch ist der erfindungsgemäß vorgesehene Fertigungsweg deutlich einfacher, so dass er mit weniger Aufwand und sicherem Erfolg durchgeführt werden kann.

[0046] Eines der wesentlichen Merkmale der erfindungsgemäßen Herstellweise besteht folglich darin, dass die mechanischen Eigenschaften durch den Walzprozess, die anschließende rasche Abkühlung und das Haspeln eingestellt werden. Weitere Wärmebehandlungen nach dem Haspeln sind bei erfindungsgemäßer Vorgehensweise nicht notwendig, um die gewünschten Eigenschaften des jeweiligen erfindungsgemäßen Stahlflachprodukts einzustellen. Die hohe Zähigkeit und Bruchdehnung eines erfindungsgemäßen Stahlflachprodukts wird vielmehr ohne nachträgliche Wärmebehandlung erzielt.

[0047] Mit der Erfindung steht somit ein Stahlflachprodukt mit einer Mindeststreckgrenze von 900 MPa zur Verfügung, dessen Eigenschaftsspektrum es insbesondere für den Leichtbau von Nutzfahrzeugchassis und anderen Karosserieteilen geeignet machen, die im Einsatz hohen Belastungen ausgesetzt sind.

[0048] Durch den Einsatz erfindungsgemäßer Stahlflachprodukte beim Bau von Nutzfahrzeugen lassen sich somit Bauteile mit verbesserten Oberflächenqualitäten, einem geringeren Gewicht und einem optimalen Verhalten unter statischer und dynamischer Last, insbesondere im Fall eines Crashs, herstellen. Durch konsequente Nutzung dieser Vorteile lassen sich mit Hilfe erfindungsgemäßer Stahlflachprodukte Fahrzeuge fertigen, die nicht nur ein geringes Gewicht aufweisen und damit einhergehend eine Verringerung des beim Betrieb des jeweiligen Fahrzeugs anfallenden Energieverbrauchs ermöglichen, sondern bei denen auch die Nutzlast erhöht und somit die auf das Ladungsgewicht bezogene Energieausnutzung optimiert ist.

[0049] Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.

[0050] Es sind im Labor zwei Stahlschmelzen S1, S2 erzeugt worden, deren Zusammensetzungen in Tabelle 1 angegeben sind. Die Schmelzen S1, S2 sind jeweils zu Brammen vergossen worden. Aufgrund der Laborbedingungen betrugen die Abmessungen der aus den Stählen S1, S2 jeweils gegossenen Brammen jeweils 150 mm x 150 mm x 500 mm.

[0051] Anschließend sind die Brammen jeweils auf eine Austenitisierungstemperatur TA erwärmt worden.

[0052] Die so erwärmten bzw. auf der jeweiligen Austenitisierungstemperatur TA gehaltenen Brammen sind anschließend bei Vorwalztemperaturen TV und Vorwalzumformgraden eV vorgewalzt und anschließend bei Fertigwalzumformgraden eF und Warmwalzendtemperaturen TWE zu Warmbändern W1 - W17 mit einer Dicke d von 3 - 10 mm warmgewalzt worden.

[0053] Innerhalb von 3 s nach dem Ende des Warmwalzens sind die erhaltenen Warmbänder W1 - W17 mit einer Abkühlgeschwindigkeit dT auf eine Haspeltemperatur TH beschleunigt abgekühlt worden, bei der sie anschließend jeweils zu einem Coil gewickelt worden sind.

[0054] Für jedes der so zu jeweils einem Coil gehaspelten Warmbänder W1 - W17 sind in Tabelle 2 der Stahl, aus dem das jeweilige Warmband W1 - W17 erzeugt worden ist, sowie die jeweils eingestellte Austenitisierungstemperatur TA, die Vorwalztemperatur TV, der Vorwalzumformgrad eV, die Warmwalzendtemperatur TWE, der über das Fertigwarmwalzen erzielte Gesamtumformgrad eF, die Dicke d, die Abkühlgeschwindigkeit dT und die Haspeltemperatur TH angegeben.

[0055] Nach der Abkühlung im Coil sind die mechanischen Eigenschaften sowie das Gefüge der Warmbänder W1 - W17 untersucht worden. Die Zugversuche zur Ermittlung der Streckgrenze ReH, Zugfestigkeit Rm und Bruchdehnung A sind dabei gemäß DIN EN ISO 6892-1 an Längsproben durchgeführt worden. Die Kerbschlagbiegeversuche zur Ermittlung der Kerbschlagarbeit Av bei -20°C bzw. -40°C sind an Längsproben gemäß nach DIN EN ISO 148-1 durchgeführt worden.

[0056] Die Gefügeuntersuchung erfolgte mittels Licht- und Rasterelektronenmikroskopie an Längsschliffen. Dafür wurden die Proben aus einem Viertel der Bandbreite der Warmbänder W1 - W17 entnommen und mit Nital bzw. Natriumdisulfit geätzt.

[0057] Die Bestimmung der Gefügebestandteile erfolgte mittels einer Flächenanalyse, die von H. Schumann und H. Oettel in "Metallografie" 14. Auflage, 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, beschrieben ist, in Probenlage 1/3 Blechdicke.

[0058] Die so ermittelten mechanischen Eigenschaften und Gefügebestandteile sind in Tabelle 3 zusammengefasst. Es zeigt sich, dass die erfindungsgemäß hergestellten Warmbänder W1 - W17 hohe Festigkeitseigenschaften bei guten Zähigkeitseigenschaften sowie guter Bruchdehnung aufweisen.

[0059] Das Gefüge der erfindungsgemäß produzierten Warmbänder W1 - W9 und der ebenfalls erfindungsgemäß produzierten Warmbänder W12 - W16 weist zwischen 5 bis 33 % Martensit auf, wobei der Rest jeweils aus Bainit besteht. Die erfindungsgemäß erzeugten Warmbänder haben dabei jeweils hohe Festigkeitswerte in Kombination mit guten Dehnungseigenschaften.

[0060] Dagegen besteht bei den nicht erfindungsgemäß erzeugten Warmbändern W10 (Abkühlgeschwindigkeit dT zu gering), W11 (Warmwalzendtemperatur TWE zu hoch) und W17 (Haspeltemperatur TH zu hoch) das Gefüge nur aus Bainit. Infolgedessen erreichen die nicht erfindungsgemäßen Warmbänder W10, W11 und W17 die optimale Eigenschaftskombination, die die erfindungsgemäß erzeugten Warmbänder W1 - W9 und W12 - W16 auszeichnet, nicht.
Tabelle 1
  Chemische Zusammensetzung *)
Stahl C Si Mn P S AI N Cr Mo Nb B Cu
S1 0,09 0,41 1,81 0,004 0,002 0,031 0,0018 0,35 0,25 0,025 0,0022 0,01
S2 0,09 0,20 1,47 0,004 0,001 0,030 0,0021 0,36 0,25 0,024 0,0020 0,01
*) Angaben in Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen einschl. unwirksamer Spuren an Ni, Ti, V, Co, Sb, W
Tabelle 2
Nr. Stahl TA [°C] TV [°C] eV [%] TWE [°C] eF [%] dT [K/s] TH [°C] d [mm]
W1 S1 1250 1070 57 810 80 75 500 6
W2 S1 1250 1050 57 875 80 75 440 6
W3 S1 1250 1065 57 820 80 75 440 6
W4 S1 1250 1060 57 860 80 75 240 6
W5 S1 1250 1050 57 820 80 40 400 6
W6 S1 1250 1050 57 815 80 40 360 6
W7 S1 1300 1050 57 820 80 40 460 6
W8 S1 1200 1100 64 860 88 50 490 3
W9 S1 1200 1080 50 810 71 75 400 10
W10 S1 1250 1055 57 840 80 30 450 6
W11 S1 1250 1055 43 900 85 40 500 6
W12 S2 1250 1050 57 810 80 40 340 6
W13 S2 1250 1075 57 810 80 70 520 6
W14 S2 1250 1055 57 810 80 75 405 6
W15 S2 1250 980 57 810 73 65 450 8
W16 S2 1200 1090 64 860 84 70 500 4
W17 S2 1250 1035 57 810 80 60 550 6
Tabelle 3
Nr. Stahl Zugversuch, längs Kerbschlagbiegeversuch, längs Gefügebestandteile
    ReH Rm A Av-20°C Av-40°C
    [MPa] [MPa] [%] [J] [J] [Vol. %]
W1 S1 910 954 10 82 67 5% Martensit + Bainit
W2 S1 1062 1081 9 132 128 17% Martensit + Bainit
W3 S1 1143 1156 9 76 54 25% Martensit + Bainit
W4 S1 1081 1087 9 101 75 33% Martensit + Bainit
w5 S1 1057 1116 8 118 92 24% Martensit + Bainit
W6 S1 1072 1091 9 101 84 20% Martensit + Bainit
Wo S1 949 987 9 95 42 8% Martensit + Bainit
W8 S1 983 1031 11 n.b. *) n.b. *) 6% Martensit + Bainit
W9 S1 1012 1062 10 98 67 15% Martensit + Bainit
W10 S1 721 912 11 117 84 Bainit
W11 S1 515 844 14 38 44 Bainit
W12 S2 1084 1140 8 115 121 28% Martensit + Bainit
W13 S2 1088 1121 11 66 50 15% Martensit + Bainit
W14 S2 1107 1158 9 91 40 20% Martensit + Bainit
W15 S2 1043 1096 10 70 59 12% Martensit + Bainit
W16 S2 972 1032 11 n.b. *) n.b. *) 5% Martensit + Bainit
W17 S2 671 764 15 116 65 Bainit
*) "n.b." = nicht bestimmt



Ansprüche

1. Stahlflachprodukt mit einem ferritfreien Gefüge, das zu mindestens 95 Vol.-% aus Martensit und Bainit mit einem Martensitanteil von mindestens 5 Vol.-% besteht und als Rest bis zu 5 Vol.-% Restaustenit sowie herstellungsbedingt unvermeidbare Gefügebestandteile aufweist, und mit einer Zusammensetzung, die neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)
C: 0,08 - 0,10 %
Si: 0,015 - 0,50%
Mn: 1,20 - 2,00 %
Al: 0,020 - 0,040 %
Cr: 0,30 - 1,00 %
Mo: 0,20 - 0,30 %
Nb: 0,020 - 0,030 %
B: 0,0015 - 0,0025 %
P: bis zu 0,025 %
S: bis zu 0,010 %
N: bis zu 0,006 %
enthält.
 
2. Stahlflachprodukt nach Anspruch 1, dadurch gekennzeichnet, dass für das Kohlenstoffäquivalent CE||W seiner Zusammensetzung gilt

mit


wobei mit

%C der jeweilige C-Gehalt in Gew.-%,

%Mn der jeweilige Mn-Gehalt in Gew.-%,

%Cr der jeweilige Cr-Gehalt in Gew.-%,

%Mo der jeweilige Mo-Gehalt in Gew.-%,

%V der jeweilige V-Gehalt in Gew.-%,

%Cu der jeweilige Cu-Gehalt in Gew.-% und

%Ni der jeweilige Ni-Gehalt in Gew.-% bezeichnet sind.


 
3. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Si-Gehalt höchstens 0,25 Gew.-% beträgt.
 
4. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass es mindestens 0,001 Gew.-% N aufweist.
 
5. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass seine Streckgrenze im warmgewalzten Zustand mindestens 900 MPa beträgt.
 
6. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass es im warmgewalzten Zustand 2 - 12 mm dick ist.
 
7. Verfahren zum Herstellen eines gemäß einem der voranstehenden Ansprüche beschaffenen Stahlflachprodukts umfassend folgende Arbeitsschritte:

a) Vergießen einer Stahlschmelze, die neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)

C: 0,08 - 0,10 %
Si: 0,015 - 0,50%
Mn: 1,20 - 2,00 %
Al: 0,020 - 0,040 %
Cr: 0,30 - 1,00 %
Mo: 0,20 - 0,30 %
Nb: 0,020 - 0,030 %
B: 0,0015 - 0,0025 %
P: bis zu 0,025 %
S: bis zu 0,010 %
N: bis zu 0,006 %
enthält, zu einer Bramme.

b) erforderlichenfalls Erwärmen der Bramme auf eine 1200 - 1300 °C betragende Austenitisierungstemperatur.

c) Vorwalzen der derart erwärmten Bramme bei einer 950 - 1250 °C betragenden Vorwalztemperatur, wobei der über das Vorwalzen erzielte Gesamtumformgrad eV mindestens 50 % beträgt.

d) Fertigwarmwalzen der vorgewalzten Bramme zu einem Warmband, wobei die Endwalztemperatur des Warmwalzens 810 - 875 °C beträgt, der über das Fertigwalzen erzielte Gesamtumformgrad eF mindestens 70 % beträgt und das Warmwalzen ohne eine Benetzung des Walzguts mit Schmiermittel erfolgt.

e) Intensives Abkühlen des fertig warmgewalzten Warmbands mit einer Abkühlgeschwindigkeit von mindestens 40 K/s auf eine Haspeltemperatur von 200 - 500 °C, wobei die Kühlung innerhalb von 10 s nach dem Ende des Warmwalzens einsetzt.

f) Haspeln des auf die Haspeltemperatur abgekühlten Warmbands.


 
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Stahlflachprodukt mindestens 0,001 Gew.-% N enthält.
 





Recherchenbericht









Recherchenbericht




Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente




In der Beschreibung aufgeführte Nicht-Patentliteratur