(19)
(11) EP 2 912 982 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
28.06.2017 Bulletin 2017/26

(21) Application number: 15160798.3

(22) Date of filing: 17.08.2012
(51) International Patent Classification (IPC): 
A47L 9/10(2006.01)
A47L 11/40(2006.01)

(54)

DRIVING WHEEL ASSEMBLY

LENKRADANORDNUNG

ENSEMBLE DE ROUE D'ENTRAÎNEMENT


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 01.09.2011 US 201161530019 P
05.10.2011 KR 20110101418

(43) Date of publication of application:
02.09.2015 Bulletin 2015/36

(62) Application number of the earlier application in accordance with Art. 76 EPC:
12180884.4 / 2570064

(73) Proprietor: Samsung Electronics Co., Ltd
Gyeonggi-do 443-742 (KR)

(72) Inventors:
  • Lee, Byoung In
    Gyeonggi-do (KR)
  • Jang, Hwi Chan
    Gyeonggi-do (KR)
  • Jung, Hyun Soo
    Gyeonggi-do (KR)
  • Kim, Dong Won
    Gyeonggi-do (KR)

(74) Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56) References cited: : 
EP-A2- 2 036 755
KR-A- 20070 070 658
FR-A1- 2 856 622
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    1. Field



    [0001] The following description relates to a driving wheel assembly which drives a robot cleaner.

    2. Description of the Related Art



    [0002] In general, a robot cleaner is an apparatus which intakes foreign substances, such as dust, from a floor surface to clean a region to be cleaned while autonomously travelling about the region to be cleaned without manipulation by a user.

    [0003] Such a robot cleaner includes driving wheels to drive a robot cleaner main body, and the driving wheels drive the robot cleaner main body using frictional force generated between the driving wheels and the floor surface contacting the driving wheels.

    [0004] In order for the robot cleaner to have consistent traveling performance in various floor conditions, such as a hard floor, or a carpet, for example, frictional force generated between the driving wheels and the floor surface contacting the driving wheels needs to be consistently maintained regardless of the state or condition of the floor surface. For this purpose, applying pressure to the driving wheels in a direction towards the floor surface is required.

    [0005] Conventionally, a tension coil spring is used to apply pressure to the driving wheel in the direction towards the floor surface. However, the tension coil spring may cause a wide range of applied pressure to the driving wheel according to a displacement of the driving wheel. Furthermore, in order to reduce such range of applied pressure, the length of the tension coil spring is increased. Consequently, an installation space for installing the tension coil spring is increased.

    [0006] FR-A-2856622 discloses a robot cleaner with drive wheel assemblies comprising an upper housing part, a driving motor and also first and second units connected to the housing to be rotated around the rotation shaft of the driving motor. A driving wheel is rotatably connected to the first unit and is held between first and second lower cover parts. A compression coil spring is part of a damper and is disposed in a particular position with respect to the driving wheel. The compression coil spring is used for applying pressure to the second unit during a process of rotating the first unit.

    SUMMARY



    [0007] Therefore, the following description relates to a driving wheel assembly having an improved structure which stably travels regardless of the state and condition of a floor surface, and a robot cleaner having the same. The driving wheel assembly includes a structure where a change in length of a compression coil spring is smaller than a corresponding displacement of a driving wheel. Therefore, a compact-sized robot cleaner with improved mobility on various types of floor surfaces may be designed.

    [0008] Additional aspects of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.

    [0009] In accordance with the invention, a driving wheel assembly mounted on a main body of a robot cleaner to drive the robot cleaner includes the features of claim 1.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] These and/or other aspects of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:

    FIG. 1 is a perspective view illustrating the configuration of a robot cleaner in accordance with one embodiment;

    FIG. 2 is a perspective view illustrating a driving wheel assembly in accordance with the embodiment, extracted from FIG. 1;

    FIG. 3 is an exploded perspective view of the driving wheel assembly shown in FIG. 2;

    FIG. 4 is a perspective view illustrating a sensing body and a sensed body extracted from the driving wheel assembly shown in FIG. 2; and

    FIGS. 5A and 5B are views illustrating operating states of a driving wheel according to change of a floor surface.


    DETAILED DESCRIPTION



    [0011] Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.

    [0012] FIG. 1 is a perspective view illustrating the configuration of a robot cleaner in accordance with one embodiment.

    [0013] As shown in FIG. 1, the robot cleaner 1 includes a main body 10 forming the external appearance of the robot cleaner 1, a cover 20 covering the upper portion of the main body 10, a brush unit 30 sweeping or scattering dust off a space to be cleaned, a power unit 40 supplying driving power to drive the main body 10, and driving wheel assemblies 100a and 100b driving the main body 10.

    [0014] The main body 10 forms the external appearance of the robot cleaner 1 and supports various parts installed within the main body 10.

    [0015] The cover 20 includes a transmitting window 25 transmitting light generated from an upper camera unit (not shown) to photograph an upper image perpendicular to the traveling direction of the main body 10.

    [0016] The brush unit 30 includes a main brush 35 mounted at an inlet (not shown) formed at the lower portion of the main body 10, a main brush motor (not shown) rotating the main brush 35, and a dust case 38 collecting foreign substances, such as dust gathered by the main brush 35.

    [0017] The main brush 35 sweeps or scatters dust off a floor surface under the main body 10, thereby improving dust suction efficiency. Such a main brush 35 has a drum shape, and includes a roller and brush. The brush unit 30 may further include side brushes (not shown) disposed at both sides of the main brush 35 to sweep dust off a region which the main brush 35 may not approach to improve cleaning efficiency.

    [0018] The power unit 40 includes driving motors 130 rotating driving wheels 120, and a battery 42 electrically connected to the main brush motor (not shown) rotating the main brush 35 and respective driving units driving the main body 10 and supplying driving power.

    [0019] The battery 42 is a second battery which may be rechargeable, and may be charged with power supplied from a docking station (not shown) if the main body 10 completes a cleaning process and is then connected to the docking station (not shown).

    [0020] The driving wheel assemblies 100a and 100b are respectively provided at both sides of the center of the main body 10, and allow the main body 10 to execute moving operations, such as forward movement, backward movement, or rotation, for example, during the cleaning process of the main body. Hereinafter, the driving wheel assembly 100a located at the right side in the forward movement direction of the main body 10 will be exemplarily described, and the following description may be applied to the driving wheel assembly 100b located at the left side in the forward movement direction of the main body 10 unless mentioned otherwise.

    [0021] FIG. 2 is a perspective view illustrating a driving wheel assembly in accordance with the embodiment extracted from FIG. 1, FIG. 3 is an exploded perspective view of the driving wheel assembly shown in FIG. 2, and FIG. 4 is a perspective view illustrating a sensing body and a sensed body extracted from the driving wheel assembly shown in FIG. 2.

    [0022] As shown in FIGS. 2 to 4, the driving wheel assembly 100a includes a housing 110, the driving wheel 120 driving the main body 10, a driving motor 130 connected to one side of the housing 110 and rotating the driving wheel 120, a rotary member 101 connected to the housing 110 to be rotatable around a rotation shaft 132 of the driving motor 130, and a sensing unit 150 detecting displacement of the driving wheel 120.

    [0023] The housing 110 includes an accommodation part 112 accommodating the driving wheel 120 and the rotary member 101, a first connection hole 114 to which the driving motor 130 is connected, a first connection protrusion 116 connected to the rotary member 101, and a support rib 118 supporting one end of a compression coil spring 170.

    [0024] The lower portion of the accommodation part 112 is opened such that the rotary member 101 connected to the housing 110 and the driving wheel 120 connected to the rotary member 101 may move upwards and downwards according to the kind and state of a floor surface of the space to be cleaned.

    [0025] The first connection hole 114 is formed on one side surface 110b of the housing 110, and allows the rotation shaft 132 of the driving motor 130 to be connected to the rotary member 101 within the housing 110.

    [0026] The first connection protrusion 116 protrudes from the inner plane of the other side surface 110a opposite the side surface 110b of the housing 110, to which the driving motor 130 is connected, to the inside of the housing 110 by a designated length. An accommodation hole 116a rotatably accommodating a second connection protrusion 146 of the rotary member 101 to allow the rotary member 101 to be rotated around the first connection protrusion 116 is provided at the center of the first connection protrusion 116. Further, the first connection protrusion 116 may be disposed coaxially with the first connection hole 114 and the rotation shaft 132 of the driving motor 130 passing through the first connection hole 114.

    [0027] The support rib 118 protrudes from the inner plane of the side surface 110b of the housing 110, to which the driving motor 130 is connected, to the inside of the housing 110 by a designated length, and supports one end of the compression coil spring 170 applying pressure to a first unit 140 of the rotary member 101.

    [0028] The driving wheel 120 includes a wheel part 122 directly contacting the floor surface of the space to be cleaned to execute traveling of the main body 10, and a driving shaft 124 connected to the first unit 140 of the rotary member 101 under the condition that the driving shaft 124 is fixed to the wheel part 122 to rotate the wheel part 122.

    [0029] The driving motor 130 is connected to the outer plane of the side surface 110b of the housing 110 provided with the first connection hole 114, and the rotation shaft 132 of the driving motor 130 passes through the first connection hole 114 and is connected to the first unit 140 within the housing 110. Driving force of the driving motor 130 is transmitted to the driving shaft 124 through the rotation shaft 132 and power transmission gears 144 connected to the rotation shaft 132, thus rotating the driving wheel 120.

    [0030] The first unit 140 includes a female case 142, the power transmission gears 144 engaged with each other and rotatably disposed within the female case 142, and the second connection protrusion 146 connecting the first unit 140 to the housing 110.

    [0031] The female case 142 rotatably supports the power transmission gears 144 disposed therein.

    [0032] The power transmission gears 144 are rotatably supported by the female case 142 under the condition that they are engaged with each other, and connect the rotation shaft 132 of the driving motor 130 and the driving shaft 124 of the driving wheel 120 to transmit driving force of the driving motor 130 to the driving shaft 124. The rotation shaft 132 may pass through a second connection hole 141 formed on one side surface 142b of the female case 142 and be connected to one of the power transmission gears 144, and the driving shaft 124 may pass through a third connection hole 147 formed on the other side surface 142a of the female case 142 and be connected to one of the remaining power transmission gears 44 which are not connected to the rotation shaft 132.

    [0033] The second connection protrusion 146 protrudes from the side surface 142a of the female case 142 in a direction towards the first connection protrusion 116 by a designated length, and is rotatably connected to the accommodation hole 116a formed on the first connection protrusion 116.

    [0034] A second unit 160 rotated around the rotation shaft 132 of the driving motor 130 together with the first unit 140 is provided at one side of the female case 142. The second unit 160 may be formed integrally with the first unit 140.

    [0035] The first unit 140 is rotatably connected to the housing 110 through the second connection protrusion 146, and is elastically supported by the housing 110 by the second unit 160 and the compression coil spring 170.

    [0036] The sensing unit 150 detecting displacement of the driving wheel 120 includes a sensed body 152 provided on the first unit 140, a sensing body 154 sensing the sensed body 152, and a bracket 156 fixing the sensing body 154 to the housing 110.

    [0037] The sensed body 152 includes a protruding rib 152a protruding from the side surface 142b of the female case 142 in a direction towards the side surface 110b of the housing 110, and a magnet 152b connected to one end of the protruding rib 152a.

    [0038] A driving motor accommodation part 111 accommodating the driving motor 130 is provided at one side of the housing 110, and the bracket 156 supporting and fixing the sensing body 156 is connected to the driving motor accommodation part 111.

    [0039] The sensing body 154 is fixed to one side of the bracket 156, senses a separation distance with the sensed body 152 through magnetic interaction with the magnet 152b moving together with the first unit 140 within the driving motor accommodation part 111, and converts the sensed separation distance with the sensed body 152 into a standardized parameter, such as voltage, to detect displacement of the driving wheel 120.

    [0040] Hereinafter, the structure and principle of applying pressure to the driving wheel 120 driving the robot cleaner 1 will be described in detail.

    [0041] FIGS. 5A and 5B are views illustrating operating states of the driving wheel according to a change of a floor surface. FIG. 5A illustrates the operating state of the driving wheel when the robot cleaner main body travels about a hard floor surface, and FIG. 5B illustrates the operating state of the driving wheel when the robot cleaner main body travels about a soft floor surface, such as a carpet, for example.

    [0042] As shown in FIGS. 2 to 5B, the compression coil spring 170 is accommodated in an accommodation part 182 formed by the first unit 140, the second unit 160 and the support rib 118, and applies pressure to the second unit 160.

    [0043] The compression coil spring 170 includes a fixed terminal 172 which is fixed by contact with a first support surface 118a provided on the support rib 118, and a pressing terminal 174 which presses the second unit 160 by contact with a second support surface 160a of the second unit 160. A fixed point P2 is formed on the first support surface 118a contacting the fixed terminal 172, and a pressing point P1 is formed on the second support surface 160a contacting the pressing terminal 174.

    [0044] The compression coil spring 170 in a compressed state is accommodated in the accommodation part 182 and applies pressure to the second unit 160 in the tangential direction of a trajectory T formed by the rotation shaft 132 of the driving motor 130 and the pressing point P1 during the rotating process of the second unit 160, and pressure applied to the second unit 160 by the compression coil spring 170 is transmitted to the driving wheel 120 contacting the floor surface through the first unit 140.

    [0045] The compression coil spring 170 is disposed at a position opposite to the driving wheel 120 with respect to a first straight line L1 extending from the floor surface which the driving wheel 120 contacts in the vertical direction and passing through the rotation shaft 132 of the driving motor 130. Further, the compression coil spring 170 is disposed at a position opposite to the driving wheel 120 with respect to a third straight line L3 perpendicular to a second straight line L2 connecting a first rotation point C1 around which the first unit 140 is rotated and a second rotation point C2 around which the driving wheel 120 rotatably connected to the first unit 140 is rotated, and is disposed at a position closer to the rotation shaft 132 of the driving motor 130 than the driving wheel 120.

    [0046] The second unit 160 protrudes from one side of the first unit 140 where a fourth straight line L4 connecting the first rotation point C1 and the pressing point P1 and the first unit 140 meet, in the radial direction of the trajectory T formed during the rotating process of the pressing point P1, and includes the second support surface 160a contacting the pressing terminal 174 of the compression coil spring 170.

    [0047] The pressing point P1 is formed on the second support surface 160a contacting the pressing terminal 174, as described above, and the distance between the pressing point P1 and the first rotation point C1 is shorter than the distance between the first rotation point C1 and the second rotation point C2.

    [0048] The support rib 118 protruding from the inner plane of the side surface 110b of the housing 110 adjacent to the first rotation point C1 to the inside of the housing 110, and includes the first support surface 118a contacting the fixed terminal 172 of the compression coil spring 170. The fixed point P2 is formed on the first support surface 118a contacting the fixed terminal 172.

    [0049] The second unit 160 and the support rib 118 are disposed in a direction opposite to the driving wheel 120 and the second rotation point C2 with respect to the first straight line L1 and the third straight line L3.

    [0050] Due to such a structure, as shown in FIGS. 5A and 5B, a length change D2 of the compression coil spring 170 is smaller than a displacement D1 of the driving wheel 120 according to the material or state of the floor surface. Because a change of pressure applied to the driving wheel 120 according to the displacement of the driving wheel 120 is as small as the length change of the compression coil spring 170, the main body 10 of the robot cleaner 1 may stably travel. Further, because a space in the accommodation part 112 in the housing 110, occupied by a structure applying pressure to the driving wheel 120, i.e., the first unit 140, the second unit 160, and the support rib 118, is small and the length of the compression coil spring 170 is minimized, a robot cleaner 1 having a compact size may be designed.

    [0051] As is apparent from the above description, a driving wheel assembly and a robot cleaner having the same stably apply pressure to a driving wheel regardless of displacement of the driving wheel generated according to various states and conditions of floor surfaces, and thus traveling performance of the robot cleaner may be improved.

    [0052] Further, a space within a robot cleaner main body occupied by a structure to apply pressure to the driving wheel is reduced, and thus the robot cleaner having a compact size may be designed.

    [0053] Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles of the invention, the scope of which is defined in the claims.


    Claims

    1. A driving wheel assembly (100 a, b) mounted on a main body (10) of a robot cleaner (1) to drive the robot cleaner, the driving wheel assembly comprising:

    a housing (110);

    a driving motor (130) connected to one side of the housing (110);

    a first unit (140) connected to the housing (110) to be rotated around a rotation shaft (132) of the driving motor (130), and a second unit (160) protruding from one side of the first unit (140);

    a driving wheel (120) rotatably connected to the first unit (140); and

    a compression coil spring (170) disposed at a position to apply pressure to the second unit (160), characterized in that

    said compression coil spring is disposed at a position opposite to the driving wheel (120) with respect to a first straight line (L1) extending from a floor surface which the driving wheel (120) contacts in vertical direction and pass through the rotation shaft (132) of the driving motor (130) and applies said pressure to the second unit (160) in a tangential direction of a trajectory formed by the rotation shaft (132) of the driving motor and the second unit (160) during a process of rotating the first unit (140).


     
    2. The driving wheel assembly according to claim 1, wherein the compression coil spring (170) is disposed between a support rib (118) protruding from one side of the housing (110) adjacent to the rotation shaft (132) of the driving motor to the inside of the housing and the second unit (160), and applies pressure to the second unit (160) in the tangential direction of a trajectory formed by the rotation shaft (132) of the driving motor and the second unit (160) during a process of rotating a rotary member (101), comprising said first and second units (140, 160).
     
    3. The driving wheel assembly according to claim 1, wherein the compression coil spring (170) is disposed closer to the rotation shaft (132) of the driving motor (130) than the driving wheel (120).
     
    4. The driving wheel assembly according to claim 2, wherein the compression coil spring (170) comprises:

    a fixed terminal (172) contacting the support rib (118); and

    a pressing terminal (174) contacting the second unit (160) and applying pressure to the second unit (160).


     
    5. The driving wheel assembly according to claim 4, wherein the support rib (118) comprises a first support surface (118a) supporting the fixed terminal (172), and the second unit (160) comprises a second support surface (160a) supporting the pressing terminal (174).
     
    6. The driving wheel assembly according to claim 3, wherein the compression coil spring (170) is disposed at a position opposite to the driving wheel (120) with respect to a third straight line (L3) passing through a first rotation point (C1) around which the first unit (140) is rotated and perpendicular to a second straight line (L2) connecting the first rotation point (C1) around which the first unit (140) is rotated and a second rotation point (C2) around which the driving wheel (120) is rotated.
     
    7. The driving wheel assembly according to claim 4, wherein:

    a pressing point (P1) is formed at a position where the pressing terminal (174) and the second unit (160) contact; and

    the second unit (160) protrudes from one side of the first unit (140) where a third straight line (L3) connecting a first rotation point (C1) around which the first unit (140) is rotated and the pressing point (P1) and the first unit (140) meet, in the radial direction of a trajectory formed during a process of rotating the pressing point.


     
    8. The driving wheel assembly according to claim 7, wherein the first unit (140) comprises power transmission gears (144) transmitting rotary force of the driving motor (130) to the driving wheel (120).
     


    Ansprüche

    1. Lenkradanordnung (100a, b), montiert an einem Hauptkörper (10) eines Reinigungsroboters (1) zum Bewegen des Reinigungsroboters, wobei die Lenkradanordnung aufweist:

    ein Gehäuse (110);

    einen Antriebsmotor (130), der mit einer Seite des Gehäuses (110) verbunden ist;

    eine erste Einheit (140), welche mit dem Gehäuse (110) zur Drehung um eine Drehwelle (132) des Antriebsmotors (130) verbunden ist, sowie eine zweite Einheit (160), die von einer Seite der ersten Einheit (140) vorsteht;

    ein Antriebsrad (120), welches drehbar mit der ersten Einheit (140) verbunden ist, und

    eine Druck-Spiralfeder (170), die an einer Position zur Ausübung eines Drucks auf die zweite Einheit (160) angeordnet ist,

    dadurch gekennzeichnet, dass

    die Druck-Spiralfeder (170) an einer Position gegenüber dem Antriebsrad (120) in Bezug auf eine erste gerade Linie (L1) angeordnet ist, welche sich von einer Bodenfläche erstreckt, welche das Antriebsrad (120) in vertikaler Richtung kontaktiert, und welche durch die Drehwelle (132) des Antriebsmotors (130) hindurchtritt, und welche den Druck auf die zweite Einheit (160) in einer Tangentialrichtung einer Bewegungsbahn ausübt gebildet durch die Drehwelle (132) des Antriebsmotors und die zweite Einheit (160) während eines Drehens der ersten Einheit (140).


     
    2. Lenkradanordnung nach Anspruch 1, wobei die Druck-Spiralfeder (170) zwischen einer Tragrippe (118), die an einer Seite des Gehäuses (110) benachbart zur Drehwelle (132) des Antriebsmotors zur Innenseite des Gehäuses vorsteht, und der zweiten Einheit (160) angeordnet ist, und Druck auf die zweite Einheit (160) in der Tangentialrichtung einer Bewegungsbahn ausübt gebildet durch die Drehwelle (132) des Antriebsmotors und die zweite Einheit (160) während eines Drehens eines Drehbauteils (101), welches die erste und zweite Einheit (140, 160) umfasst.
     
    3. Lenkradanordnung nach Anspruch 1, wobei die Druck-Spiralfeder (170) näher an der Drehwelle (132) des Antriebsmotors (130), als zum Antriebsrad (120) angeordnet ist.
     
    4. Lenkradanordnung nach Anspruch 2, wobei die Druck-Spiralfeder (170) umfasst:

    einen festen Endpunkt (172), welcher die Tragrippe (118) kontaktiert, und

    einen Druckendpunkt (174), welcher die zweite Einheit (160) kontaktiert und Druck auf die zweite Einheit (160) ausübt.


     
    5. Lenkradanordnung nach Anspruch 4, wobei die Tragrippe (118) eine erste Tragfläche (118a) zum Tragen des festen Endpunktes (172) aufweist und die zweite Einheit (160) eine zweite Tragfläche (160a) zum Tragen des Druckendpunktes (174) aufweist.
     
    6. Lenkradanordnung nach Anspruch 3, wobei die Druck-Spiralfeder (170) in einer Position gegenüberliegend zum Antriebsrad (120) bezüglich einer dritten geraden Linie (L3) angeordnet ist, welche durch einen ersten Drehpunkt (C1) hindurchtritt, um welchen die erste Einheit (140) drehbar ist ,und senkrecht zu einer zweiten geraden Linie (L2), welche den ersten Drehpunkt (C1), um den die erste Einheit (140) drehbar ist, und einen zweiten Drehpunkt (C2), um welchen das Antriebsrad (120) drehbar ist, verbindet.
     
    7. Lenkradanordnung nach Anspruch 4, wobei ein Druckpunkt (P1) an einer Stelle gebildet ist, wo der Druck-Endpunkt (174) und die zweite Einheit (160) in Kontakt sind, und die zweite Einheit (160) von einer Seite der ersten Einheit (140) vorsteht, wo eine dritte gerade Linie (L3) einen ersten Drehpunkt (C1), um welchen die erste Einheit (140) drehbar ist, und einen Druckpunkt (P1) verbindet, und die erste Einheit (140) in einer Radialrichtung einer Bewegungsbahn trifft, die während eines Drehens des Druckpunktes gebildet ist.
     
    8. Lenkradanordnung nach Anspruch 7, wobei die erste Einheit (140) Leistungsübertragungszahnräder (144) aufweist, die eine Drehkraft des Antriebsmotors (130) auf das Antriebsrad (120) übertragen.
     


    Revendications

    1. Ensemble roue d'entraînement (100a, b) monté sur un corps principal (10) d'un robot de nettoyage (1) pour entraîner le robot de nettoyage, l'ensemble roue d'entraînement comprenant :

    un boîtier (110) ;

    un moteur d'entraînement (130) raccordé à un côté du boîtier (110) ;

    une première unité (140) raccordée au boîtier (110) à faire tourner autour d'un arbre de rotation (132) du moteur d'entraînement (130), et une seconde unité (160) faisant saillie depuis un côté de la première unité (140) ;

    une roue d'entraînement (120) raccordée à la première unité (140) de manière à pouvoir tourner; et

    un ressort de bobine de compression (170) disposé au niveau d'une position permettant d'appliquer une pression à la seconde unité (160), caractérisé en ce que

    ledit ressort de bobine de compression est disposé à une position opposée à la roue d'entraînement (120) par rapport à une première ligne droite (L1) s'étendant depuis une surface formant plancher que la roue d'entraînement (120) contacte dans le sens vertical et passe à travers l'arbre de rotation (132) du moteur d'entraînement (130) et applique ladite pression à la seconde unité (160) dans un sens tangentiel d'une trajectoire formée par l'arbre de rotation (132) du moteur d'entraînement et la seconde unité (160) durant un procédé de rotation de la première unité (140).


     
    2. Ensemble roue d'entraînement selon la revendication 1, le ressort de bobine de compression (170) étant disposé entre une nervure de support (118) faisant saillie depuis un côté du boîtier (110) adjacent à l'arbre de rotation (132) du moteur d'entraînement vers l'intérieur du boîtier et la seconde unité (160), et applique la pression à la seconde unité (160) dans le sens tangentiel d'une trajectoire formée par l'arbre de rotation (132) du moteur d'entraînement et la seconde unité (160) durant un processus de rotation d'un élément rotatif (101), comprenant lesdites première et seconde unités (140, 160).
     
    3. Ensemble roue d'entraînement selon la revendication 1, le ressort de bobine de compression (170) étant disposé plus près de l'arbre de rotation (132) du moteur d'entraînement (130) que de la roue d'entraînement (120).
     
    4. Ensemble roue d'entraînement selon la revendication 2, le ressort de bobine de compression (170) comprenant :

    une borne fixe (172) entrant en contact avec la nervure de support (118) ; et

    une borne de compression (174) entrant en contact avec la seconde unité (160) et appliquant une pression à la seconde unité (160).


     
    5. Ensemble roue d'entraînement selon la revendication 4, la nervure de support (118) comprenant une première surface de support (118a) supportant la borne fixe (172), et la seconde unité (160) comprenant une seconde surface formant support (160a) supportant la borne de compression (174).
     
    6. Ensemble roue d'entraînement selon la revendication 3, le ressort de bobine de compression (170) étant disposé à une position opposée à la roue d'entraînement (120) par rapport à une troisième ligne droite (L3) passant à travers un premier point de rotation (C1) autour duquel la première unité (140) tourne et perpendiculaire à une seconde ligne droite (L2) raccordant le premier point de rotation (C1) autour duquel la première unité (140) tourne et un second point de rotation (C2) autour duquel la roue d'entraînement (120) tourne.
     
    7. Ensemble roue d'entraînement selon la revendication 4 :

    un point de compression (P1) étant formé à une position où la borne de compression (174) et la seconde unité (160) entrent en contact ; et

    la seconde unité (160) faisant saillie depuis un côté de la première unité (140) où une troisième ligne droite (L3) raccordant un premier point de rotation (C1) autour duquel la première unité (140) tourne et le point de compression (P1) et la première unité (140) se rencontrent, dans le sens radial d'une trajectoire formée durant un processus de rotation du point de compression.


     
    8. Ensemble roue d'entraînement selon la revendication 7, la première unité (140) comprenant des engrenages de transmission d'énergie (144) transmettant la force de rotation du moteur d'entraînement (130) à la roue d'entraînement (120).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description