

(11) EP 2 913 415 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 02.09.2015 Bulletin 2015/36

(21) Application number: 14725347.0

(22) Date of filing: 09.04.2014

(51) Int Cl.: **C22C** 9/04 (2006.01)

(86) International application number: PCT/CN2014/074942

(87) International publication number:WO 2015/100873 (09.07.2015 Gazette 2015/27)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

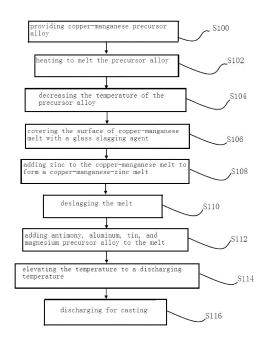
Designated Extension States:

BA ME

(30) Priority: 03.01.2014 CN 201410003372

(71) Applicants:

 JiaXing IDC Plumbing & Heating Technology Ltd Economic Development Zone Haiyan Zhejiang 314304 (CN) Taizhou IDC Investment Ltd. Yuhuan
 Zhejiang 317600 (CN)


(72) Inventor: LI, Jiade Yuhuan, Zhejiang 317600 (CN)

(74) Representative: Hocking, Adrian Niall et al Albright IP Limited Eagle Tower Montpellier Drive Cheltenham GL50 1TA (GB)

(54) LEAD-FREE BISMUTH-FREE SILICONE-FREE BRASS

(57) The invention relates to a lead-free bismuth-free silicon-free brass alloy, comprising: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium, one or more element selected from the group consisting of 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc. The brass alloy of the invention does not adopt lead, thus avoiding lead pollution. Besides, neither bismuth nor silicon is adopted, thus enabling the brass alloy to have an improved cutting performance.

Figure 1

EP 2 913 415 A1

Description

10

20

35

40

45

50

55

FIELD OF INVENTION

⁵ [0001] The invention relates to an environmentally friendly brass alloy, and particularly to a free cutting and dezincification resistant brass alloy.

BACKGROUND OF INVENTION

[0002] Generally, the brass for processing is added with metallic zinc by a percentage of 38-42%. In order to make it easy to process brass, brass usually contains 2-3% lead to enhance strength and processability. Lead-containing brass has excellent moldability (making it easy to fabricate products of various shapes), cutting performance, and abrasion resistance, so that it is widely applied to mechanical part with various shapes, accounts for a large proportion in the copper industry, and is well known as one of the most important basic material in the world. However, during the production or use of lead-containing brass, lead tends to dissolve in the solid or gas state. Medical studies have shown that lead can bring about substantial damage to the human hematopoietic and nervous systems, especially children's kidneys and other organs. Many countries in the world take the pollution and hazard caused by lead very seriously. The National Sanitation Foundation (NSF) sets a tolerance of lead element of 0.25% or less. Organizations like the Restriction of Hazardous Substances Directive (RoHS) of European Union successively stipulate, restrict and prohibit the usage of brass with a high lead content.

[0003] Furthermore, when the zinc content in brass exceeds 20 wt%, the corrosion phenomenon of dezincification is prone to occur. Especially when brass is exposed to the chloride rich environment, e.g. marine environment, the occurrence of corrosion phenomenon of dezincification may be accelerated. Dezincification may severely destroy the structure of brass alloy, so that the surface strength of brass products is reduced and the brass tube even perforates. This greatly reduces the lifetime of brass products and causes problems in application.

[0004] Therefore, there is a need to provide an alloy formula for solving the above problems, which can replace the brass with a high lead content, is dezincification corrosion resistant, and further has excellent casting performance, forgeability, cutting performance, corrosion resistance and mechanical properties.

30 SUMMARY OF INVENTION

[0005] As known in the prior art, silicon may appear in the alloy metallographic structure as γ phase (sometimes as κ phase). In this case, silicon may replace the function of lead in the alloy to an extent, and improve cutting performance of the alloy. Cutting performance of the alloy increases with the content of silicon. However, silicon has a high melting point and a low specific gravity and is prone to be oxidized. As a result, after silicon monomer is added into the furnace in the alloy melting process, silicon floats on the surface of alloy. When the alloy is melt, silicon will be oxidized into silicon oxides or other oxides, making it difficult to produce silicon-containing copper alloy. In case silicon is added in the form of Cu-Si alloy, the economic cost is increased.

[0006] Bismuth can be added to replace lead for forming cutting breakpoints in the alloy structure to improve cutting performance. However, thermal cracking is prone to occur during forging in case of a high bismuth content, which is not conducive for producing.

[0007] Thus, it is an object of the invention to provide a brass alloy which exhibits excellent performance like tensile strength, elongation rate, dezincification resistance and cutting performance, which is suitable for cutting processed products that require high strength and wear resistance, and which is suitable for constituent materials for forged products and cast products. The brass alloy of the invention can securely replace the alloy copper with a high lead content, and can completely meet the demands about restrictions on lead-containing products in the development of human society. [0008] To achieve the above object, the inventors have proposed the following lead-free bismuth-free silicon-free brass alloy.

[0009] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 1) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony and 0.1-0.5 wt% magnesium, and a balance of zinc.

[0010] In the inventive product 1, lead, silicon, and bismuth is absent, the content of copper is controlled at 60-65 wt%, and a small quantity of antimony and magnesium is added to form intermetallic compounds with copper, so that cutting performance of the alloy is improved and dezincification resistance of the alloy is simultaneously improved. In other words, in the inventive product 1, the cutting performance is improved by adding antimony and magnesium to form γ phase. The metallographic structure of the alloy mainly comprises α phase, β phase, γ phase, and soft and brittle intermetallic compounds which are distributed in grain boundaries or grains. Copper and zinc make main constituents of the brass alloy. By adding antimony and magnesium, not only the cutting performance of the alloy is improved, but

also the dezincification resistance is improved.

20

30

35

40

45

50

55

[0011] When the content of antimony is lower than 0.01 wt%, and the content of magnesium is lower than 0.1 wt%, the resulting alloy has a cutting performance which is not acceptable in the industrial production. The cutting performance of the alloy will increase with the content of antimony and magnesium. However, when the content antimony in the alloy is 0.15 wt% and the content of magnesium is 0.5 wt%, improvement in the cutting performance of the alloy reaches the saturated state.

[0012] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 2) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium, and further comprises, by the total weight of the brass alloy, 0.05-0.3 wt% phosphorus and/or 0.05-0.5 wt% manganese, and a balance of zinc.

[0013] As compared with the inventive product 1, the inventive product 2 is further added with 0.05-0.3 wt% phosphorus and/or 0.05-0.5 wt% manganese by the total weight of the brass alloy. Although phosphorus can't form γ phase, phosphorus has a function of facilitating a good distribution of γ phase for antimony and magnesium, thus increasing cutting performance of the alloy. Meanwhile, in case phosphorus is added, γ phase will disperse crystal grains of the primary α phase, thus increasing casting performance and corrosion resistance of the alloy. When the content of copper, antimony, and magnesium is 60-65 wt%, 0.01-0.15 wt%, and 0.1-0.5 wt%, respectively, and the content of phosphorus is lower than 0.05 wt%, phosphorus can not play its role effectively. While when the content of phosphorus is higher than 0.3 wt%, casting performance and corrosion resistance of the alloy will be degraded. Adding manganese helps to improve dezincification resistance and cast flowability of the alloy. When the content of manganese is lower than 0.05 wt%, manganese can not play its role effectively. While when the content of manganese is 0.5 wt%, manganese can play its role to the saturation value.

[0014] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 3) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium, and further comprises, by the total weight of the brass alloy, 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus and/or 0.001-0.01 wt% boron, and a balance of zinc.

[0015] As compared with the inventive product 1, the inventive product 3 is further added with 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus and/or 0.001-0.01 wt% boron by the total weight of the brass alloy.

[0016] Adding tin into the alloy also intends to form γ phase, thus increasing cutting performance of the alloy. Besides, adding tin obviously increases strength, plasticity, and corrosion resistance the alloy. However, since adding tin may increase cost, aluminum is added along with tin. As a result, not only cutting performance of the alloy can be improved, but also strength, wear resistance, cast flowability, and high temperature oxidation resistance of the alloy can be increased. In order to make a better use of the above effects, the content of tin and aluminum is 0.05-0.5 wt% and 0.1-0.7 wt%, respectively. Meanwhile, the alloy is further added with trace boron so as to increase corrosion resistance of the alloy. By adding boron, it is possible to better suppress alloy dezincification, increase the mechanical strength, and simultaneously alter defect structure of cuprous oxide film on the surface of copper alloy, thus forming a cuprous oxide film which is more uniform, dense, and stain resistant. When the content of boron is lower than 0.001 wt%, boron can't play its role as mentioned above. While when the content of boron is higher than 0.01 wt%, the above performance can't be further increased. Thus, the optimum content of boron is 0.001-0.01 wt%. The content of phosphorus and manganese has the same interval as that of the inventive product 2, and this is based on the same reason as that of the inventive product 2. Whether antimony, magnesium, aluminum, tin, phosphorus, manganese and/or boron should be added depends on the requirement for cutting performance of various products.

[0017] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 4) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium, and further comprises, by the total weight of the brass alloy, 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus and/or 0.001-0.01 wt% boron, and a balance of zinc, wherein the total content of manganese, aluminum, tin, phosphorus and/or boron is not larger than 2 wt% of the total weight of the brass alloy.

[0018] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 5) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium, and further comprises, by the total weight of the brass alloy, 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus and/or 0.001-0.01 wt% boron, and a balance of zinc, wherein the total content of manganese, aluminum, tin, phosphorus and/or boron is 0.2-2 wt% of the total weight of the brass alloy. [0019] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 6) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium, and further comprises, by the total weight of the brass alloy, 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus and/or 0.001-0.01 wt% boron, and a balance of zinc and unavoidable impurities, wherein the unavoidable impurities comprise: by the total weight of the brass alloy, 0.25 wt% or

less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.

30

35

45

50

55

[0020] As compared with the inventive product 3, the inventive product 6 further comprises some unavoidable impurities, i.e., mechanical impurities of nickel, chrome and/or iron.

[0021] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 7) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.05-0.5 wt% tin, and two or more elements selected from the group consisting of, by the total weight of the brass alloy, 0.1-0.7 wt% aluminum, 0.05-0.3 wt% phosphorus and 0.05-0.5 wt% manganese, and a balance of zinc.

[0022] In case that neither antimony nor magnesium is present, adding 0.05-0.5 wt% tin of the total weight of the alloy can still meet the needs for cutting performance in the industrial production. The content of tin to be added has the same interval as that of the inventive product 3, and this is based on the same reason as that of the inventive product 3. Whether aluminum, phosphorus, and manganese should be added depends on the requirement for cutting performance of various products. The content to be added has the same interval as that of the inventive product 3, and this is based on the same reason as that of the inventive product 3.

[0023] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 8) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.05-0.5 wt% tin, and two or more elements selected from the group consisting of, by the total weight of the brass alloy, 0.1-0.7 wt% aluminum, 0.05-0.3 wt% phosphorus, and 0.05-0.5 wt% manganese, and further comprises, by the total weight of the brass alloy, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium and/or 0.001-0.01 wt% boron, and a balance of zinc.

[0024] Whether antimony, magnesium, aluminum, tin, phosphorus, manganese and/or boron should be added depends on the requirement for cutting performance of various products. The content to be added has the same interval as that of the inventive product 3, and this is based on the same reason as that of the inventive product 3.

[0025] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 9) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.05-0.5 wt% tin, and two or more elements selected from the group consisting of, by the total weight of the brass alloy, 0.1-0.7 wt% aluminum, 0.05-0.3 wt% phosphorus and 0.05-0.5 wt% manganese, and further comprises, by the total weight of the brass alloy, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium and/or 0.001-0.01 wt% boron, and a balance of zinc and unavoidable impurities, wherein the unavoidable impurities comprise: 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron by the total weight of the brass alloy.

[0026] As compared with the inventive product 8, the inventive product 9 further comprises some unavoidable impurities, i.e., mechanical impurities of nickel, chrome and/or iron.

[0027] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 10) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony and 0.1-0.5 wt% magnesium, and one or more element selected from the group consisting of, by the total weight of the brass alloy, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc.

[0028] Whether aluminum, tin, phosphorus, manganese and/or boron should be added depends on the requirement for cutting performance of various produc. The content to be added has the same interval as that of the inventive product 3, and this is based on the same reason as that of the inventive product 3.

[0029] A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 11) comprises: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony and 0.1-0.5 wt% magnesium, and one or more element selected from the group consisting of, by the total weight of the brass alloy, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc and unavoidable impurities, wherein the unavoidable impurities comprise: 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron by the total weight of the brass alloy.

[0030] As compared with the inventive product 10, the inventive product 11 further comprises some unavoidable impurities, i.e., mechanical impurities of nickel, chrome and/or iron.

[0031] The invention further provides a method for fabricating brass alloy. By taking an example of the inventive product 3 as an example, the method comprises the steps of:

- 1) providing copper and manganese and heating to 1000-1050 $^{\circ}\text{C}$ to form a copper-manganese alloy melt;
- 2) decreasing the temperature of the copper-manganese alloy melt to 950-1000 °C;
- 3) covering the surface of copper-manganese alloy melt with a glass slagging agent;
- 4) adding zinc to the copper-manganese alloy melt to form a copper-manganese-zinc melt;
- 5) deslagging the copper-manganese-zinc melt, and adding antimony, aluminum, tin, magnesium to the brass alloy melt to form a metal melt;
- 6) elevating the temperature of the metal melt to 1000-1050 °C, and adding boron copper alloy, phosphorus copper alloy to form a lead-free bismuth-free silicon-free brass alloy melt;
- 7) discharging the brass alloy melt for casting to form the brass alloy.

[0032] Preferably, in the above fabricating method, a copper-manganese alloy is provided as the precursor of copper and manganese elements.

[0033] Preferably, in the above fabricating method, the melting furnace is a high-frequency melting furnace, and the high-frequency melting furnace is provided with a furnace lining of graphite crucible.

[0034] The high-frequency melting furnace has the features of a large melting rate, a large temperature elevating rate, cleanness without pollution, and the ability of self-stirring (i.e., under the action of magnetic field lines) during melting. [0035] In the invention, the lead-free bismuth-free silicon-free brass alloy is formed by adding various constituents in respective ratio, and then subjecting them to a process in a high-frequency melting furnace. The resulting brass alloy has a mechanical processability which is comparable with that of the existing lead-containing brass, has an excellent tensile strength, elongation rate, and dezincification resistance, and is lead-free. As a result, the brass alloy is suitable for replacing the existing lead-containing brass alloy and for producing parts like faucet and sanitary ware.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] Fig. 1 is a flow chart illustrating a method for fabricating an example of the inventive product 3.

DETAILED DESCRIPTION

[0037] The technical solutions of the invention will be described expressly by referring to embodiments thereof.

[0038] It is not intended to limit the scope of the invention to the described exemplary embodiments. The modifications and alterations to features of the invention as described herein, as well as other applications of the concept of the invention (which will occur to the skilled in the art, upon reading the present disclosure) still fall within the scope of the invention

[0039] In the invention, the wording "or more", "or less" in the expression for describing values indicates that the expression comprises the relevant values.

[0040] The dezincification corrosion resistant performance measurement, as used herein, is performed according to AS-2345-2006 specification in the cast state, in which 12.8 g copper chloride is added into 1000C.C deionized water, and the object to be measured is placed in the resulting solution for 24 hr to measure a dezincification depth. \odot indicates a dezincification depth of less than 100 μ m; \odot indicates a dezincification depth between 100 μ m and 200 μ m; and indicates a dezincification depth larger than 200 μ m.

[0041] The cutting performance measurement, as used herein, is performed in the cast state, in which the same cutting tool is adopted with the same cutting speed and feed amount. The cutting speed is 25 m/min (meter per minute), the feed amount is 0.2 mm/r (millimeter per number of cutting edge), the cutting depth is 0.5 mm, the measurement rod has a diameter of 20 mm, and C36000 alloy is taken as a reference. The relative cutting rate is derived by measuring the cutting resistance.

[0042] The relative cutting rate = cutting resistance of C36000 alloy/cutting resistance of the sample.

[0043] ⊚ indicates a relative cutting rate larger than 85%; and ○ indicates a relative cutting rate larger than 70%.

[0044] Both the tensile strength measurement and the elongation rate measurement, as used herein, are performed in the cast state at room temperature as an elongation measurement. The elongation rate refers to a ratio between the total deformation of gauge section after elongation ΔL and the initial gauge length L of the sample in percentage: $\delta = \Delta L/L \times 100\%$. The reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy. [0045] According to measurement, the proportions for constituents of C36000 alloyare listed as follow, in the unit of weight percentage (wt%):

Material	copper	zinc	bismuth	antimony	manganese	aluminum	tin	lead	iron
No.	(Cu)	(Zn)	(Bi)	(Sb)	(Mn)	(Al)	(Sn)	(Pb)	(Fe)
C36000 alloy	60.53	36.26	0	0	0	0	0.12	2.97	0.12

[0046] Fig. 1 is a flow chart illustrating a method for fabricating an example of the inventive product 3, which comprises the steps of:

Step S100: providing copper and manganese. In this step, a copper-manganese alloy can be provided as the precursor of copper and manganese elements.

Step S102: heating the copper-manganese precursor alloy to 1000-1050 °C to form a copper-manganese alloy melt. In this step, the copper-manganese alloy can be added into the high-frequency melting furnace, and heated to melt

5

50

55

45

10

15

20

25

30

35

in the melting furnace. The temperature can be elevated to 1000-1050 °C, and even up to 1100 °C, for 5-10 minutes, so that the copper-manganese alloy is melt into a copper-manganese alloy melt. With these actions, it is possible to prevent the melt copper manganese from absorbing a lot of external gases (due to a too high temperature), which may otherwise result in cracking in the molded alloy.

Step S104: decreasing the temperature of the copper-manganese alloy melt to 950-1000 °C. In this step, when the temperature in the melting furnace is elevated to 1000-1050 °C for a duration of 5-10 minutes, the power supply of the high-frequency melting furnace is turned off, so that the temperature in the melting furnace is reduced to 950-1000 °C, while the copper-manganese alloy melt is maintained in the melt state.

Step S106: covering the surface of copper-manganese alloy melt with a glass slagging agent. In this step, the surface of copper-manganese alloy melt is covered with the glass slagging agent at 950-1000 °C. This step can effectively prevent the melt from contacting the air, and prevent zinc to be added in the next step from boiling and evaporating due to melting at a high temperature of 950-1000 °C.

Step S108: adding zinc to the copper-manganese alloy melt to form a copper-manganese-zinc melt. In this step, zinc is added to the melting furnace, and is immersed into the copper-manganese alloy melt, so that zinc is sufficiently melt in the copper-manganese alloy melt to form a copper-manganese-zinc melt.

Step S110: deslagging the copper-manganese-zinc melt. In this step, the copper-manganese-zinc melt can be stirred and mixed under the action high-frequency induction, and then the slagging agent can be removed. Then, the copper-manganese-zinc melt is deslagged with a deslagging agent.

Step S112: adding antimony, aluminum, tin, and magnesium to the copper-manganese-zinc melt to form a metal melt. In this step, copper antimony precursor alloy, copper aluminum precursor alloy, copper tin precursor alloy, and copper magnesium alloy can be added to the copper-manganese-zinc melt.

Step S114: elevating the temperature of the metal melt to 1000-1050 °C, and adding copper boron alloy and phosphorus copper alloy to form a lead-free bismuth-free silicon-free brass alloy melt.

Step S116: discharging the brass alloy melt for casting to form the brass alloy. In this step, the brass alloy melt is stirred evenly, the discharging temperature is controlled at 1000-1050 °C, and finally the brass alloy melt is discharged to casting a lead-free bismuth-free silicon-free brass alloy which exhibits good processability, dezincification resistance, and mechanical performance.

Embodiment 1

5

10

15

20

25

30

35

40

45

[0047] Table 1-1 lists inventive products 1 with 5 different constituents which are fabricated with the above process, which are respectively numbered as 1001-1005, each constituent being in the unit of weight percentage (wt%).

Table 1-1

No).	copper (Cu)	zinc (Zn)	magnesium (Mg)	antimony (Sb)				
10	01	62.605	36.839	0.254	0.010				
10	02	64.355	34.819	0.402	0.022				
10	03	65.000	34.198	0.100	0.150				
10	04	60.000	39.373	0.122	0.103				
10	05	61.005	38.040	0.500	0.143				

[0048] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0049] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm²)	ELONGATION RATE (%)	DEZINCIFICA TION LAYER	RELATIVE CUTTING RATE
1001	348	12	0	0
1002	367	11	0	0
1003	275	21	0	0

55

(continued)

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICA TION LAYER	RELATIVE CUTTING RATE
1004	281	13	0	0
1005	328	15	0	0
C36000 alloy	394	9	×	©

Embodiment 2

5

10

15

20

25

30

35

40

45

50

[0050] Table 2-1 lists inventive products 2 with 5 different constituents which are fabricated with the above process, which are respectively numbered as 2001-2005, each constituent being in the unit of weight percentage (wt%).

Table 2-1

No.	copper (Cu)	zinc (Zn)	magnesium (Mg)	antimony (Sb)	manganese (Mn)	phosphorus (P)			
2001	60.000	39.044	0.352	0.012		0.300			
2002	64.501	34.340	0.403	0.010	0.302	0.152			
2003	63.522	35.226	0.500	0.150	0.050				
2004	65.000	34.144	0.220	0.132	0.252	0.050			
2005	61.522	37.173	0.100	0.051	0.500	0.252			

[0051] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0052] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
2001	368	12	0	0
2002	367	11	0	0
2003	335	21	0	0
2004	381	13	0	0
2005	308	15	0	0
C36000 alloy	394	9	Х	0

Embodiment 3

[0053] Table 3-1 lists inventive products 3 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 3001-3008, each constituent being in the unit of weight percentage (wt%).

0.002

0.210

0.231

0.100

0.100

0.107

38.716

60.132

5		boron (B)	0.001		0.010	0.008	0.004	0.003	
10		phosphorus (P)	0.173	0.252	0.050	0.300	0.178	-	0.203
15 20		manganese (Mn)	0.050	0.051	0.032	0.067	0.500	0.253	0.488
		tin (Sn)	0.052	0.500	0.050	0.351	1	0.235	0.111
30	Table 3-1	aluminum (AI)	0.500	0.522	0.622	0.303	0.700	0.352	
35	Te	antimony (Sb)	0.018	0.047	0.010	0.095	0.032	0.150	0.111
40		magnesium (Mg)	0.103	0.500	0.487	0.273	0.100	0.211	0.195
45		zinc (Zn)	35.309	37.758	33.233	34.577	34.673	33.244	38.339
50		copper (Cu) zinc (Zn)	63.502	000'09	65.221	63.523	63.210	000'59	60.351
55		No.	3001	3002	3003	3004	3002	3006	3007

[0054] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0055] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
3001	368	12	©	©
3002	357	11	0	0
3003	335	13	0	©
3004	381	11	0	0
3005	388	10	0	0
3006	363	11	0	0
3007	323	15	0	0
3008	319	17	0	0
C36000 alloy	394	9	×	©

Embodiment 4

[0056] Table 4-1 lists inventive products 4 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 4001-4008, each constituent being in the unit of weight percentage (wt%).

5		boron (B)		0.008	0.010	0.005	0.006	0.009		0.001
10		phosphorus(P)	0.155	0.050	0.179	0.300		0.222	0.214	0.063
15		tin (Sn)	0.050	0.355	0.500	0.454	0.300	-	0.183	0.143
20		aluminum (AI)	0.155	0.200	0.100	0.534	0.653	0.700	-	0.454
25 30	Table 4-1	manganese (Mn)	0.050	-	0.053	0.253	0.500	-	0.488	0.325
35	Та	antimony (Sb)	0.011	0.015	0.122	0.010	0.045	0.150	0.135	0.052
40		copper (Cu) zinc (Zn) magnesium (Mg)	0.302	0.253	0.271	0.500	0.233	0.244	0.135	0.100
45		zinc (Zn)	37.142	36.327	38.425	32.643	34.411	37.902	35.999	34.511
50		copper (Cu)	61.833	62.501	000'09	65.000	63.550	60.221	62.324	64.049
		lo.	101	302	003	904	305	900	200	308

[0057] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0058] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
4001	368	12	0	©
4002	327	11	0	©
4003	335	21	0	©
4004	381	13	0	0
4005	388	10	0	0
4006	377	13	0	0
4007	301	10	©	©
4008	391	9	0	0
C36000 alloy	394	9	X	©

Embodiment 5

[0059] Table 5-1 lists inventive products 5 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 5001-5008, each constituent being in the unit of weight percentage (wt%).

-			_	4
I a	h	le	5-	1

	. 43.5 0 1								
No.	copper (Cu)	zinc (Zn)	magnesiu m (Mg)	antimony (Sb)	manganes e (Mn)	aluminu m (Al)	tin (Sn)	phosphor us (P)	boron (B)
5001	61.800	37.014	0.231	0.023	0.054	0.100	0.500	0.066	0.010
5002	62.472	36.526	0.207	0.010	0.108		0.325	0.052	
5003	60.000	38.549	0.100	0.113	0.500		0.486	0.050	
5004	62.731	36.021	0.137	0.141	0.192	0.118	0.050	0.194	0.005
5005	62.498	35.400	0.273	0.150		0.700	0.416		0.001
5006	64.032	34.578	0.186	0.013	0.067	0.328	0.377	0.104	0.004
5007	65.000	33.937	0.262	0.109	0.050		0.337	0.103	
5008	64.855	32.526	0.500	0.072	0.452	0.676		0.300	0.008

[0060] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0061] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
5001	368	12	0	0
5002	297	11	0	0
5003	335	21	⊚	⊚

(continued)

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
5004	371	13	0	0
5005	328	15	0	0
5006	358	13	0	0
5007	383	12	0	0
5008	385	10	©	©
C36000 alloy	394	9	X	©

Embodiment 6

[0062] Table 6-1 lists inventive products 6 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 6001-6008, each constituent being in the unit of weight percentage (wt%).

	iron (Fe)	0.003	0.007	0.023		0.011	0.013		0.250
	chrome (Cr)		0.144	0.098	0.007	-	0.112	0.150	
	nickel (Ni)	l	-	0.005	-	0.021	600.0	0.250	0.007
	boron (B)	0.008	600.0	0.001	0.010	0.007	-	0.005	600.0
	phosphorus (P)	0.080	0.050	0.222	0.300		0.077	0.093	0.103
	tin (Sn)	0.500	0.076	0.400	-	0.050	0.087	0.342	
able 6-1	aluminum (AI)	0.132	-	0.100	0.602	0.540	-	0.700	0.687
Т	manganese (Mn)		0.500	0.321		0.431	0.311	0.101	0.050
	antimony (Sb)	0.133	0.120	0.010	0.032	0.088	0.117	0.150	0.093
	magnesium (Mg)	0.332	0.227	0.150	0.100	0.432	0.378	0.436	0.500
	zinc (Zn)	37.482	33.966	35.380	36.218	34.945	33.696	33.472	37.735
	copper (Cu)	61.030	64.501	63.000	62.231	62.875	65.000	63.740	000.09
	No.	6001	6002	6003	6004	6009	9009	2009	8009
	Table 6-1	copper (Cu)zinc (Zn)magnesium (Mg)antimony (Sb)manganese (Mn)aluminum (Al)tin (Sn)phosphorus (P)boron (P)nickel (B)chrome (Ni)	copper (Cu) Zinc (Zn) Magnesium (Mg) manganese (Mn) (Al) (Al) (B) (B) (B) (Ni) (Cr) 61.030 37.482 0.332 0.133 0.132 0.500 0.000 0.000	copper (Cu) zinc (Zn) magnesium (Mg) matimony (Mn) manganese aluminum (Mn) Al) (Al) (Al) (P) (B) (Ni) Cr) 64.501 33.966 0.227 0.120 0.500 0.076 0.050 0.050 0.009 0.144	copper (Cu) Zinc (Zn) magnesium (Mg) manganese (Mn) All (Al) tin (Sn) phosphorus (P) boron (B) chrome (Cr) 61.030 37.482 0.332 0.133 0.132 0.500 0.080 0.008 0.008 0.144 64.501 35.380 0.150 0.010 0.321 0.100 0.400 0.002 0.001 0.010 0.321 0.100 0.400 0.222 0.001 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 <t< td=""><td>copper (Cu) zinc (Zn) magnesium (Mg) mantimony (Mn) manganese aluminum (Al) tin (Sn) phosphorus (P) boron (B) chrome (Cr) 61.030 37.482 0.332 0.133 0.132 0.500 0.080 0.008 0.144 64.501 33.966 0.227 0.120 0.500 0.076 0.005 0.009 0.144 63.000 35.380 0.150 0.010 0.0321 0.100 0.400 0.222 0.001 0.005 0.007 0.009 0.007 0.009 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007</td><td>copper (Cu) Zinc (Zn) magnesium (Mg) matimony (Mn) manganese (Mn) aluminum (Hn) tin (Sn) phosphorus (P) boron (P) ich (Sn) chrome (Cn) 61.030 37.482 0.332 0.133 0.132 0.500 0.080 0.008 0.008 0.144 64.501 35.380 0.150 0.010 0.321 0.100 0.400 0.400 0.022 0.001 0.0321 0.100 0.400 0.222 0.001 0.098 0.008 0.001 0.008 0.008 0.008 0.008 0.008 0.007<</td><td>copper (Cu) Zinc (Zn) magnesium (Mg) antimony (Mn) manganese aluminum (Al) tin (Sn) phosphorus (P) boron (P) nickel (Cr) chrome (Cr) 64.501 37.482 0.332 0.133 0.132 0.500 0.080 0.080 0.008 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.040 0.050 0.09 0.144 0.144 0.040 0.050 0.144 0.044 0.040 0.050 0.044 0.044 0.005 0.005 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.009 0.007 </td><td>copper (Cu) Zinc (Zn) magnesium (Mg) matimony (Sb) (Mn) (Al) tin (Sn) phosphorus (P) boron (Ni) chrome (Cr) (Cu) 37.482 0.332 0.133 0.132 0.500 0.080 0.080 0.080 0.008 0.144 0.120 0.010<!--</td--></td></t<>	copper (Cu) zinc (Zn) magnesium (Mg) mantimony (Mn) manganese aluminum (Al) tin (Sn) phosphorus (P) boron (B) chrome (Cr) 61.030 37.482 0.332 0.133 0.132 0.500 0.080 0.008 0.144 64.501 33.966 0.227 0.120 0.500 0.076 0.005 0.009 0.144 63.000 35.380 0.150 0.010 0.0321 0.100 0.400 0.222 0.001 0.005 0.007 0.009 0.007 0.009 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	copper (Cu) Zinc (Zn) magnesium (Mg) matimony (Mn) manganese (Mn) aluminum (Hn) tin (Sn) phosphorus (P) boron (P) ich (Sn) chrome (Cn) 61.030 37.482 0.332 0.133 0.132 0.500 0.080 0.008 0.008 0.144 64.501 35.380 0.150 0.010 0.321 0.100 0.400 0.400 0.022 0.001 0.0321 0.100 0.400 0.222 0.001 0.098 0.008 0.001 0.008 0.008 0.008 0.008 0.008 0.007<	copper (Cu) Zinc (Zn) magnesium (Mg) antimony (Mn) manganese aluminum (Al) tin (Sn) phosphorus (P) boron (P) nickel (Cr) chrome (Cr) 64.501 37.482 0.332 0.133 0.132 0.500 0.080 0.080 0.008 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.040 0.050 0.09 0.144 0.144 0.040 0.050 0.144 0.044 0.040 0.050 0.044 0.044 0.005 0.005 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.009 0.007	copper (Cu) Zinc (Zn) magnesium (Mg) matimony (Sb) (Mn) (Al) tin (Sn) phosphorus (P) boron (Ni) chrome (Cr) (Cu) 37.482 0.332 0.133 0.132 0.500 0.080 0.080 0.080 0.008 0.144 0.120 0.010 </td

[0063] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0064] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
6001	355	13	0	0
6002	398	10	0	0
6003	391	11	0	0
6004	337	13	0	0
6005	322	16	0	0
6006	383	13	0	0
6007	337	12	0	0
6008	301	17	0	0
C36000 alloy	394	9	Х	©

Embodiment 7

5

10

15

20

25

30

35

40

45

50

[0065] Table 7-1 lists inventive products 7 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 7001-7008, each constituent being in the unit of weight percentage (wt%).

Table 7-1

No.	copper (Cu)	zinc (Zn)	manganese (Mn)	aluminum (Al)	tin (Sn)	phosphorus (P)
7001	62.000	37.596	0.050	0.207	0.050	0.095
7002	63.431	35.903	0.223	0.332	0.109	
7003	61.118	38.160	0.217	0.100	0.403	
7004	60.000	39.525		0.157	0.233	0.083
7005	63.043	35.974	0.431		0.500	0.050
7006	65.000	33.620	0.500	0.541	0.337	
7007	62.043	36.929	0.087	0.432	0.207	0.300
7008	64.754	33.867	0.093	0.700	0.331	0.253

[0066] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0067] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
7001	311	12	0	0
7002	352	11	0	0
7003	365	21	0	0

(continued)

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
7004	334	13	0	©
7005	295	11	0	
7006	293	10	0	
7007	354	12	0	
7008	389	10	©	⊚
C36000 alloy	394	9	X	0

Embodiment 8

[0068] Table 8-1 lists inventive products 8 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 8001-8008, each constituent being in the unit of weight percentage (wt%).

5		boron (B)	1	0.001	0.009	0.008	0.007	0.005	0.010	1
10		phosphorus (P)	0.087	1	0.050	0.211	0.300	0.198	0.188	0.067
15		tin (Sn)	0.050	0.377	0.094	0.178	0.203	0.095	0.500	0.498
20		aluminum (AI)	0.350	0.231	0.100	0.493	0.700	0.337	0.205	
25 30	Table 8-1	manganese (Mn)	0.055	0.105	0.374	-	0.109	0.500	0.089	0.050
35	Та	antimony (Sb)	0.150	-	0.050	0.010	0.130	-	0.075	0.053
40		magnesium (Mg)	0.450	0.100	0.243	-	0.500	0.337	0.295	0.250
45		zinc (Zn)	35.186	39.184	37.521	36.508	35.691	33.526	34.703	35.416
50		copper (Cu)	63.120	000'09	61.157	62.300	62.138	000'59	63.433	63.064
55		No.	8001	8002	8003	8004	8005	8008	8007	8008

[0069] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0070] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
8001	374	12	0	0
8002	299	24	0	©
8003	310	19	©	©
8004	311	13	©	©
8005	399	15	©	©
8006	384	10	©	©
8007	367	11	0	0
8008	353	14	0	0
C36000 alloy	394	9	×	⊚

Embodiment 9

[0071] Table 9-1 lists inventive products 9 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 9001-9008, each constituent being in the unit of weight percentage (wt%).

		iron (Fe)	0.007	0.132	0.201	0.250	1	1	0.113	900.0
5		chrome (Cr)	1	0.112	0.008	0.150	1	900.0	0.103	0.001
10		nickel (Ni)	-	0.250	0.148	-	0.087	-	600.0	0.007
15		boron (B)		0.009	0.001	0.010	0.007	0.005	0.004	
20		phosphorus (P)	0.056	0.143	1	0.050	0.287	1	0.300	0.217
25		tin (Sn)	0.085	0.050	0.055	0.155	0.207	0.211	0.500	0.321
30	Table 9-1	aluminum (AI)	0.293	1	0.100	0.105	0.700	0.583	0.473	0.373
35	-	manganese (Mn)	!	0.067	0.500	0.109	0.237	0.498	!	0.050
40		antimony (Sb)	0.078	0.150	0.053	1	0.010	0.092	0.147	0.118
45		magnesium (Mg)	0.453	0.100	0.118	0.119	0.500	0.373	1	0.208
50		zinc (Zn)	38.107	37.387	36.093	36.702	32.675	33.545	38.051	35.314
55		copper (Cu)	60.321	61.050	62.223	62.350	65.000	64.487	000'09	63.185
		No.	9001	9005	9003	9004	9006	9006	2006	8006

[0072] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0073] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
9001	310	12	0	0
9002	318	11	©	©
9003	320	21	©	©
9004	341	13	©	0
9005	387	15	0	0
9006	379	13	©	©
9007	311	12	0	0
9008	386	10	0	0
C36000 alloy	394	9	×	©

Embodiment 10

[0074] Table 10-1 lists inventive products 10 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 10001-10008, each constituent being in the unit of weight percentage (wt%).

5	boron (B)	-	0.008	-	-	0.010	600.0	0.001	0.005
10	phosphorus (P)				0.067	0.050	0.203	-	0 300
15	tin (Sn)		0.050		0.310	0.106		0.088	0.500
20	aluminum (AI)			0.203	0.100	0.507	0.700	0.432	0.670
25 30	manganese (Mn)	0.056	0.050	-	0.432	0.500	0.108	0.310	0.298
35	antimony (Sb)	0.054	0.010	0.076	0.075	0.150	0.100	0.054	0.073
40	magnesium (Mg)	0.454	0.500	0.198	0.231	0.100	0.307	0.273	0.203
45	zinc (Zn)	38.035	36.677	39.148	38.183	37.982	34.510	33.440	33 251
50	copper (Cu) zinc (Zn)	61.099	62.413	60.073	000.09	60.043	63.661	65.000	64 398
55	o O	10001	10002	10003	10004	10005	10006	10007	10008

[0075] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0076] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
10001	301	22	©	0
10002	323	11	⊚	⊚
10003	300	20	0	0
10004	311	13	0	0
10005	320	10	©	©
10006	379	13	0	0
10007	387	12	©	©
10008	396	10	⊚	⊚
C36000 alloy	394	9	X	©

Embodiment 11

[0077] Table 11-1 lists inventive products 11 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 11001-11008, each constituent being in the unit of weight percentage (wt%).

	iron (Fe)	0.021	0.250	0.034		0.210	0.005	200'0	
5	chrome (Cr)		0.111	-	0.084	0.015	0.009	0.030	
10	nickel (Ni)	1	0.085	0.250	!	0.101	0.044	0.197	0.007
15	boron (B)			0.001	0.007	0.010	600.0	0.005	0.008
20	phosphorus (P)	0.067	0.050	0.134	0.233		0.300	1	0.095
25	tin (Sn)	0.079	0.204	-	0.500	0.344	0.050	-	0.133
% Table 11-1	aluminum (AI)	1	0.700	-	0.455	0.100	0.104	0.233	0.653
ਰ ਹੈ 35	manganese (Mn)	-	0.057	0.050	0.107	1	0.500	0.432	0.210
40	antimony (Sb)	0.130	0.111	0.105	0.010	0.059	0.031	0.044	0.150
45	magnesium (Mg)	0.105	0.100	0.213	0.322	0.206	0.500	0.493	0.405
50	zinc (Zn)	38.185	38.030	39.013	33.670	33.355	34.726	35.662	32.869
55	copper (Cu)	61.113	60.002	000.09	64.322	65.000	63.122	62.397	64.920
00	o Z	11001	11002	11003	11004	11005	11006	11007	11008
		_	_	_	_	_	_	_	_

[0078] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0079] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
1100	01 317	13	0	©
1100	02 320	12	©	0
1100	03 305	18	o	0
1100	04 374	13	©	©
1100	05 378	15	o	0
1100	06 381	13	©	©
1100	07 369	12	©	⊚
1100	08 391	10	©	0
C36		9	Х	©

[0080] As can be seen, the lead-free bismuth-free silicon-free brass alloy of the invention can be formed by adding various constituents in respective ratio, and then subjecting them to a process in a high-frequency melting furnace. The resulting brass alloy has a mechanical processability which is comparable with that of the existing lead-containing brass, has an excellent tensile strength, elongation rate, and dezincification resistance, and is lead-free. As a result, the brass alloy is suitable for replacing the existing lead-containing brass alloy and for producing parts like faucet and sanitary ware.

[0081] Although the invention has been described with respect to embodiments there of, these embodiments do not intend to limit the invention. The ordinary skilled in the art can made modifications and changes to the invention without departing from the spirit and scope of the invention. Thus, the protection of the invention is defined by the appended claims.

Claims

5

10

15

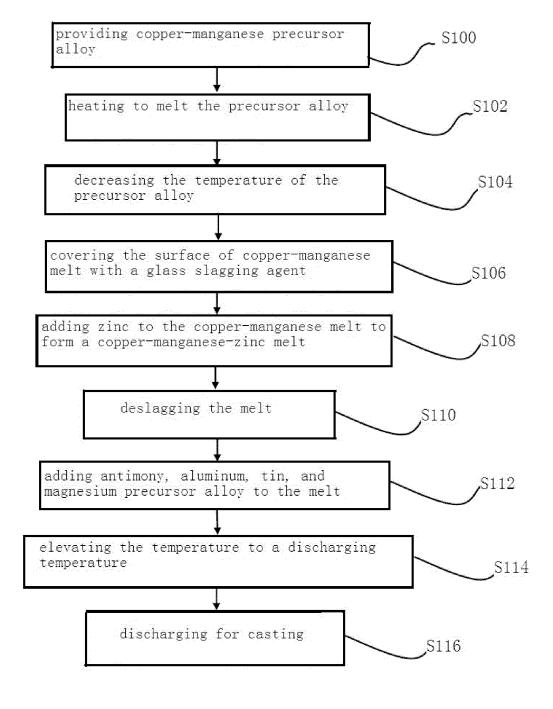
20

25

30

35

40


45

- 1. A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance, **characterized by** comprising: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium, and a balance of zinc.
- **2.** The brass alloy of claim 1, **characterized by** further comprising: 0.05-0.3 wt% phosphorus and/or 0.05-0.5 wt% manganese by the total weight of the brass alloy.
- 3. The brass alloy of claim 1, **characterized by** further comprising: 0.05-0.5 wt% manganese, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus and/or 0.001-0.01 wt% boron by the total weight of the brass alloy.
 - **4.** The brass alloy of claim 3, **characterized in that** a total content of manganese, aluminum, tin, phosphorus and/or boron is not larger than 2 wt% of the total weight of the brass alloy.
- 5. The brass alloy of claim 4, **characterized in that** a total content of manganese, aluminum, tin, phosphorus and/or boron is not less than 0.2 wt% of the total weight of the brass alloy.
 - **6.** The brass alloy of claim 3, **characterized by** further comprising: unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.
 - 7. A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance, **characterized by** comprising: by the total weight of the brass alloy, 60-65 wt% copper, 0.05-0.5 wt% tin, and two or more elements selected from the group consisting of 0.1-0.7 wt% aluminum, 0.05-0.3 wt% phosphorus and 0.05-0.5 wt% manganese by the total

weight of the brass alloy, and a balance of zinc.

- **8.** The brass alloy of claim 7, **characterized by** further comprising: 0.01-0.15 wt% antimony, 0.1-0.5 wt% magnesium and/or 0.001-0.01 wt% boron by the total weight of the brass alloy.
- **9.** The brass alloy of claim 8, **characterized by** further comprising: unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.
- **10.** A lead-free bismuth-free silicon-free brass alloy with excellent cutting performance, **characterized by** comprising: by the total weight of the brass alloy, 60-65 wt% copper, 0.01-0.15 wt% antimony and 0.1-0.5 wt% magnesium, and one or more element selected from the group consisting of 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron by the total weight of the brass alloy, and a balance of zinc.
- **11.** The brass alloy of claim 10, **characterized by** further comprising: unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.

Figure 1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2014/074942

				rc1/c	N2014/0/4942				
5	A. CLASS	A. CLASSIFICATION OF SUBJECT MATTER							
	According to	C22C 9/04 (2006.01) i According to International Patent Classification (IPC) or to both national classification and IPC							
10	B. FIELDS	B. FIELDS SEARCHED							
	Minimum do	Minimum documentation searched (classification system followed by classification symbols)							
	IPC: C22C 9/-								
45	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
15	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNPAT, CNKI, WPI, EPODOC, WANFANG: cut+, machin+, Sb, antimony, stibium, Mg, Magnesium, Sn, tin, stannum, Mn,								
	Manganese,	Manganese, Manganous, Manganum, Mangan, Al, Aluminium, Aluminum, P, phosphorus							
20	C. DOCU	MENTS CONSIDERED TO BE RELEVANT							
	Category*	Citation of document, with indication, where ap	opropriate, of the relevant	passages	Relevant to claim No.				
	X	CN 101423905 A (ZHEJIANG HAILIANG CO., LT claims 1, 2, and 4-8	CD. et al.), 06 May 2009 (06.05.2009),	1-6, 10, 11				
25	Y	CN 101423905 A (ZHEJIANG HAILIANG CO., LT claims 1, 2, and 4-8	8,9						
	X	TW 201100564 A (CHAN WEN COPPER INDUST (01.01.2011), claims 2 and 5	7						
30	Y	TW 201100564 A (CHAN WEN COPPER INDUST (01.01.2011), claims 2 and 5	TRY CO., LTD.), 01 Janua	nry 2011	8,9				
	A	CN 101298643 A (CHINALCO LUOYANG COPPI (05.11.2008), the whole document	1-11						
	A	CN 103205597 A (MODERN ISLAND CO., LTD.), document), 17 July 2013 (17.07.2013), the whole 1-11						
35	☐ Furthe	er documents are listed in the continuation of Box C.	See patent fami	ly annex.					
	"A" docum	ial categories of cited documents: nent defining the general state of the art which is not lered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention						
40	interna	application or patent but published on or after the ational filing date	"X" document of particular relevance; the claimed invo- cannot be considered novel or cannot be considered to in an inventive step when the document is taken alone						
45	which citation	nent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art						
	"P" docum	nent published prior to the international filing date er than the priority date claimed	"&" document member	er of the same par	tent family				
50	Date of the a	ctual completion of the international search	Date of mailing of the international search report						
	Name and m	05 September 2014 (05.09.2014) ailing address of the ISA/CN:	10 October 2014 (10.10.2014)						
	State Intelle	ectual Property Office of the P. R. China cheng Road, Jimenqiao	Authorized officer DANG, Xing						
55	Haidian Dis	cheng Road, Jimendiao strict, Beijing 100088, China o.: (86-10) 62019451	Telephone No.: (86-10) 62084417						

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2014/074942

5	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
10	A	US 2011129384 A1 (CHAN WEN COPPER INDUSTRY CO., LTD.), 02 June 2011 (02.06.2011), the whole document	1-11			
	A	JP H0397817 A (FURUKAWA ELECTRIC CO., LTD.), 23 April 1991 (23.04.1991), the whole document	1-11			
15						
20						
25						
30						
30						
35						
40						
45						
50						
55		A/210 (continuation of second shoot) (July 2000)				

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.

	information on patent failing members				
Patent Documents referred in the Report	Publication Date	Patent Family	Publication Date		
CN 101423905 A	06 May 2009	None			
TW 201100564 A	01 January 2011	None			
CN 101298643 A	05 November 2008	CN 100595301 C	24 March 2010		
CN 103205597 A	17 July 2013	None			
US 2011129384 A1	02 June 2011	None			
JP H0397817 A	23 April 1991	JP 2738869 B2	08 April 1998		

Form PCT/ISA/210 (patent family annex) (July 2009)