(19)
(11) EP 2 913 600 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.09.2015 Bulletin 2015/36

(21) Application number: 15156531.4

(22) Date of filing: 25.02.2015
(51) International Patent Classification (IPC): 
F24F 11/00(2006.01)
F24F 13/14(2006.01)
F24F 1/00(2011.01)
(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30) Priority: 28.02.2014 KR 20140023780

(71) Applicant: LG Electronics Inc.
Yeongdeungpo-gu Seoul 150-721 (KR)

(72) Inventor:
  • Sung, Anna
    153-802 Seoul (KR)

(74) Representative: Ter Meer Steinmeister & Partner 
Patentanwälte mbB Nymphenburger Straße 4
80335 München
80335 München (DE)

   


(54) AIR CONDITIONER AND OPERATION METHOD OF THE SAME


(57) An operation method of an air conditioner is disclosed. The operation method includes performing a cooling operation in a power wind mode selected as a wind quantity mode and swinging a discharge vane (12) within an angle range of 32 to 64 degrees from a maximum opening angle (P2) as a first step(S1, S2, S3, S4), and performing the cooling operation in a strong wind mode having lower intensity of wind than the power wind mode selected as the wind quantity mode as a second step (S5, S6), the second step (S5, S6)being executed after the first step (S1, S2, S3, S4) In a case in which the air conditioner is mounted at a high height in a high-ceilinged room, it is possible to rapidly cool an occupied zone of the room with the minimum power consumption and to prevent the occupied zone of the room from being excessively cooled.




Description

CROSS-REFERENCE TO RELATED APPLICATION



[0001] This application claims the priority benefit of Korean Patent Application No. 10-2014-0023780, filed on February 28, 2014, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION


1. Field of the invention



[0002] The present invention relates to an air conditioner and an operation method of the same and, more particularly, to an air conditioner that is capable of adjusting a wind direction through a discharge vane and an operation method of the same.

2. Description of the Related Art



[0003] In general, an air conditioner is an apparatus that processes suctioned air and supplies the processed air into a building or a room to keep indoor air fresh. The air conditioner is mainly classified as a window type air conditioner or a separate type (or split type) air conditioner.

[0004] The window type air conditioner and the separate type air conditioner are identical to each other in terms of function. However, the window type air conditioner and the separate type air conditioner are different from each other in that the window type air conditioner, which has an integrated cooling and radiating function, is directly mounted in a window of a building or a house or in a hole formed through the wall of the building or the house, whereas the separate type air conditioner is configured such that a cooling device is mounted indoors, a radiating and compressing device is mounted outdoors, the two separate devices are connected to each other via a refrigerant pipe.

[0005] The separate type air conditioner includes an indoor unit including an indoor heat exchanger and an indoor fan, an outdoor unit including a compressor, an outdoor heat exchanger, and an outdoor fan, and a refrigerant pipe connected between the indoor unit and the outdoor unit.

[0006] The indoor unit may be a wall mount type indoor unit. In this case, the indoor unit may include a discharge vane for adjusting the wind direction of air discharged through an air discharge port and a vane motor for rotating the discharge vane.

[0007] The indoor unit of the air conditioner may be mounted in a high-ceilinged room. In this case, the indoor unit may be at a high height in the room to air-condition the entirety of the room.

[0008] In a case in which a conventional air conditioner is mounted at a high height in a high-ceilinged room, however, it is not possible to rapidly and efficiently cool an occupied zone of the room, in which people mainly perform indoor activities.

SUMMARY OF THE INVENTION



[0009] Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to provide an air conditioner that is capable of, in a case in which the air conditioner is mounted at a high height in a high-ceilinged room, rapidly cooling an occupied zone of the room with the minimum power consumption and an operation method of the same.

[0010] In accordance with an aspect of the present invention, the above and other objects can be accomplished by the provision of an operation method of an air conditioner including performing a cooling operation in a power wind mode selected as a wind quantity mode and swinging a discharge vane within an angle range of 32 to 64 degrees from a maximum opening angle as a first step, and performing the cooling operation in a strong wind mode having lower intensity of wind than the power wind mode selected as the wind quantity mode as a second step, the second step being executed after the first step.

[0011] The second step may include swinging the discharge vane within an angle range of 40 to 72 degrees from the maximum opening angle.

[0012] The first step may include swinging the discharge vane at a first rotational speed, and the second step may include swinging the discharge vane at a second rotational speed lower than the first rotational speed.

[0013] The first rotational speed may be 1.5 to 2.5 times the second rotational speed.

[0014] The first step may include controlling a vane motor for rotating the discharge vane to be driven at 100 pulses per second (PPS), and the second step may include controlling the vane motor to be driven at 50 PPS.

[0015] The first step and the second step may have the same target temperature.

[0016] The first step may be commenced by pushing a Himalaya cool key once.

[0017] The first step may be ended by pushing the Himalaya cool key once more.

[0018] The first step may be ended after the first step is executed for a set time, and the second step may be commenced after the lapse of the set time.

[0019] The first step may be ended by pushing a mode key after the commencement of the first step.

[0020] The first step may be ended by pushing a fan speed key after the commencement of the first step.

[0021] The first step may be ended by pushing a temperature adjustment key after the commencement of the first step.

[0022] In accordance with another aspect of the present invention, there is provided an operation method of an air conditioner including performing a cooling operation having a set temperature as a target temperature in a power wind mode selected as a wind quantity mode and swinging a discharge vane within an angle range of a first set angle to a second set angle from a maximum opening angle at a first rotational speed as a first step, and performing the cooling operation in a strong wind mode having lower intensity of wind than the power wind mode selected as the wind quantity mode when a set time elapses after the commencement of the first step and swinging the discharge vane within an angle range of a third set angle to a fourth set angle from the maximum opening angle at a second rotational speed lower than the first rotational speed as a second step, wherein the fourth set angle is greater than the second set angle, the second set angle is greater than the third set angle, and the third set angle is greater than the first set angle.

[0023] The first set angle may be 32 degrees, the second set angle may be 64 degrees, the third set angle may be 40 degrees, and the fourth set angle may be 72 degrees.

[0024] The set temperature may be 18 °C.

[0025] The first step and the second step may have the same target temperature.

[0026] The first step may include controlling a vane motor for rotating the discharge vane to be driven at 100 PPS, and the second step may include controlling the vane motor to be driven at 50 PPS.

[0027] The first step may be commenced by pushing a Himalaya cool key once, and the first step may be ended by pushing a mode key, pushing a fan speed key, pushing a temperature adjustment key, or pushing the Himalaya cool key once more before the lapse of the set time.

[0028] The first step may be commenced by pushing the Himalaya cool key once, and the second step may be commenced when the set time elapses after the commencement of the first step in a state in which the mode key is not pushed, the fan speed key is not pushed, the temperature adjustment key is not pushed, and the Himalaya cool key is not pushed once more during the execution of the first step.

[0029] In accordance with a further aspect of the present invention, there is provided an air conditioner including an indoor unit and an outdoor unit, wherein the indoor unit includes a casing having an air suction port and an air discharge port, an indoor heat exchanger disposed in the casing, a fan disposed in the casing, a discharge vane for adjusting upward and downward wind directions of air discharged through the air discharge port, and a vane motor for rotating the discharge vane, when a Himalaya cool mode is input through an input unit, the air conditioner is operated in the Himalaya cool mode in which a set temperature is set as a target temperature, the fan is driven in a power wind mode, and the vane motor is controlled to rotate the discharge vane such that the discharge vane can swing within an angle range of 32 to 64 degrees from a maximum opening angle, and when a set time elapses after the commencement of the Himalaya cool mode, the air conditioner is operated in a Himalaya cool off mode in which the fan is driven in a strong wind mode having lower intensity of wind than the power wind mode.

[0030] The vane motor may be controlled to rotate the discharge vane such that the discharge vane can swing within an angle range of 40 to 72 degrees from the maximum opening angle in the Himalaya cool off mode.

[0031] The vane motor may be controlled to rotate the discharge vane such that the discharge vane can swing at a first rotational speed in the Himalaya cool mode, and the vane motor may be controlled to rotate the discharge vane such that the discharge vane can swing at a second rotational speed lower than the first rotational speed in the Himalaya cool off mode.

BRIEF DESCRIPTION OF THE DRAWINGS



[0032] The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a view showing an indoor unit and an outdoor unit of an air conditioner according to an embodiment of the present invention;

FIG. 2 is a sectional view showing the air conditioner according to the embodiment of the present invention when the air conditioner is stopped;

FIG. 3 is a sectional view showing the air conditioner according to the embodiment of the present invention when a discharge vane is located at the maximum opening angle;

FIG. 4 is a sectional view showing the air conditioner according to the embodiment of the present invention in a Himalaya cool mode;

FIG. 5 is a sectional view showing the air conditioner according to the embodiment of the present invention in a Himalaya cool off mode;

FIG. 6 is a control block diagram of the air conditioner according to the embodiment of the present invention;

FIG. 7 is a front view showing an input unit of the air conditioner according to the embodiment of the present invention;

FIG. 8 is a view showing the structure of a room in which experiments have been conducted on the air conditioner according to the embodiment of the present invention;

FIG. 9 is a graph showing a comparison in cooling speed between the air conditioner according to the embodiment of the present invention and a comparative example;

FIG. 10 is a graph showing a comparison in integrated power consumption between the air conditioner according to the embodiment of the present invention and the comparative example; and

FIG. 11 is a flowchart showing an operation method of an air conditioner according to an embodiment of the present invention.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



[0033] Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. In the following description of the embodiments of the present invention, the same elements are denoted by the same names and the same reference numerals, and a detailed description thereof will be omitted.

[0034] FIG. 1 is a view showing an indoor unit and an outdoor unit of an air conditioner according to an embodiment of the present invention.

[0035] An air conditioner according to an embodiment of the present invention may include an indoor unit I and an outdoor unit O. The indoor unit I and the outdoor unit O may be connected to each other via a refrigerant pipe P.

[0036] The indoor unit I may be mounted in a room for suctioning indoor air, performing heat exchange with the suctioned indoor air through an indoor heat exchanger, and discharging the heat-exchanged air into the room.

[0037] The outdoor unit O may be mounted outside the room for suctioning outdoor air, performing heat exchange with the suctioned outdoor air through an outdoor heat exchanger, and discharging the heat-exchanged air outdoors. The outdoor unit O may include a compressor for compressing a refrigerant, an outdoor heat exchanger for performing heat exchange between the refrigerant and outdoor air, an outdoor fan for blowing the outdoor air to the outdoor heat exchanger, and an expansion device for expanding the refrigerant.

[0038] FIG. 2 is a sectional view showing the air conditioner according to the embodiment of the present invention when the air conditioner is stopped, FIG. 3 is a sectional view showing the air conditioner according to the embodiment of the present invention when a discharge vane is located at the maximum opening angle, FIG. 4 is a sectional view showing the air conditioner according to the embodiment of the present invention in a Himalaya cool mode, FIG. 5 is a sectional view showing the air conditioner according to the embodiment of the present invention in a Himalaya cool off mode, FIG. 6 is a control block diagram of the air conditioner according to the embodiment of the present invention, and FIG. 7 is a front view showing an input unit of the air conditioner according to the embodiment of the present invention.

[0039] The indoor unit I may include a casing 6 having an air suction port 2 and an air discharge port 4, an indoor heat exchanger 8 disposed in the casing 6, a fan 10 disposed in the casing 6, a discharge vane 12 for adjusting upward and downward wind directions of air discharged through the air discharge port 4, and a vane motor 14 for rotating the discharge vane 12.

[0040] The casing 6 may be mounted at a wall in the room such that the casing 6 is located at a predetermined height. The indoor unit I may be a wall mount type indoor unit. The casing 6 may be mounted at the wall such that the casing 6 is located adjacent to the ceiling. The air conditioner may discharge cool air into the room in a state in which the air conditioner is located at the upper zone in the room.

[0041] The casing 6 may include a base 6A and a front panel 6B mounted to the front of the base 6A. The air suction port 2 may be formed at the front panel 6B of the casing 6. At least one air suction port 2 may be formed at the front panel 6B. The air suction port 2 may include a front air suction port formed at a front plate of the front panel 6B and a top air suction port formed at a top plate of the front panel 6B. At the casing 6 may be mounted a front cover 7 for covering the front air suction port.

[0042] The indoor heat exchanger 8 may be disposed to exchange heat with indoor air suctioned through the air suction port 2. Specifically, the indoor heat exchanger 8 may perform heat exchange between a refrigerant and indoor air. The indoor heat exchanger 8 may be connected to the compressor and the expansion device of the outdoor unit O via the refrigerant pipe P, which includes a liquid pipe and an air pipe.

[0043] The fan 10 may have a plurality of wind quantity modes. The wind quantity modes may be selectively executed. The fan 10 may be operated in any one selected from among a light wind mode, a weak wind mode, a middle wind mode, a strong wind mode, and a power wind mode (five wind quantity modes). Alternatively, the fan 10 may be operated in any one selected from among a weak wind mode, a middle wind mode, a strong wind mode, and a power wind mode (four wind quantity modes). Intensity (velocity) of wind generated by the fan 10 may be sequentially increased in order of the weak wind mode, the middle wind mode, the strong wind mode, and the power wind mode. In other words, intensity (velocity) of wind generated by the fan 10 may be sequentially decreased in order of the power wind mode, the strong wind mode, the middle wind mode, and the weak wind mode.

[0044] The discharge vane 12 may be rotated about a horizontal central axis. When the discharge vane 12 is disposed horizontally, the discharge vane 12 may guide air in a horizontal direction. On the other hand, when the discharge vane 12 is disposed vertically, the discharge vane 12 may guide air in a vertical direction. The discharge vane 12 may extend from side to side.

[0045] The discharge vane 12 may be rotated to an angle closing the air discharge port 4. The angle closing the air discharge port 4 may be an air discharge port closing angle P1 at which the air discharge port 4 is closed by the discharge vane 12. The discharge vane 12 may be rotated from the air discharge port closing angle P1 to the maximum opening angle P2. The maximum opening angle P2 may be an angle by which the discharge vane 12 is maximally rotated from the angle closing the air discharge port 4, i.e. the air discharge port closing angle P1. The maximum opening angle P2 may be a reference angle deciding a rotational angle of the discharge vane 12. The maximum opening angle P2 may be an angle of 115 or 120 degrees from the air discharge port closing angle P1. When the discharge vane 12 is located at the air discharge port closing angle P1, the discharge vane 12 may be inclined upward toward a front upper side. Specifically, when the discharge vane 12 is located at the air discharge port closing angle P1, the discharge vane 12 may form an acute angle with a horizontal plane. When the discharge vane 12 is located at the maximum opening angle P2, the discharge vane 12 may be inclined downward toward a rear lower side. Specifically, when the discharge vane 12 is located at the maximum opening angle P2, the discharge vane 12 may form an acute angle with a vertical plane.

[0046] The vane motor 14 may be a step motor. When the operation of the air conditioner is commenced, the vane motor 14 may rotate the discharge vane 12 from the air discharge port closing angle P1 to the maximum opening angle P2. When the discharge vane 12 reaches the maximum opening angle P2, the vane motor 14 may rotate the discharge vane 12 toward the air discharge port closing angle P1 by a predetermined angle. The vane motor 14 may rotate the discharge vane 12 from the maximum opening angle P2 by an angle of 8 degrees whenever a mode value of the vane motor 14 is increased one by one. For example, when the mode value of the vane motor 14 is 4, the vane motor 14 may rotate the discharge vane 12 from the maximum opening angle P2 by an angle of 32 degrees. When the mode value of the vane motor 14 is 5, the vane motor 14 may rotate the discharge vane 12 from the maximum opening angle P2 by an angle of 40 degrees. When the mode value of the vane motor 14 is 8, the vane motor 14 may rotate the discharge vane 12 from the maximum opening angle P2 by an angle of 64 degrees. When the mode value of the vane motor 14 is 9, the vane motor 14 may rotate the discharge vane

[0047] 12 from the maximum opening angle P2 by an angle of 72 degrees. The vane motor 14 may rotate the discharge vane 12 such that the discharge vane 12 can swing. For example, when the vane motor 14 is driven while having a mode value of 4 to 8, the vane motor 14 may rotate the discharge vane 12 such that the discharge vane 12 can swing within an angle range of 32 to 64 degrees from the maximum opening angle P2. When the vane motor 14 is driven while having a mode value of 5 to 8, the vane motor 14 may rotate the discharge vane 12 such that the discharge vane 12 can swing within an angle range of 40 to 72 degrees from the maximum opening angle P2.

[0048] The air conditioner may include an input unit 16 and a controller 18.

[0049] The input unit 16 may be a manipulation unit for allowing a user to input various commands, such as operation and stop, of the air conditioner. The input unit 16 may be a control panel mounted at the indoor unit I. Alternatively, the input unit 16 may be a remote controller separated from the indoor unit I. In another embodiment, the input unit 16 may be a mobile terminal or a computer communicating with the air conditioner for manipulating the air conditioner.

[0050] The controller 18 may control the air conditioner according to a command input through the input unit 16. The air conditioner may include an indoor unit controller mounted at the indoor unit I and an outdoor unit controller mounted at the outdoor unit O. The indoor unit controller and the outdoor unit controller may be connected to each other via a signal line for communication. The controller 18 may control the fan 10 and the vane motor 14 of the indoor unit I.

[0051] The input unit 16 may include a power key 22. The input unit 16 may further include a Himalaya cool key 24, a mode key 26, a fan speed key 28, and temperature adjustment keys 30 and 32 (keys 26, 28, 30, 32 designated as control keys).

[0052] The power key 22 is provided to commence the operation of the air conditioner in a state in which the air conditioner is stopped. In addition, the power key 22 is also provided to stop the air conditioner while the air conditioner is being operated.

[0053] When the power key 22 is pushed once in a state in which the air conditioner is stopped, the controller 18 may control the air conditioner to be operated. When the power key 22 is pushed once more while the air conditioner is being operated, the controller 18 may control the air conditioner to be stopped. When the air conditioner is stopped, the controller 18 may control the fan 10 to be stopped and, in addition, control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 can be rotated to the angle closing the air discharge port 4, i.e. the air discharge port closing angle P1. On the other hand, when the air conditioner is operated, the controller 18 may control the fan 10 to be driven and, in addition, control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 can be rotated to an angle opening the air discharge port 4. When the air conditioner is operated, the controller 18 may control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 can be rotated to an angle defined between the maximum opening angle P2 and the air discharge port closing angle P1 after the discharge vane 12 is rotated to the maximum opening angle P2.

[0054] The Himalaya cool key 24 may be a key provided to turn on a Himalaya cool mode. On the other hand, the Himalaya cool key 24 may be a key provided to turn off the Himalaya cool mode. When the Himalaya cool key 24 is pushed once, the Himalaya cool mode may be turned on. When the Himalaya cool key 24 is pushed once again during the execution of the Himalaya cool mode, the Himalaya cool mode may be turned off. When the Himalaya cool mode is turned off, the air conditioner may be operated in a normal cooling operation mode (a Himalaya cool off mode). That is, when the Himalaya cool mode is turned off, a normal cooling operation of the air conditioner may be performed.

[0055] The Himalaya cool mode may be a mode for controlling low-temperature air cooled by the indoor heat exchanger 8 in a set wind quantity mode and a set wind direction mode to efficiently cool an occupied zone in the room at a high speed.

[0056] The Himalaya cool mode may be a special cooling operation mode which has a set temperature as a target temperature and in which the operation of the air conditioner is controlled in the set wind quantity mode and the set wind direction mode.

[0057] The set temperature is the target temperature of the Himalaya cool mode. The set temperature may be temperature that is capable to cool the room at a high speed. For example, the set temperature may be 18 °C.

[0058] The set wind quantity mode may be a maximum wind quantity mode, which is one of the wind quantity modes having the greatest intensity of wind. For example, the set wind quantity mode may be the power wind mode selected from among the weak wind mode, the middle wind mode, the strong wind mode, and the power wind mode. Alternatively, the set wind quantity mode may be the power wind mode selected from among the light wind mode, the weak wind mode, the middle wind mode, the strong wind mode, and the power wind mode.

[0059] The set wind direction mode may be a mode for rotating the discharge vane 12 such that the discharge vane 12 can swing within an angle range of a first set angle P3 to a second set angle P4 from the maximum opening angle P2. The second set angle P4 may be greater than the first set angle P3 from the maximum opening angle P2. The first set angle P3 and the second set angle P4 may be set to rapidly cool the occupied zone and, in addition, to minimize power consumption.

[0060] The first set angle P3 may be the minimum rotational angle to which the discharge vane 12 can be rotated in the Himalaya cool mode. Specifically, the first set angle P3 may be the minimum rotational angle to which the discharge vane 12 can be rotated from the maximum opening angle P2 in a direction in which the discharge vane 12 moves to the air discharge port closing angle P1. For example, the first set angle P3 may be 32 degrees.

[0061] The second set angle P4 may be the maximum rotational angle to which the discharge vane 12 can be rotated in the Himalaya cool mode. Specifically, the second set angle P4 may be the maximum rotational angle to which the discharge vane 12 can be rotated from the maximum opening angle P2 in a direction in which the discharge vane 12 moves to the air discharge port closing angle P1. For example, the second set angle P4 may be 64 degrees.

[0062] In a case in which the vane motor 14 is a step motor, a rotational angle of which is increased by an angle of 8 degrees per mode, the wind direction mode may be set such that the vane motor 14 can be driven while having a mode value of 4 to 8, and the discharge vane 12 can swing within an angle range of 32 to 64 degrees from the maximum opening angle P2.

[0063] Meanwhile, the discharge vane 12 may swing at a set speed in the set wind direction mode. The set speed may be a speed that is capable of rapidly cooling the occupied zone and, in addition, minimizing power consumption. In the set wind direction mode, the vane motor 14 may be controlled to be driven at 100 pulses per second (PPS).

[0064] In the Himalaya cool mode, the vane motor 14 may be rotated at a first rotational speed. In the Himalaya cool off mode, which will hereinafter be described, the vane motor 14 may be rotated at a second rotational speed. The first rotational speed of the vane motor 14 in the Himalaya cool mode may be higher than the second rotational speed of the vane motor 14 in the Himalaya cool off mode. For example, the first rotational speed may be 1.5 to 2.5 times the second rotational speed. In the Himalaya cool mode, the vane motor 14 may be controlled to be driven at 100 PPS. In the Himalaya cool off mode, on the other hand, the vane motor 14 may be controlled to be driven at 50 PPS.

[0065] When the Himalaya cool key 24 is pushed once, the controller 18 may control the air conditioner to be operated in the Himalaya cool mode. When the Himalaya cool key 24 is pushed once more while the air conditioner is being operated in the Himalaya cool mode, the controller 18 may control the Himalaya cool mode to be ended and control the air conditioner to be operated in the Himalaya cool off mode.

[0066] The mode key 26 is provided to select a normal cooling operation, a dehumidification operation, or an air blowing operation. During the execution of the Himalaya cool mode, the operation mode of the air conditioner may be switched to the normal cooling operation, the dehumidification operation, or the air blowing operation. When the mode key 26 is pushed during the execution of the Himalaya cool mode, the Himalaya cool mode may be ended, and the air conditioner may be controlled to be operated in the operation mode selected by the mode key 26. For example, when the mode key 26 is pushed to select the normal cooling operation during the execution of the Himalaya cool mode, the controller 18 may control the operation mode of the air conditioner to be switched from the operation of the air conditioner in the Himalaya cool mode to the normal cooling operation. In addition, when the mode key 26 is pushed to select the dehumidification operation during the execution of the Himalaya cool mode, the controller 18 may control the operation mode of the air conditioner to be switched from the operation of the air conditioner in the Himalaya cool mode to the dehumidification operation. Furthermore, when the mode key 26 is pushed to select the air blowing operation during the execution of the Himalaya cool mode, the controller 18 may control the operation mode of the air conditioner to be switched from the operation of the air conditioner in the Himalaya cool mode to the air blowing operation.

[0067] The fan speed key 28 is provided to select any one from among the wind quantity modes of the fan 10. For example, the fan speed key 28 may be pushed to select any one from among five wind quantity modes, such as a light wind mode, a weak wind mode, a middle wind mode, a strong wind mode, and a power wind mode. Alternatively, the fan speed key 28 may be pushed to select any one from among four wind quantity modes, such as a weak wind mode, a middle wind mode, a strong wind mode, and a power wind mode.

[0068] When the fan speed key 28 is pushed during the execution of the Himalaya cool mode, the controller 18 may control the Himalaya cool mode to be ended and control the air conditioner to be operated in the wind mode selected by the fan speed key 28. For example, when the fan speed key 28 is pushed to select the weak wind mode during the execution of the Himalaya cool mode, the controller 18 may control the Himalaya cool mode to be ended and control the air conditioner to be operated in the weak wind mode. In addition, when the fan speed key 28 is pushed to select the strong wind mode during the execution of the Himalaya cool mode, the controller 18 may control the Himalaya cool mode to be ended and control the air conditioner to be operated in the strong wind mode.

[0069] When one of the temperature adjustment keys 30 and 32 is pushed during the execution of the Himalaya cool mode, the controller 18 may control the Himalaya cool mode to be ended and control the air conditioner to be operated in a normal cooling operation having the temperature selected by one of the temperature adjustment keys 30 and 32 as a target temperature. For example, when one of the temperature adjustment keys 30 and 32 is pushed to select a temperature of 20 °C, the controller 18 may control the Himalaya cool mode to be ended and control the air conditioner to be operated in a normal cooling operation having a temperature of 20 °C as a target temperature.

[0070] When the Himalaya cool mode is input through the input unit 16, controller 18 may set the set temperature as the target temperature, control the fan 10 to be driven in the power wind mode, and control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 can swing within an angle range of 32 to 64 degrees from the maximum opening angle.

[0071] When the Himalaya cool key 24 of the input unit 16 is pushed once, the Himalaya cool mode may be input to the air conditioner.

[0072] When the Himalaya cool mode is input through the input unit 16, controller 18 may set the set temperature as the target temperature to control the indoor unit I and the outdoor unit O. In addition, when the Himalaya cool mode is input through the input unit 16, controller 18 may control the fan 10 to be driven in the power wind mode. Furthermore, when the Himalaya cool mode is input through the input unit 16, the controller 18 may control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 can swing within an angle range of 32 to 64 degrees from the maximum opening angle.

[0073] When the mode key is pushed, the fan speed key is pushed, one of the temperature adjustment keys is pushed, or the Himalaya cool key is pushed once more during the execution of the Himalaya cool mode, the Himalaya cool mode of the air conditioner may be ended, and the indoor unit I and the outdoor unit O may be controlled based on the pushed key.

[0074] On the other hand, when the set time elapses after the commencement of the Himalaya cool mode in a state in which the mode key is not pushed, the fan speed key is not pushed, one of the temperature adjustment keys is not pushed, and the Himalaya cool key is not pushed once more during the execution of the Himalaya cool mode, the Himalaya cool off mode of the air conditioner may be commenced. For example, the set time may be 20, 30, or 40 minutes.

[0075] In the Himalaya cool off mode, the fan 10 of the air conditioner may be driven in the strong wind mode, which is lower in intensity of wind than the power wind mode.

[0076] The Himalaya cool off mode may be a mode for rotating the discharge vane 12 such that the discharge vane 12 can swing within an angle range of a third set angle P5 to a fourth set angle P6 from the maximum opening angle P2.

[0077] The fourth set angle P6 may be greater than the third set angle P5. The third set angle P5 may be greater than the first set angle P3. The fourth set angle P6 may be greater than the second set angle P4. The fourth set angle P6 may be greater than the second set angle P4, the second set angle P4 may be greater than the third set angle P5, and the third set angle P5 may be greater than the first set angle P3. In the Himalaya cool off mode, the air conditioner may discharge air more upward than in the Himalaya cool mode.

[0078] The third set angle P5 may be the minimum rotational angle to which the discharge vane 12 can be rotated in the Himalaya cool off mode. For example, the third set angle P5 may be 40 degrees from the maximum opening angle P2 of the discharge vane 12.

[0079] On the other hand, the fourth set angle P6 may be the maximum rotational angle to which the discharge vane 12 can be rotated in the Himalaya cool off mode. For example, the fourth set angle P6 may be 72 degrees from the maximum opening angle P2 of the discharge vane 12.

[0080] In the Himalaya cool off mode, the vane motor 14 may be controlled to rotate the discharge vane 12 such that the discharge vane 12 can swing within an angle range of 40 to 72 degrees from the maximum opening angle P2.

[0081] That is, when the set time elapses after the commencement of the Himalaya cool mode, the controller 18 may control the fan 10 to be driven in the strong wind mode. In addition, when the set time elapses after the commencement of the Himalaya cool mode, the controller 18 may control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 can swing within an angle range of 40 to 72 degrees from the maximum opening angle P2.

[0082] The air conditioner may further include a display unit 20. The display unit 20 may display the operation of the air conditioner in Himalaya cool mode using symbols, text, figures, etc. The display unit 20 may be mounted at the indoor unit I. Alternatively, the display unit 20 may be mounted at the outdoor unit O.

[0083] FIG. 8 is a view showing the structure of a room in which experiments have been conducted on the air conditioner according to the embodiment of the present invention, FIG. 9 is a graph showing a comparison in cooling speed between the air conditioner according to the embodiment of the present invention and a comparative example, and FIG. 10 is a graph showing a comparison in integrated power consumption between the air conditioner according to the embodiment of the present invention and the comparative example.

[0084] Referring to FIG. 8, time necessary for room temperature to decrease to the set temperature and integrated power consumption at that time were measured in a state in which the indoor unit I was mounted in a room (test chamber) having a width of 4.5 m, a length of 6 m, and a height of 3 m.

[0085] Experiments have been carried out under conditions that outdoor temperature was 35 ± 0.3 °C, indoor temperature was 33 ± 0.3 °C, and the indoor unit I was mounted in the room at a height of 2.5 m from the floor of the room. A zone of 0.1 to 1.7 m from the floor of the room is an occupied zone, in which people may mainly perform indoor activities. The indoor temperature was measured at a height of 1.2 mm from the floor of the room.

[0086] During the experiments, the Himalaya cool mode was executed under conditions that the target temperature was set to 18 °C, the power wind mode was selected as the wind quantity mode of the fan 10, and the discharge vane 12 swung within an angle range of 32 to 64 degrees from the maximum opening angle. On the other hand, normal cooling operation (comparative example) was executed under conditions that the target temperature was set to 18 °C, the strong wind mode was selected as the wind quantity mode of the fan 10, and the discharge vane 12 was rotated from the maximum opening angle by an angle of 48 degrees and then fixed.

[0087] FIG. 9 shows comparison in time taken to decrease indoor temperature by 5 °C between the Himalaya cool mode of the present invention and the normal cooling operation (comparative example). It can be seen from FIG. 9 that it took a time of 7 minutes 35 seconds for the normal cooling operation (comparative example), whereas it took a time of 5 minutes 27 seconds for the Himalaya cool mode of the present invention. Consequently, it can be seen that the time taken to decrease the indoor temperature by 5 °C in the Himalaya cool mode of the present invention was 28.1 % shorter than that in the normal cooling operation (comparative example).

[0088] FIG. 10 shows comparison in integrated power consumption necessary to decrease indoor temperature by 5 °C between the Himalaya cool mode of the present invention and the normal cooling operation (comparative example). It can be seen from FIG. 10 that the integrated power consumption was 0.131 kWh for the normal cooling operation (comparative example), whereas the integrated power consumption was 0.097 kWh for the Himalaya cool mode of the present invention. Consequently, it can be seen that the integrated power consumption necessary to decrease the indoor temperature by 5 °C in the Himalaya cool mode of the present invention was 26.0 % less than that in the normal cooling operation (comparative example).

[0089] FIG. 11 is a flowchart showing an operation method of an air conditioner according to an embodiment of the present invention.

[0090] In this embodiment, the operation method of the air conditioner includes a first step (S1, S2, S3, and S4) of performing a cooling operation in a power wind mode selected as a wind quantity mode, and a second step (S5 and S6) of performing the cooling operation in a strong wind mode having lower intensity of wind than the power wind mode selected as the wind quantity mode after the first step (S1, S2, S3, and S4).

[0091] At the first step (S1, S2, S3, and S4), the discharge vane 12 may swing within an angle range of a first set angle P3 to a second set angle P4. An angle range of the first set angle P3 to the second set angle P4 may be a first angle range within which the discharge vane 12 swings automatically at the first step (S1, S2, S3, and S4). At the first step (S1, S2, S3, and S4), the discharge vane 12 may swing at a first rotational speed.

[0092] The second step (S5 and S6) may be commenced when a set time elapses after the commencement of the first step (S1, S2, S3, and S4). At the second step (S5 and S6), the discharge vane 12 may swing within an angle range of a third set angle P5 to a fourth set angle P6 from the maximum opening angle. An angle range of the third set angle P5 to the fourth set angle P6 may be a second angle range within which the discharge vane 12 swings automatically at the second step (S5 and S6). The fourth set angle P6 may be greater than the second set angle P4, the second set angle P4 may be greater than the third set angle P5, and the third set angle P5 may be greater than the first set angle P3. At the second step (S5 and S6), the discharge vane 12 may swing at a second rotational speed lower than the first rotational speed.

[0093] The first set angle P3 may be 32 degrees, the second set angle P4 may be 64 degrees, the third set angle P5 may be 40 degrees, and the fourth set angle P6 may be 72 degrees.

[0094] Hereinafter, the first step (S1, S2, S3, and S4) will be described in detail.

[0095] At the first step (S1, S2, S3, and S4), the cooling operation is performed in a power wind mode selected as a wind quantity mode, and the discharge vane 12 may swing within an angle range of 32 to 64 degrees from the maximum opening angle P2.

[0096] At the first step (S1, S2, S3, and S4), the air conditioner may be operated in a Himalaya cool mode.

[0097] The first step (S1, S2, S3, and S4) may be commenced while the air conditioner is being operated in a normal cooling operation, a dehumidification operation, or an air blowing operation. In addition, the first step (S1, S2, S3, and S4) may be commenced in a state in which the air conditioner is stopped. The first step (S1, S2, S3, and S4) may be commenced by pushing the Himalaya cool key 24 once.

[0098] A user may input the Himalaya cool mode through the input unit 16 while the air conditioner is being operated in the normal cooling operation, the dehumidification operation, or the air blowing operation. The user may push the Himalaya cool key 24 once to input the Himalaya cool mode while the air conditioner is being operated in the normal cooling operation, the dehumidification operation, or the air blowing operation. As a result, the normal cooling operation, the dehumidification operation, or the air blowing operation of the air conditioner may be stopped, and the Himalaya cool mode of the air conditioner may be executed.

[0099] The user may commence the operation of the air conditioner in a state in which the air conditioner is stopped and input the Himalaya cool mode after the operation of the air conditioner is commenced (S1 and S2). The user may push the power key 22 of the input unit 16 once to operate the air conditioner and push the Himalaya cool key 24 of the input unit 16 once to input the Himalaya cool mode. Consequently, the Himalaya cool mode of the air conditioner may be executed.

[0100] At the first step (S1, S2, S3, and S4), the controller 18 may control the indoor unit I and the outdoor unit O to be operated in a cooling operation mode having a set temperature as a target temperature. The target temperature of the first step (S1, S2, S3, and S4) may be equal to that of the second step (S5 and S6). The set temperature may be 18 °C, and the controller 18 may control the compressor of the outdoor unit O based on a target temperature of 18 °C. At the first step (S1, S2, S3, and S4), the controller 18 may control the fan 10 to be driven in the power wind mode. At the first step (S1, S2, S3, and S4), the controller 18 may control the vane motor 14 to be driven in a set wind direction mode of the Himalaya cool mode.

[0101] As shown in FIGS. 2 and 3, the controller 18 may control the vane motor 14 to rotate the discharge vane 12 from the air discharge port closing angle P1 to the maximum opening angle P2.

[0102] Subsequently, as shown in FIG. 4, the controller 18 may control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 is located within an angle range of 32 to 64 degrees from the maximum opening angle P2. When the discharge vane 12 is located within an angle range of 32 to 64 degrees from the maximum opening angle P2, the controller 18 may control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 can swing within an angle range of 32 to 64 degrees from the maximum opening angle P2.

[0103] The discharge vane 12 may reciprocate within an angle range of 32 to 64 degrees from the maximum opening angle P2 to discharge air blown by the fan 10 into the room.

[0104] At the first step (S1, S2, S3, and S4), the discharge vane 12 may swing at the first rotational speed. The first rotational speed may be 1.5 to 2.5 times the second rotational speed, which will hereinafter be described. At the first step (S1, S2, S3, and S4), the vane motor 14 may be controlled to be driven at 100 PPS. At the second step (S5 and S6), the vane motor 14 may be controlled to be driven at 50 PPS. The rotational speed of the discharge vane 12 at the first step (S1, S2, S3, and S4) may be higher than that of the discharge vane 12 at the second step (S5 and S6).

[0105] The first step (S1, S2, S3, and S4) may be ended when the mode key is pushed after the commencement of the first step (S1, S2, S3, and S4). The first step (S1, S2, S3, and S4) may be ended when the fan speed key is pushed after the commencement of the first step (S1, S2, S3, and S4). The first step (S1, S2, S3, and S4) may be ended when one of the temperature adjustment keys is pushed after the commencement of the first step (S1, S2, S3, and S4). The first step (S1, S2, S3, and S4) may be ended when the Himalaya cool key is pushed once more.

[0106] When the mode key is pushed, the fan speed key is pushed, one of the temperature adjustment keys is pushed, or the Himalaya cool key is pushed once more before the lapse of the set time, the first step (S1, S2, S3, and S4) may be ended.

[0107] On the other hand, when the mode key is not pushed, the fan speed key is not pushed, one of the temperature adjustment keys is not pushed, and the Himalaya cool key is not pushed once more before the lapse of the set time, the first step (S1, S2, S3, and S4) may be carried out for the set time and then ended.

[0108] The set time may be a time after which the Himalaya cool mode is normally completed. For example, the set time may be 30 minutes.

[0109] That is, the Himalaya cool mode is ended after being executed for the set time. When the mode key is pushed, the fan speed key is pushed, or one of the temperature adjustment keys is pushed before the lapse of the set time, however, the Himalaya cool mode may be abnormally ended to execute a command corresponding to the pushed key, and the air conditioner may be controlled according to the command corresponding to the pushed key (S4 and S9).

[0110] When the normal cooling operation, the dehumidification operation, or the air blowing operation is selected before the lapse of the set time after the commencement of the Himalaya cool mode, the Himalaya cool mode of the air conditioner may be ended, and the air conditioner may be controlled to perform the selected operation (S4 and S9).

[0111] When a weak wind mode, a middle wind mode, or a strong wind mode is selected before the lapse of the set time after the commencement of the Himalaya cool mode, the Himalaya cool mode of the air conditioner may be ended, and the air conditioner may be controlled to perform a cooling operation based on the selected wind quantity mode (S4 and S9).

[0112] When one of the temperature adjustment keys is pushed before the lapse of the set time after the commencement of the Himalaya cool mode, the Himalaya cool mode of the air conditioner may be ended, and the air conditioner may be controlled to perform a cooling operation based on a newly input target temperature (S4 and S9).

[0113] When the Himalaya cool key is pushed once more before the lapse of the set time after the commencement of the Himalaya cool mode, the Himalaya cool mode of the air conditioner may be ended (S4 and S9).

[0114] In a case in which the Himalaya cool mode is ended as described above, the indoor unit I and the outdoor unit O of the air conditioner may be controlled according to the command corresponding to the pushed key, and then, when the power key is pushed to stop the air conditioner, the indoor unit I and the outdoor unit O may be stopped (S9, S10, and S11). When the outdoor unit O is stopped, the compressor may be stopped, and no refrigerant may flow to the indoor heat exchanger 8. When the indoor unit I is stopped, the fan 10 may be stopped, and the vane motor 14 may be driven to rotate the discharge vane 12 to the air discharge port closing angle P1 as shown in FIG. 2. As a result, the discharge vane 12 may close the air discharge port 14.

[0115] Hereinafter, the second step (S5 and S6) will be described in detail.

[0116] The second step (S5 and S6) may be commenced when the set time elapses after the commencement of the first step (S1, S2, S3, and S4). When the set time elapses after the commencement of the first step (S1, S2, S3, and S4) in a state in which the mode key is not pushed, the fan speed key is not pushed, one of the temperature adjustment keys is not pushed, and the Himalaya cool key is not pushed once more during the execution of the first step (S1, S2, S3, and S4), the second step (S5 and S6) may be commenced.

[0117] The second step (S5 and S6) may be a step of operating the air conditioner in a Himalaya cool off mode.

[0118] A target temperature of the second step (S5 and S6) may be equal to that of the first step (S1, S2, S3, and S4). The set temperature of the first step (S1, S2, S3, and S4) may be used at the target temperature of the second step (S5 and S6).

[0119] At the second step (S5 and S6), the controller 18 may control the indoor unit I and the outdoor unit O to be operated in a cooling operation mode having the set temperature as the target temperature. The set temperature of the second step (S5 and S6) may be 18 °C, which is equal to that of the first step (S1, S2, S3, and S4), and the controller 18 may control the compressor of the outdoor unit O based on a target temperature of 18 °C. At the second step (S5 and S6), the controller 18 may control the fan 10 to be driven in the strong wind mode, which is lower in wind speed (intensity of wind) than the power wind mode. At the second step (S5 and S6), the controller 18 may control the vane motor 14 to be driven in a set wind direction mode of the Himalaya cool off mode.

[0120] At the second step (S5 and S6), the discharge vane 12 may swing within an angle range of 40 to 72 degrees from the maximum opening angle P2. At the second step (S5 and S6), the discharge vane 12 may swing at a second rotational speed lower than the first rotational speed.

[0121] At the first step (S1, S2, S3, and S4), the vane motor 14 may be controlled to be driven at 100 PPS. On the other hand, at the second step (S5 and S6), the vane motor 14 may be controlled to be driven at 50 PPS. The rotational speed of the discharge vane 12 at the second step (S5 and S6) may be lower than that of the discharge vane 12 at the first step (S1, S2, S3, and S4).

[0122] The controller 18 may control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 is located within an angle range of 40 to 72 degrees from the maximum opening angle P2. When the discharge vane 12 is located within an angle range of 40 to 72 degrees from the maximum opening angle P2, the controller 18 may control the vane motor 14 to rotate the discharge vane 12 such that the discharge vane 12 can swing within an angle range of 40 to 72 degrees from the maximum opening angle P2.

[0123] The discharge vane 12 may reciprocate within an angle range of 40 to 72 degrees from the maximum opening angle P2 to discharge air blown by the fan 10 into the room.

[0124] At the second step (S5 and S6), the air conditioner may discharge air more upward than at the first step (S1, S2, S3, and S4). As a result, the occupied zone of the room may not be excessively cooled, and therefore the room may be uniformly cooled.

[0125] When the power key is pushed to stop the air conditioner during the execution of the second step (S5 and S6), the indoor unit I and the outdoor unit O may be stopped (S7 and S8). When the outdoor unit O is stopped, the compressor may be stopped, and no refrigerant may flow to the indoor heat exchanger 8. When the indoor unit I is stopped, the fan 10 may be stopped, and the vane motor 14 may be driven to rotate the discharge vane 12 to the air discharge port closing angle P1. As a result, the discharge vane 12 may close the air discharge port 14.

[0126] As is apparent from the above description, the present invention has effects in that in a case in which the air conditioner is mounted at a high height in a high-ceilinged room, it is possible to rapidly cool an occupied zone of the room with the minimum power consumption and to prevent the occupied zone of the room from being excessively cooled.

[0127] Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

LIST OF EXAMPLES:



[0128] 
  1. 1. An operation method of an air conditioner comprising:

    performing a cooling operation in a power wind mode selected as a wind quantity mode and swinging a discharge vane within an angle range of 32 to 64 degrees from a maximum opening angle as a first step; and

    performing the cooling operation in a strong wind mode having lower intensity of wind than the power wind mode selected as the wind quantity mode as a second step, the second step being executed after the first step.

  2. 2. The operation method according to example 1, wherein the second step comprises swinging the discharge vane within an angle range of 40 to 72 degrees from the maximum opening angle.
  3. 3. The operation method according to example 1, wherein
    the first step comprises swinging the discharge vane at a first rotational speed, and
    the second step comprises swinging the discharge vane at a second rotational speed lower than the first rotational speed.
  4. 4. The operation method according to example 3, wherein the first rotational speed is 1.5 to 2.5 times the second rotational speed.
  5. 5. The operation method according to example 1, wherein
    the first step comprises controlling a vane motor for rotating the discharge vane to be driven at 100 pulses per second (PPS), and
    the second step comprises controlling the vane motor to be driven at 50 PPS.
  6. 6. The operation method according to example 1, wherein the first step and the second step have the same target temperature.
  7. 7. The operation method according to example 1, wherein the first step is commenced by pushing a Himalaya cool key once.
  8. 8. The operation method according to example 7, wherein the first step is ended by pushing the Himalaya cool key once more.
  9. 9. The operation method according to any one of examples 1 to 7, wherein
    the first step is ended after the first step is executed for a set time, and
    the second step is commenced after the lapse of the set time.
  10. 10. The operation method according to any one of examples 1 to 7, wherein the first step is ended by pushing a mode key (control key) after the commencement of the first step.
  11. 11. The operation method according to any one of examples 1 to 7, wherein the first step is ended by pushing a fan speed key (control key) after the commencement of the first step.
  12. 12. The operation method according to any one of examples 1 to 7, wherein the first step is ended by pushing a temperature adjustment key (control key) after the commencement of the first step.
  13. 13. An operation method of an air conditioner comprising:

    performing a cooling operation having a set temperature as a target temperature in a power wind mode selected as a wind quantity mode and swinging a discharge vane within an angle range of a first set angle to a second set angle from a maximum opening angle at a first rotational speed as a first step; and

    performing the cooling operation in a strong wind mode having lower intensity of wind than the power wind mode selected as the wind quantity mode when a set time elapses after the commencement of the first step and swinging the discharge vane within an angle range of a third set angle to a fourth set angle from the maximum opening angle at a second rotational speed lower than the first rotational speed as a second step, wherein

    the fourth set angle is greater than the second set angle, the second set angle is greater than the third set angle, and the third set angle is greater than the first set angle.

  14. 14. The operation method according to example 13, wherein
    the first set angle is 32 degrees,
    the second set angle is 64 degrees,
    the third set angle is 40 degrees, and
    the fourth set angle is 72 degrees.
  15. 15. The operation method according to example 13, wherein the set temperature is 18 °C.
  16. 16. The operation method according to example 13, wherein the first step and the second step have the same target temperature.
  17. 17. The operation method according to example 13, wherein
    the first step comprises controlling a vane motor for rotating the discharge vane to be driven at 100 PPS, and
    the second step comprises controlling the vane motor to be driven at 50 PPS.
  18. 18. The operation method according to example 13, wherein
    the first step is commenced by pushing a Himalaya cool key once, and
    the first step is ended by pushing a mode key, pushing a fan speed key, pushing a temperature adjustment key, or pushing the Himalaya cool key once more before the lapse of the set time.
  19. 19. The operation method according to example 13, wherein
    the first step is commenced by pushing a Himalaya cool key once, and
    the second step is commenced when the set time elapses after the commencement of the first step in a state in which a mode key is not pushed, a fan speed key is not pushed, a temperature adjustment key is not pushed, and the Himalaya cool key is not pushed once more during the execution of the first step.
  20. 20. An air conditioner comprising an indoor unit and an outdoor unit, wherein
    the indoor unit comprises:

    a casing having an air suction port and an air discharge port;

    an indoor heat exchanger disposed in the casing;

    a fan disposed in the casing;

    a discharge vane for adjusting upward and downward wind directions of air discharged through the air discharge port; and

    a vane motor for rotating the discharge vane,

    when a Himalaya cool mode is input through an input unit, the air conditioner is operated in the Himalaya cool mode in which a set temperature is set as a target temperature, the fan is driven in a power wind mode, and the vane motor is controlled to rotate the discharge vane such that the discharge vane can swing within an angle range of 32 to 64 degrees from a maximum opening angle, and

    when a set time elapses after the commencement of the Himalaya cool mode, the air conditioner is operated in a Himalaya cool off mode in which the fan is driven in a strong wind mode having lower intensity of wind than the power wind mode.

  21. 21. The air conditioner according to example 20, wherein the vane motor is controlled to rotate the discharge vane such that the discharge vane can swing within an angle range of 40 to 72 degrees from the maximum opening angle in the Himalaya cool off mode.
  22. 22. The air conditioner according to example 20 or 21, wherein
    the vane motor is controlled to rotate the discharge vane such that the discharge vane can swing at a first rotational speed in the Himalaya cool mode, and
    the vane motor is controlled to rotate the discharge vane such that the discharge vane can swing at a second rotational speed lower than the first rotational speed in the Himalaya cool off mode.



Claims

1. An operation method of an air conditioner comprising:

performing a cooling operation in a power wind mode selected as a wind quantity mode and swinging a discharge vane (12) within an angle range of a first set angle (P3) to a second set angle (P4) from a maximum opening angle (P2) as a first step (S1, S2, S3, S4); and

performing the cooling operation in a strong wind mode having lower intensity of wind than the power wind mode selected as the wind quantity mode as a second step (S5, S6), the second step being executed after the first step (S1, S2, S3, S4).


 
2. The operation method according to claim 1, wherein the second step (S5, S6) comprises swinging the discharge vane (12) within an angle range of a third set angle (P5) to a fourth set angle (P6) from the maximum opening angle (P2), wherein the fourth set angle (P6) is greater than the second set angle (P4), the second set angle (P4) is greater than the third set angle (P5), and the third set angle (P5) is greater than the first set angle (P3).
 
3. The operation method according to claim 1, wherein
the first set angle (P3) is 32 degrees, and
the second set angle (P4) is 64 degrees.
 
4. The operation method according to claim 2 or 3, wherein
the third set angle (P5) is 40 degrees, and
the fourth set angle (P6) is 72 degrees.
 
5. The operation method according to any one of the claims 1 to 4, wherein
the first step (S1, S2, S3, S4) comprises swinging the discharge vane (12) at a first rotational speed, and
the second step (S5, S6) comprises swinging the discharge vane (12) at a second rotational speed lower than the first rotational speed.
 
6. The operation method according to any one of the claims 1 to 5, wherein the first step and/or the second step have a set or same target temperature.
 
7. The operation method according to any one of the claims 1 to 6, wherein the first step (S1, S2, S3, S4) is commenced by pushing a Himalaya cool key (24) once.
 
8. The operation method according to claim 7, wherein the first step (S1, S2, S3, S4) is ended by pushing the Himalaya cool key (24) once more.
 
9. The operation method according to any one of claims 1 to 7, wherein
the first step (S1, S2, S3, S4) is ended after the first step (S1, S2, S3, S4) is executed for a set time, and
the second step (S5, S6) is commenced after the lapse of the set time.
 
10. The operation method according to any one of claims 1 to 8, wherein the first step (S1, S2, S3, S4) is ended by pushing a control key (26, 28, 30, 32) after the commencement of the first step (S1, S2, S3, S4).
 
11. The operation method according to claim 10, wherein the control key is a mode key (26), a fan speed key (28) or a temperature adjustment key (30, 32).
 
12. The operation method according to claim 11, wherein the first step (S1, S2, S3, S4) is commenced by pushing the Himalaya cool key (24) once, and
the second step (S5, S6) is commenced when the set time elapses after the commencement of the first step (S1, S2, S3, S4) in a state in which a mode key (26) is not pushed, a fan speed key (28) is not pushed, a temperature adjustment key (30, 32) is not pushed, and the Himalaya cool key (24) is not pushed once more during the execution of the first step (S1, S2, S3, S4).
 
13. An air conditioner comprising an indoor unit (I) and an outdoor unit (0), wherein
the indoor unit (I) comprises:

a casing (6) having an air suction port (2) and an air discharge port (4);

an indoor heat exchanger (8) disposed in the casing (6);

a fan (10) disposed in the casing (6);

a discharge vane (12) for adjusting upward and downward wind directions of air discharged through the air discharge port (4); and

a vane motor (14) for rotating the discharge vane (12), wherein

when a Himalaya cool mode is input through an input unit (16), the air conditioner is operated (S3) in the Himalaya cool mode in which a set temperature is set as a target temperature, the fan (10) is driven in a power wind mode, and the vane motor (14) is controlled to rotate the discharge vane (12) such that the discharge vane can (12) swing within an angle range of 32 to 64 degrees from a maximum opening angle (P2), and

when a set time elapses after the commencement of the Himalaya cool mode, the air conditioner is operated in a Himalaya cool off mode in which the fan (10) is driven in a strong wind mode having lower intensity of wind than the power wind mode.


 
14. The air conditioner according to claim 13, wherein the vane motor (14) is controlled to rotate the discharge vane (12) such that the discharge vane can swing within an angle range of 40 to 72 degrees from the maximum opening angle (P2) in the Himalaya cool off mode.
 
15. The air conditioner according to claim 13 or 14, wherein
the vane motor (14) is controlled to rotate the discharge vane (12) such that the discharge vane (12) can swing at a first rotational speed in the Himalaya cool mode, and
the vane motor (14) is controlled to rotate the discharge vane (12) such that the discharge vane (12) can swing at a second rotational speed lower than the first rotational speed in the Himalaya cool off mode.
 




Drawing





































Search report









Search report




Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description