

(11) EP 2 916 320 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 09.09.2015 Bulletin 2015/37

09.09.2015 Bulletin 2015/37

(21) Application number: 14158321.1

(22) Date of filing: 07.03.2014

(51) Int Cl.: **G10L 21/0208** (2013.01) G10L 21/0216 (2013.01)

G10L 21/0232 (2013.01)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(71) Applicant: Oticon A/S 2765 Smørum (DK)

(72) Inventors:

- Jensen, Jesper DK-2765 Smørum (DK)
- Kuklasinski, Adam DK-2765 Smørum (DK)
- (74) Representative: Nielsen, Hans Jørgen Vind Oticon A/S IP Management Kongebakken 9 2765 Smørum (DK)

(54) Multi-microphone method for estimation of target and noise spectral variances

(57)The application relates to a method of processing a noisy (e.g. reverberant) signal comprising a noise signal component and a target signal component, the method comprising a) Providing or receiving a time-frequency representation Yi(k,m) of a noisy signal yi(n) at an ith input unit, i=1, 2, ..., M, where M is larger than or equal to two, in a number of frequency bands and a number of time instances, k being a frequency band index and m being a time index; b) Providing characteristics of said target signal component and said noise signal component; and c) Estimating spectral variances or scaled versions thereof λ_V , λ_X of said noise signal component v and said target signal component x, respectively, as a function of frequency index k and time index m, said estimates of λ_V and λ_X being jointly optimal in maximum likelihood sense, based on the statistical assumptions that a) the time-frequency representations $Y_i(km)$, $X_i(k,$ m), and $V_i(k,m)$ of respective signals $y_i(n)$, and signal components $x_i(n)$, and $v_i(n)$ are zero-mean, complex-valued Gaussian distributed, b) that each of them are statistically independent across time m and frequency k, and c) that $X_i(k,m)$ and $V_i(k,m)$ are uncorrelated. The application further relates to an audio processing system and to the use of such audio processing device. An object of the present application is to provide a scheme for estimating the signal power as a function of time and frequency of a noise (e.g. reverberant) part of a noisy speech signal. An advantage of the invention is that it provides the basis for an improved intelligibility of an input speech signal. The invention may e.g. be used for hearing assistance devices, e.g. hearing aids, headsets, ear phones, active ear protection systems, handsfree telephone systems, mobile telephones.

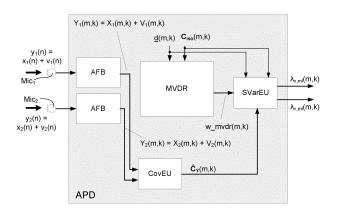


FIG. 3b

EP 2 916 320 A1

Description

TECHNICAL FIELD

- [0001] The present application relates to a method of audio processing and an audio processing system for estimating spectral variances of respective target and noise (e.g. reverberant) signal components in a noisy (e.g. reverberant) signal, and to the use of the audio processing system. The application further relates to a data processing system comprising a processor and program code means for causing the processor to perform at least some of the steps of the method.
- [0002] Embodiments of the disclosure may e.g. be useful in applications such as hearing assistance devices, e.g. hearing aids, headsets, ear phones, active ear protection systems, handsfree telephone systems, mobile telephones, or in teleconferencing systems, public address systems, karaoke systems, classroom amplification systems, etc.

BACKGROUND

15

35

40

45

[0003] The following account of the prior art relates to one of the areas of application of the present application, hearing aids.

[0004] It is known that hearing aid users face problems in understanding speech in reverberant environments, e.g., rooms with hard walls, churches, lecture rooms, etc. Although this user problem is well-known, there appears to exist only few hearing aid signal processing algorithms related to this problem.

[0005] US2009248403A describes a multi-microphone system and a linear prediction model eliminate reverberation. WO12159217A1 deals with a technique to improve speech intelligibility in reverberant environments or in other environments with diffuse sound in addition to direct sound. US2013343571A1 describes a microphone array processing system including adaptive beamforming and postfiltering configured to reduce noise components (e.g. reverberation) remaining from the beamforming. US2010246844A1 deals with a method of determining a signal component for reducing noise (e.g. reverberation) in an input signal. [Braun&Habets; 2013] deals with de-reverberation in noisy environments.

SUMMARY

- 30 [0006] A reverberant speech signal impinging on a microphone may be divided into two parts:
 - a) The direct sound and the first few reflections (including roughly 50 ms of the impulse response after the direct sound)
 - b) The late-reverberation signal, that is, reflected signal components arriving later than roughly 50 ms of the direct sound (i.e, the "rest").

[0007] It is well-known that, roughly speaking, part a) is beneficial for speech intelligibility, whereas part b) reduces intelligibility both for normal hearing and hearing impaired listeners.

[0008] The main goal of the present disclosure is to estimate the signal power as a function of time and frequency of each signal components a) and b) online (i.e. dynamically, during use of an audio processing device, e.g. a hearing assistance device), using two or more microphones. The proposed method is independent of microphone locations and number, that is, it can work when two microphones are available locally in a hearing aid, but it can also work when external microphone signals, e.g., from the opposite hearing aid or external devices, are available.

[0009] As outlined in more detail below, the main idea has several potential usages,

- i) for selecting an appropriate processing method in the hearing aid,
 - ii) for informing the user to which extent the hearing aid is able to operate appropriately in the given environment,
 - iii) for processing the signal to reduce the reverberation,
 - iv) etc.
- [0010] The invention is based on the fact that the spatial characteristics of a typical target speech signal and of a reverberant sound field are quite different. Specifically, the proposed method exploits that a reverberant sound field may be modelled as being approximately isotropic, that is, for a given frequency, the reverberant signal power originating from any direction is (approximately) the same. The direct part of a target speech signal, on the other hand, is confined to roughly one direction.
- [0011] In an embodiment of the present disclosure, an algorithm for speech de-reverberation is proposed, which allows for joint estimation of the target and interference spectral variances also during speech presence. The algorithm uses Maximum Likelihood Estimation (MLE) method, cf. e.g. [Ye&DeGroat; 1995]. We assume an isotropic spatial distribution of the reverberation and a known speaker direction. Therefore, the structure of the inter-microphone covariance matrices

of the speech and reverberation is known and only the time-varying spectral variances (scaling factors of these matrices) are estimated in the MLE framework.

[0012] It is relevant to mention, that the algorithm proposed in the present disclosure is also applicable to target signals other than speech and to interference types other than reverberation. However, it is a prerequisite that the spatial distribution of the interference is isotropic or is otherwise known or estimated.

[0013] An object of the present application is to provide a scheme for estimating the signal power as a function of time and frequency of a reverberant part of a reverberant speech signal. A further object of embodiments of the application is to improve speech intelligibility in noisy situations (over existing solutions). A still further object of embodiments of the application is to improve sound quality in noisy situations.

10 **[0014]** Objects of the application are achieved by the invention described in the accompanying claims and as described in the following.

A method of processing a noisy signal:

20

25

35

40

50

55

- [0015] In an aspect of the present application, an object of the application is achieved by a method of processing a noisy signal y(n) comprising a target signal component x(n) and a noise signal component v(n), n representing time, the method comprising
 - a) Providing or receiving a time-frequency representation $Y_i(k,m)$ of the noisy signal $y_i(n)$ at an ith input unit, i=1, 2, ..., M, where M is larger than or equal to two, in a number of frequency bands and a number of time instances, k being a frequency band index and m being a time index;
 - b) Providing characteristics of said target signal component and said noise signal component; and
 - c) Estimating spectral variances or scaled versions thereof Av, λ_X of said noise signal component v and said target signal component x, respectively, as a function of frequency index k and time index k, said estimates of λ_V and λ_X being jointly optimal in maximum likelihood sense, based on the statistical assumptions that a) the time-frequency representations $Y_i(k,m)$, $X_i(k,m)$, and $V_i(k,m)$ of respective signals $y_i(n)$, and signal components $x_i(n)$, and $v_i(n)$ are zero-mean, complex-valued Gaussian distributed, b) that each of them are statistically independent across time m and frequency k, and k0 that k1 that k2 in the property k3 are uncorrelated.
- [0016] An advantage of the present disclosure is that it provides the basis for an improved intelligibility of an input speech signal. A further advantage of the present disclosure is that the resulting estimation of spectral variances of signal components of the noisy signal is independent of number and/or location of the input units.
 - [0017] In general, the 'characteristics of the noise signal component' is taken to mean characteristics of the noise signal component with respect to space, frequency and/or time (e.g. relating to variation of signal energy over time, frequency and space). Such characteristics may in general e.g. relate to noise power spectral density and its variation across time, measured at different spatial positions (e.g. at the input units, e.g. microphones). Additionally or alternatively, it may relate to the directional or spatial distribution of noise energy, i.e. e.g. to the amount of noise energy impinging on an input unit as a function of direction (for a given frequency and time instant). In an important embodiment, the method deals with 'spatial characteristics' of additive noise. In an embodiment, the 'characteristics of the noise signal component' is taken to mean the 'spatial characteristics' or 'spatial fingerprint'. In an embodiment, the 'spatial characteristics' or 'spatial fingerprint' of the noise signal component is defined by the inter input unit (e.g. the inter microphone) noise covariance matrix.

[0018] The present method is in a preferred embodiment based on spatial filtering.

[0019] The term 'scaled versions thereof' is taken to mean 'multiplied by a real number' (different from zero).

[0020] In an embodiment, the noise signal component is *defined* by said assumption of the (e.g. spatial) characteristics. In other words, the components of the noisy signal that fulfill said assumption is considered to be included in (such as *constitute*) the noise. It is generally assumed that the target signal component $x_i(n)$ and the noise signal component $v_i(n)$ at input unit i are uncorrelated.

[0021] The (possibly normalized) spectral variances (or scaled versions thereof) Av, λ_X are determined by a maximum likelihood method based on a statistical model. In an embodiment, the statistical model of the maximum likelihood method used for determining the spectral variances Av, Ax of said noise signal component v and said target signal component x, respectively, is that the time-frequency representations $Y_i(k,m)$, $X_i(k,m)$, and $V_i(k,m)$ of respective signals $y_i(n)$, and signal components $x_i(n)$, and $v_i(n)$ are zero-mean, complex-valued Gaussian distributed, that each of them are statistically independent across time m and frequency k, and that $X_i(k,m)$ and $V_i(k,m)$ are uncorrelated. In an embodiment, the maximum likelihood estimation of Av and Ax is exclusively based on the mentioned assumptions.

[0022] In the present context, the term 'jointly optimal' is intended to emphasize that both of the spectral variance *Av*, *Ax* are estimated in the *same* Maximum Likelihood estimation process.

[0023] The method is generally based on an assumption of the characteristics of the noise signal component. In an

embodiment, the method is further based on an assumption of the characteristics of the *target* signal component. In an embodiment, characteristics of the target signal component comprises a particular spatial arrangement of the input units compared to a direction to the target signal. In an embodiment, characteristics of the target signal component comprises its time variation (e.g. its modulation), its frequency content (e.g. its power level over frequency), etc.

[0024] In an embodiment, the noisy signal $y_i(n)$ comprises a reverberation signal component $v_i(n)$.

20

30

35

40

45

50

[0025] In an embodiment, the noisy signal $y_i(n)$ comprises a reverberant signal comprising a target signal component and a reverberation signal component. In an embodiment, the reverberation signal component is a dominant part of the noise signal component v(n). In an embodiment, only the reverberation signal component of the noise signal component $v_i(n)$ is considered. In an embodiment, the reverberation signal component is equal to the noise signal component $v_i(n)$. **[0026]** In an embodiment, the target signal component comprises or constitutes a target speech signal component $x_i(n)$. In an embodiment, the noisy signal $y_i(n)$ is a noisy target speech signal comprising a target speech signal component $x_i(n)$ and a noise signal component $v_i(n)$, in other words $y_i(n) = x_i(n) + v_i(n)$, i = 1, 2, ..., M. In an embodiment, the noisy signal is a reverberant target speech signal $y_i(n)$ comprising a target speech signal component $x_i(n)$ and a reverberation signal component $y_i(n)$.

[0027] In an embodiment, assumption of the characteristics of the noise signal component is that said noise signal component $v_i(n)$ is essentially spatially isotropic. The term 'the noise signal component is essentially spatially isotropic' is taken to mean the noise signal component arrives at a specific input unit 'uniformly from all possible directions', i.e. is 'spherically isotropic' (e.g. due to background noise in a large production facility, 'cocktail party noise', (late) reflections from walls of a room, etc.). In other words, for a given frequency, the noise signal power originating from any direction is the same. In an embodiment, 'spatially isotropic' is limited to 'cylindrically isotropic'.

[0028] In an embodiment, a target signal propagated from a target source to a listener (an input unit) - when it arrives at the listener - is divided into a first part and a second part. Typically, the first part - comprising directly (un-reflected) sound components and first few reflections - is *beneficial* for speech intelligibility, whereas the second part comprising later reflections *reduce* speech intelligibility (both for normal hearing and hearing impaired listeners). In an embodiment, the first part is considered as the target signal component x_i , whereas the second part v_i is taken as a noise (reverberation) signal component.

[0029] In an embodiment, the noise signal component $v_i(n)$ is constituted by late reverberations. The term 'late reverberations' is in the present context taken to mean 'later reflections' comprising signal components of a sound that arrive at a given input unit (e.g. the ith) a predefined time Δt_{pd} after the first peak of the impulse response has arrived at the input unit in question (see e.g. FIG. 1). In an embodiment, the predefined time Δt_{pd} is larger than or equal to 30 ms, such as larger than or equal to 40 ms, e.g. larger than or equal to 50 ms. In an embodiment, such 'late reverberations' include sound components that have been subject to three or more reflections from surfaces (e.g. walls) in the environment. The 'late reverberations' are constituted by sound components that (due to a longer acoustic travelling path between source and receiving device caused by reflections) arrive later (more than Δt_{pd} later) at the receiving device (i.e. the input units) than the direct sound (the direct sound being constituted by sound components that have been subject to essentially no reflections).

[0030] In an embodiment, the method comprises determining separate characteristics (e.g. spatial fingerprints) of the target signal and of the noise signal components. The term 'spatial fingerprint' is intended to mean the total collection of input unit (e.g. microphone) signals for a specific acoustic scene (including 3D-locations of acoustic objects, e.g. acoustic reflectors, etc.). The term 'spatial fingerprint' is e.g. intended to include the (e.g. three dimensional) geometrical (spatial) characteristics of the signal source(s) in question, including characteristics of its propagation. In an embodiment, the 'spatial fingerprint' represents an acoustic situation where the noise signal is isotropic. In an embodiment, the 'spatial fingerprint' is represented by a (time varying) inter input unit covariance matrix. In an embodiment, the spatial fingerprint of the target signal is essentially confined to one direction. The separation of the problem in spatial characteristics of target and noise signals is advantageous, because if sound sources are separated in space they may be separated via spatial filtering/beamforming, even if they overlap in time and frequency. Thereby simplifications can be made, if individual characteristics of the target and/or noise signal(s) are known (build prior knowledge into the system).

[0031] In an embodiment, the characteristics (e.g. spatial fingerprint) of the target signal is represented by a look vector $\underline{d}(k,m)$ whose elements (i=1, 2, ..., M) define the (frequency and time dependent) absolute acoustic transfer function from a target signal source to each of the M input units, or the relative acoustic transfer function from the ith input unit to a reference input unit. The look vector $\underline{d}(k,m)$ is an M-dimensional vector, the ith element $d_i(k,m)$ defining an acoustic transfer function from the target signal source to the ith input unit (e.g. a microphone). Alternatively, the ith element $d_i(k,m)$ define the relative acoustic transfer function from the ith input unit to a reference input unit (ref). The vector element $d_i(k,m)$ is typically a complex number for a specific frequency (k) and time unit (m). In an embodiment, the look vector is predetermined, e.g. measured (or theoretically determined) in an off-line procedure or estimated in advance of or during use. In an embodiment, the look vector is estimated in an off-line calibration procedure. This can e.g. be relevant, if the target source is at a fixed location (or direction) compared to the input unit(s), if e.g. the target source is (assumed to be) in a particular location (or direction) relative to (e.g. in front of) the user (i.e. relative to the device (worn or carried

by the user) wherein the input units are located).

30

35

50

[0032] In an embodiment, the power spectral density originating from a given target source is measured at the reference input unit (e.g. a reference microphone). In an embodiment, the power spectral density originating from noise (with a predetermined covariance structure, e.g. isotropically distributed noise) is measured at a reference input unit (e.g. a reference microphone). The measurements are e.g. carried out in an off-line procedure (before the audio processing system is taken into normal use) and results thereof stored in the audio processing system. The measurements are preferably carried out with the audio processing system in 'a normal local environment', e.g. for an audio processing system, such as a hearing assistance system, comprising one or more devices located at a body, e.g. the head, of a human being. Thereby the influence of the local environment can be taken into account, when measuring the power spectra ('spatial fingerprints') of the target and noise signal components.

[0033] In an embodiment, at least one of the M input units comprises a microphone. In an embodiment, a majority, such as all, of the M input units comprises a microphone. In an embodiment, M is equal to two. In an embodiment, M is larger than or equal to three. In an embodiment, a first one of the M input units is located in an audio processing device (e.g. a hearing aid device). In an embodiment, at least one of the other M input units is located a distance to the first input unit that is larger than a maximum outer dimension of the audio processing device where the first input unit is located. In an embodiment, a first of the M input units is located in a first audio processing device and a second of the M input units is located in another device, the audio processing device and the other device being configured to establish a communication link between them. In an embodiment, at least one of the input units comprises an electrode, e.g. an electrode for picking up a brain wave signal, e.g. an EEG-electrode for picking up a signal associated with an audio signal related to the present acoustic scene where the input units are located. In an embodiment, at least one of the input units are located. In an embodiment, at least one of the input units are located. In an embodiment, at least one of the input units are located. In an embodiment, at least one of the input units are located. In an embodiment, at least one of the input units comprises a video camera, for ping up images related to the present acoustic scene where the input units are located. In an embodiment, at least one of the input units comprises a video camera, for ping up images related to the present acoustic scene where the input units are located. In an embodiment, at least one of the input units comprises a vibration sensor (e.g. comprising an accelerometer) for picking up vibrations from a body, e.g. a bone of a human being (e.g. a skull bone).

[0034] In an embodiment, the electric input signals from the input units (i=1, 2, ..., M) are *normalized*. This has the advantage that the signal contents of the individual signals can be readily compared. In an embodiment, the audio processing device comprises a normalization filter operationally connected to an electrical input, the normalization filter being configured to have a transfer function $H_N(f)$, which makes the source providing the electric input signal in question comparable and interchange able with the other sources. The normalization filter is preferably configured to allow a direct comparison of the input signals and input signal components $Y_i(k,m)$ (TF-units or bins). A normalization can e.g. compensate for a constant level difference between two electric input signals (e.g. due to the location of the two source input transducers providing the input signals relative to the current sound source(s)). Further, a normalization can e.g. allow a comparison of electric input signals from different types of input units, e.g. a microphone, a mechanical vibration sensor, an electrode for picking up brain waves, or a camera for lip-reading a user's mouth, while speaking, etc. In an embodiment, the normalization filter comprises an adaptive filter.

[0035] In an embodiment, a method of normalizing M electric input signals comprises a) Select a reference source input signal (e.g. the signal assumed to be most reliable), e.g. signal Y_1 , b) for each of the other source input signals Y_i , i=2, ..., M, calculate the difference in magnitude over frequency to the reference (e.g. for a common time period of the signals and/or for respective signals averaged over a certain time), and c) scale each source by multiplication with a (possibly complex) correction value.

[0036] In an embodiment, the characteristics (e.g. spatial fingerprint) of the noise signal v is represented by the noise signal inter-input unit covariance matrix C_V. In an embodiment, the (noise) inter-input unit covariance matrix is predetermined, e.g. measured (or theoretically determined) in an off-line procedure or estimated in advance of or during use. In an embodiment, the characteristics (e.g. spatial fingerprint) of the noise signal v is represented by an estimate of the inter-input unit covariance matrix C_V of the noise impinging on the input units, or a scaled version thereof. In an embodiment, inter-input covariance matrix C_V of the noise (e.g. late reverberations) is determined as the covariance arising from an isotropic field. This can be written as $C_V(k,m) = \lambda_V(k,m) \cdot C_{iso}(k,m)$, where $\lambda_V(k,m)$ is the spectral variance (or a scaled version thereof) of the noise signal component v, and $C_{iso}(k,m)$ is the covariance matrix for an isotropic (noise) field (or a scaled version thereof). Preferably, possible scaled versions λ_{v} of the spectral variance λ_{v} (λ_{v} = k_{1} : λ_{v} , and k_1 is a real number different from 0), and scaled versions C_{iso} of the covariance matrix C_{iso} for an isotropic field $(\boldsymbol{C_{iso}}'=k_2\cdot\boldsymbol{C_{iso}}')$ and k_2 is a real number different from 0) fulfil the relation $\lambda_v'\cdot\boldsymbol{C_{iso}}'=\lambda_v\cdot\boldsymbol{C_{iso}}$. (i.e. $k_1=1/k2$). The matrix $C_{iso}(k,m)$ can e.g. be estimated in an off-line procedure. In an embodiment, $C_{iso}(k,m)$ is estimated by exposing an audio processing device or system comprising the input units (e.g. a hearing aid) mounted on a dummy head to a reverberant sound field (e.g. approximated as an isotropic field), and measuring the resulting inter-input unit (e.g. inter microphone) covariance matrix ($\sim C_{iso}(k,m)$). [Kjems&Jensen; 2012] describe various aspects of noise covariance matrix estimation in a multi-microphone speech configuration.

[0037] The target signal component and the noise signal component are generally assumed to be un-correlated. In

such case, the inter-input unit covariance matrix Cyof the noisy signal y is a sum of the inter-input unit covariance matrix Cx of the target signal x and the inter-input unit covariance matrix Cy of the noise signal.

[0038] In an embodiment, the inter-input unit covariance matrix C_X of the (clean) target signal x is determined by the look vector \underline{d} and the spectral variance λ_X of the target signal x. This can be written as $C_X(km) = \lambda_X(km) \cdot \underline{d}(km) \cdot \underline{d}(k,m) \cdot \underline{d}($

[0039] Preferably, the inter-input unit covariance matrices are estimated by a maximum likelihood based method (cf. e.g. [Kjems&Jensen; 2012]).

[0040] In an embodiment, target signal enhancement spatial filtering based on MVDR filtering is applied to the time-frequency representation $Y_i(k,m)$ of the noisy signal $y_i(n)$ at an ith input unit, i=1, 2, ..., M, to provide a beamformed signal wherein signal components from other directions than a direction of the target signal component are attenuated, while leaving signal components from the direction of the target signal component un-attenuated. MVDR is an abbreviation of Minimum Variance Distortion-less Response, *Distortion-less* indicating that the target direction is left unaffected; *Minimum Variance:* indicating that signals from any other direction than the target direction is maximally suppressed). **[0041]** In an embodiment, the MVDR filtering is based on a look vector $\underline{d}(k,m)$ and a predetermined covariance matrix $C_{iso}(k,m)$ for an isotropic field, said MVDR filtering method providing filter weights $w_{mvdr}(k,m)$. The covariance matrix is determined in an off-line procedure. The look vector \underline{can} be determined in an off-line procedure or alternatively, dynamically during use of the audio processing device or system executing the method. In an embodiment, the method comprises estimating whether or not a target (e.g. speech) signal is present or dominating at a given point in time (e.g. using a voice activity detector). In an embodiment, the spatial fingerprint of the target signal, e.g. a look vector, is updated when it is estimated that the target signal is present or dominant.

[0042] In an embodiment, the method comprises making an *estimate* of the inter input unit covariance matrix $\hat{\mathbf{C}}_{\gamma}(\mathbf{k},\mathbf{m})$ of the noisy signal based on a number D of observations.

[0043] In an embodiment, maximum-likelihood estimates of the spectral variances $\lambda_X(k,m)$ and $\lambda_V(k,m)$ of the target signal component x and the noise signal component v, respectively, are derived from estimates of the inter-input unit covariance matrices $C_Y(k,m)$, $C_X(k,m)$, $C_Y(k,m)$ and the look vector $\underline{d}(k,m)$.

[0044] In an embodiment, the method further comprises applying beamforming to the noisy signal y(n) providing a beamformed signal and single channel post filtering to the beamformed signal to suppress noise signal components from a direction of the target signal and to provide a resulting noise reduced signal. In an embodiment, the method comprises applying target cancelling spatial filtering to the time-frequency representation $Y_i(k,m)$ of the noisy signal $y_i(n)$ at an i^{th} input unit, i=1, 2, ..., M, to provide a target-cancelled signal wherein signal components from a direction of the target signal component are attenuated, while leaving signal components from other directions un-attenuated. An aim of the single channel post filtering process is to suppress noise components from the target direction (which has not been suppressed by the spatial filtering process (e.g. an MVDR beamforming process). It is a further aim to suppress noise components in situations when the target signal is present or dominant as well as when the target signal is absent. In an embodiment, the single channel post filtering process is based on an estimate of a target signal to noise ratio for each time-frequency tile (m,k). In an embodiment, the estimate of the target signal to noise ratio for each time-frequency tile (m,k) is determined from the beamformed signal and the target-cancelled signal. In an embodiment, the beamforming applied to the noisy signal y(n) is based on an MVDR procedure. In an embodiment, the noise reduced signal is dereverberated.

[0045] In an embodiment, gain values $g_{sc}(k,m)$ applied to the beamformed signal in the single channel post filtering process is based on estimates of the spectral variances $\lambda_X(k,m)$ and $\lambda_V(k,m)$ of the target signal component x and the noise signal component v, respectively. Alternatively, gain values $g_{sc}(k,m)$ can be determined by $|Y(k,m)|^2$, $\lambda_X(k,m)$ and $\lambda_V(k,m)$, or a combination of two or more of these parameters.

A computer readable medium:

30

35

40

45

50

55

[0046] In an aspect, a tangible computer-readable medium storing a computer program comprising program code means for causing a data processing system to perform at least some (such as a majority or all) of the steps of the method described above, in the 'detailed description of embodiments' and in the claims, when said computer program is executed on the data processing system is furthermore provided by the present application. In addition to being stored on a tangible medium such as diskettes, CD-ROM-, DVD-, or hard disk media, or any other machine readable medium, and used when read directly from such tangible media, the computer program can also be transmitted via a transmission medium such as a wired or wireless link or a network, e.g. the Internet, and loaded into a data processing system for being executed at a location different from that of the tangible medium.

A data processing system:

[0047] In an aspect, a data processing system comprising a processor and program code means for causing the processor to perform at least some (such as a majority or all) of the steps of the method described above, in the 'detailed description of embodiments' and in the claims is furthermore provided by the present application.

An audio processing system:

10

15

20

25

30

35

40

45

50

55

[0048] In an aspect, an audio processing system for processing a noisy signal *y* comprising a target signal component x and a noise signal component v is furthermore provided by the present application. The audio processing system comprises

- a) a multitude M of input units adapted to provide or to receive a time-frequency representation $Y_i(k,m)$ of the noisy signal $y_i(n)$ at an ith input unit, i=1, 2, ..., M, where M is larger than or equal to two, in a number of frequency bands and a number of time instances, k being a frequency band index and m being a time index;
- b) a multi-channel MVDR beamformer filtering unit to provide filter weights $w_{mvdr}(k,m)$, said filter weights $w_{mvdr}(k,m)$ being based on a look vector d(k,m) for the target signal and an inter-input unit covariance matrix $\mathbf{C}_{\mathbf{v}}(k,m)$ for the noise signal, or scaled versions thereof;
- c) a covariance estimation unit for estimating an inter input unit covariance matrix $\hat{\mathbf{C}}_{\mathbf{Y}}(k,m)$, or a scaled version thereof, of the noisy signal based on the time-frequency representation $Y_i(k,m)$ of the noisy signals $y_i(n)$; and d) a spectral variance estimation unit for estimating spectral variances $\lambda_X(k,m)$ and $\lambda_V(k,m)$ or scaled_versions thereof of the target signal component x and the noise signal component v, respectively, based on said filter weights $w_{mvdr}(k,m)$ and the covariance matrix $\hat{\mathbf{C}}_{\mathbf{Y}}(k,m)$, or a scaled version thereof, of the noisy signal, wherein said estimates of λ_V and λ_X are jointly optimal in maximum likelihood sense, based on the statistical assumptions that a) the time-frequency representations $Y_i(k,m)$, $X_i(k,m)$, and $V_i(k,m)$ of respective signals $y_i(n)$, and signal components $x_i(n)$, and $v_i(n)$ are zero-mean, complex-valued Gaussian distributed, b) that each of them are statistically independent across time m and frequency k, and c) that $X_i(k,m)$ and $V_i(k,m)$ are uncorrelated.

[0049] It is intended that some or all of the process features of the method described above, in the 'detailed description of embodiments' or in the claims can be combined with embodiments of the system, when appropriately substituted by a corresponding structural feature and vice versa. Embodiments of the system have the same advantages as the corresponding method.

[0050] In an embodiment, the audio processing system (e.g. comprising a hearing assistance device, e.g. a hearing aid device) is adapted to provide a frequency dependent gain to compensate for a hearing loss of a user. In an embodiment, the audio processing system comprises a signal processing unit for enhancing the input signals and providing a processed output signal. Various aspects of digital hearing aids are described in [Schaub; 2008].

[0051] In an embodiment, the audio processing system comprises an output transducer for converting an electric signal to a stimulus perceived by the user as an acoustic signal. In an embodiment, the output transducer comprises a number of electrodes of a cochlear implant or a vibrator of a bone conducting hearing device. In an embodiment, the output transducer comprises a receiver (speaker) for providing the stimulus as an acoustic signal to the user.

[0052] In an embodiment, the audio processing system, specifically an input unit, comprises an input transducer for converting an input sound to an electric input signal. In an embodiment, the audio processing system comprises a directional microphone system adapted to enhance a target acoustic source among a multitude of acoustic sources in the local environment of the user wearing the audio processing system. In an embodiment, the directional system is adapted to detect (such as adaptively detect) from which direction a particular part of the microphone signal originates. This can be achieved in various different ways as e.g. described in the prior art.

[0053] In an embodiment, the audio processing system, e.g. an input unit, comprises an antenna and transceiver circuitry for *wirelessly* receiving a direct electric input signal from another device, e.g. a communication device or another audio processing system, e.g. a hearing assistance device. In an embodiment, the audio processing system (e.g. comprising a hearing assistance device) comprises a (possibly standardized) electric interface (e.g. in the form of a connector) for receiving a *wired* direct electric input signal from another device, e.g. a communication device or another audio processing device (e.g. comprising a hearing assistance device). In an embodiment, the direct electric input signal represents or comprises an audio signal and/or a control signal and/or an information signal. In an embodiment, the audio processing system comprises demodulation circuitry for demodulating the received direct electric input to provide a direct electric input signal representing an audio signal and/or a control signal. In general, the wireless link established by a transmitter and antenna and transceiver circuitry of the audio processing system can be of any type. In an embodiment, the wireless link is used under power constraints, e.g. in that the audio processing system comprises a portable (typically battery driven) device. In an embodiment, the wireless link is a link based on near-field communication, e.g.

an inductive link based on an inductive coupling between antenna coils of transmitter and receiver parts. In another embodiment, the wireless link is based on far-field, electromagnetic radiation (e.g. based on Bluetooth or a related standardized or non-standardized communication scheme).

[0054] In an embodiment, the audio processing system is or comprises a portable device, e.g. a device comprising a local energy source, e.g. a battery, e.g. a rechargeable battery.

[0055] In an embodiment, the audio processing system comprises a forward or signal path between an input transducer (microphone system and/or direct electric input (e.g. a wireless receiver)) and an output transducer. In an embodiment, the signal processing unit is located in the forward path. In an embodiment, the signal processing unit is adapted to provide a frequency dependent gain according to a user's particular needs. In an embodiment, the audio processing system comprises an analysis path comprising functional components for analyzing the input signal (e.g. determining a level, a modulation, a type of signal, an acoustic feedback estimate, reverberation, etc.). In an embodiment, some or all signal processing of the analysis path and/or the signal path is conducted in the frequency domain. In an embodiment, some or all signal processing of the analysis path and/or the signal path is conducted in the time domain.

[0056] In an embodiment, an analogue electric signal representing an acoustic signal is converted to a digital audio signal in an analogue-to-digital (AD) conversion process, where the analogue signal is sampled with a predefined sampling frequency or rate f_s , f_s being e.g. in the range from 8 kHz to 40 kHz (adapted to the particular needs of the application) to provide digital samples x_n (or x[n]) at discrete points in time t_n (or n), each audio sample representing the value of the acoustic signal at t_n by a predefined number N_s of bits, N_s being e.g. in the range from 1 to 16 bits. A digital sample x has a length in time of $1/f_s$, e.g. 50 μs , for $f_s = 20$ kHz. In an embodiment, a number of audio samples are arranged in a time frame. In an embodiment, a time frame comprises 64 audio data samples. Other frame lengths may be used depending on the practical application.

[0057] In an embodiment, the audio processing system comprise an analogue-to-digital (AD) converter to digitize an analogue input with a predefined sampling rate, e.g. 20 kHz. In an embodiment, the audio processing system comprise a digital-to-analogue (DA) converter to convert a digital signal to an analogue output signal, e.g. for being presented to a user via an output transducer.

[0058] In an embodiment, the audio processing system, e.g. the microphone unit, and or the transceiver unit comprise(s) a TF-conversion unit for providing a time-frequency representation of an input signal. In an embodiment, the time-frequency representation comprises an array or map of corresponding complex or real values of the signal in question in a particular time and frequency range. In an embodiment, the TF conversion unit comprises a filterbank for filtering a (time varying) input signal and providing a number of (time varying) output signals each comprising a distinct frequency range of the input signal. In an embodiment, the TF conversion unit comprises a Fourier transformation unit for converting a time variant input signal to a (time variant) signal in the frequency domain. In an embodiment, the frequency range considered by the audio processing system from a minimum frequency f_{min} to a maximum frequency f_{max} comprises a part of the typical human audible frequency range from 20 Hz to 20 kHz, e.g. a part of the range from 20 Hz to 12 kHz. In an embodiment, a signal of the forward and/or analysis path of the audio processing system is split into a number NI of frequency bands, where NI is e.g. larger than 5, such as larger than 10, such as larger than 50, such as larger than 100, such as larger than 500, at least some of which are processed individually. In an embodiment, the audio processing system is adapted to process a signal of the forward and/or analysis path in a number NP of different frequency channels $(NP \leq NI)$. The frequency channels may be uniform or non-uniform in width (e.g. increasing in width with frequency), overlapping or non-overlapping.

30

35

45

50

[0059] In an embodiment, the audio processing system comprises a level detector (LD) for determining the level of an input signal (e.g. on a band level and/or of the full (wide band) signal).

[0060] In a particular embodiment, the audio processing system comprises a voice activity detector (VAD) for determining whether or not an input signal comprises a voice signal (at a given point in time). A voice signal is in the present context taken to include a speech signal from a human being. It may also include other forms of utterances generated by the human speech system (e.g. singing). In an embodiment, the voice detector unit is adapted to classify a current acoustic environment of the user as a VOICE or NO-VOICE environment. This has the advantage that time segments of the electric microphone signal comprising human utterances (e.g. speech) in the user's environment can be identified, and thus separated from time segments only comprising other sound sources (e.g. artificially generated noise). In an embodiment, the voice detector is adapted to detect as a VOICE also the user's own voice. Alternatively, the voice detector is adapted to exclude a user's own voice from the detection of a VOICE.

[0061] In an embodiment, the audio processing system further comprises other relevant functionality for the application in question, e.g. feedback suppression, compression, etc.

[0062] In an embodiment, the audio processing system comprises (such as consists of) an audio processing device, e.g. a hearing assistance device, e.g. a hearing aid, e.g. a hearing instrument, e.g. a hearing instrument adapted for being located at the ear or fully or partially in the ear canal of a user, e.g. a headset, an earphone, an ear protection device or a combination thereof.

[0063] In the present context, a 'hearing assistance device' refers to a device, such as e.g. a hearing instrument or

an active ear-protection device or other audio processing device, which is adapted to improve, augment and/or protect the hearing capability of a user by receiving acoustic signals from the user's surroundings, generating corresponding audio signals, possibly modifying the audio signals and providing the possibly modified audio signals as audible signals to at least one of the user's ears. A 'hearing assistance device' further refers to a device such as an earphone or a headset adapted to receive audio signals electronically, possibly modifying the audio signals and providing the possibly modified audio signals as audible signals to at least one of the user's ears. Such audible signals may e.g. be provided in the form of acoustic signals radiated into the user's outer ears, acoustic signals transferred as mechanical vibrations to the user's inner ears through the bone structure of the user's head and/or through parts of the middle ear as well as electric signals transferred directly or indirectly to the cochlear nerve of the user.

[0064] The hearing assistance device may be configured to be worn in any known way, e.g. as a unit arranged behind the ear with a tube leading radiated acoustic signals into the ear canal or with a loudspeaker arranged close to or in the ear canal, as a unit entirely or partly arranged in the pinna and/or in the ear canal, as a unit attached to a fixture implanted into the skull bone, as an entirely or partly implanted unit, etc. The hearing assistance device may comprise a single unit or several units communicating electronically with each other.

[0065] More generally, a hearing assistance device comprises an input transducer for receiving an acoustic signal from a user's surroundings and providing a corresponding input audio signal and/or a receiver for electronically (i.e. wired or wirelessly) receiving an input audio signal, a signal processing circuit for processing the input audio signal and an output means for providing an audible signal to the user in dependence on the processed audio signal. In some hearing assistance devices, an amplifier may constitute the signal processing circuit. In some hearing assistance devices, the output means may comprise an output transducer, such as e.g. a loudspeaker for providing an air-borne acoustic signal or a vibrator for providing a structure-borne or liquid-borne acoustic signal. In some hearing assistance devices, the output means may comprise one or more output electrodes for providing electric signals.

[0066] In an embodiment, the audio processing system comprises an *audio processing device* (e.g. a hearing assistance device) and an *auxiliary* device. In an embodiment, the audio processing system comprises an audio processing device and two or more auxiliary devices.

[0067] In an embodiment, the audio processing system is adapted to establish a communication link between the audio processing device and the auxiliary device to provide that information (e.g. control and status signals, possibly audio signals) can be exchanged or forwarded from one to the other.

[0068] In an embodiment, at least one of the input units are located in auxiliary device.

[0069] In an embodiment, at least one of the noisy signal inputs y_i is transmitted from an auxiliary device to an input unit of the audio processing device.

[0070] In an embodiment, the auxiliary device is or comprises an audio gateway device adapted for receiving a multitude of audio signals (e.g. from an entertainment device, e.g. a TV or a music player, a telephone apparatus, e.g. a mobile telephone or a computer, e.g. a PC) and adapted for selecting and/or combining an appropriate one of the received audio signals (or combination of signals) for transmission to the audio processing device. In an embodiment, the auxiliary device is or comprises a remote control for controlling functionality and operation of the audio processing device (e.g. hearing assistance device(s). In an embodiment, the function of a remote control is implemented in a SmartPhone, the SmartPhone possibly running an APP allowing to control the functionality of the audio processing device via the SmartPhone (the hearing assistance device(s) comprising an appropriate wireless interface to the SmartPhone, e.g. based on Bluetooth or some other standardized or proprietary scheme).

[0071] In an embodiment, the auxiliary device is another audio processing device, e.g. a hearing assistance device. In an embodiment, the audio processing system comprises two hearing assistance devices adapted to implement a binaural listening system, e.g. a binaural hearing aid system.

45 <u>Use:</u>

10

20

30

35

40

50

55

[0072] In an aspect, use of an audio processing system as described above, in the 'detailed description of embodiments' and in the claims, is moreover provided.

[0073] In an embodiment, use is provided in a system comprising audio distribution, In an embodiment, use is provided in a system comprising one or more hearing instruments, headsets, ear phones, active ear protection systems, etc., e.g. in handsfree telephone systems, teleconferencing systems, public address systems, karaoke systems, classroom amplification systems, etc. In an embodiment, use of an audio processing system for de-reverberation of an input sound signal or an electric input signal (e.g. to clean-up a noisy, recorded or streamed signal) is provided. In an embodiment, use of an audio processing system for de-reverberation of an input sound signal or an electric input signal (e.g. to clean-up a noisy, recorded or streamed signal) is provided.

[0074] Further objects of the application are achieved by the embodiments defined in the dependent claims and in the detailed description of the invention.

[0075] As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well (i.e. to

have the meaning "at least one"), unless expressly stated otherwise. It will be further understood that the terms "includes," "comprises," "including," and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present, unless expressly stated otherwise. Furthermore, "connected" or "coupled" as used herein may include wirelessly connected or coupled. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless expressly stated otherwise.

BRIEF DESCRIPTION OF DRAWINGS

10

15

20

30

40

45

50

55

[0076] The disclosure will be explained more fully below in connection with a preferred embodiment and with reference to the drawings in which:

- FIG. 1 schematically shows a number of acoustic paths between a sound source and a receiver of sound located in a room (FIG. 1a) and an exemplary illustration of amplitude versus time for a sound signal in the room (FIG. 1 b),
- FIG. 2 schematically illustrates a conversion of a signal in the time domain to the time-frequency domain, FIG. 2a illustrating a time dependent sound signal (amplitude versus time) and its sampling in an analogue to digital converter,
- FIG. 2b illustrating a resulting 'map' of time-frequency units after a (short-time) Fourier transformation of the sampled signal,
- FIG. 3 shows two exemplary embodiments of block diagrams of an audio processing system according to the present disclosure illustrating the proposed scheme of estimation of speech and noise spectral variances,
 - FIG. 4 shows a scenario wherein the method according to the present disclosure (shaded box) is used to compute gain values for a single-channel post-processing step for de-reverberation,
 - FIG. 5 shows an embodiment of an audio processing system according to the present disclosure,
 - FIG. 6 shows a further embodiment of an audio processing device according to the present disclosure, and
- FIG. 7 shows a flow diagram illustrating a method of processing a noisy input signal according to the present disclosure.
 - **[0077]** The figures are schematic and simplified for clarity, and they just show details which are essential to the understanding of the disclosure, while other details are left out. Throughout, the same reference signs are used for identical or corresponding parts.
 - **[0078]** Further scope of applicability of the present disclosure will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the disclosure, are given by way of illustration only. Other embodiments may become apparent to those skilled in the art from the following detailed description.

DETAILED DESCRIPTION OF EMBODIMENTS

- **[0079]** FIG. 1 schematically shows a number of acoustic paths between a sound source and a receiver of sound located in a room (FIG. 1a) and an exemplary illustration of amplitude (|MAG|) versus time (*Time*) for a sound signal in the room (FIG. 1 b).
- **[0080]** FIG. 1 a schematically shows an example of an acoustically *propagated* signal from an audio source (S in FIG. 1a) to a listener (L in FIG. 1a) via direct (p_0) and reflected propagation paths (p_1 , p_2 , p_3 , p_4 , respectively) in an exemplary location (Room). The resulting acoustically propagated signal received by a listener, e.g. via a listening device worn by the listener (at L in FIG. 1 a) is a sum of the five (and possibly more, depending on the room) differently delayed and attenuated (and possibly otherwise distorted) contributions. The direct (p_0) and early reflections (here the one time reflected (p_1)) propagation paths are indicated FIG. 1a in dashed line, whereas the 'late reflections' (here the 2, 3, and 4 times reflected (p_2 , p_3 , p_4)) time reflected (p_1)) are indicated FIG. 1a in dotted line. FIG. 1b schematically illustrates an example of a resulting time variant sound signal (magnitude |MAG| [dB] versus time) from the sound source S as

received at the listener ${\it L.}$ In FIG. 1 b a predetermined time Δt_{pd} defining the 'late reverberations' is indicated. The late reverberations are in the present example taken to be those signal components that arrive at the listener a time t_{pd} after it was issued by the sound source ${\it S.}$ In other words, 'late reverberations' are signal components of a sound that arrive at a given input unit (e.g. the ith) a predefined time Δt_{pd} after the first peak (p0) of the impulse response has arrived at the input unit in question. In an embodiment, the predefined time Δt_{pd} is larger than or equal to 30 ms, such as larger than or equal to 40 ms, e.g. larger than or equal to 50 ms. In an embodiment, such 'late reverberations' include sound components that have been subject to two or more (p2, p3, p4, ..., as exemplified in FIG. 1), such as three or more reflections from surfaces (e.g. walls) in the environment. The appropriate number of reflections and/or the appropriate predefined time Δt_{pd} separating the target signal components (dashed part of the graph in FIG. 1 b) from the (undesired) reverberation (noise) signal components (dotted part of the graph in FIG. 1b) depend on the location (distance to and properties of reflective surfaces) and the distance between audio source (${\it S}$) and listener (${\it L}$), the effect of reverberation being smaller the distance between source and listener.

[0081] FIG. 2 schematically illustrates a conversion of a signal in the time domain to the time-frequency domain, FIG. 2a illustrating a time dependent sound signal (amplitude versus time) and its sampling in an analogue to digital converter, FIG. 2b illustrating a resulting 'map' of time-frequency units after a (short-time) 2Fourier transformation of the sampled signal.

FIG. 2a illustrates a time dependent sound signal x(t) (amplitude (SPL [dB]) versus time (t)), its sampling in an [0082] analogue to digital converter and a grouping of time samples in frames, each comprising N_s samples. The graph showing a Amplitude versus time (solid line in FIG. 2a) may e.g. represent the time variant analogue electric signal provided by an input transducer, e.g. a microphone, before being digitized by an analogue to digital conversion unit. FIG. 2b illustrates a 'map' of time-frequency units resulting from a Fourier transformation (e.g. a discrete Fourier transform, DFT) of the input signal of FIG. 2a, where a given time-frequency unit (m,k) corresponds to one DFT-bin and comprises a complex value of the signal X(m,k) in question $(X(m,k)=|X|\cdot e^{i\phi}, |X|=magnitude)$ and $\varphi=phase)$ in a given time frame m and frequency band k. In the following, a given frequency band is assumed to contain one (generally complex) value of the signal in each time frame. It may alternatively comprise more than one value. The terms 'frequency range' and 'frequency band' are used in the present disclosure. A frequency range may comprise one or more frequency bands. The Timefrequency map of FIG. 2b illustrates time frequency units (m,k) for k=1, 2, ..., K frequency bands and $m=1, 2, ..., N_M$ time units. Each frequency band Δf_k is indicated in FIG. 2b to be of uniform width. This need not be the case though. The frequency bands may be of different width (or alternatively, frequency channels may be defined which contain a different number of uniform frequency bands, e.g. the number of frequency bands of a given frequency channel increasing with increasing frequency, the lowest frequency channel(s) comprising e.g. a single frequency band). The time intervals Δt_{m} (time unit) of the individual time-frequency bins are indicated in FIG. 2b to be of equal size. This need not be the case though, although it is assumed in the present embodiments. A time unit Δt_m is typically equal to the number N_s of samples in a time frame (cf. FIG. 2a) times the length in time t_s of a sample ($t_s = (1/f_s)$, where f_s is a sampling frequency). A time unit is e.g. of the order of ms in an audio processing system.

30

35

50

[0083] FIG. 3a schematically shows an embodiment of an audio processing device (APD) according to the present disclosure. The audio processing device (APD) comprises a multitude M of input units (IU_i, i=1, 2, ..., M), each being adapted to provide a time-frequency representation Y_i of a (time varying) noisy input signal y_i at an ith input unit, i=1, 2, ..., M, where M is larger than or equal to two. The noisy input signal yi is e.g. a noisy target speech signal comprising a target speech signal component x_i and a noise signal component v_i , which is additive and essentially uncorrelated to the target signal (e.g. a speech signal), in other words $y_i(n) = x_i(n) + v_i(n)$, i=1, 2, ..., M, where n represents time. In the present context, the noisy signal is assumed to be a reverberant target speech signal y_i comprising a target speech signal component x_i and a reverberation signal component v_i as discussed in connection with FIG. 1 above. The timefrequency representation $Y_i(k,m)$ comprises a (generally complex) value of the input signal in a given frequency band k(k=1, 2, ..., K) and time instance m (m=1, 2, ..., Nm). In the embodiment of FIG. 3a, each input unit IU_i comprises an input transducer or an input terminal IT_i for receiving a noisy signal y_i (e.g. an acoustic signal or an electric signal) and providing it as an electric input signal IN; to an analysis filterbank (AFB) for providing a time-frequency representation $Y_i(k,m)$ of the corresponding electric input signal IN_i , and hence of the noisy input signal y_i . The audio processing device (APD) further comprises a multi-channel MVDR beamformer filtering unit (MVDR) to provide signal mvdr comprising filter weights $w_{mvdr}(k,m)$. The filter weights $w_{mvdr}(k,m)$ are being determined by the MVDR filter unit (MVDR) from a predetermined look vector $\underline{a}(k,m)$ (\underline{a}) (or a scaled version thereof) and a predetermined inter-input unit covariance matrix $C_{v}(k,m)$ (C_{v}) (or a scaled version thereof) for the noise signal component of the noisy input signal. In an embodiment, the look vector (\underline{a}) and the covariance matrix (\hat{c}_{v}) are predetermined in off-line procedures. The audio processing device (APD) further comprises a covariance estimation unit (CovEU) for estimating an inter input unit covariance matrix $\hat{\mathbf{C}}_{\mathbf{Y}}(\mathbf{k},\mathbf{m})$ (or a scaled version thereof) of the noisy input signal based on the time-frequency representation $Y_i(k,m)$ of the noisy signals y_i. The audio processing device (APD) further comprises a spectral variance estimation unit (SVarEU) for estimating spectral variances $\lambda_X(k,m)$ and $\lambda_V(k,m)$ or scaled versions thereof of the target signal component x and the noise signal component v, respectively. The estimated spectral variances $\lambda_X(k,m)$ and Av(k,m) are based on the filter weights

 $w_{mvdr}(k,m)$ (signal mvdr) provided by the MVDR filter, the predetermined target look vector (\underline{d}) and noise covariance matrix (\hat{C}_V) (or scaled versions thereof), and the covariance matrix ($\hat{C}_V(k,m)$) of the noisy signal provided by the covariance estimation unit (CovEU). The spectral variance estimation unit (SVarEU) is configured to provide that the estimates of λ_V and λ_X are jointly optimal in maximum likelihood sense based on the statistical assumptions that the time-frequency representations $Y_i(k,m)$, $X_i(k,m)$, and $V_i(k,m)$ of respective signals $y_i(n)$, and signal components $x_i(n)$, and $v_i(n)$ are zero-mean, complex-valued Gaussian distributed, that each of them are statistically independent across time m and frequency k, and that $X_i(k,m)$ and $V_i(k,m)$ are uncorrelated.

[0084] In an embodiment, at least one of the M input units IU_i comprises an input transducer, e.g. a microphone for converting an electric input sound to an electric input signal (cf. e.g. FIG. 3b). The M input units IU_i may all be located in the same physical device. Alternatively, a first (IU_1) of the M input units (IU_i) is located in the audio processing device (APD, e.g. a hearing aid device), and at second (IU_2) of the M input units (IU_i) is located a distance to the first input unit that is larger than a maximum outer dimension of the audio processing device (APD) where the first input unit (IU_1) is located. In an embodiment, a first of the M input units is located in a first audio processing device (e.g. a first hearing aid device) and a second of the M input units is located in another device, the audio processing device and the other device being configured to establish a communication link between them. In an embodiment, the other device is another audio processing device (e.g. a second hearing aid device of a binaural hearing assistance system). In an embodiment, the other device is or comprises a remote control device of the audio processing device, e.g. embodied in a cellular telephone, e.g. in a SmartPhone.

10

30

35

40

45

50

55

[0085] Another embodiment of an audio processing device according to the present disclosure illustrating a more specific implementation (but comprising the same elements as shown and discussed in FIG. 3a) is shown in FIG. 3b. FIG. 3b shows an audio processing device (APD) for estimation of spectral variances λ_{χ} , λ_{v} of target speech and reverberation signal components of a noisy input signal, wherein the number (M) of input units is two, and wherein the two input units (Mic_{1} , Mic_{2}) each comprises a microphone unit (Mic_{i}) and an analysis filterbank (AFB in FIG. 3b). It is, as illustrated in FIG. 3a, straightforward to generalize this description to systems with more than 2 microphones (M>2). Also, the two microphones may be located in the same device (e.g. in a listening device, such as a hearing assistance device), but may alternatively be located in different (physically separate) devices, e.g. in two separate audio processing devices, such as in two separate hearing assistance devices of a binaural hearing assistance system, adapted for wirelessly communicating with each other allowing the two microphone signals to be available in the audio processing device (APD) in question. In a preferred embodiment, the audio processing device comprises at least two input units relatively closely spaced apart (within in the housing of the audio processing device) and one input unit located elsewhere, e.g. in another audio processing device, e.g. a SmartPhone.

[0086] In the following, the 2-microphone system is described in more detail. Let us assume that one target speaker is present in the acoustical scene, and that the signal reaching the hearing aid microphones consists of the two components a) and b) described above. The goal is to estimate the power at given frequencies and time instants of these two signal components. The signal reaching microphone number i may be written as

$$y_i(n) = x_i(n) + v_i(n)$$

where $x_i(n)$ is the target signal component at the microphone, and $v_i(n)$ is the undesired reverberation component, which we assume is uncorrelated with the target signal $x_i(n)$, and $y_i(n)$ is the observable reverberant signal. The reverberant signal at each microphone is passed through an analysis filterbank (AFB) leading to a signal in the time-frequency domain,

$$Y_i(k,m)=X_i(k,m)+V_i(k,m)$$

where k is a frequency index and m is a time (frame) index (and i=1, 2). For convenience, these spectral coefficients may be thought of as Discrete-Fourier Transform (DFT) coefficients.

[0087] Since all operations are identical for each frequency index, we skip the frequency index in the following for notational convenience. For example, instead of $Y_i(k,m)$, we simply write $Y_i(m)$.

[0088] For a given frequency index k and time index m, noisy spectral coefficients for each microphone are collected in a vector (of size 2, since M=2; in general of size M), T indicating vector (matrix) transposition:

$$Y(m) = [Y_1(m)Y_2(m)]^T$$

 $X(m) = [X_1(m)X_2(m)]^T$

and

5

10

20

25

35

40

45

50

 $V(m) = [V_1(m)V_2(m)]^T$

15 so that

$$Y(m) = X(m) + V(m)$$
.

[0089] For a given frame index m, and frequency index k (suppressed in the notation), let $d'(m) = [d'_1(m) \ d'_2(m)]$ denote a vector (of size 2) whose elements d_1 and d_2 represent the (generally complex-valued) acoustic transfer function from target sound source to each microphone (Mic_1 , Mic_2), respectively. It is often more convenient to operate with a normalized version of d'(m). More specifically, let

 $d(m) = d'(m)/d'_{i}(m)$.

denote a vector whose elements $d_i(m)$ (i=1, 2,, M, here M=2) represent the relative transfer function from the target source to the ith microphone. This implies that the ith element in this vector equals one, and the remaining elements describe the acoustic transfer function from the other microphones to this reference microphone.

[0090] This means that the noise free microphone vector X(m) (which cannot be observed directly), can be expressed as

 $X(m) = d(m)\overline{X}(m)$,

where $\overline{X}(m)$ is the spectral coefficient of the target signal at the reference microphone.

[0091] The inter-microphone covariance matrix for the clean signal is then given by

$$C_{\mathcal{X}}(m) = \lambda_{\mathcal{X}}(m)d(m)d(m)^{H},$$

where H denotes Hermitian transposition.

[0092] In an embodiment, the inter-microphone covariance matrix of the late-reverberation is modelled as the covariance arising from an isotropic field,

 $C_{V}(m) = \lambda_{V}(m)C_{iso},$

where C_{iso} is the covariance matrix of the late-reverberation, and $\lambda_V(m)$ is the reverberation power at the reference microphone, which, obviously, is time-varying to take into account the time-varying power level of reverberation. [0093] The inter-microphone covariance matrix is given by

$$C_{\mathcal{V}}(m) = C_{\mathcal{V}}(m) + C_{\mathcal{V}}(m)$$

because the target and late-reverberation signals are assumed to be uncorrelated. Inserting expressions from above, we arrive at the following expression for $C_Y(m)$,

$$C_{Y}(m) = \lambda_{X}(m)d(m)d(m)^{H} + \lambda_{V}(m)C_{iso}.$$

[0094] In practice, vector d(m) may be estimated in an off-line calibration procedure (if we assume the target to be in a fixed location compared to the hearing aid microphone array, i.e., if the user "chooses with the nose"), or it may be estimated online.

[0095] The matrix C_{iso} is preferably estimated off-line by exposing hearing aids mounted on a dummy head for a reverberant sound field (e.g. approximated as an isotropic field), and measuring the resulting inter-microphone covariance matrix.

[0096] Given the expression above, we wish to find estimates of spectral variances $\lambda_X(m)$ and $\lambda_V(m)$. In particular, it is possible to derive the following expressions for maximum likelihood estimates of these quantities. Let

$$\hat{C}_{Y}(m) = \frac{1}{D} \sum_{i=m-D+1}^{m} Y(m)Y(m)^{H}$$

denote an estimate of the noisy inter-microphone covariance matrix $C_Y(m)$, based on D observations. \hat{C}_Y is determined in a unit for estimating inter-microphone covariance (CovEU in FIG. 3b). Then, the following maximum-likelihood (ml) estimates of spectral variances $\lambda_X(m)$ and $\lambda_V(m)$ can be derived:

$$\lambda_{V,ml}(m) = \frac{1}{M-1} tr(Q_u(m)\hat{C}_Y(m)C_{iso}^{-1}),$$

with

15

20

25

30

35

40

45

50

55

$$Q_{u}(m) = I - d(m)(d(m)^{H}C_{iso}^{-1}d(m))^{-1}d(m)^{H}C_{iso}^{-1},$$

I being the identity matrix (vector), and M=2 is the number of microphones.

[0097] Furthermore,

$$\lambda_{X,ml}(m) = w_{mvdr}^{H}(m)(\hat{C}_{Y}(m) - \lambda_{V,ml}(m)C_{iso})w_{mvdr}(m),$$

where

$$w_{mvdr}(m) = \frac{C_{iso}^{-1}d(m)}{d(m)^{H} C_{iso}^{-1}d(m)}$$

is a vector of filter weights for a minimum-variance distortionless response (MVDR), see e.g. [Haykin; 2001]. The filter weights $w_{mvdr}(m)$ ($w_{mvdr}(m,k)$) in FIG. 3b) are determined in MVDR filter unit for computing filter weights (MVDR in FIG. 3b). The spectral variances Ax(m) and $\lambda_{V}(m)$ are estimated in unit for computing spectral variances (SVarEU in FIG. 3b).

[0098] The two boxed equations above constitute our proposed method for estimating spectral variances of a target speaker in reverberation, as a function of time (index m) and frequency (suppressed index k).

[0099] The spectral variances $\lambda_X(m)$ and $\lambda_V(m)$ have several usages.

Direct-to-Reverberation Ratio Estimation

[0100] The ratio $\lambda_X(m)/\lambda_V(m)$ can be seen as an estimate of the direct-to-reverberation ratio (DRR). The DRR correlates with the distance to the sound source [Hioka et al.; 2011], and is also linked to speech intelligibility. Having a DRR estimate available in a hearing assistance device allows e.g. the device to change to a relevant processing strategy, or to inform the user of the hearing assistance device that the device finds the processing conditions difficult, etc.

De-reverberation

10

15

30

35

40

45

50

55

[0101] A common strategy for de-reverberation in the time-frequency domain is to suppress the time-frequency tiles where the target-to-reverb ratio is small and maintain the time-frequency tiles where the target-to-reverb ration is large (or suppress such TF-tiles less). The perceptual result of such processing is a target signal where the reverberation has been reduced. The crucial component in any such system is to determine from the available reverberant signal which time-frequency tiles are dominated by reverberation, and which are not. FIG. 4 shows a possible way of using the proposed estimation method for de-reverberation.

[0102] As before, reverberant microphone signals y_i are decomposed into a time-frequency representation, using analysis filterbanks (*AFB* in FIG. 4). The proposed method of processing a noisy signal is implemented in unit ML_{est} (shaded box in FIG. 4 corresponding to ML_{est} -unit in FIG. 3a), as discussed in connection with FIG. 3, and is applied to the filterbank outputs $Y_1(m,k)$, $Y_2(m,k)$ to estimate spectral variances $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$ as a function of time (m) and frequency (k). We assume that the noisy microphone signals $Y_1(m,k)$, $Y_2(m,k)$ are passed through a linear beamformer (*Beamformer w(m,k)* in FIG. 4) with weights collected in the vector w(m,k). It should be noted that this beamformer may or may not be an MVDR beamformer. If an MVDR beamformer is desired, then the MVDR beamformer weights of the proposed method (inside the shaded box ML_{est} of FIG. 4) may be re-used (e.g. using unit MVDR in FIG. 3a). The output of the beamformer is then given by

$$\widetilde{Y}(m) = \widetilde{X}(m) + \widetilde{V}(m)$$
.

where

$$\widetilde{Y}(m) = w(m)^H Y(m)$$
,

$$\widetilde{X}(m) = w(m)^H X(m),$$

and

$$\widetilde{V}(m) = w(m)^H V(m),$$

where, as before, the frequency index k for notational convenience has been suppressed.

[0103] We are interested in estimates of the power of the target component and of the late-reverberation component entering the single-channel post-processing filter. These can be found using our estimated spectral variances as

$$\widetilde{\lambda}_{X,ml}(m) = E |w(m)^H X(m)|^2 = \lambda_{X,ml}(m) |w(m)^H d(m)|^2$$

and

5

10

15

20

25

30

35

40

45

50

55

$$\widetilde{\lambda}_{V,ml}(m) = E |w(m)^H V(m)|^2 = \lambda_{V,ml}(m) w(m)^H C_{iso} w(m),$$

respectively.

[0104] So, the power of the target component and of the late-reverberation component entering the single-channel post-processing filter can be found from our maximum-likelihood estimates of spectral variances, $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$, and quantities which are otherwise available.

[0105] The single-channel post-processing filter then uses the estimates $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$ to find an appropriate gain gsc(m) to apply to the beamformer output, Y(m). That is, gsc(m) may generally be expressed as a function of $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$ and potentially other parameters. For example, for a Wiener gain function, we have (e.g., [Loizou; 2013])

$$g_{wiener}(m) = \frac{\widetilde{\lambda}_{X,ml}(m)/\widetilde{\lambda}_{V,ml}(m)}{\widetilde{\lambda}_{X,ml}(m)/\widetilde{\lambda}_{V,ml}(m)+1},$$

whereas for the Ephraim-Malah gain function [Ephraim-Malah; 1984], we have

$$g_{em}(m) = f\left(\widetilde{\lambda}_{X,ml}(m) / \widetilde{\lambda}_{V,ml}(m), |\widetilde{Y}(m)|^2 / \widetilde{\lambda}_{V,ml}(m)\right).$$

[0106] Many other possible gain functions exist, but they are typically a function of both $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$, and potentially other parameters.

[0107] Finally, the gain function gsc(m) is applied to the beamformer output Y(m) to result in the de-reverberated time-frequency tile X(m), i.e.,

$$\hat{X}(m) = g_{SC}(m)\widetilde{Y}(m)$$
.

[0108] In an embodiment of the system of FIG. 4, the *Beamformer w(m,k) unit* (e.g. an MVDR beamformer) and the *Single-Channel Post Processing unit* is implemented as a multi-channel Wiener filter (MVF).

[0109] FIG. 5 shows an embodiment of an audio processing system (APD) according to the present disclosure. The audio processing system (APD) comprises the same elements as shown in FIG. 3a: Input units IU_i , i=1, 2, M providing time-frequency representations Y of noisy signals y (comprising a target signal component x and a noise signal component v) to a maximum likelihood estimations unit ML_{est} for estimating spectral variances $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$ of the target signal component x and a noise signal component v, respectively (or scaled versions thereof). In the embodiment of FIG. 5 input units UI_i further comprises normalization filter units H_i . The normalization filter units have a transfer function $H_i(k)$, which makes the source providing the electric input signal in question comparable and interchangeable with the other sources. This has the advantage that the signal contents of the individual noisy input signals y_i can be compared. The ith input unit IU_i (i=1, 2, ..., M) comprises input transducer IT_i for converting an input sound signal y_i to an electric input signal I_i or another input device for providing the electric input signal I_i . Normalization filter H_i (e.g. an adaptive filter) filters electric input signal I_i to a normalized signal IN_i (e.g. within a predetermined voltage range) and feeds the normalized time domain signal IN_i to analysis filterbank AFB, which provides a time-frequency representation $Y_1(m,k)$ of the noisy input signal y_i to the maximum likelihood estimations unit ML_{est} . This allows to compensate unmatched

microphones, to use different kinds of sensors (microphones, vibration sensors, optical sensors, electrodes e.g. for sensing brain waves, etc.), to compensate for different location of sensors, etc. The maximum likelihood estimations unit ML_{est} further receives predetermined target look vector (\underline{d}) and noise covariance matrix ($\hat{\mathbf{C}}_{\mathbf{v}}$) (or scaled versions thereof) allowing estimation of spectral variances $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$.

[0110] FIG. 6 shows an embodiment of an audio processing device according to the present disclosure comprising the same elements as the embodiment in FIG. 5, only the maximum likelihood estimations unit ML_{est} for estimating spectral variances $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$ form part of more general signal processing unit SPU comprising e.g. also beamformer and single channels post filtering as discussed in connection with FIG. 4 and/or other signal processing making use of spectral variances $\lambda_{X,ml}(m)$ and $\lambda_{V,ml}(m)$ (or scaled versions thereof). The signal processing unit SPU provides enhanced, e.g. de-reverberated, signal X(m,k). The signal processing unit SPU may e.g. be configured to apply a frequency dependent gain to the resulting enhanced signal X to compensate for a hearing impairment of a user. The embodiment of FIG. 6 further comprises synthesis filterbank SFB for converting the enhanced time-frequency domain signal X(m,k) to time domain (output) signal OUT, which may be further processed or as here fed to output unit OU. The output unit may be an output transducer for converting an electric signal to a stimulus perceived by the user as an acoustic signal. In an embodiment, the output transducer comprises a receiver (speaker) for providing the stimulus as an acoustic signal to the user. The output unit OU may alternatively or additionally comprise a number of electrodes of a cochlear implant hearing device or a vibrator of a bone conducting hearing device or a transceiver for transmitting the resulting signal to another device. The embodiment of an audio processing device shown in FIG. 6 may implement a hearing assistance device.

[0111] FIG. 7 shows a flow diagram illustrating a method of processing a noisy input signal according to the present disclosure. The noisy signal y(n) comprises a target signal component x(n) and a noise signal component v(n), n representing time. The method comprises the steps of

- a) Providing or receiving a time-frequency representation $Y_i(k,m)$ of the noisy signal $y_i(n)$ at an ith input unit, i=1, 2, ..., M, where M is larger than or equal to two, in a number of frequency bands and a number of time instances, k being a frequency band index and m being a time index;
- b) Estimating spectral variances or scaled versions thereof Av, λ_X of said noise signal component v and said target signal component x, respectively, as a function of frequency index k and time index m, said estimates of λ_V and Ax being jointly optimal in maximum likelihood sense

[0112] The maximum likelihood optimization is based (exclusively) on the following statistical assumptions

- that the time-frequency representations $Y_i(k,m)$, $X_i(k,m)$, and $V_i(k,m)$ of respective signals $y_i(n)$, and signal components $x_i(n)$, and $v_i(n)$ are zero-mean, complex-valued Gaussian distributed,
- that each of them are statistically independent across time m and frequency k, and
- that $X_i(k,m)$ and $V_i(k,m)$ are uncorrelated

[0113] The method is - in general - based on the assumption that characteristics of the target and noise signal components are known.

[0114] The assumptions regarding the characteristics of the target and noise signal components are e.g. that the direction to the target signal relative to the input units is known (fixed <u>d</u>) and that the spatial fingerprint of the noise signal component is also known, e.g. isotropic ($C_v = C_{iso}$).

[0115] The invention is defined by the features of the independent claim(s). Preferred embodiments are defined in the dependent claims. Any reference numerals in the claims are intended to be non-limiting for their scope.

[0116] Some preferred embodiments have been shown in the foregoing, but it should be stressed that the invention is not limited to these, but may be embodied in other ways within the subject-matter defined in the following claims and equivalents thereof.

REFERENCES

[0117]

10

15

25

30

35

45

50

- US2009248403A
- WO12159217A1
- US2013343571A1
 - US2010246844A1
 - [Braun&Habets; 2013] S. Braun and E.A.P. Habets, "Dereverberation in noisy environments using reference signals and a miximum likelihood estimator", Presented at the 21st European Signal Processing Conference (EUSIPCO

- 2013), 5 pages (EUSIPCO 2013 1569744623).
- [Schaub; 2008] Arthur Schaub, "Digital hearing Aids", Thieme Medical. Pub., 2008.
- [Haykin; 2001] S. Haykin, "Adaptive Filter Theory," Fourth Edition, Prentice Hall Information and System Sciences Series, 2001.
- [Hioka et al.; 2011]: Y. Hioka, K. Niwa, S. Sakauchi, K. Furuya, and Y. Haneda, "Estimating Direct-to-Reverberant Energy Ratio Using D/R Spatial Correlation Matrix Model", IEEE Trans. Audio, Speech, and Language Processing, Vol. 19, No. 8, Nov., 2011, pp. 2374-2384.
 - [Loizou; 2013]: P.C. Loizou, "Speech Enhancement: Theory and Practice," Second Edition, February, 2013, CRC Press
- [Ephraim-Malah; 1984]: Y. Ephraim and D. Malah, "Speech Enhancement Using a Minimum Mean-Square Error Short-Time Spectral Amplitude Estimator," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-32, No.6, Dec. 1984, pp. 1109-1121.
 - [Kjems&Jensen; 2012] U. Kjems, J. Jensen, "Maximum likelihood based noise covariance matrix estimation for multi-microphone speech enhancement", 20th European Signal Processing Conference (EUSIPCO 2012), pp. 295-299, 2012.
 - [Ye&DeGroat; 1995] H. Ye and R.D. DeGroat, "Maximum likelihood DOA estimation and asymptotic Cram'er-Rao bounds for additive unknown colored noise," Signal Processing, IEEE Transactions on, vol. 43, no. 4, pp. 938-949, 1995.

Claims

5

15

20

25

30

35

45

- **1.** A method of processing a noisy signal y(n) comprising a target signal component x(n) and a noise signal component v(n), n representing time, the method comprising
 - a) Providing or receiving a time-frequency representation $Y_i(k,m)$ of the noisy signal $y_i(n)$ at an ith input unit, i=1, 2, ..., M, where M is larger than or equal to two, in a number of frequency bands and a number of time instances, k being a frequency band index and m being a time index;
 - b) Providing characteristics of said target signal component and said noise signal component; and
 - c) Estimating spectral variances or scaled versions thereof Av, λ_X of said noise signal component v and said target signal component x, respectively, as a function of frequency index k and time index m, said estimates of λ_V and λ_X being jointly optimal in maximum likelihood sense, based on the statistical assumptions that a) the time-frequency representations $Y_i(k,m)$, $X_i(k,m)$, and $V_i(k,m)$ of respective signals $y_i(n)$, and signal components $x_i(n)$, and $v_i(n)$ are zero-mean, complex-valued Gaussian distributed, b) that each of them are statistically independent across time m and frequency k, and c) that $X_i(k,m)$ and $V_i(k,m)$ are uncorrelated.
- **2.** A method according to claim 1 wherein the noisy signal $y_i(n)$ comprises a reverberant signal comprising a target signal component and a reverberation signal component.
- **3.** A method according to claims 1 or 2 wherein said characteristics of the noise signal component v is represented by an inter input unit covariance matrix C_v or a scaled version thereof and wherein said noise signal component $v_i(n)$ is essentially spatially isotropic.
 - **4.** A method according to any one of claims 1-3 wherein said noise signal component $v_i(n)$ is constituted by late reverberations.
 - **5.** A method according to any one of claims 1-4 wherein the characteristics of the target signal is represented by a look vector $\underline{d}(k,m)$ whose elements (i=1, 2, ..., M) define the (frequency and time dependent) absolute acoustic transfer function from a target signal source to each of the M input units, or the relative acoustic transfer function from the ith input unit to a reference input unit.
 - **6.** A method according to any one of claims 1-5 wherein the electric input signals from the input units (i=1, 2, ..., M) are normalized.
- 7. A method according to any one of claims 1-6 wherein the characteristics of the noise signal v is represented by an estimate of the inter-input unit covariance matrix C_V of the noise impinging on the input units, or a scaled version thereof.

- **8.** A method according to any one of claims 1-7 wherein the MVDR filtering based on a predetermined look vector $\underline{d}(k,m)$ and a predetermined covariance matrix $C_{iso}(k,m)$ for an isotropic field is used to provide filter weights $w_{mvdr}(k,m)$.
- 9. A method according to any one of claims 1-8 comprising making an estimate of the inter input unit covariance matrix Ĉ_V(km) of the noisy signal based on a number D of observations.
 - **10.** A method according to any one of claims 1-9 wherein said maximum-likelihood estimates of the spectral variances $\lambda_X(k,m)$ and $\lambda_V(k,m)$ of the target signal component x and the noise signal component v, respectively, are derived from estimates of the inter-input unit covariance matrices $C_V(k,m)$, $C_V(k,m)$, $C_V(k,m)$ and the look vector $\underline{d}(k,m)$.
 - **11.** A method according to any one of claims 5-10 wherein said look vector $\underline{d}(k,m)$ and said noise covariance matrix $C_{V}(k,m)$ are determined in an off-line procedure.
- **12.** A method according to any one of claims 1-11 comprising applying beamforming to the noisy signal *y*(*n*) providing a beamformed signal and single channel post filtering to the beamformed signal to suppress noise signal components from a direction of the target signal and to provide a resulting noise reduced signal.
 - 13. A method according to claim 12 wherein said beamforming is a target signal enhancement spatial filtering based on MVDR filtering applied to the time-frequency representation Y_i(k,m) of the noisy signal y_i(n) at an ith input unit, i=1, 2, ..., M, to provide a beamformed signal wherein signal components from other directions than a direction of the target signal component are attenuated, while leaving signal components from the direction of the target signal component un-attenuated.
- 25 **14.** A method according to claim 13 wherein gain values $g_{sc}(k,m)$ applied to the beamformed signal in the single channel post filtering process is based on estimates of the spectral variances $\lambda_X(k,m)$ and $\lambda_V(k,m)$ of the target signal component x and the noise signal component y, respectively.
- **15.** An audio processing system for processing a noisy signal *y* comprising a target signal component *x* and a noise signal component *v*, the audio processing system comprising
 - a) a multitude M of input units adapted to provide or to receive a time-frequency representation $Y_i(k,m)$ of the noisy signal $y_i(n)$ at an ith input unit, i=1, 2, ..., M, where M is larger than or equal to two, in a number of frequency bands and a number of time instances, k being a frequency band index and m being a time index;
 - b) a multi-channel MVDR beamformer filtering unit to provide filter weights $w_{mvdr}(k,m)$, said filter weights $w_{mvdr}(k,m)$ being based on a look vector $\underline{d}(k,m)$ for the target signal and an inter-input unit covariance matrix $C_{v}(k,m)$ for the noise signal, or scaled versions thereof;
 - c) a covariance estimation unit for estimating an inter input unit covariance matrix $\hat{C}_Y(k,m)$, or a scaled version thereof, of the noisy signal based on the time-frequency representation $Y_i(k,m)$ of the noisy signals $y_i(n)$; and d) a spectral variance estimation unit for estimating spectral variances $\lambda_X(k,m)$ and $\lambda_V(k,m)$ or scaled versions thereof of the target signal component x and the noise signal component v, respectively, based on said filter weights $w_{\text{mvdr}}(k,m)$ and the covariance matrix $\hat{C}_Y(k,m)$, or a scaled version thereof, of the noisy signal, wherein said estimates of λ_V and λ_X are jointly optimal in maximum likelihood sense, based on the statistical assumptions that a) the time-frequency representations $Y_i(k,m)$, $X_i(k,m)$, and $V_i(k,m)$ of respective signals $y_i(n)$, and signal components $x_i(n)$, and $v_i(n)$ are zero-mean, complex-valued Gaussian distributed, b) that each of them are statistically independent across time m and frequency k, and c) that $X_i(k,m)$ and $V_i(k,m)$ are uncorrelated.
 - **16.** Use of an audio processing system as claimed in claim 15.
- **17.** A data processing system comprising a processor and program code means for causing the processor to perform at least some of the steps of the method of any one of claims 1-14.

55

10

20

35

40

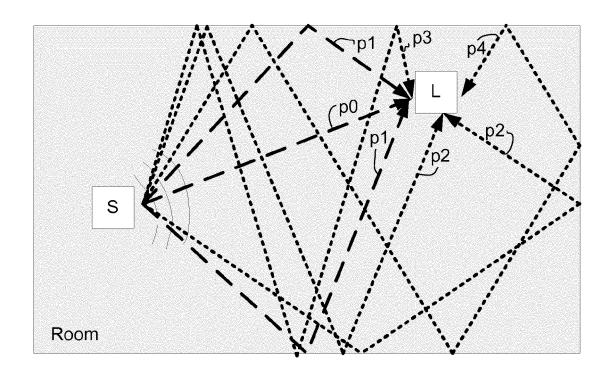


FIG. 1a

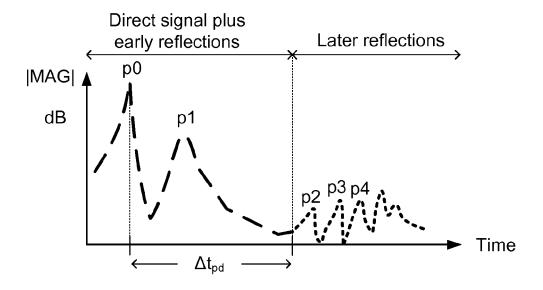


FIG. 1b

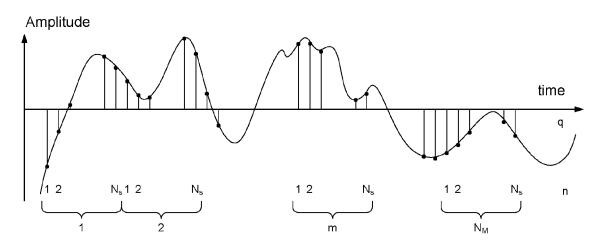


FIG. 2a

FIG. 2b

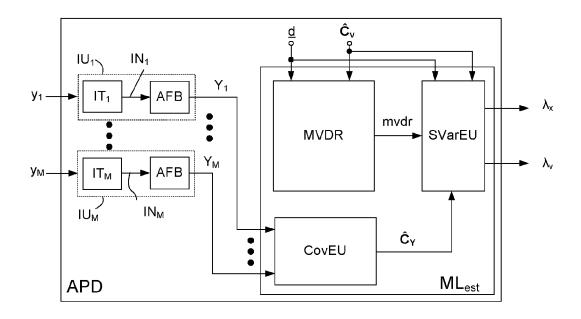


FIG. 3a

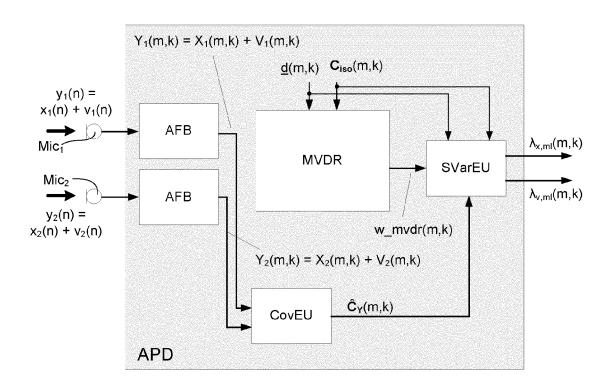


FIG. 3b

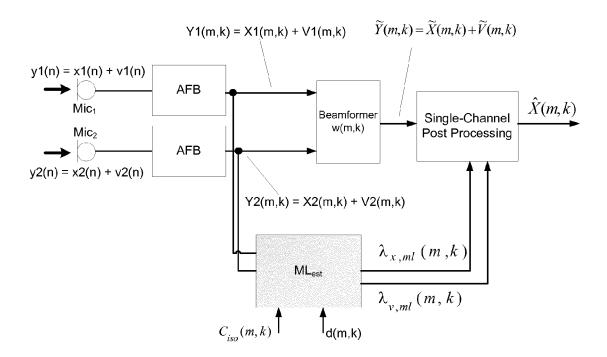


FIG. 4

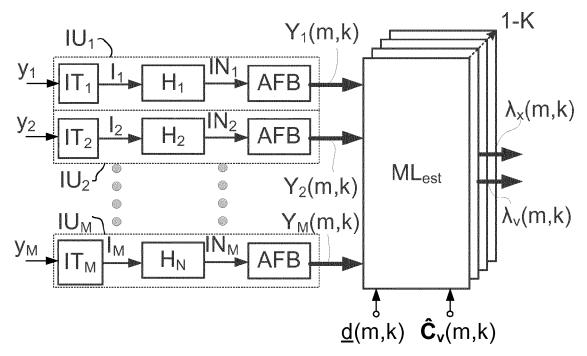


FIG. 5

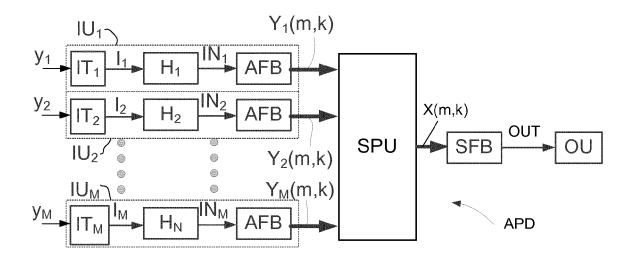


FIG. 6

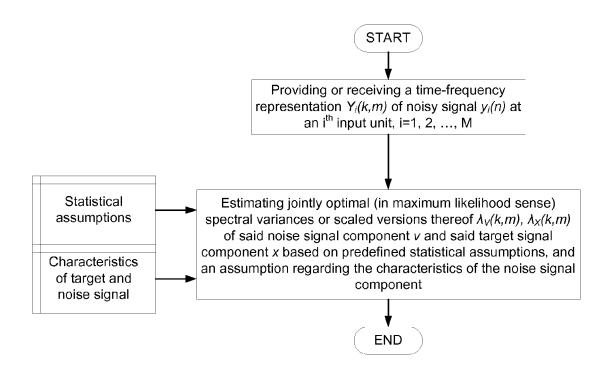


FIG. 7

EUROPEAN SEARCH REPORT

Application Number EP 14 15 8321

Category Citation of document with indication, where appropriate, of relevant passages X HIKARU SHIMIZU ET AL: "Isotropic Noise Suppression in the Power Spectrum Domain by Symmetric Microphone Arrays", APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS, 2007 IEEE WO RKSHOP ON, IEEE, PI, CLASSIFICATION OF APPLICATION OF TO AUDIO ADDIO ADD. G10L21/0232 G10L21/0216
Suppression in the Power Spectrum Domain by Symmetric Microphone Arrays", APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS, 2007 IEEE WO RKSHOP ON, G10L21/0232
1 October 2007 (2007-10-01), pages 54-57, XP031167100, ISBN: 978-1-4244-1618-9 * title, abstract, equation (1); page 54 * * page 54 * * page 54, right-hand column * * figure 2 * * page 55, right-hand column, last line - page 56, left-hand column, line 1 * * sections 3 and 4; page 55 - page 56, left-hand column * A EP 2 701 145 A1 (RETUNE DSP APS [DK]; OTICON AS [DK]) 26 February 2014 (2014-02-26) * paragraphs [0009], [0011], [0019], [0020], [0031], [0041] *

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 14 15 8321

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

30-06-2014

10

15

20

EP 2701145 A1 26-02-2014 AU 2013219177 A1 13-03-20 CN 103632675 A 12-03-20 EP 2701145 A1 26-02-20 US 2014056435 A1 27-02-20	EP 2701145	A1 2	6-02-2014	CN EP	1036326 27011	75 A 45 A1	12-03 26-03

30

25

35

40

45

50

55

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2009248403 A [0005] [0117]
- WO 12159217 A1 [0005] [0117]

- US 2013343571 A1 [0005] [0117]
- US 2010246844 A1 [0005] [0117]

Non-patent literature cited in the description

- S. BRAUN; E.A.P. HABETS. Dereverberation in noisy environments using reference signals and a miximum likelihood estimator. 21st European Signal Processing Conference (EUSIPCO 2013, 2013, 5 [0117]
- ARTHUR SCHAUB. Digital hearing Aids. Thieme Medical. Pub, 2008 [0117]
- S. HAYKIN. Adaptive Filter Theory. Prentice Hall Information and System Sciences Series, 2001 [0117]
- Y. HIOKA; K. NIWA; S. SAKAUCHI; K. FURUYA;
 Y. HANEDA. Estimating Direct-to-Reverberant Energy Ratio Using D/R Spatial Correlation Matrix Model. IEEE Trans. Audio, Speech, and Language Processing, November 2011, vol. 19 (8), 2374-2384 [0117]

- P.C. LOIZOU. Speech Enhancement: Theory and Practice. CRC Press, February 2013 [0117]
- Y. EPHRAIM; D. MALAH. Speech Enhancement Using a Minimum Mean-Square Error Short-Time Spectral Amplitude Estimator. IEEE Trans. Acoustics, Speech, and Signal Processing, December 1984, vol. ASSP-32 (6), 1109-1121 [0117]
- U. KJEMS; J. JENSEN. Maximum likelihood based noise covariance matrix estimation for multi-microphone speech enhancement. 20th European Signal Processing Conference (EUSIPCO 2012, 2012, 295-299 [0117]
- H. YE; R.D. DEGROAT. Maximum likelihood DOA estimation and asymptotic Cram'er-Rao bounds for additive unknown colored noise. Signal Processing, IEEE Transactions, 1995, vol. 43 (4), 938-949 [0117]