FIELD OF THE INVENTION
[0001] The invention relates to an electrode, with particular reference to a metal electrode
for use as a cathode for evolution of hydrogen in industrial electrolytic processes
and a method for its production.
BACKGROUND OF THE INVENTION
[0002] The electrolysis of alkali brines for the simultaneous production of chlorine and
alkali and the electrochemical processes of hypochlorite and chlorate generation are
the most typical examples of industrial electrolytic applications with cathodic evolution
of hydrogen, but the electrode is not limited to any particular use. In the industry
of the electrolytic processes, competitiveness is associated to several factors, the
main of which being the reduction of energy consumption, directly linked to process
voltage; this justifies the many efforts to reduce the various components of the latter,
among which cathodic overvoltage must be included. Cathodic overvoltages naturally
obtainable by means of electrodes made of chemically resistant material (for example
carbon steel) with no catalytic activity have been considered acceptable for a long
time. In the specific case, the market nevertheless requires increasing concentrations
of caustic product, which made the use of carbon steel cathodes unfeasible due to
corrosion problems; in addition, the increase in the cost of energy has made advisable
to use catalysts for facilitating the cathodic evolution of hydrogen. One possible
solution is to use nickel substrates, chemically more resistant than carbon steel,
and platinum-based catalytic coatings. Cathodes of this type are normally characterised
by an acceptable cathodic overvoltage, presenting however limited useful lifetimes,
probably due to poor adhesion of the coating to the substrate. A partial improvement
in the adherence of the catalytic coating to the nickel substrate is obtainable by
the addition of rare earths to the formulation of the catalytic layer, optionally
as a porous external layer that performs a protective function against the underlying
platinum-based catalytic layer; this type of cathode is sufficiently durable under
normal operating conditions, being liable however to suffer serious damages following
the occasional current reversals inevitably produced in case of malfunctioning of
industrial plants.
[0003] A partial improvement in the resistance to current reversals is obtainable by activating
the nickel cathode substrate with a coating consisting of two distinct phases, a first
platinum-based catalytic phase added with rhodium and a second phase comprising palladium
having a protective function. Such a cathode with two distinct phases is described
in applicant's
WO 2008/043766 A2. This type of formulation, however, requires high loads of platinum and rhodium in
the catalytic phase, such as to determine a rather high production cost.
[0004] A less expensive catalytic coating which presents high activity combined with some
resistance to current reversals is obtained from mixtures of ruthenium and rare earths,
for example praseodymium; the resistance of electrodes obtained according to such
a formulation can be increased by interposing a platinum-based thin layer between
the cathode substrate and the catalytic coating. Such an electrode is described in
applicant's
WO 2012/150307.
[0005] The above formulations made possible to obtain electrodes capable of functioning
for sufficient times in correctly operated industrial electrolysers provided, according
to a common practice in the industry, with polarisation devices actuated in case of
scheduled or sudden plant shut-downs by imposing a small residual voltage which serves
to protect the cell components from corrosion. With these devices, current reversals
can only occur during the short period of time that elapses between the shut-down
of the electrical load and the onset of the residual voltage, during which the cathodes
should not undergo any appreciable damage. However, the most recent advancements in
the design of industrial electrolysers, in particular of electrolysers for the production
of chlorine and alkali from alkali brines consisting of electrolytic cells with the
anodic and cathodic compartments separated by ion-exchange membranes, provide the
use of materials and construction techniques which make possible to dispense with
the polarisation devices, whose installation and management accounts for an important
additional cost. The plant shut-down in an electrolyser free of polarising device
entails, at least in an initial phase, cell voltage reversal phenomena caused by the
presence of reaction product residues in the two compartments: in these conditions,
the electrolysis cell can work for a short period as a battery, with the relevant
cathodes being subject to the passage of anodic current. This entails the need of
providing cathodes with a much higher tolerance to current reversals, compared to
the best prior art formulations.
SUMMARY OF THE INVENTION
[0006] Various aspects of the invention are set out in the accompanying claims.
[0007] Under one aspect, the invention relates to an electrode suitable for use as a cathode
in electrolytic processes comprising a substrate made of metal, for example nickel,
provided with a catalytic coating formed by at least three distinct layers: an internal
layer, in direct contact with the substrate, containing platinum, at least one intermediate
layer consisting of a mixture of oxides containing 40-60% by weight of rhodium referred
to the elements and an external ruthenium oxide-based layer.
[0008] Platinum in the internal layer is present predominantly in metallic form, especially
in operating conditions under cathodic hydrogen evolution, however, is not excluded,
especially prior to the first use, that platinum or a fraction thereof may be present
in form of oxide.
[0009] In one embodiment, the internal layer consists of a layer of platinum alone.
[0010] In one embodiment, the external layer consists of a layer of ruthenium oxide alone.
In the present context, the term ruthenium oxide indicates that such element is present,
after the preparation of the electrode, mainly in oxide form; it is not excluded,
especially in operating conditions under cathodic hydrogen evolution, that such oxide
can be partially reduced to ruthenium metal.
[0011] In one embodiment, the mixture of oxides of the intermediate layer further contains,
besides rhodium, 10-30% by weight palladium and 20-40% by weight of rare earths; in
one embodiment, the rare earth content consists entirely of praseodymium. In the present
context, the term mixture of oxides indicates that the elements of the relative formulation
are present, after the preparation of the electrode, mainly in form of oxides; is
not excluded, especially in operating conditions under cathodic hydrogen evolution,
that a fraction of such oxides can be reduced to metal or even form hydrides, as in
the case of palladium.
[0012] The inventors have surprisingly observed that formulations of this type impart a
resistance to current reversals several times higher than the closest prior art formulations
at substantially reduced specific loading of noble metal.
[0013] In one embodiment, the specific loading of platinum in the internal layer is between
0.3 and 1.5 g/m
2, the sum of the specific loading of rhodium, palladium and rare earths in the intermediate
layer is between 1 and 3 g/m
2 and the specific loading of ruthenium in the external layer is between 2 and 5 g/m
2. The inventors have in fact observed that, in the case of the above formulations,
so reduced noble metal loadings are more than sufficient to impart a high catalytic
activity combined with a resistance to current reversals unprecedented in the prior
art.
[0014] Under another aspect, the invention relates to a method for the preparation of an
electrode which comprises the application in one or more coats of an acetic solution
of Pt(NH
3)
2(NO
3)
2 (platinum diamino dinitrate) to a metallic substrate, with subsequent drying at 80-100°C,
thermal decomposition at 450-600°C and optional repetition of the cycle until the
desired loading is achieved (e.g., 0.3-1.5 g/m
2 of Pt as metal); the application in one or more coats of an acetic solution containing
a rhodium nitrate and optionally nitrates of palladium and rare earths to the internal
catalytic layer thus obtained, with subsequent drying at 80-100° C, thermal decomposition
at 450-600° C and optional repetition of the cycle until the desired loading is achieved
(e.g., 1-3 g/m
2 as the sum of Rh, Pd and rare earths); the application in one or more coats of an
acetic solution of Ru nitrosyl nitrate to the intermediate catalytic layer thus obtained,
with subsequent drying at 80-100°C, thermal decomposition at 450-600°C and optional
repetition of the cycle until the desired loading is achieved (for example, 2-5 g/m
2 of Ru as metal).
[0015] As it is well known, Ru nitrosyl nitrate designates a commercially available compound
expressed by the formula Ru(NO)(NO
3)
3, sometimes written as Ru(NO)(NO
3)
x to indicate that the average oxidation state of ruthenium can slightly deviate from
the value of 3.
[0016] The above application of the solutions may be carried out by brushing, spraying,
dipping, or other known technique.
[0017] The inventors have observed that the use of the specified precursors in the adopted
preparation conditions favours the formation of catalysts with a particularly ordered
crystal lattice, with a positive impact in terms of activity, durability and resistance
to current reversals.
[0018] The best results were obtained by adjusting the thermal decomposition temperature
of the various solutions in the range between 480 and 520° C.
[0019] The following examples are included to demonstrate particular embodiments of the
invention, whose practicability has been largely verified in the claimed range of
values. It should be appreciated by those of skill in the art that the compositions
and techniques disclosed in the examples which follow represent compositions and techniques
discovered by the inventors to function well in the practice of the invention; however,
those of skill in the art should, in light of the present disclosure, appreciate that
many changes can be made in the specific embodiments which are disclosed and still
obtain a like or similar result without departing from the scope of the invention.
EXAMPLE
[0020] An amount of Pt diamino dinitrate, Pt(NH
3)
2(NO
3)
2 corresponding to 40 g of Pt was dissolved in 160 ml of glacial acetic acid. The solution
was stirred for 3 hours while maintaining the temperature at 50° C, and then brought
to the volume of one litre with 10% by weight acetic acid (platinum solution).
[0021] An amount of Ru(NO)(NO
3)
3 corresponding to 200 g of Ru was dissolved in 600 ml of glacial acetic acid with
addition of a few ml of concentrated nitric acid. The solution was stirred for three
hours while maintaining the temperature at 50° C. The solution was then brought to
a volume of 1 l with 10% by weight acetic acid (ruthenium solution).
[0022] Separately, amounts of Rh(NO
3)
3, Pd(NO
3)
2 and Pr(NO
3)
3·6H
2O corresponding to 4.25 g of Rh, 1.7 g of Pd and 25.5 g of Pr expressed as metals
were mixed under stirring (rhodium solution).
[0023] A mesh of nickel 200 of 100 mm x 100 mm x 0.89 mm size was subjected to a process
of blasting with corundum, etching in 20% HCl at 85°C for 2 minutes and thermal annealing
at 500°C for 1 hour.
[0024] The platinum solution was applied by brushing in a single cycle, carrying out a drying
treatment for 10 minutes at 80-90°C and a thermal decomposition for 10 minutes at
500°C, obtaining a specific loading of 0.8 g/m
2 of Pt.
[0025] The rhodium solution was then applied by brushing in three coats carrying out a drying
treatment for 10 minutes at 80-90°C and a thermal decomposition for 10 minutes at
500°C after each coat, obtaining a specific loading of 1.4 g/m
2 of Rh, 0.6 g/m
2 of Pd and 0.84 g/m
2 of Pr.
[0026] The ruthenium solution was then applied by brushing in four coats carrying out a
drying treatment for 10 minutes at 80-90°C and a thermal decomposition for 10 minutes
at 500°C after each coat, obtaining a specific loading of 3 g/m
2 of Ru.
[0027] The sample was subjected to a performance test, showing an ohmic drop-corrected initial
cathodic potential of -930 mV/NHE at 3 kA/m
2 under hydrogen evolution in 33% NaOH, at a temperature of 90°C.
[0028] The same sample was then subjected to cyclic voltammetry in the range from -1 to
+0.5 V/NHE at a 10 mV/s scan rate; after 25 cycles, the cathodic potential was -935
mV / NHE, which indicates a resistance current reversal perfectly suitable for operation
in industrial electrolysers free of polarisation devices.
COUNTEREXAMPLE
[0029] An amount of Pt diamino dinitrate, Pt(NH
3)
2(NO
3)
2 corresponding to 40 g of Pt was dissolved in 160 ml of glacial acetic acid. The solution
was stirred for 3 hours while maintaining the temperature at 50° C, and then brought
to the volume of one litre with 10% by weight acetic acid (platinum solution).
[0030] An amount of Ru(NO)(NO
3)
3 corresponding to 200 g of Ru was dissolved in 600 ml of glacial acetic acid with
addition of a few ml of concentrated nitric acid. The solution was stirred for three
hours while maintaining the temperature at 50° C. The solution was then brought to
a volume of 1 l with 10% by weight acetic acid (ruthenium solution).
[0031] Separately, an amount of Pr(NO
3)
2 corresponding to 200 g of Pr was dissolved in 600 ml of glacial acetic acid with
addition of a few ml of concentrated nitric acid. The solution was stirred for three
hours while maintaining the temperature at 50°C. The solution was then brought to
a volume of 1 l with 10% by weight acetic acid (rare earth solution). 480 ml of ruthenium
solution were blended with 120 ml of rare earth solution and left under stirring for
five minutes. The solution thus obtained was brought to 1 litre with 10% by weight
acetic acid (ruthenium and praseodymium solution).
[0032] A mesh of nickel 200 of 100 mm x 100 mm x 0.89 mm size was subjected to a process
of blasting with corundum, etching in 20% HCl at 85°C for 2 minutes and thermal annealing
at 500°C for 1 hour.
[0033] The platinum solution was applied by brushing in a single cycle, carrying out a drying
treatment for 10 minutes at 80-90°C and a thermal decomposition for 10 minutes at
500°C, obtaining a specific loading of 1 g/m
2 of Pt.
[0034] The ruthenium and praseodymium solution was then applied by brushing in 4 successive
coats, carrying out a drying treatment for 10 minutes at 80-90°C and a thermal decomposition
for 10 minutes at 500°C after each coat, until obtaining the deposition of 4 g/m
2 of Ru and 1 g/m
2 Pr
[0035] The sample was subjected to a performance test, showing an ohmic drop-corrected initial
cathodic potential of -930 mV/NHE at 3 kA/m
2 under hydrogen evolution in 33% NaOH, at a temperature of 90°C.
[0036] The same sample was then subjected to cyclic voltammetry in the range from -1 to
+0.5 V/NHE at a 10 mV/s scan rate; after 25 cycles, the cathodic potential was -975
mV / NHE, which indicates a resistance current reversal suitable for operation in
industrial electrolysers only if equipped with polarisation devices.
[0037] The previous description shall not be intended as limiting the invention, which may
be used according to different embodiments without departing from the scopes thereof,
and whose extent is solely defined by the appended claims.
[0038] Throughout the description and claims of the present application, the term "comprise"
and variations thereof such as "comprising" and "comprises" are not intended to exclude
the presence of other elements, components or additional process steps.
[0039] The discussion of documents, acts, materials, devices, articles and the like is included
in this specification solely for the purpose of providing a context for the present
invention. It is not suggested or represented that any or all of these matters formed
part of the prior art base or were common general knowledge in the field relevant
to the present invention before the priority date of each claim of this application.
1. Electrode suitable for use as cathode in electrolytic processes comprising a metal
substrate equipped with a catalytic coating, said catalytic coating comprising a platinum-containing
internal layer directly contacting the substrate, at least one intermediate layer
consisting of an oxide mixture containing 40-60% by weight of rhodium referred to
the elements, an external layer of ruthenium oxide.
2. The electrode according to claim 1 wherein said metal substrate is made of nickel.
3. The electrode according to claim 1 or 2 wherein said at least one intermediate layer
contains 10-30% by weight of palladium and 20-40% by weight of rare earths referred
to the elements.
4. The electrode according to claim 3 wherein said rare earths consist of praseodymium.
5. The electrode according to claim 3 or 4 wherein the specific loading of platinum in
said internal layer is 0.3 to 1.5 g/m2, the sum of specific loadings of rhodium, palladium and rare earths in said intermediate
layer is 1 to 3 g/m2 and the specific loading of ruthenium in said external layer is 2 to 5 g/m2.
6. Method for manufacturing an electrode according to one of the preceding claims comprising
the following steps:
a) application of an acetic solution of Pt(NH3)2(NO3)2 to a metal substrate, with subsequent drying at 80-100°C and thermal decomposition
at 450-600°C;
b) optional repetition of step a) until obtaining an internal catalytic layer with
a specific loading of 0.3-1.5 g/m2 of Pt;
c) application of an acetic solution containing a rhodium nitrate with optional addition
of nitrates of palladium and of rare earths on said internal catalytic layer, with
subsequent drying at 80-100°C and thermal decomposition at 450-600°C;
d) optional repetition of step c) until obtaining an intermediate catalytic layer
with a specific loading of 1-3 g/m2 as sum of Rh, Pd and rare earths;
e) application of an acetic solution containing Ru nitrosyl nitrate on said intermediate
catalytic layer, with subsequent drying at 80-100°C and thermal decomposition at 450-600°C;
f) optional repetition of step e) until obtaining an external catalytic layer with
a specific loading of 2-5 g/m2 of Ru.
7. The method according to claim 6 wherein the temperature of said thermal decomposition
of steps a), c) and e) ranges from 480 to 520°C.
8. Electrolysis cell comprising an anodic compartment and a cathodic compartment separated
by an ion-exchange membrane wherein the cathodic compartment is equipped with an electrode
according to any one of claims 1 to 5.
9. Electrolyser for production of chlorine and alkali from alkali brine free of protecting
polarisation devices comprising a modular arrangement of cells according to claim
8.
1. Elektrode, die zur Verwendung als Kathode in elektrolytischen Verfahren geeignet ist,
umfassend ein Metallsubstrat, das mit einer katalytischen Beschichtung versehen ist,
wobei die katalytische Beschichtung umfasst: eine innere, platinhaltige Schicht in
direktem Kontakt mit dem Substrat, zumindest eine Zwischenschicht, die aus einer Oxidmischung
besteht, welche, bezogen auf die Elemente, 40-60 Gew.-% Rhodium enthält, eine äußere
Schicht aus Rutheniumoxid.
2. Elektrode gemäß Anspruch 1, wobei das Metallsubstrat aus Nickel besteht.
3. Elektrode gemäß Anspruch 1 oder 2, wobei die zumindest eine Zwischenschicht, bezogen
auf die Elemente, 10-30 Gew.-% Palladium und 20-40 Gew.-% seltene Erden enthält.
4. Elektrode gemäß Anspruch 3, wobei die seltenen Erden aus Praseodym bestehen.
5. Elektrode gemäß Anspruch 3 oder 4, wobei die spezifische Beladung mit Platin in der
inneren Schicht von 0.3 bis 1.5 g/m2 reicht, die Summe der spezifischen Beladungen mit Rhodium, Palladium und seltenen
Erden in der Zwischenschicht von 1 bis 3 g/m2 und die spezifische Beladung mit Ruthenium in der äußeren Schicht von 2 bis 5 g/m2 reicht.
6. Verfahren zum Herstellen einer Elektrode gemäß einem der vorhergehenden Ansprüche,
umfassend die folgenden Schritte:
a) Auftragen einer essigsauren Lösung von Pt(NH3)2(NO3)2 auf ein Metallsubstrat, mit darauf folgendem Trocknen bei 80-100°C und thermischer
Zersetzung bei 450-600°C;
b) gegebenenfalls Wiederholung von Schritt a) bis zum Erhalten einer inneren katalytischen
Schicht mit einer spezifischen Beladung von 0.3-1.5 g/m2 Pt;
c) Auftragen einer essigsauren Lösung, die ein Rhodiumnitrat enthält, gegebenenfalls
mit Beigabe von Nitraten von Palladium und seltenen Erden, auf die innere katalytische
Schicht, mit darauf folgendem Trocknen bei 80-100°C und thermischer Zersetzung bei
450-600°C;
d) gegebenenfalls Wiederholung von Schritt c) bis zum Erhalten einer katalytischen
Zwischenschicht mit einer spezifischen Beladung von 1-3 g/m2 als Summe von Rh, Pd und seltenen Erden;
e) Auftragen einer essigsauren Lösung, die Ru-Nitrosylnitrat enthält auf die katalytische
Zwischenschicht, mit darauf folgendem Trocknen bei 80-100°C und thermischer Zersetzung
bei 450-600°C;
f) gegebenenfalls Wiederholung von Schritt e) bis zum Erhalten einer äußeren katalytischen
Schicht mit einer spezifischen Beladung von 2-5 g/m2 Ru.
7. Verfahren gemäß Anspruch 6, wobei die Temperatur der thermischen Zersetzung in den
Schritten a), c) und e) im Bereich von 480 bis 820°C liegt.
8. Elektrolysezelle, umfassend eine Anodenkammer und eine Kathodenkammer, getrennt durch
eine Ionenaustauschmembran, wobei die Kathodenkammer mit einer Elektrode nach einem
der Ansprüche 1 bis 5 versehen ist.
9. Elektrolyseur zum Herstellen von Chlor und Laugensalz aus alkalischer Salzlauge ohne
schützende Polarisationsvorrichtungen, umfassend eine modulare Anordnung von Zellen
gemäß Anspruch 8.
1. Electrode apte pour une utilisation comme cathode dans des procédés électrolytiques,
comprenant un substrat en métal pourvu d'un revêtement catalytique, le revêtement
catalytique comprenant une couche intérieure contenant du platine et étant directement
en contact avec le substrat, au moins une couche intermédiaire consistant en un mélange
d'oxydes contenant 40 à 60 % en poids de rhodium par rapport aux éléments, une couche
extérieure d'oxyde de ruthénium.
2. Electrode selon la revendication 1, caractérisé en ce que le substrat en métal est réalisé en nickel.
3. Electrode selon la revendication 1 ou 2, caractérisé en ce que ladite au moins une couche intermédiaire contient 10 à 30 % en poids de palladium
et 20 à 40 % en poids de terres rares, par rapport aux éléments.
4. Electrode selon la revendication 3, caractérisé en ce que les terres rares consistent en du praséodyme.
5. Electrode selon la revendication 3 ou 4, caractérisé en ce que la charge spécifique de platine dans la couche intérieure est de 0,3 à 1,5 g/m2, la somme des charges spécifiques de rhodium, palladium et terres rares dans la couche
intermédiaire est de 1 à 3 g/m2 et la charge spécifique de ruthénium dans la couche extérieure est de 2 à 5 g/m2.
6. Procédé pour fabriquer une électrode selon l'une de revendications précédentes, comprenant
les étapes suivantes :
a) application d'une solution acétique de Pt(NH3)2(NO3)2 à un substrat en métal, avec séchage suivant à 80 à 100 °C et décomposition thermique
à 450 à 600 °C ;
b) répétition optionnelle de l'étape a) jusqu'à obtenir une couche catalytique intérieure
avec une charge spécifique de 0,3 à 1,5 g/m2 de platine ;
c) application d'une solution acétique contenant du nitrure de rhodium avec addition
optionnelle de nitrates de palladium et de terres rares sur ladite couche catalytique
intérieure, avec séchage suivant à 80 à 100 °C et décomposition thermique à 450 à
600 °C ;
d) répétition optionnelle de l'étape c) jusqu'à obtenir une couche catalytique intermédiaire
avec une charge spécifique de 1 à 3 g/m2 comme somme de Rh, Pd et terres rares ;
e) application d'une solution acétique contenant du nitrate de nitrosyle de Ru sur
ladite couche catalytique intermédiaire, avec séchage suivant à 80 à 100 °C et décomposition
thermique à 450 à 600 °C ;
f) répétition optionnelle de l'étape e) jusqu'à obtenir une couche catalytique extérieure
avec une charge spécifique de 2 à 5 g/m2 de Ru.
7. Procédé selon la revendication 6, caractérisé en ce que la température de la décomposition thermique des étapes a), c) et e) va de 480 à
520 °C.
8. Cellule d'électrolyse comprenant un compartiment anodique et un compartiment cathodique
séparés par une membrane à échange d'ions, caractérisée en ce que le compartiment cathodique est équipé d'une électrode selon l'une des revendications
1 à 5.
9. Electrolyseur pour la production de chlore et d'alcalin à partir d'une saumure alcaline
libre de dispositifs de polarisation protecteurs, comprenant un agencement modulaire
de cellules selon la revendication 8.