(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

07.10.2015 Bulletin 2015/41

(51) Int Cl.: **B65G** 57/00 (2006.01) **B65G** 57/24 (2006.01)

B65B 35/50 (2006.01)

(21) Application number: 15161430.2

(22) Date of filing: 27.03.2015

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA

(30) Priority: 03.04.2014 SE 1450405

(71) Applicant: Modulpac AB 341 50 Lagan (SE)

(72) Inventors:

 Svensson, Micael 331 35 Värnamo (SE)

 Lundström, Andreas 341 35 Ljungby (SE)

(74) Representative: Valea AB Box 1098

405 23 Göteborg (SE)

(54) Method for forming a stack of packages

(57) The present application relates to a method for forming a stack of thin-walled packages, wherein all of said thin-walled packages in the stack are of the same shape and size, and each thin-walled package has a lower surface with a length (I_x) extending in an x-direction and a length (I_y) extending in a y-direction of an x-y plane. The stack comprises two or more distinct layers of thin-walled packages, wherein each layer is of the same size with a horizontal extension in the x-direction and in the y-direction of an x-y plane and a vertical extension in a z-direction perpendicular to the x-y plane. The method comprises the steps of:

a) arranging a layer of three or more packages in a sideby-side configuration with said lower surfaces of said packages in a plane parallel to the x-y plane,

b) arranging a subsequent layer of three or more packages on top of a previously arranged layer in a side-by-side configuration with said lower surfaces of said packages in said subsequent layer arranged in a plane parallel to the x-y plane and with said subsequent layer being offset in relation to said previous layer in the x-direction and/or in the y-direction such that the center point of the smallest rectangle that can be drawn around said subsequent layer in the x-y plane is offset a distance $\mathbf{d}_{\mathbf{x}}$ in the x-direction and/or a distance $\mathbf{d}_{\mathbf{y}}$ in the y-direction in relation to the center point of the smallest rectangle that can be drawn around said first layer in the x-y plane,

c) repeating step b) one or more times wherein each subsequent layer is arranged on top of a previous layer and wherein the offset distances d_x in the x-direction and/or a distance d_y in the y-direction are the same for all subsequent layers and said offset direction are shifted in each repetition of step b).

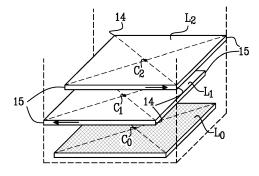


Fig.4A

EP 2 927 170 A1

35

40

45

50

55

TECHNICAL FIELD

[0001] The present application relates to the field of packaging, and more particularly to a method for forming a stack of packages in a space-saving manner when the shape of the packages do not allow piling inside each other.

1

BACKGROUND OF THE INVENTION

[0002] Packaging manufacturers generally manufacture specifically designed packages or containers intended to enclose a specific consumer product at the request of the producer of said consumer product. Said package or container is designed and manufactured in great numbers at the site of the packaging manufacturer. Thereafter the packages are packed into storage or transportation cases and thereafter shipped to the producer to be filled with the consumer product.

[0003] Many packages have a design which allows them to be piled inside each other. This makes the task of packing and transporting said packages to the producer of the consumer product quite easy. A suitable number of packages are simply piled inside each other and thereafter a number of such piles are packed into the storage or transportation cases, and transported to their destination.

[0004] Many packages or containers do not allow piling inside each other, and therefore require a considerable amount of space during their transport to the producer of the consumer product or site for filling with product. Examples of this kind of package are containers with straight walls. This type of "un-stackable" packages are frequently thrown randomly into a transportation bag or case and shipped to the producer of the consumer product. However, such handling may pose problems when the packages have thin walls which may easily become deformed when many packages are tossed together and squeezed between each other. Such deformation of the walls may prevent a lid to be fitted onto the package after being filled with the consumer product and many packages may have to be discarded before even being filled. [0005] Another problem with tossing the packages randomly into a storage or transportation case, besides being space-consuming, may be that before the step of filling consumer product into the package, each package has to be transferred from its random position inside the bag to a specific location in the filling line. This may require manual movement by a human being as the package has to be placed with its filling side in a specific di-

[0006] To avoid the problem with deformed walls, "unstackable" and thin-walled packages are often piled on top of each other in layers to form stacks of packages which are transferred into a storage or transportation case. Interlayers are placed in between each layer to

prevent the packages from tilting. The interlayers have to be made from a material that is rigid enough to prevent the packages from tipping and falling into each other and thereby become deformed, yet thin enough to not add too much weight or height to the stack to be transported. For many types of packages, the interlayers may be reused several times and thereby the cost for making new interlayers each time may be saved. However, for packages intended to be filled with ingestible consumer products, the interlayers may not be reused due to hygienic reasons. Either new interlayers have to be used each time or, alternatively, the interlayers have to be washed and cleaned carefully between each use. Both alternatives will add to the total cost for the package.

[0007] The object of the present invention is therefore to provide a method for packing such "un-stackable" and thin-walled packages into storage or transportation cases in a space-saving, cost-efficient manner without the risk of deforming the walls of the packages.

SUMMARY OF THE INVENTION

[0008] This object is achieved by providing a method for forming a stack of thin-walled packages when all of said thin-walled packages are of the same shape and size. Each thin-walled package of the stack has a lower surface with a length (l_x) extending in an x-direction and a length (l_y) extending in a y-direction of an x-y plane. The stack comprises two or more distinct layers of thin-walled packages, wherein each layer has the same size with a horizontal extension in the x-direction and in the y-direction of an x-y plane and a vertical extension in a z-direction perpendicular to the x-y plane. The method for forming such a stack comprises the steps of:

a) arranging a layer of three or more packages in a side-by-side configuration with said lower surfaces of said packages in a plane parallel to the x-y plane, b) arranging a subsequent layer of three or more packages on top of a previously arranged layer in a side-by-side configuration with said lower surfaces of said packages in said subsequent layer arranged in a plane parallel to the x-y plane and with said subsequent layer being offset in relation to said previous layer in the x-direction and/or in the y-direction such that the center point of the smallest rectangle that can be drawn around said subsequent layer in the x-y plane is offset a distance d_x in the x-direction and/or a distance d_v in the y-direction in relation to the center point of the smallest rectangle that can be drawn around said previous layer in the x-y plane, c) repeating step b) one or more times wherein each subsequent layer is arranged on top of a previous layer and wherein said offset distances d_x and/or d_y are the same for all subsequent layers but said offset directions are shifted in each repetition of step b).

[0009] Shifting the offset direction each time a new lay-

20

25

35

40

45

50

55

er is formed on top of a previously formed layer means that two neighboring layers are never offset in the same direction.

3

[0010] Advantageously the method disclosed herein is used when the stack comprises three, four, five, six, seven, eight, nine, ten or more layers of thin-walled packages. When used herein the term "thin-walled package" is intended to mean a package having walls with a maximum thickness of 3 mm. preferably the walls are less than 2.9, 2,8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 mm thick. Thin-walled packages may easily deform if subjected to pressure from the side. The method is especially suitable for stacking packages without integrated or attached covers or lids, i.e. packages which are open at one end, and which do not allow piling into each other, e.g. packages with straight walls such as tins, boxes and jars.

[0011] The thin-walled packages may be made from materials such as plastic, paper, cardboard, metal, and any combination of such materials.

[0012] Each stack may only consist of packages which all have the same shape and size. Thus, the same stack may not contain packages having circular lower surfaces and packages having quadratic lower surfaces, or e.g. packages with quadratic lower surfaces of different sizes. [0013] Each package has a lower surface which has a length (l_x) extending in the x-direction and a length (l_y) extending in the y-direction of the x-y plane. Normally, the packages are empty, but under certain circumstances they may be prefilled with consumer product and thereafter arranged in layers as described herein. Each individual layer in the stack is distinct and separate from the other layers in the stack, such that no parts of the packages in one layer protrude into the layers located above or below this layer.

[0014] Each layer is of the same size with a horizontal extension in the x-direction and in the y-direction of an x-y plane, and a vertical extension in a z-direction perpendicular to the x-y plane. Each layer comprises three or more packages arranged in a side-by-side configuration in said x-direction and y-direction of the x-y plane. The number of packages arranged in each direction depends on the size of the package but also on the size of any outer case used for packing, storage or transportation of said stack of packages.

[0015] However, if the stack contains packages of either a circular or a square configuration and the stack of packages is to be fitted in an outer case having a square configuration, the number of packages arranged in the x-direction will equal the number of packages arranged in the y-direction. On the other hand, if the outer case has a rectangular configuration the number of such packages arranged in one direction will not equal the number of packages arranged in the other direction.

[0016] The method for forming a stack of packages comprises in a first step a) the arrangement of a layer of three or more packages in a side-by-side configuration

wherein the lower surfaces of said packages are arranged in a plane parallel to the x-y plane. Each layer in the stack comprises at least three packages, and as mentioned above, each one of the layers in one stack is of the same size, i.e. contains the same number of packages.

[0017] As used herein the term "arranging packages in a side-by-side configuration" is intended to mean that in each layer the packages are placed very close to each other in both the x-direction and the y-direction of the x-y plane, with substantially no space between the abutting walls of packages arranged next to one another. Preferably the packages are arranged in the same side-by-side pattern in all layers of the stack.

[0018] The lower surfaces of the packages in each layer are arranged parallel to the x-y plane. Advantageously all packages are arranged with their lower surfaces facing the same way in the z-direction, as this will facilitate any automatic filling of the packages with consumer product. However, if the layered arrangement of packages is not intended to be used in an automatic filling apparatus, the packages may be randomly arranged with their bottom surfaces facing either way in the z-direction. The side-by-side placement of packages in layers is still a much more space saving arrangement than any random filling in plastic bags, and results in fewer losses due to damaged packages.

[0019] Thereafter in step b) a subsequent layer of three or more packages is arranged on top of the previous layer in the same side-by-side configuration. The lower surfaces of the packages in the subsequent layer are also arranged in a plane parallel to the x-y plane. The subsequent layer is arranged in relation to the previous layer in the x-direction and/or in the y-direction such that the center point of the smallest rectangle that can be drawn around the subsequent layer in the x-y plane is offset a distance d_x in the x-direction and/or a distance d_y in the y-direction in relation to the center point of the smallest rectangle that can be drawn around the previous layer in the x-y plane.

[0020] Each layer in the stack has a rectangular (or in some cases quadratic) shape which size depends on the extension of the layer in the x- and y-directions of the x-y plane, which in turn depends on the number of packages arranged in each direction, as well as the size of each package. The smallest rectangular size that can be formed in the x-y plane for each layer is when all packages in each layer are arranged in a side-by-side configuration as described above. The center point of the layer is the midpoint of the diagonal end points of the rectangle (i.e. the midpoint which is located equidistant from the diagonal endpoints in the smallest rectangle circumscribing the packages that can be formed in the x-y plane for each layer).

[0021] The subsequent layer is arranged offset in relation to the previous layer in the x-direction and/or in the y-direction such that the center point of the subsequent layer is offset a distance d_x in the x-direction and/or a

distance d_y in the y-direction in relation to the center point of the previous layer. This means that the entire subsequent layer is displaced in relation to the previous layer either in the x-direction, the y-direction, or in both the x-and y-directions of the x-y plane simultaneously. Consequently the lower surfaces of the packages in a subsequent layer will not be located directly above the lower surfaces of the packages in the immediately preceding layer, as the subsequent layer will always be offset in relation to the preceding layer by a predetermined distance in a predetermined direction.

[0022] Step b) may be repeated one or more times depending on the number of layers required to form a stack of a desired size. Advantageously each subsequent layer is arranged on top of a previous layer, and the displacements of each subsequent layer are directed such that the displacements for all layers in the stack are evenly distributed around the center point of the first layer. When used herein the term "a previous layer" is intended to mean the layer immediately before a subsequent layer, i.e. a subsequent layer is arranged immediately on top of a previous layer. The offset direction is never the same for two layers located on top of each other but the offset distances d_x in the x-direction, and/or d_y in the y-direction are the same for all subsequent layers regardless of offset direction.

[0023] The method is suitable for stacking packages with lower surfaces of any shape. Each package has a lower surface which has a length (lx) extending in the xdirection and a length (I_v) extending in the y-direction of the x-y plane. The packages may have shapes where the lower surfaces have quadratic, rectangular, circular, pentagonal, hexagonal or octagonal outlines. Regardless of the shape, the outline of each package has a lower surface with a length (Ix) extending in the x-direction and a length (I_v) extending in the y-direction of the x-y plane. Circular and quadratic packages each have lower surfaces which extend equal lengths (I_x) and (I_y) in both the x- and y-directions, while e.g. rectangular packages have lower surfaces wherein the length (I_x) in the x-direction does not equal the length (I_v) in the y-direction of the xv plane.

[0024] Each stack may consist only of packages which all have the same shape and size. Thus, the same stack may not contain packages having circular lower surfaces and packages having quadratic lower surfaces, or e.g. packages with quadratic lower surfaces of different sizes. [0025] Advantageously, in steps b) and c) each subsequent layer is arranged offset to the previous layer in the x-direction an offset distance d_x which equals 1.5-30 %, more preferably 5-20%, most preferably 10-15% of the length I_x , and/or in the y-direction an offset distance d_y which equals 1.5-30 %, more preferably 5-20%, most preferably 10-15% of the length I_y .

[0026] If the lower surfaces are e.g. circular or square, the lengths (I_x) and (I_y) of such packages are equal. For packages having rectangular or oval lower surfaces, (I_x) does not equal (I_y) .

[0027] The subsequent layer may also be offset in relation to a previous layer in both the x- and y-directions simultaneously, which means that the subsequent layer may be offset in any one direction in the x-y plane except essentially straight in the x- or y- directions. However, in an advantageous embodiment such as e.g. for packages having circular or quadratic lower surfaces, the offset distances d_x and d_y for the subsequent layer are equal in both the x- and y-directions.

[0028] Each package has walls which extend in the z-direction from the outer perimeter of the lower surface. The stacking method is especially suitable for forming stacks of packages having straight walls extending in the z-direction from the outline of the lower surface. When the lower surface is circular, the package has a cylindrical shape, and when the lower surface has a quadratic or rectangular outline the package has a box-like shape.

[0029] The method is advantageously used when forming stacks of packages having a cylindrical shape and a circular lower surface with the length 70 mm. Advantageously with a cylindrical package with a circular lower surface having a diameter of 70 mm (i.e. I_x equals I_y), the offset distance d_x for the subsequent layer would be 1.05-21.0 mm, preferably 3.50-14.0 mm, and most preferably 7.00-10.5 mm in the x-direction of the x-y plane, and/or the offset distance d_y would be 1.05-21.0 mm, preferably 3.50-14.0 mm, and most preferably 7.0-10.5 mm in the y-direction of the x-y plane.

[0030] In order to protect the packages during transport, the stack of packages is normally enclosed by some type of cover, such as a wrapping and/or an outer case. Preferably the entire stack is enclosed in an outer case with stiff or semi-rigid walls which will protect the packages from dirt and dust as well as any damaging forces that may deform the packages or disrupt the layers. The outer case may be made from materials such as e.g. cardboard, plastic or wood. The stack may be formed directly inside the case, i.e. each layer is arranged separately and one by one inside the case. However, in certain situations it may be more convenient to form the stack of packages outside the case and thereafter place the stack inside the case. The stack of packages is formed by arranging the required number of layers on top of each other as described above and thereafter the entire stack is transferred to the outer case.

[0031] The outer case used for transportation and/or storage of the formed stack is advantageously adapted in size such that the stack fits snugly inside. Preferably, the inside of the outer cage is larger in the x-direction of the x-y plane only by a distance $2d_x$, and/or in the y-direction only by a distance $2d_y$ in the x-y plane. The advantage of stacking layers of packages according to the method as disclosed herein is that the stack may be formed without using expensive interlayers between the layers in the stack. Due to the tight fit of the outer case the layers of the stack may not shift far enough in relation to each other for the packages to start tilting and thereby tip over and fall into packages located in the layer directly

40

40

45

50

below.

[0032] Advantageously the stack may also be enveloped by a soft covering such as a thin plastic foil that is simply wrapped around the entire stack preventing displacement of the separate layers in relation to each other, but also serves the purpose of protecting the packages from the environment. The inside of the outer case may be lined by a wrapping such as paper or plastic foil before the stack is formed inside the case, or optionally the stack may be wrapped in the protective wrapping or a plastic bag before being transferred into the case.

[0033] Advantageously the top of the stack of layers is covered by an elastically compressible overlay, such as foamed rubber, bubble wrap, corrugated cardboard, resilient webs, expanded plastic webs or the like. The overlay serves the purpose of putting a slight downward pressure on the uppermost layer when placed between the stack and the inside of a surrounding tight fitting case.

[0034] After the stack of layers has been transferred to a protective case, the overlay is placed on top of the stack and the lid of the protective case is closed. Advantageously the stack with the overlay fits snugly inside the protective case such that when a lid covering the protective case is closed it abuts the elastic overlay and together they provide a slight downward pressure prevents the layers in the stack from shifting inside the protective case during transport. Preferably the overlay covers the entire top surface of the stack. However, also an overlay covering 90%, 80%, 70%, 60% or at least 50% of the top surface of the stack will provide enough pressure to prevent shifting of the layers as long as the downward pressure by the overlay is evenly distributed across the entire top surface of the stack.

[0035] The elastically compressible overlay may also be an integrated part of the lid of the protective casing such that when the lid covering the protective case is closed a slight downward pressure is provided to the formed stack which prevents the layers in the stack from shifting inside the protective case during transport.

[0036] After having arranged a first layer of three or more packages in a side-by-side configuration with said lower surfaces of said packages in a plane parallel to the x-y plane, step b) is carried out 1 +n times to produce a stack of 2+n layers with a first layer, and first to nth subsequent layers. In such a stack said first to nth subsequent layers are offset in relation to said first layer in first to nth offset directions.

[0037] In one embodiment step b) is repeated twice (i.e. n=1) to produce a stack of three layers with a first subsequent layer, and a second subsequent layer on top of the first subsequent layer. Such a stack will contain a first layer, a first subsequent layer and a second subsequent layer wherein said first subsequent layer is offset in relation to said first layer in a first direction, and said second subsequent layer is offset in relation to said first layer in a second direction. In an advantageous embodiment of a stack containing three layers the offsets of the first and second subsequent layers in relation to the first

layer form an angle of 180° between said first and second directions in the x-y plane. In a further embodiment two or more, i.e. three, four, five or more stacks of three layers (i.e. a first layer, a first subsequent layer and a second subsequent layer) may be piled on top of each other to form one large stack containing six, nine, twelve, fifteen or more layers of packages.

[0038] In another embodiment step b) is repeated three times (i.e. n=2) to produce a stack of four layers with a first layer, a first subsequent layer arranged on top of said first layer, a second subsequent layer arranged on top of said first subsequent layer and a third subsequent layer arranged on said second subsequent layer. In this stack of packages said first subsequent layer is offset in relation to said first layer in a first direction, said second subsequent layer is offset in relation to said first layer in a second direction and said third subsequent layer is offset in relation to said first layer in a third direction. In an advantageous arrangement of a stack containing four layers the offsets of the first, second and third subsequent layers in relation to the first layer form angles of 120° between said first and second direction, 120° between said second and third direction, and 120° between said third and first direction.

[0039] In a further embodiment two or more, i.e. three, four or more stacks of four layers (i.e. a stack containing one first layer, and a first, second and third subsequent layer) may be piled on top of each other to form one large stack containing eight, twelve, sixteen or more layers of packages.

[0040] In yet another embodiment step b) is repeated four times (i.e. n=3) to produce a stack of five layers with a first layer, a first subsequent layer arranged on top of said first layer, a second subsequent layer arranged on top of said first subsequent layer, a third subsequent layer arranged on top of said second subsequent layer and a fourth subsequent layer arranged on top of said third subsequent layer. In this stack the first subsequent layer is offset in relation to said first layer in a first direction, said second subsequent layer is offset in relation to said first layer in a second direction, said third subsequent layer is offset in relation to said first layer in a third direction and said fourth subsequent layer is offset in relation to said first layer in a fourth direction. In an advantageous embodiment of a stack containing five layers the offsets of the first, second, third and fourth subsequent layers in relation to the first layer form angles of 90° between said first direction and said second direction, and 90° between said second direction and said third direction, and 90°between said third direction and said fourth direction and 90° between said fourth direction and said first direction. [0041] Alternatively, in a stack containing five layers (i.e. n=3) the offsets of the first, second, third and fourth subsequent layers in relation to the first layer may form angles of 180° between said first and second directions, and 180°between said third and fourth directions. In a stack wherein the displacements for five layers in the stack are evenly distributed around the center point of

40

the first layer, this means that the offsets of the first, second, third and fourth subsequent layers in relation to the first layer form angles of 90° between said first and third directions, and 90° between said third and second directions, and 90° between said second and fourth directions and 90° between said fourth and first directions.

[0042] Two or more, i.e. three, or more stacks of five layers (i.e. a stack containing one first layer, and a first, second, third and fourth subsequent layers) may be piled on top of each other to form one large stack containing ten, fifteen or more layers of packages.

BRIEF DESCRIPTION OF THE DRAWINGS

[0043]

Figure 1A is a schematic view from the side of a stack of packages formed according to the method of the

Figure 1B is a top view of the stack in figure 1.

Figure 2 is a perspective view of a package.

Figure 3 is a view of the center point of the smallest rectangle that can be drawn around a layer in the xy plane.

Figure 4A is a perspective view of a stack of three layers wherein the displacement for each layer is shown.

Figure 4B is a side view of the stack in figure 4A. Figure 5A illustrates the offset of each layer in a stack containing five layers.

Figure 5B illustrates an alternative layering offset for a stack comprising five layers.

Figure 6 illustrates the offset for the layers in a stack comprising four layers.

DETAILED DESCRIPTION OF THE INVENTION

[0044] In the following examples the invention will be described in more detail. However, the described embodiments mentioned below are only given as examples and should not be limiting to the present invention. Other solutions, uses, objectives, and functions within the scope of the invention as claimed in the below described patent claims should be apparent for the person skilled in the art.

[0045] Figures 1A and 1B are schematic views of an exemplary stack 10 of packages formed according to the method of the invention. The stack 10 in figs. 1A and 1B comprises six layers (L₀-L₅), of packages wherein each layer L has an extension in the x-direction and in the ydirection of an x-y plane and in a z-direction perpendicular to the x-y plane. Each layer comprises seven packages 11 in the x-direction and five packages 11 in the y-direction of the x-y plane (fig. 1 B). Each package 11 has a lower surface 12 with a length (lx) extending in the xdirection and a length (I_v) extending in the y-direction of the x-y plane, and a wall 13 extending in the z-direction around the outer perimeter of the lower surface 12 (see figure 2). The packages 11 are arranged in a side-byside configuration in each layer L with their lower surfaces 12 in a plane parallel to the x-y plane.

[0046] Figure 1B is a view of the top of a typical layer L in the stack. Each layer L in the stack 10 has a rectangular (or in some cases quadratic) shape. As can be seen in figure 1B the size of the layer L depends on the extension of the layer L in the x- and y-directions of the x-y plane, which in turn depends on the number of packages 11 arranged in each direction, as well as the size of each package 11. The smallest rectangle R that can be formed in the x-y plane for each layer is when all packages 11 in the layer L are arranged in a side-by-side configuration with substantially no space between each package 11 as seen in figures 1A and 1B.

[0047] The center point C of the layer L is the midpoint which is located equidistant from the diagonal end points 14, 15 of the smallest rectangle R that can be formed in the x-y plane for each layer (see Fig. 3).

[0048] Figure 4A shows an exploded view of the placement of the layers in a stack which is formed according to the method of the invention. The stack of packages comprises three layers L₀, L₁, L₂, and in a first step the packages in the first layer L₀ are arranged in a side-byside configuration with their lower surfaces in a plane parallel to the x-y plane. Advantageously the packages in the subsequent layers are arranged such that the overall displacements of the subsequent layers L₁, L₂ are evenly distributed around the center point C₀ of the first layer. In a stack of three layers the most even distribution of the two subsequent layers L₁, L₂ is when the offsets of the first and second subsequent layers L₁, L₂ in relation to the first layer form an angle of 180° between said first and second subsequent directions. Therefore, the first subsequent layer L1 is arranged such that the entire layer is displaced in a first direction which is offset in relation to said first layer L₀ in the x-direction. The offset is such that the center point C₁ of the smallest rectangle that can be drawn around said first subsequent layer L1 in the xy plane is offset a distance d_x in the x-direction in relation to the center point C₀ of the smallest rectangle that can be drawn around said first layer L₀ in the x-y plane.

[0049] The second subsequent layer L₂ is arranged in a second direction which is offset in relation to said first layer L₀ in the x-direction, but opposite to that of the first direction, such that the center point C2 of the smallest rectangle that can be drawn around said second subsequent layer L2 in the x-y plane is offset a distance dx in the x-direction in relation to the center point Co of the smallest rectangle that can be drawn around said first layer L_0 in the x-y plane (see figures 4A and 4B).

Example 1

[0050] In a stack 10 of packages comprising five layers L₀, L₁, L₂, L₃, and L₄ of packages 11 with circular lower surfaces, the lower surfaces extend 100 mm in the xdirection (i.e. l_x is 100 mm) and 100 mm in the y-direction

 $(I_v = 100 \text{ mm})$. The offset distances d_x and d_v for the displacement of each of the subsequent layers in relation to the first layer is 10% of I_x and/or I_v. For simplicity the displacement is shown for only one package 11 in relation to the packages located in the layers directly below (see figure 5A). In a first step a first layer L₀ of packages is arranged in a side-by-side configuration with their lower surfaces in a plane parallel to the x-y plane. Thereafter four subsequent layers L_1 , L_2 , L_3 , and L_4 are arranged on top of said first layer L₀ wherein each layer the packages are placed in a side-by-side configuration with their lower surfaces arranged in a plane parallel to the x-y plane. The first subsequent layer L₁ is arranged such that the entire layer is displaced in a first direction r₁ which is offset in relation to said first layer L_0 in the x-direction. The offset is such that the center point C₁ of the smallest rectangle that can be drawn around said subsequent layer L₁ in the x-y plane is offset a distance of 10 mm in the x-direction in relation to the center point C_0 of the smallest rectangle that can be drawn around said first layer L₀ in the x-y plane.

[0051] The second subsequent layer L_2 is arranged in a second direction r_2 which is offset in relation to said first layer L_0 in the y-direction such that the center point C_2 of the smallest rectangle that can be drawn around said second subsequent layer L_2 in the x-y plane is offset a distance 10 mm in the y-direction in relation to the center point C_0 of the smallest rectangle that can be drawn around said first layer L_0 in the x-y plane.

[0052] The third subsequent layer L₃ is arranged in a third direction r₃ which is offset in relation to said first layer L₀ in the x-direction such that the center point C₃ of the smallest rectangle that can be drawn around said third subsequent layer L3 in the x-y plane is offset a distance 10 mm in the x-direction in relation to the center point C₀ of the smallest rectangle that can be drawn around said first layer Lo in the x-y plane. The fourth subsequent layer L₄ is arranged in a fourth direction r₄ which is offset in relation to said first layer L_0 in the y-direction such that the center point C₄ of the smallest rectangle that can be drawn around said fourth subsequent layer L₄ in the x-y plane is offset a distance of 10 mm in the ydirection in relation to the center point C₀ of the smallest rectangle that can be drawn around said first layer L₀ in the x-y plane. In Figure 5A it is seen that in this embodiment the offset direction r₃ of the third subsequent layer L₃ is opposite to the offset direction r₁ of the first subsequent layer L₁, and the offset direction r₄ of the fourth subsequent layer L₄ is opposite to the offset direction r₂ of the second subsequent layer L₂.

Example 2

[0053] In an alternative embodiment the stack also comprises five layers L_0 , L_1 , L_2 , L_3 , and L_4 of packages 11 with circular lower surfaces, wherein the lower surfaces extend 100 mm in the x-direction (i.e. I_x is 100 mm) and 100 mm in the y-direction (I_y = 100 mm). The offset

distances dx and dv for the displacement of each of the subsequent layers in relation to the first layer is 10% of l_x and/or l_y. In a first step, a first layer L₀ of packages is arranged in a side-by-side configuration with their lower surfaces in a plane parallel to the x-y plane (see figure 5B). Thereafter four subsequent layers L₁, L₂, L₃, and L₄ are arranged on top of said first layer L₀ wherein each layer the packages are placed in a side-by-side configuration with their lower surfaces arranged in a plane parallel to the x-y plane. The first subsequent layer L1 is arranged such that the entire layer is displaced in a first direction r₁ which is offset in relation to said first layer L₀ in the x-direction. The offset is such that the center point C₁ of the smallest rectangle that can be drawn around said subsequent layer L₁ in the x-y plane is offset a distance of 10 mm in the x-direction in relation to the center point C₀ of the smallest rectangle that can be drawn around said first layer L₀ in the x-y plane.

[0054] The second subsequent layer L_2 is arranged in a second direction r_2 which is offset in relation to said first layer L_0 in the x-direction, but opposite to that of the first direction r_1 , such that the center point C_2 of the smallest rectangle that can be drawn around said second subsequent layer L_2 in the x-y plane is offset a distance 10 mm in the x-direction in relation to the center point C_0 of the smallest rectangle that can be drawn around said first layer L_0 in the x-y plane.

[0055] The third subsequent layer L $_3$ is arranged in a third direction r_3 which is offset in relation to said first layer L $_0$ in the y-direction such that the center point C $_3$ of the smallest rectangle that can be drawn around said third subsequent layer L $_3$ in the x-y plane is offset a distance 10 mm in the y-direction in relation to the center point C $_0$ of the smallest rectangle that can be drawn around said first layer L $_0$ in the x-y plane.

[0056] The fourth subsequent layer L_4 is arranged in a fourth direction r_4 which is offset in relation to said first layer L_0 in the y-direction, but opposite to that of the third direction r_3 , such that the center point C_4 of the smallest rectangle that can be drawn around said fourth subsequent layer L_4 in the x-y plane is offset a distance of 10 mm in the y-direction in relation to the center point C_0 of the smallest rectangle that can be drawn around said first layer L_0 in the x-y plane. In Figure 5B it is seen that in this embodiment that the offset direction r_1 of the first subsequent layer L_1 is opposite to the offset direction r_2 of the second subsequent layer L_2 , and the offset direction r_3 of the third subsequent layer L_3 is opposite to the offset direction r_4 of the fourth subsequent layer L_4 .

Example 3

[0057] Figure 6 shows an example of the displacement of the layers in relation to each other in a stack of packages comprising four layers L_0 , L_1 , L_2 , and L_3 of packages. The stack in this example contains packages having circular lower surfaces with a diameter of 7 cm. This means that each package has an extension in the x-di-

20

30

40

45

rection of 70 mm, i.e. I_x is 70mm, and an extension in the y-direction of 70 mm (i.e. I_v is 70 mm).

[0058] The offset distances d_x and d_y for the displacement of each of the subsequent layers L_1 , L_2 , and L_3 in relation to the first layer L_0 is 10% of I_x and/or I_y . A first layer L_0 of packages is arranged in a side-by-side configuration with their lower surfaces in a plane parallel to the x-y plane. In this example the formed stack will contain three subsequent layers L_1 , L_2 , and L_3 which each are displaced in relation to the first layer L_0 in a first r_1 , a second r_2 and a third direction r_3 .

[0059] Advantageously the displacements of the subsequent layers L₁, L₂, and L₃ are directed such that the displacements for all layers in the stack are evenly distributed around the center point C_0 of the first layer L_0 . In a stack of four layers the most even distribution of the three subsequent layers is when the displacement directions of the first L₁, second L₂ and third L₃ subsequent layers in relation to the center point C₀ of the first layer L₀ form angles of 120° between said first r₁ and second direction r2, 120° between said second r2 and third r3 direction, and 120° between said third r₃ and first r₁ direction (see figure 6). Therefore, in this embodiment the first subsequent layer L₁ is arranged such that the entire layer is displaced in a first direction r₁ which is offset in relation to the first layer L₀ in the x-direction such that the center point C₁ of the smallest rectangle that can be drawn around the first subsequent layer L₁ in the x-y plane is offset a distance of 7 mm in the x-direction of the x-y plane

[0060] The second subsequent layer L_2 is arranged such that the entire layer is displaced in a second direction r_2 which is offset in relation to said first layer L_0 in both the x- and y-directions such that the center point C_2 of the smallest rectangle that can be drawn around the second subsequent layer L_2 in the x-y plane is offset a distance of 7 mm from the center point C_0 of the first layer. This means that the second subsequent layer L_2 is displaced 7 mm in a second direction r_2 and that the second displacement is directed at an angle of 120° from the direction r_1 of displacement of the first subsequent layer L_1 .

[0061] The third subsequent layer L_3 is thereafter arranged such that the entire third layer L_3 is displaced in a third direction r_3 which is offset in relation to said first layer L_0 in both the x-and y-directions such that the center point C_3 of the smallest rectangle that can be drawn around the third subsequent layer L_3 in the x-y plane is offset a distance of 7 mm from the center point of the first layer. This means that the third subsequent layer is displaced 7 mm in a third direction r_3 and that the displacement of the third subsequent layer L_3 is directed at an angle of 120° from the direction r_2 of displacement of the second subsequent layer L_2 , and also at an angle of 120° from the direction r_1 of displacement of the first subsequent layer L_1 .

Claims

1. A method for forming a stack of thin-walled packages, wherein all of said thin-walled packages in the stack are of the same shape and size, and each thin-walled package has a lower surface with a length (I_x) extending in an x-direction and a length (I_y) extending in a y-direction of an x-y plane, said stack comprising two or more distinct layers of thin-walled packages, wherein each layer is of the same size with an horizontal extension in the x-direction and in the y-direction of an x-y plane and a vertical extension in a z-direction perpendicular to the x-y plane, said method comprising the steps of:

a) arranging a layer of three or more packages in a side-by-side configuration with said lower surfaces of said packages in a plane parallel to the x-y plane,

b) arranging a subsequent layer of three or more packages on top of a previously arranged layer in a side-by-side configuration with said lower surfaces of said packages in said subsequent layer arranged in a plane parallel to the x-y plane and with said subsequent layer being offset in relation to said previous layer in the x-direction and/or in the y-direction such that the center point of the smallest rectangle that can be drawn around said subsequent layer in the x-y plane is offset a distance d_x in the x-direction and/or a distance d_v in the y-direction in relation to the center point of the smallest rectangle that can be drawn around said first layer in the x-y plane, c) repeating step b) one or more times wherein each subsequent layer is arranged on top of a previous layer and wherein the offset distances d, in the x-direction and/or a distance d, in the y-direction are the same for all subsequent layers and said offset direction are shifted in each repetition of step b).

- 2. The method according to claim 1, wherein step b) the subsequent layer is offset in the x-direction a distance d_x which equals 1.5-30 %, more preferably 5-20%, most preferably 10-15% of the length l_x , and/or in the y-direction a distance d_y which equals 1.5-30 %, more preferably 5-20%, most preferably 10-15% of the length l_y .
- The method according to claims 1 or 2, wherein the formed stack of layers is covered by a compressible overlay having elastic properties.
- **4.** The method according to claims 1 3, wherein said stack of packages is formed inside an outer case.
- The method according to claim 4, wherein said layers are formed outside said outer case and subsequently

15

20

25

35

40

transferred into said outer case.

- 6. The method according to claim 5, wherein said layers are placed in a wrapping before being transferred into said outer case.
- 7. The method according to claim 5, wherein said layers are transferred into an outer case containing a wrapping.
- **8.** The method according to any one of the preceding claims wherein the packages have an uncovered opening in an upper part.
- **9.** The method according to any one of the preceding claims wherein the packages are empty.
- 10. The method according to any one of the preceding claims wherein the packages are arranged in the same side-by-side packaging pattern in all layers in the stack.
- **11.** The method according to any one of the preceding claims wherein the lower surfaces of said packages have a circular shape.
- 12. The method according to claim 11, wherein said circular lower surface has a diameter of 70 mm and the offset $\rm d_x$ for the subsequent layer is 1.05-21.0 mm, preferably 3.50-14.0 mm, and most preferably 7.00-10.5 mm in the x-direction of the x-y plane, and/or the offset $\rm d_y$ is 1.05-21.0 mm, preferably 3.50-14.0 mm, and most preferably 7.0-10.5 mm in the y-direction of the x-y plane.
- 13. The method according to any one of the preceding claims wherein step b) is carried out 1+n times to produce a stack of 2+n layers with a first layer, and first to n subsequent layers.
- **14.** The method according to claim 13, wherein said first to n subsequent layers are offset in relation to said first layer in first to n offset directions.
- **15.** The method according to claim 14, wherein n=1 and the offsets of the first and second subsequent layers in relation to the first layer form an angle of 180°between said first direction and said second direction.
- 16. The method according to claim 14, wherein n=2 and the offsets of the first, second and third subsequent layers in relation to the first layer form an angle of 120°between said first direction and said second direction, an angle of 120° between said second direction and said third direction, and an angle of 120°between said third direction and said first direction.

- 17. The method according to claim 14, wherein n=3 and the offsets of the first, second, third and fourth subsequent layers in relation to the first layer form an angle of 90° between said first direction and said second direction, an angle of 90° between said second direction and said third direction, an angle of 90° between said fourth direction and an angle of 90° between said fourth direction and said first direction.
- 18. The method according to claim 14, wherein n=3 and the offsets of the first, second, third and fourth subsequent layers in relation to the first layer form an angle of 90° between said first direction and said third direction, an angle of 90° between said third direction and said second direction, an angle of 90° between said second direction and said fourth direction and an angle of 90° between said fourth direction and said first direction.
- **19.** A case containing a stack of packages made according to any one of claims 1-18.

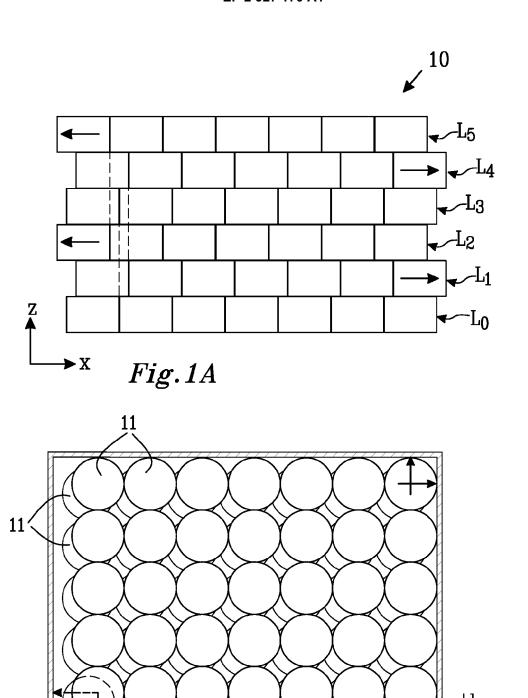
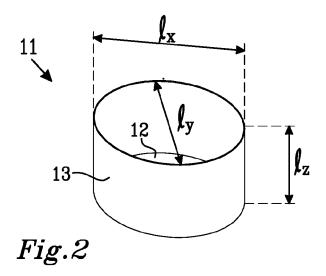



Fig.1B

→X

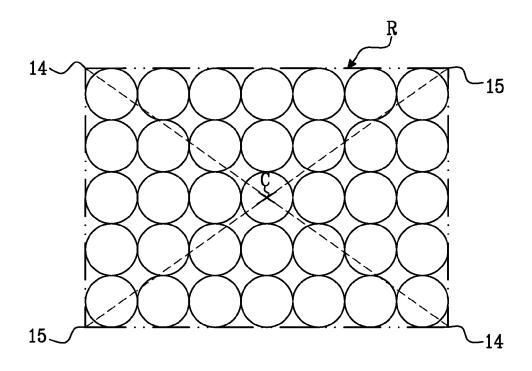


Fig.3

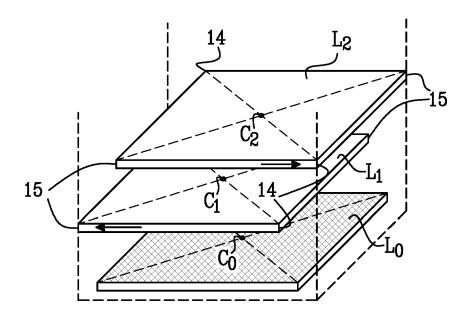
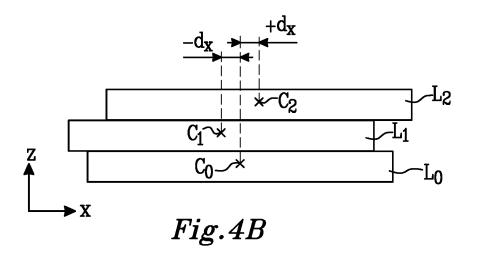



Fig.4A

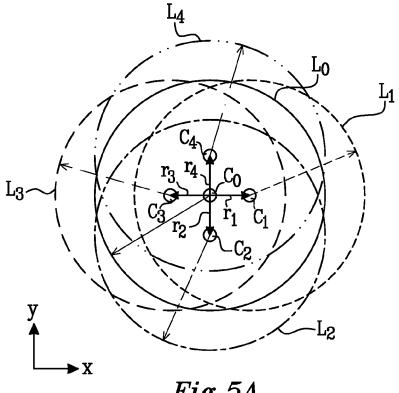
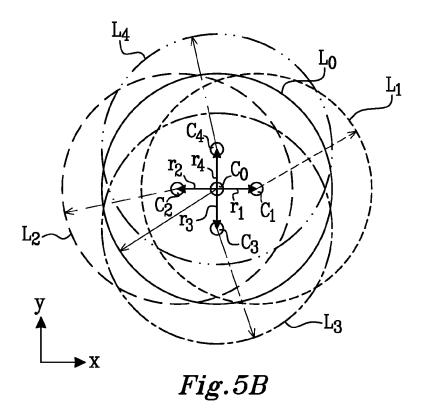
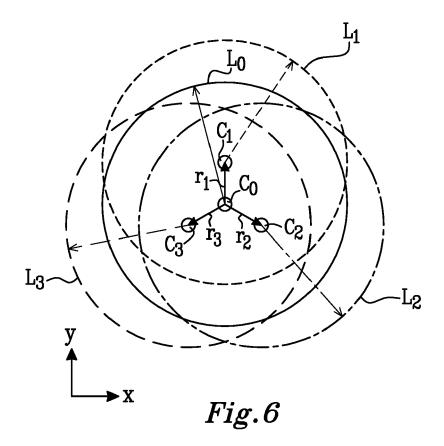




Fig.5A

EUROPEAN SEARCH REPORT

Application Number EP 15 16 1430

	DOCUMENTS CONSID	ERED TO BE RELEVANT		
Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
Α		OVENSTEENFABRIEK VAN Nary 1971 (1971-01-25) es 1-5 *	1-19	INV. B65G57/00 B65B35/50
Α	EP 0 888 990 A1 (WI 7 January 1999 (199 * columns 1-3; figu	99-01-07)	1-19	B65G57/24
Α	US 2 699 264 A (BRU 11 January 1955 (19 * columns 1-14; fig	955-01-11)	1-19	
X	US 2012/216490 A1 (AL) 30 August 2012 * paragraph [0070];		19	
				TECHNICAL FIELDS SEARCHED (IPC)
				B65G B65B B65H
			_	
	The present search report has	•		<u> </u>
	Place of search	Date of completion of the search		Examiner
	The Hague	3 August 2015		rtin, Benoit
X : part Y : part docu A : tech	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot ument of the same category inological background -written disclosure	E : earlier patent do after the filing dat her D : document cited i L : document cited f	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filling date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 15 16 1430

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on

ΑT

ΒE

DE

GB

NL

US

NONE

NONE

US

WO

Patent family

member(s)

287581 B

685314 A

1511827 A1

1151928 A

6510494 A

3486614 A

2012216490 A1

2013130111 A1

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Publication

25-01-1971

07-01-1999

11-01-1955

30-08-2012

03-08-2015

Publication

25-01-1971

16-01-1967

17-07-1969

14-05-1969

13-02-1967 30-12-1969

30-08-2012

06-09-2013

|--|

Patent document

cited in search report

EP 0888990 A1

US 2012216490 A1

В

Α

AT 287581

US 2699264

15	

20	
20	

25	

30

35

40

45

50

55

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82