

(11) EP 2 927 630 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 07.10.2015 Patentblatt 2015/41

(51) Int Cl.: F28D 1/04^(2006.01) F28F 1/32^(2006.01)

F28D 1/047 (2006.01)

(21) Anmeldenummer: 15160338.8

(22) Anmeldetag: 23.03.2015

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

MA

(30) Priorität: 02.04.2014 FR 1452897

(71) Anmelder: Robert Bosch GmbH 70442 Stuttgart (DE)

(72) Erfinder:

 Trela, Marc 94410 Saint-Maurice (FR)

 Bouteiller, Paul 75010 Paris (FR)

(54) Luft-Fluid-Verdampfer bestehend aus einem Rippenwärmetauscher

(57) Mit einem Fluidkreislauf verbundener Luft-Fluid-Verdampfer, bestehend aus einem Wärmetauscher (11) mit Rippen (111), der von dem von einem Lüfter (4) erzeugten Luftstrom durchquert wird, und aus einem Bündel von im Wesentlichen parallelen Rohren (Ti-j), die die Rippen (111) durchqueren und deren Enden paarweise durch Bögen (112A,B) miteinander verbunden sind, und um einen zentralen Pfad (CH1) in einer zentralen Zone (Z1) des Querschnitts des Tauschers (11) zu bilden, die zu beiden Seiten von einer äußeren Zone (Z2, Z3) von Bündeln von Rohren (Ti-j) umrandet wird, die jedes Mal einen äußeren Pfad (CH2, 3) für das Wärmeträgerfluid bilden.

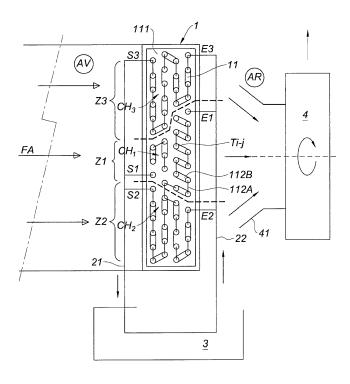


Fig. 1

Gebiet der Erfindung

[0001] Die vorliegende Erfindung bezieht sich auf einen mit einem Fluidkreislauf verbundenen Luft-Fluid-Verdampfer, bestehend aus einem Wärmetauscher mit Rippen, die von dem von einem Lüfter hinter dem Tauscher erzeugten Luftstrom durchquert werden, wobei der Tauscher von einem parallelepipedischen Volumen gebildet wird, das in einer Richtung durch zueinander und auch zur Richtung des Luftstroms parallele Rippen abgetrennt wird und in Querrichtung ein Bündel von im Wesentlichen parallelen Rohren aufweist, die die Rippen durchqueren und deren Enden paarweise durch Bögen verbunden sind, um einen Fluidkreislaufpfad zwischen dem Eingang und dem Ausgang herzustellen, um zum Fluidkreislauf zurückzukehren, der in einen Kondensator übergeht.

1

Stand der Technik

[0002] Gemäß dem Stand der Technik besteht der wie oben definierte Verdampfer aus einer Einheit von rechtwinkligen, ggf. geprägten oder lamellierten, parallelen Rippen, die von Rohren durchquert werden, und die auf der einen und der anderen Seite an den Eingangsverteiler und den Ausgangskollektor angeschlossen sind, und wobei die verschiedenen Rohre durch Bögen auf den zwei Endplatten geschleift werden, um die Rohre anzuschließen, um den Kreislaufpfad des Fluids durch den Rippentauscher zu bilden.

[0003] Ein solcher bekannter Tauscher 100, der von parallelepipedischer Form ist, wird vom Luftstrom in der Richtung parallel zur Ebene der Rippen durchquert. Wenn der Tauscher 100 bei der Herstellung geprüft wird (Figur 3), empfängt er einen gleichmäßigen Luftstrom über seinen ganzen Querschnitt, mit Ausnahme der laminaren Strömung an den Seiten der Eingangsleitung 120 in der Prüfeinrichtung.

[0004] Wenn der Tauscher 100 aber in den Verdampfer 110 eingebaut ist (Figur 4), wird der Tauscher 100 aufgrund des Aufbaus des Lüfters 115, der hauptsächlich im Bereich seiner Achse und weniger an der Peripherie dieser zentralen Position ansaugt, nicht mit der ganzen Wirksamkeit genutzt, die er gewährleisten könnte.

[0005] Es wäre möglich, den stromaufwärts vor dem Verdampfer 110 eintretenden Luftstrom zu lenken, aber dies würde den Einbau von Ablenkblechen erfordern, um den Luftstrom umgekehrt zur durch den Betrieb des Lüfters gesteuerten Verteilung zu verteilen. Dies äußert sich aber durch eine komplexe Form des Verdampfers, zusätzliche Bauteile, einen größeren Platzbedarf und teurere Produktkosten.

Ziel der Erfindung

[0006] Die vorliegende Erfindung hat zum Ziel, einen

Verdampfer mit einem Rippenwärmetauscher zu entwickeln, der eine bessere Wirksamkeit des Wärmeaustauschs durch eine bessere Verteilung des Wärmeträgerfluids abhängig vom Durchgang der Luft durch den Tauscher gewährleistet, das Vereisen reduziert, und dies ohne die Herstellung des Wärmetauscher zu verkomplizieren.

Darlegung und Vorteile der Erfindung

[0007] Zu diesem Zweck hat die Erfindung einen mit einem Fluidkreislauf verbundenen Luft-Fluid-Verdampfer zum Gegenstand, der aus einem Rippenwärmetauscher der oben definierten Art besteht, dadurch gekennzeichnet, dass die Rohre an den Enden verbunden sind, um einen zentralen Pfad in einer mittleren Zone des Querschnitts des Tauschers zu formen, wobei diese Zone zu beiden Seiten durch mindestens eine äußere Zone von Bündeln von Rohren umrandet wird, die jedes Mal einen äußeren Pfad für das Wärmeträgerfluid bilden, wobei ein Eingangsverteiler die Eingänge der Pfade mit dem Ausgang des Kondensators verbindet, und ein Ausgangskollektor die Ausgänge der Pfade mit dem Eingang des Kondensators verbindet.

[0008] Der erfindungsgemäße Wärmetauscher hat den Vorteil, von sehr einfacher Herstellung zu sein, die die Gesamtstruktur und den Platzbedarf des Tauschers nicht verändert, um unter den gleichen Bedingungen wie die bekannten Tauscher verwendet zu werden und sich in Verdampfer von thermodynamischen Kreisläufen zu integrieren, die nicht verändert werden müssen.

[0009] Der Eigenaufbau des Rippentauschers respektiert die traditionellen Bauarten solcher Tauscher, indem er insbesondere die Homogenität der Lastverluste des jeden der Kreisläufe durchfließenden Fluids gewährleistet, und erfordert keine grundsätzliche Umwandlung der Anlagen für ihre Herstellung oder ihre Montage.

[0010] Erfindungsgemäß wird die zentrale Zone vorzugsweise von zwei äußeren Zonen umrandet, um so drei Durchgangspfade des Wärmeträgerfluids zu bilden. Die äußeren Zonen können aber selbst abhängig von der Einplanung des Durchgangs des Luftkanals im Tauscher unterteilt sein.

[0011] Erfindungsgemäß weist der Verdampfer besonders vorteilhaft eine zentrale Zone auf, die auf jeder Seite von einer äußeren Zone umrandet wird.

[0012] Diese Verteilung der stromaufwärts befindlichen Rohre der Eingangsreihe, indem die der zentralen Zone zugeordneten Rohrbündel zu Lasten einer Schmälerung der zugeordneten Rohrbündel in den äußeren Zonen progressiv verbreitert werden, ermöglicht es, den Wärmeaustausch zwischen dem Luftstrom und dem durch die so geformten Pfade fließenden Wärmeträgerfluid bestmöglich zu nutzen.

[0013] Die Erfindung hat ebenfalls ein Verfahren zur Herstellung eines Luft-Fluid-Verdampfers der oben definierten Art zum Gegenstand, dadurch gekennzeichnet, dass zur Festlegung der Durchgangspfade des Wärme-

trägerfluids eine Temperaturkarte der Rohre des Tauschers erstellt wird, um anschließend die Verbindungen zwischen den Rohren zu definieren und die Durchgangspfade zu bilden.

[0014] Dieses Verfahren ermöglicht es, den Aufbau des Wärmetauschers und der Pfade des Fluids in den Rohren wirksam zu definieren, um die Pfade und so den Betrieb des Wärmetauschers zu optimieren. Zur Optimierung ist es allgemein angebracht, am Ausgang der Pfade die gleiche Temperatur zu erhalten, was ebenfalls für die Zuverlässigkeit des Tauschers vorteilhaft ist, der so gleichmäßig wie möglich arbeitet, wodurch die abrupten Temperaturschwankungen innerhalb einer gleichen Rippe reduziert werden, da diese Rippe eine wärmeleitende Fläche ist, die allgemein der Gesamtheit der Rohre des Tauschers gemeinsam ist, die trotzdem auf unterschiedlichen Temperaturen sind.

[0015] Durch die Erfindung werden die Temperaturschwankungen reguliert, um die abrupten Abweichungen von einem Rohr zum anderen zu vermeiden, das nicht zum gleichen Flüssigkeitspfad im Tauscher gehört, was insbesondere den Vorteil hat, das Schicken von Flüssigkeit zum Kompressor der Kälteanlage zu vermeiden

Zeichnungen

[0016] Die vorliegende Erfindung wird nachfolgend ausführlicher mit Hilfe einer Ausführungsform eines erfindungsgemäßen Verdampfers beschrieben, der in den beiliegenden Zeichnungen dargestellt ist, in denen:

- Figur 1 eine schematische Gesamtdarstellung eines einen Rippenwärmetauscher aufweisenden erfindungsgemäßen Verdampfers ist, der in Seitenansicht dargestellt ist,
- Figur 1A eine schematische Darstellung einer Seite des Wärmetauschers der Figur 1 ohne die Anschlussbögen ist,
- Figur 2 eine Vorderansicht des Rippenwärmetauschers des Verdampfers der Figur 1 ist,
- Figur 3 eine schematische Darstellung der Verteilung des Luftkanals bei der Prüfung eines Wärmetauschers ist,
- Figur 4 eine vereinfachte schematische Darstellung des Einbaus eines Verdampfers in eine Luftversorgung für einen Luft-Fluid-Austausch ist.

Beschreibung einer Ausführungsform der Erfindung

[0017] Gemäß Figur 1 hat die Erfindung einen mit einem Fluidkreislauf 2 verbundenen Luft-Fluid-Verdampfer 1 zum Gegenstand, mit einem Wärmetauscher 11, der Teil des Verdampfers 1 ist, und einem Kondensator

3, der die im Tauscher des Verdampfers 1 entnommene Wärme des Wärmeträgerfluids abgibt. Der Verdampfer 1 ist in eine Luftleitung 12 und stromabwärts hinter seinem Tauscher 11 eingebaut, die Leitung 12 ist mit einem Lüfter 4 ausgestattet, der die Luft über den Tauscher 11 stromaufwärts vor dem Tauscher in Richtung der Pfeile FA ansaugt. Dann durchquert die Luft den Tauscher 11 angesaugt durch den Eingang 41 geringeren Querschnitts als derjenige der Leitung 12 stromaufwärts vor dem Tauscher 11 in den Lüfter 4, um von diesem ausgestoßen zu werden.

[0018] Der Luft-Fluid-Wärmetauscher 11 ist in Figur 1 in einer Seitenansicht dargestellt, die die Anschlüsse seiner verschiedenen Rohre Ti-j des Tauschers 11 von der Seite gesehen zeigt.

[0019] Figur 2 ist eine schematische Vorderansicht des Verdampfers 1 mit dem Tauscher 11 bestehend aus einem parallelepipedischen Volumen, das in der Durchgangsrichtung der Luft durch Rippen 111 abgetrennt wird, die zueinander und in Richtung des Durchgangs der Luft parallel sind. Diese Rippen 111 sind Platten rechtwinkliger Form (Figuren 1 und 1A), die von Bündeln von Rohren Ti-j im Wesentlichen parallel zueinander und in gleichmäßig verteilten Reihen von Rohren N1-4 befindlich durchquert werden. So sind im Fall des Wärmetauscherbeispiels die Rohre in vier Reihen N1-4 parallel zueinander und lotrecht zur Durchgangsrichtung der Luft verteilt (Figuren 1, 1A). In diesen Reihen N1-4 sind die Rohre Ti-j waagrecht, lotrecht zur Ebene der Figuren 1, 1A und von einer Reihe zur anderen versetzt verteilt, damit jedes Rohr der folgenden Reihe sich im Zwischenraum zwischen zwei Rohren der vorhergehenden Reihe oder der folgenden Reihe befindet, wenn man eine Projektion in der Richtung des Durchgangs der Luft durchführt, so dass die Widerstände der Luftströmung eines Rohrs einer Reihe nicht den Durchgang in die Rohre der folgenden Reihe beeinflusst.

[0020] Die Rohre Ti-j münden auf jeder Seite (Figur 2) in einen Verbindungskasten 13, 14, in dem die Enden der Rohre paarweise durch Bögen 112A,B so verbunden sind, dass die verschiedenen Rohre mehrere Wärmeträgerfluid-Kreislaufpfade bilden. Diese später beschriebenen Kreislaufpfade sind mit einem Eingangsverteiler 21 über drei Eingangsleitungen 211, 212, 213 verbunden, die drei verschiedenen Fluidkreislaufpfaden im Tauscher zugeordnet sind. Am Ausgang ist jeder der Pfade durch seinen Ausgang S1-S3 mit den Rohren 221, 222, 223 eines Kollektors 22 und mit dem zum Kondensator 3 gehenden Fluidkreislauf verbunden.

[0021] Figur 1A ist eine Seitenansicht, die sowohl die Rippe, die der Ebene der Figur 1A am nächsten ist, als auch durch Transparenz diejenige der am weitesten entfernten Ebene zeigt, die den zwei Verbindungskästen am Ende des Gehäuses des Wärmetauschers entsprechen.

[0022] Gemäß Figur 1 sind die Rohre Ti-j so angeschlossen, dass sie drei Wärmeträgerfluid-Durchgangspfade CH1, CH2, CH3 bilden, die parallel aber von un-

terschiedlicher Länge sind. Da die Rohre Ti-j des Tauschers 11 lotrecht zur Ebene der Figur 1 sind, kann das Bild des Anschlusses der Rohre durch die vorderen Bögen 112A und die hinteren Bögen 112B durch Transparenz in Figur 1 dargestellt werden, in der standardmäßig die vorderen Bögen 112A durch einen Strich und die hinteren Bögen 112B durch zwei Striche dargestellt sind.

[0023] Indem man den Verbindungen zwischen den Rohren gemäß der abwechselnden Darstellung von einem Strich und von zwei Strichen folgt, hat man den Verlauf der Pfade CH1-3.

[0024] Der erste Pfad CH1 wird von den Rohren in der zentralen Zone Z1 gebildet, die sich ausgehend von der Vorderseite AV zur Rückseite AR des Tauschers 11 ausweitet. Diese zentrale Zone Z1 ist ein Streifen, der sich über die ganze Breite des Tauschers 11 erstreckt, unten und oben von zwei Zonen von Rohren Z2, Z3 umrandet, die je einen Fluidkreislaufpfad CH2, CH3 bilden. Die Pfade CH1-3 sind mit einem Eingang E1-3 des Verteilers 21 bzw. mit einem Ausgang S1-3 des Kollektors 22 verbunden.

[0025] Die Aufteilung in Zonen Z1, Z2, Z3 erfolgt abhängig von Probeläufen, die Temperaturkarten erstellen, um am Ausgang S1, S2, S3 im Wesentlichen gleiche Fluidtemperaturen zu haben.

[0026] Man kann zulassen, dass der Luftstrom die Reihen N1-4 von Rohren durchquert, indem er eine global parallele Ausrichtung beibehält, aus den bereits angegebenen Gründen aber mit unterschiedlichen Geschwindigkeiten.

[0027] An den Grenzen der Zonen Z1, Z2 oder Z1, Z3, die je gestrichelt dargestellt sind, geht der Luftkanal, der die ersten Rohre der Zonen Z2 und Z3 durchquert, anschließend zu den Rohren der Zone Z1.

[0028] Es ist anzumerken, dass die Verteilung der Rohre zwischen den Zonen Z1-3 von einer Reihe von Rohren N1-4 zur anderen variiert; im Bereich der ersten Reihe N1 ist die mittlere Zone Z1 relativ reduziert, um sich anschließend zum Ausgang auszuweiten, damit diese Zone entsprechend dem Hauptdurchgang der heißen Luft zum Teil ebenfalls die äußeren Pfade CH2 und CH3 begünstigt, bei denen ein großer Teil der Rippen von einem äußeren Heißluftkanal durchquert wird, mit einer geringeren Geschwindigkeit als diejenige des Hauptkanals, der hauptsächlich der Kreislaufachse und der zentralen Zone Z1 zugeordnet ist.

[0029] Die Seitenansicht des Tauschers 11, der alleine in Figur 1A dargestellt ist, ermöglicht eine bessere Erläuterung der Kombinationen von Rohren, die die Pfade CH1-3 bilden.

[0030] Um die Rohre Ti-j zu bestimmen, sind diese in Reihen N1-4 und in Abschnitte M1-15 verteilt, so dass jedes Rohr Ti-j durch die Nummer i seiner Reihe Ni gefolgt von der Nummer j seines Abschnitts Mj referenziert wird.

[0031] Standardmäßig werden in Figur 1A, die die Referenzen der Reihen in den Abschnitten angibt, ohne alle Rohre zu bestimmen, die die Enden der Rohre Ti-j an

der Vorderseite im Blatt der Figur 1 verbindenden Bögen wie in Figur 1 bestimmt. Gleiches gilt für die die hinteren Enden der Rohre verbindenden Bögen 112B.

[0032] So erfolgt der Eingang E1 der Zone Z1 durch das Rohr T1-09 und der Ausgang S1 durch das Rohr T4-05.

[0033] Der Fluidpfad CH1 in der Zone Z1 geht durch die Rohre in der folgenden Reihenfolge: T1-09, T1-08, T1-07, T2-07, T2-08, T2-09, T2-010, T3-010, T4-011, T4-010, T3-09, T3-08, T4-09, T4-08, T3-07, T3-06, T4-07, T4-06, T3-05, T4-05.

[0034] Für die Zone Z2 hat der Pfad einen Eingang E2 durch das Rohr T1-10 und einen Ausgang S2 durch das Rohr T4-12.

[0035] Für die Zone Z3 hat der Pfad einen Eingang E3 durch das Rohr T1-01 und einen Ausgang S3 durch das Rohr T4-01.

[0036] Obwohl die obige Beschreibung sich auf die Unterteilung der Bündel des Tauschers in drei Gruppen bezieht, die einen zentralen Pfad und zwei äußere Pfade für den Durchgang des Wärmeträgerfluids bilden, kann die Gruppierung anders erfolgen, und zum Beispiel können die Pfade durch eine feinere Verteilung der Rohre in verschiedenen Reihen vervielfacht werden, indem zum Beispiel die einem Pfad zugeordneten Rohre auf die Rohre bestimmter Reihen beschränkt werden, ohne notwendigerweise mindestens ein Rohr jeder der Reihen zu verwenden.

[0037] Zur Herstellung der Verbindungen ist es vorteilhaft, durch digitale Simulation oder durch Versuche vorzugehen, um in einer Prüfeinrichtung eine Karte der Temperaturen der verschiedenen Rohre zu erstellen und anschließend die Verbindungen an den Enden der Rohre zu verteilen, um am Ausgang der verschiedenen Pfade eine Temperatur zu haben, die so gleichmäßig wie möglich ist, Abbild der Wirksamkeit des Wärmeaustauschs. [0038] Wenn die Temperaturkarte und die Verläufe erstellt sind, werden diese Verläufe für die gleichen Anwendungen wieder aufgenommen, d.h. für die gleichen Ahmessungen des Wärmetauschers und die gleiche Art von Lüfter, der die Luft durch den Tauscher ansaugt, sowie für die gleiche Geometrie der Fluidrohrleitung zwischen dem Tauscher und dem Lüfter.

45 BEZUGSZEICHENLISTE

[0039]

40

50

55

1 Verdampfer

11 Wärmetauscher

111 Rippe112A Vorderer Bogen112B Hinterer Bogen

12 Luftleitung13 Seitliches Gehäuse

15

20

25

30

35

40

45

50

55

14 Seitliches Gehäuse

2 Fluidkreislauf

21 Eingangsverteiler

22 Ausgangskollektor

3 Kondensator

4 Lüfter

41 Eingang des Lüfters

100 Tauscher

110 Verdampfer

115 Lüfter

120 Eingangsleitung des Tauschers in eine Prüfeinrichtung

Ni Reihe von Rohren

Mj Abschnitt von Rohren

Ti-j Rohr

Z1 Zentrale Zone

Z2 Äußere Zone

Z3 Äußere Zone

CH1 Zentraler Pfad

CH2 Äußerer Pfad

CH3 Äußerer Pfad

Patentansprüche

1. Luft-Fluid-Verdampfer, der mit einem Fluidkreislauf verbunden ist, bestehend aus einem Wärmetauscher, der von dem von einem Lüfter stromabwärts hinter dem Tauscher erzeugten Luftstrom durchquert wird, geformt von einem parallelepipedischen Volumen, das in einer Richtung durch zueinander und auch zur Richtung des Luftstroms parallele Rippen abgetrennt ist, und in Querrichtung ein Bündel von im Wesentlichen parallelen Rohren aufweist, die die Rippen durchqueren und deren Enden paarweise durch Bögen miteinander verbunden sind, um einen Fluidkreislaufpfad zwischen dem Eingang und dem Ausgang herzustellen, um zum Fluidkreislauf zurückzukehren, der mit einem Kondensator verbunden ist,

wobei der Verdampfer dadurch gekennzeichnet ist, dass

- die Rohre (Ti-j) an den Enden verbunden sind, um einen zentralen Pfad (CH1) in der zentralen Zone (Z1) des Querschnitts des Tauschers (11) zu bilden, wobei diese Zone mindestens eine äußere Zone (Z2, Z3) von Bündeln von Rohren (Ti-j) hat, die mindestens einen äußeren Pfad (CH2, CH3) für das Wärmeträgerfluid bilden, - ein Eingangsverteiler (21) die Eingänge (E1-3) der Pfade (CH1-3) mit dem Ausgang des Kondensators (2) verbindet, und ein Ausgangskol-

lektor (22) die Ausgänge (S1-3) der Pfade (CH1-3) mit dem Eingang des Kondensators (3) verbindet.

2. Verdampfer nach Anspruch 1, dadurch gekennzeichnet, dass

er eine zentrale Zone (Z1) aufweist, die auf jeder Seite von einer äußeren Zone (Z2, Z3) umrandet wird.

3. Verdampfer nach Anspruch 1, dadurch gekennzeichnet, dass

er eine von einem Bündel von Rohren (Ti-j) gebildete zentrale Zone (Z1), die sich ausgehend von der Vorderseite (AV) des Tauschers (11) zur Rückseite (AR) ausweitet, und äußere Zonen (Z2, Z3) aufweist, die die äußeren Pfade (CH2, CH3) bilden, die aus Bündeln von Rohren bestehen, deren Anzahl ausgehend von der Vorderseite (AV) zur Rückseite (AR) abnimmt.

4. Verdampfer nach Anspruch 1, dadurch gekennzeichnet, dass

der zentrale Pfad (CH1) und der oder die äußeren Pfade (CH2, CH3) aus Bündeln von Rohren bestehen, die zumindest zum Teil zu allen Reihen von Rohren (N1-4) des Tauschers (11) gehören.

 Verfahren zur Herstellung eines Luft-Fluid-Verdampfers nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass

zur Festlegung der Durchgangspfade des Wärmeträgerfluids eine Temperaturkarte der Rohre des Tauschers (11) erstellt wird, um anschließend die Verbindungen zwischen den Rohren (Ti-j) zu definieren und die Durchgangspfade (CH1-3) zu bilden.

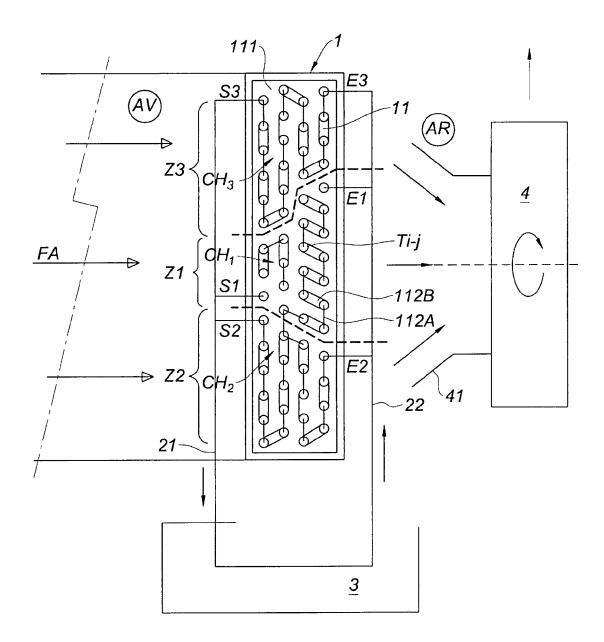


Fig. 1

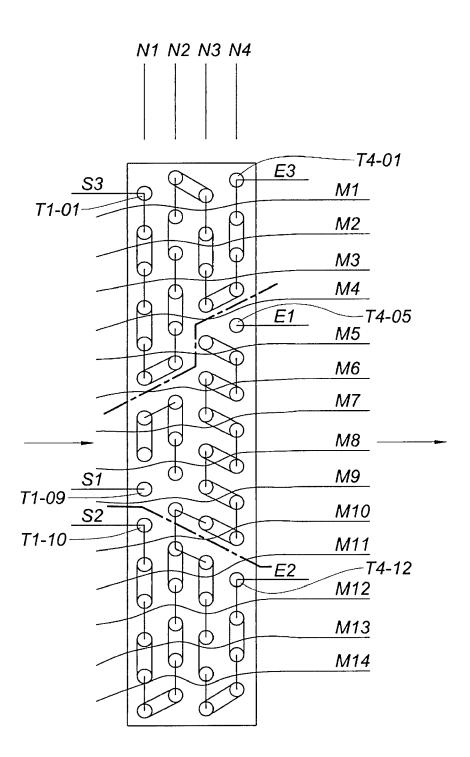


Fig. 1A

Fig. 2

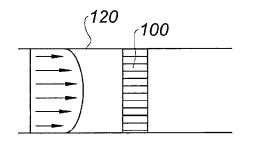
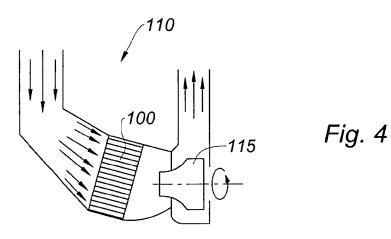



Fig. 3

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 15 16 0338

	EINSCHLÄGIGE D	OKUMENTE		
Kategorie	Kennzeichnung des Dokuments der maßgeblichen Te		ch, Betrifft Anspruch	KLASSIFIKATION DE ANMELDUNG (IPC)
X	EP 0 401 752 A2 (THER KLIMA [DE]) 12. Dezem * Abbildung 5 *		12) 1-5	INV. F28D1/04 F28D1/047
Х	EP 2 578 966 A1 (PANA 10. April 2013 (2013- * Abbildung 6 *		1-5	F28F1/32
Х	US 2004/020230 A1 (KU AL) 5. Februar 2004 (* Abbildung 4 *		ET 1-5	
Х	GB 2 001 422 A (CARRI 31. Januar 1979 (1979 * Abbildungen 1-5 *	ER CORP) -01-31)	1,4,5	
Х	JP 2003 222487 A (KOB 8. August 2003 (2003- * Abbildung 6 *	E STEEL LTD) 08-08)	1-5	
	-			RECHERCHIERTE
				F28D
				F28F
Der vo	rliegende Recherchenbericht wurde f	ür alle Patentansprüche erstel Abschlußdatum der Recherch		Prüfer
	München		l	ichet, Nicolas
	TIUTICITETT	13. August 20	10 L	ichet, Nicolas

^{Y: von besonderer bedeutung in verbindung mit: anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur}

L : aus anderen Gründen angeführtes Dokument

[&]amp; : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 15 16 0338

5

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

13-08-2015

1	0

15		
20		
25		
30		

35

40

45

50

EPO FORM P0461

55

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0401752	A2 12-12-1990	DE 3938842 A1 EP 0401752 A2 ES 2047200 T3 US 5076353 A	29-05-1991 12-12-1990 16-02-1994 31-12-1991
EP 2578966	A1 10-04-2013	CN 102918338 A EP 2578966 A1 JP 2011247482 A KR 20130088020 A WO 2011148567 A1	06-02-2013 10-04-2013 08-12-2011 07-08-2013 01-12-2011
US 2004020230	A1 05-02-2004	CN 1464963 A EP 1403598 A1 KR 20030029882 A US 2004020230 A1 WO 03004947 A1	31-12-2003 31-03-2004 16-04-2003 05-02-2004 16-01-2003
GB 2001422	A 31-01-1979	AR 218675 A1 AU 3801078 A BR 7804733 A CH 636949 A5 DE 2829456 A1 ES 471953 A1 ES 479156 A1 FR 2398278 A1 GB 2001422 A IT 1097861 B JP S5423246 A MX 147223 A NL 7807460 A SE 440554 B	30-06-1980 17-01-1980 06-02-1979 30-06-1983 01-02-1979 01-10-1979 16-08-1980 16-02-1979 31-01-1979 31-08-1985 21-02-1979 26-10-1982 24-01-1979 05-08-1985
JP 2003222487	A 08-08-2003	KEINE	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82