(19)
(11) EP 2 947 290 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
25.11.2015  Patentblatt  2015/48

(21) Anmeldenummer: 15167318.3

(22) Anmeldetag:  12.05.2015
(51) Internationale Patentklassifikation (IPC): 
F01N 3/10(2006.01)
F01N 3/26(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
MA

(30) Priorität: 20.05.2014 AT 3772014

(71) Anmelder: GE Jenbacher GmbH & Co. OG
6200 Jenbach (AT)

(72) Erfinder:
  • Hillen, Friedhelm
    6200 Jenbach (AT)

(74) Vertreter: Gangl, Markus et al
Torggler & Hofinger Patentanwälte Wilhelm-Greil-Straße 16
6020 Innsbruck
6020 Innsbruck (AT)

   


(54) VERFAHREN ZUR ABGASNACHBEHANDLUNG


(57) Verfahren zur Abgasnachbehandlung eines Abgases einer Verbrennungskraftmaschine (1) unter Verwendung eines Thermoreaktors (11), wobei das vom Thermoreaktor (11) vorbehandelte Abgas katalytisch oxidiert wird, vorzugsweise im Thermoreaktor (11) katalytisch oxidiert wird.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zur Abgasnachbehandlung mit den Merkmalen des Oberbegriffs von Anspruch 1, sowie eine Abgasnachbehandlungsvorrichtung mit den Merkmalen des Oberbegriffs von Anspruch 2.

[0002] Zur Einhaltung der Emissionsgrenzwerte von Verbrennungskraftmaschinen werden häufig Verfahren zur Abgasnachbehandlung eingesetzt. Ein auch aus dem Bereich der Abgasnachbehandlung von kalorischen Kraftwerken bekanntes Verfahren ist die regenerative thermische Oxidation (RTO), in welcher unverbrannte Kohlenwasserstoffe und andere oxidierbare Abgasbestandteile thermisch oxidiert werden. Bei der regenerativen thermischen Oxidation wird das Abgas zunächst über einen, meist aus keramischem Schüttgut oder Wabenkörpern bestehenden, Wärmespeicher geleitet, um schließlich in die Reaktionskammer zu gelangen. In der Reaktionskammer kann das Abgas durch zusätzliche Heizeinrichtungen weiter erwärmt werden, bis eine thermische Oxidation der unerwünschten Abgasbestandteile stattfinden kann. Anschließend strömt das Abgas durch einen weiteren Wärmespeicher zum Auspuff und wird in die Umgebung entlassen. Im Betrieb wird die Strömungsrichtung alternierend geändert, wodurch das Abgas vor Erreichen der Reaktionskammer vorgewärmt wird, wodurch sich eine Energieersparnis in der weiteren Erwärmung des Abgases einstellt. Die Zusatzheizung kann durch Gasinjektion oder Brenner (sogenanntes Stützgas) oder eine elektrische Zusatzheizung eingerichtet sein. Die Reaktionskammer weist meistens einen freien Strömungsquerschnitt auf, wodurch die Verweildauer des Abgases in der Reaktionskammer erhöht wird und die Oxidation in Form einer Gasphasenreaktion ablaufen kann. Besonders relevant unter den zu oxidierenden Spezies im Abgas sind Kohlenmonoxid (CO) und Methan (CH4). Eine solche Einrichtung ist z. B. unter dem Markennamen CL.AIR® von GE Jenbacher bekannt. In diesem Verfahren wird Abgas auf ca. 700-800 °C aufgeheizt und es erfolgt die Oxidation der unverbrannten Kohlenwasserstoffe und des Kohlenmonoxids zu Wasserdampf und Kohlenstoffdioxid. Der CL.AIR®-Thermoreaktor ist als regenerativer Wärmetauscher aufgebaut und besteht aus zwei Speichermassen, einer Reaktionskammer sowie einem Umschaltmechanismus. Das Abgas strömt mit einer Temperatur von etwa 530 °C vom Motor kommend über einen Umschaltmechanismus in eine erste Speichermasse, wo es auf ungefähr 800 °C aufgeheizt wird. In der Reaktionskammer reagiert das Abgas mit dem vorhandenen Sauerstoff, wobei Kohlenmonoxid und unverbrannte Kohlenwasserstoffe zu Kohlendioxid und Wasser oxidiert werden. Beim Durchströmen der zweiten Speichermasse gibt das Abgas wieder Wärme ab und erreicht mit einer Temperatur von 550 bis 570 °C den Umschaltmechanismus, der es dem Kamin oder einer nachgeschalteten Abwärmerückgewinnung zuleitet.

[0003] Die regenerative thermische Oxidation bietet ein robustes Verfahren, mit dem auch große Abgasmassenströme wirtschaftlich nachbehandelt werden können.

[0004] Bisher beschriebene Thermoreaktoren sind darauf ausgerichtet, sowohl Methan als auch Kohlenmonoxid zu oxidieren. Dies bringt im Betrieb einige Nachteile mit sich.

[0005] Um Kohlenmonoxid abbauen zu können, sind im Thermoreaktor eine relativ hohe Temperatur und eine relativ lange Verweildauer erforderlich.

[0006] Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren und eine geeignete Vorrichtung zur Abgasnachbehandlung anzugeben, wobei die Temperaturen im Thermoreaktor und die erforderliche Verweilzeit verringert werden können. Die Aufgabe wird gelöst durch ein Verfahren zur Abgasnachbehandlung mit den Merkmalen von Anspruch 1, sowie einer Abgasnachbehandlungseinrichtung mit den Merkmalen von Anspruch 2. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen definiert.

[0007] Es hat sich überraschend herausgestellt, dass es günstiger ist, die Oxidation von Methan und die Oxidation von Kohlenmonoxid gesondert durchzuführen. Dadurch, dass das vom Thermoreaktor vorbehandelte Abgas katalytisch oxidiert wird, vorzugsweise im Thermoreaktor katalytisch oxidiert wird, wird also erreicht, dass der Thermoreaktor für geringere Temperaturen und eine geringere Verweildauer des Abgases ausgelegt werden muss, und dennoch das Kohlenmonoxid in zufriedenstellendem Ausmaß reduziert werden kann. Es ist also erfindungsgemäß vorgesehen, dass durch thermische Oxidation zunächst Methan reduziert wird. Die Parameter im Thermoreaktor werden so gewählt, dass eine partielle Oxidation von Methan zugelassen wird, bei der Kohlenmonoxid entsteht, anstelle, dass es - wie üblicherweise in Thermoreaktoren vorgesehen - verringert wird. Das entstehende vorbehandelte Abgas enthält also eine größere Mengen an Kohlenmonoxid als im ursprünglichen Abgasstrom, während unverbrannte Kohlenwasserstoffe, insbesondere Methan, bereits oxidiert sind. Nachfolgend wird das solchermaßen vorbehandelte Abgas einer katalytischen Oxidationseinrichtung zugeführt. Diese kann beispielsweise als Oxidationskatalysator, bestehend aus einem Katalysatorträgermedium, wie es beispielsweise zur Abgasnachbehandlung aus dem Automobilbereich bekannt ist, vorgesehen sein.

[0008] Alternativ kann vorgesehen sein, dass der Oxidationskatalysator durch katalytische Beschichtung von Volumensabschnitten des thermischen Oxidationskatalysators eingerichtet ist. Dies kann beispielsweise dadurch realisiert werden, dass Volumensabschnitte der im thermischen Oxidationskatalysator vorhandenen keramischen Speichermasse mit einer katalytisch aktiven Oberfläche versehen oder andere, katalytisch wirksame Materialien eingebracht werden.

[0009] Eine Abgasnachbehandlungseinrichtung gemäß der Erfindung enthält also einen Eingang für Abgas, eine thermischen Reaktionszone und wenigstens eine katalytische Reaktionszone, wobei in Strömungsrichtung des Abgases durch die Abgasnachbehandlungseinrichtung die wenigstens eine katalytische Reaktionszone der thermischen Reaktionszone nachgeschaltet ist.

[0010] Durch diese Anordnung wird erreicht, dass das im Thermoreaktor vorbehandelte Abgas, welches reich an Kohlenmonoxid ist, zum Abbau von Kohlenmonoxid auf den Oxidationskatalysator trifft und dort das Kohlenmonoxid durch katalytische Oxidation abgebaut wird.

[0011] Besonders bevorzugt kann vorgesehen sein, dass die thermische Reaktionszone und die wenigstens eine katalytische Reaktionszone in einem gemeinsamen Gehäuse angeordnet sind. Dies kann beispielsweise dadurch realisiert sein, dass in die Reaktionszone des Thermoreaktors ein Volumensabschnitt mit katalytisch aktivem Material integriert ist. Alternativ kann vorgesehen sein, dass der katalytisch aktive Bereich in der keramischen Speichermasse des Thermoreaktors ausgebildet ist. Dies beschreibt den Fall, wo durch katalytische Beschichtung eines Teils der Oberfläche des keramischen Schüttgutes des Thermoreaktors ein katalytisch aktiver Bereich gebildet wird.

[0012] Alternativ oder zusätzlich kann vorgesehen sein, dass die katalytische Reaktionszone der thermischen Reaktionszone in einem von der thermischen Reaktionszone gesonderten Gehäuse in Strömungsrichtung des Abgases durch die Abgasnachbehandlungseinrichtung nachgeschaltet ist. Dieses Ausführungsbeispiel beschreibt den Fall, wo der Thermoreaktor und der Oxidationskatalysator als separate Komponenten realisiert sind. Es ist also in diesem Fall ein Thermoreaktor vorgesehen, der bezüglich seiner Ausgestaltung dem Stand der Technik entspricht und dem stromabwärts ein Oxidationskatalysator nachgeschaltet ist.

[0013] Die Erfindung wird nachfolgend durch die Figuren näher erläutert. Dabei zeigt:
Fig. 1
eine schematische Darstellung einer Verbrennungskraftmaschine mit einer Abgasnachbehandlungseinrichtung,
Fig. 2
eine schematische Darstellung einer Verbrennungskraftmaschine mit einer Abgasnachbehandlungseinrichtung in einer alternativen Ausführungsform,
Fig.3
schematische Darstellung einer Verbrennungskraftmaschine mit Abgasnachbehandlung nach Stand der Technik.


[0014] Es folgt die detaillierte Figurenbeschreibung. Figur 1 zeigt in einer schematischen Darstellung eine Verbrennungskraftmaschine 1, die über die Abgassammelleitung 2 mit der Abgasnachbehandlungseinrichtung 3 verbunden ist. Über den Umschaltmechanismus 4 kann die Strömungsrichtung des Abgases durch den Thermoreaktor 11 verändert werden. So kann im Betrieb alternierend die Strömungsrichtung der Abgase zuerst durch die Speichermasse 5, die thermische Reaktionszone 7 und Speichermasse 6 erfolgen. Bei Umkehr der Strömungsrichtung strömt das Abgas zuerst durch Speichermasse 6, anschließend durch die thermische Reaktionszone 7 und schließlich durch Speichermasse 5. Nach Durchströmen der Abgasnachbehandlungseinrichtung 3 verlässt das Abgas über die Leitung 8 die Anlage und wird einem Kamin oder einer Abwärmerückgewinnung (beides nicht gezeigt) zugeführt. Im Ausführungsbeispiel gemäß Figur 1 sind die der Reaktionskammer 7 zugewandten Volumensabschnitte 9 der Speichermassen 5 bzw. 6 mit einer katalytischen Beschichtung oder einem katalytisch aktiven Material versehen. Die Volumensabschnitte 9 übernehmen also im Betrieb der Abgasnachbehandlungseinrichtung 3 die Aufgabe der katalytischen Oxidation des in der thermischen Reaktionszone 7 des Thermoreaktors vorbehandelten Abgases. Der Vollständigkeit halber eingezeichnet ist die Steuer- / Regelungseinrichtung 12, die einerseits Signale von der Verbrennungskraftmaschine 1 und der Abgasnachbehandlungseinrichtung 3 empfangen kann, anderseits auch Befehle an Stellglieder der Abgasnachbehandlungseinrichtung 3 senden kann. Ebenso gezeigt ist die Kraftstoffleitung 13, über welche die Verbrennungskraftmaschine 1 mit Kraftstoff, beispielsweise Treibgas, versorgt wird. An der Kraftstoffleitung 13 kann eine Abzweigung vorgesehen sein, über welche dem Thermoreaktor 11 bei Bedarf Stützgas zur Zusatzheizung zugeführt werden kann.

[0015] Figur 2 zeigt eine schematische Darstellung einer Verbrennungskraftmaschine 1 mit einer Abgasnachbehandlungseinrichtung 3 analog Figur 1, wobei hier aber die Abgasnachbehandlungseinrichtung 3 aus einem Thermoreaktor 11, bestehend aus Speichermassen 5 und 6, sowie einer thermischen Reaktionszone 7 und einem stromabwärts des Thermoreaktors in Leitung 8 vorgesehenen Oxidationskatalysators 10 ausgebildet ist. Wieder kann über den Umschaltmechanismus 4 die Strömungsrichtung durch den Thermoreaktor 11 alternierend verändert werden. Der Thermoreaktor 11 weist in diesem Ausführungsbeispiel keine katalytisch beschichteten Volumensabschnitte auf. Das im Thermoreaktor 11 vorbehandelte Abgas strömt durch den Oxidationskatalysator 10 und wird von dort zu einem Kamin oder einer Abgaswärmenutzung geleitet (beides nicht gezeigt).

[0016] Figur 3 zeigt in einer schematischen Darstellung eine Verbrennungskraftmaschine 1 mit einer Abgasnachbehandlungseinrichtung nach Stand der Technik. Hier ist ein Thermoreaktor ohne katalytisch beschichtete Zonen ausgebildet.

Liste der verwendeten Bezugszeichen:



[0017] 
1
Verbrennungskraftmaschine
2
Abgassammelleitung
3
Abgasnachbehandlungseinrichtung
4
Umschaltmechanismus
5, 6
thermische Speichermassen
7
Thermische Reaktionszone
8
Abgasleitung
9
katalytisch beschichtete / katalytisch aktive Zone(n)
10
Oxidationskatalysator
11
Thermoreaktor
12
Steuer- / Regelungseinrichtung
13
Kraftstoffleitung



Ansprüche

1. Verfahren zur Abgasnachbehandlung eines Abgases einer Verbrennungskraftmaschine (1) unter Verwendung eines Thermoreaktors (11), dadurch gekennzeichnet, dass das vom Thermoreaktor (11) vorbehandelte Abgas katalytisch oxidiert wird, vorzugsweise im Thermoreaktor (11) katalytisch oxidiert wird.
 
2. Abgasnachbehandlungseinrichtung (3) für eine Verbrennungskraftmaschine (1) mit einem Eingang für Abgas, einer thermischen Reaktionszone (7) und wenigstens einer katalytischen Reaktionszone (9), wobei in Strömungsrichtung des Abgases durch die Abgasnachbehandlungseinrichtung (3) die wenigstens eine katalytische Reaktionszone (9) der thermischen Reaktionszone (7) nachgeschaltet ist.
 
3. Abgasnachbehandlungseinrichtung (3) nach Anspruch 2, dadurch gekennzeichnet, dass die thermische Reaktionszone (7) und die wenigstens eine katalytische Reaktionszone (9) in einem gemeinsamen Gehäuse angeordnet sind.
 
4. Abgasnachbehandlungseinrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die katalytische Reaktionszone (9) der thermischen Reaktionszone (7) in einem von der thermischen Reaktionszone (7) gesonderten Gehäuse in Strömungsrichtung des Abgases durch die Abgasnachbehandlungseinrichtung (3) nachgeschaltet ist.
 




Zeichnung













Recherchenbericht









Recherchenbericht