(11) EP 2 949 673 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 02.12.2015 Bulletin 2015/49

(21) Application number: 15172601.5

(22) Date of filing: 27.04.2010

(51) Int Cl.:

C07K 16/28 (2006.01) A61P 35/02 (2006.01) G01N 33/53 (2006.01) G01N 33/577 (2006.01) C12N 15/09 (2006.01) C12R 1/91 (2006.01) A61K 39/395 (2006.01) C07K 16/46 (2006.01) G01N 33/574 (2006.01) C12N 15/02 (2006.01) C12P 21/08 (2006.01)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30) Priority: 27.04.2009 US 172923 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 10769764.1 / 2 426 148

(71) Applicant: Kyowa Hakko Kirin Co., Ltd. Tokyo 100-8185 (JP)

(72) Inventors:

 TAWARA, Tomonori Tokyo 194-8533 (JP) TAKAYANAGI, Shinichiro Tokyo 194-8533 (JP)

 INAGAKI, Yoshimasa Tokyo 194-8533 (JP)

(74) Representative: Tuxworth, Pamela M.

J A Kemp 14 South Square Gray's Inn London WC1R 5JJ (GB)

Remarks:

This application was filed on 17-06-2015 as a divisional application to the application mentioned under INID code 62.

(54) ANTI-IL-3RA ANTIBODY FOR USE IN TREATMENT OF BLOOD TUMOR

(57) The present invention provides an antibody to human IL-3R α chain, which does not inhibit IL-3 signaling and binds to B domain of the human IL-3R α chain but does not bind to C domain of the human IL-3R α chain; a composition for preventing or treating a blood tumor in which a cell expressing IL-3R α is found in bone marrow or peripheral blood of a subject, which comprises the

antibody to human IL-3R α as an active ingredient; and a method for treating a blood tumor in which a cell expressing IL-3R α is found in bone marrow or peripheral blood, which comprises administering, to a subject, a composition comprising the IL-3R α antibody as an active ingredient.

Description

10

20

30

35

40

50

TECHNICAL FIELD

[0001] This invention relates to an antibody to human IL-3R α protein (another name: human CD 123). The invention also relates to an invention of a therapeutic agent and diagnostic agent for myelocytic malignant tumors, particularly acute myeloid leukemia (AML), which comprises a human IL-3R α antibody as an active ingredient.

BACKGROUND OF THE INVENTION

Regarding malignant tumor:

[0002] A malignant tumor (cancer) is the first leading cause of death in Japan and the number of patients is increasing every year, and the development of a drug and a therapeutic method having high efficacy and safety is strongly desired. As the cause of forming a malignant tumor, there is a mutation of DNA by radiation, ultraviolet rays and various carcinogenic substances. Studies on malignant tumors have been focused on molecular biological identification of these genetic changes. As a result, it is considered that tumorigenic transformation is induced by accumulation of a large number of mutations and the like. It has been shown by a cell line model and the like that some decisive mutations directly connected with the tumorigenic transformation. Regarding leukemia as one of the objective diseases of the invention, many chromosomal abnormalities have been identified and classified. In many of the case, translocation of chromosome is found and the some genes associated with chromosomal translocation have already been identified in principle chromosomal translocations. By analyses of functions of the translocation related genes, a case has been found that these genes are concerned in the onset of leukemia.

25 Regarding cancer stem cell:

[0003] On the other hand, a so-called cancer stem cell hypothesis has been proposed for a long time from the viewpoint of cell biology, stating that stem cell is the origin of a malignant tumor similar to the normal tissue. The stem cell is defined as a cell having autonomous replication ability and pluripotency and generally divided roughly into totipotency stem cell and tissue stem cell. Tissue stem cells are originated from specific tissues and organs such as of blood system, liver, nerve system and the like and present at an extremely low frequency. Among them, hematopoietic stem cell has been studied most frequently. It has been reported that a hematopoietic system can be reconstructed over a long period of time by transplanting one hematopoietic stem cell into a mouse in which the hematopoietic system was destructed by a lethal dose of irradiation (Non-patent Document 1). Different from the normal stem cell, studies on cancer stem cells have been delayed for a prolonged period of time since their true nature could not been found. However, a cancer stem cell has been identified for the first time in acute myeloid leukemia, in 1997 by Dick *et al.* Thereafter, the presence of cancer stem cells has been reported in various malignant tumors. In summing up, cancer stem cells are present at a frequency of several % or less of the whole tumor and rare as well as normal stem cells. It is considered that the remaining cells which form the tumor are tumor precursor cells in which proliferation ability is limited or tumor cells.

[0004] By these reports, it was shown that hierarchy is present even in tumor similar to the normal tissue, and the cancer stem cell residing at this peak (origin) has strong tumor forming ability.

Characteristics and therapeutic problems of cancer stem cells:

[0005] In summing up many reports, it is considered that cancer stem cells are maintaining various characteristics possessed by the normal stem cells. Examples of similarities include the rarity of the cells, a microenvironment (niche) in which the cell exists, expression of a multiple drug resistance gene, cell cycle arrest, and the like.

[0006] Particularly, the characteristics that they express a group of multiple drug resistance genes and are at the interphase of cell cycle similar to the normal stem cells could become a therapeutically great problem. A multiple drug resistance gene BCRP is a pump which impairs the drug efficacy by eliminating various antitumor agents into outside of cells, and a method for collecting stem cells making use of the activity has been reported (Non-patent Document 2). In addition, their presence at the interphase of cell cycle under a state of "arresting" (Non-patent Document 3) is causing reduction of sensitivity for many antitumor agents and radiations which targets the quick cell growth of cancer (Non-patent Documents 4 and 5).

⁵⁵ **[0007]** Based on the above characteristics, it is considered that the cancer stem cell which exhibiting resistance to the therapy is a cause of tumor regeneration.

Regarding molecular target drug

10

20

25

30

35

40

45

50

55

[0008] Three main courses of the treatment of a malignant tumor include of antitumor agent therapy, radiation therapy and excision. The blood tumor is limited to the antitumor agent therapy and radiation therapy, and as described in the above, the cancer stem cell can have a resistance to these treatments. Another problem is that side effects are large since these two treatments affect the entire body. It is a molecular target drug that is expected as a resolving means for this problem. It has a possibility to reduce side effects by exhibiting its drug efficacy only in the cell expressing the target molecule.

[0009] Examples of typical drugs of the molecular target drug in the field of blood diseases include imatinib and rituximab. Imatinib targets at a leukemia-causing factor called Bcr-Abl produced by a chromosomal abnormality (Philadelphia chromosome) which is observed in 95% of CML patients. This is a low molecular weight drug which induces suicide of leukemia cell by inhibiting function of Bcr-Abl. Rituximab is a therapeutic antibody which recognizes CD20 as a surface molecule on a B cell and has an antitumor effect on a malignant tumor of B cell (non-Hodgkin lymphoma and the like). On the other hand, molecular target drugs for AML are few, and there is only an agent gemtuzumab·ozogamicin (Mylotarg) in which an antibiotic calicheamicin is linked to a monoclonal antibody for CD33 known as an AML cell surface antigen. However, it is the present situation that the use of Mylotarg is limited because of its strong toxicity which is considered to be derived from calicheamicin in addition to the problem that therapeutic range is narrow. Based on the above, it can be said that discovery of a new target gene and development of a therapeutic agent for this are important inventions which directly lead to the possibility of therapy and expansion of the choices.

[0010] As the embodiment of molecular target drugs, various substances have been studied and developed such as a therapeutic antibody and a low molecular weight drug, as well as a peptide drug, a biological protein preparation such as cytokine, an siRNA, aptamer and the like. When an antibody is used as a therapeutic agent, due to its specificity, it is useful in treating pathological conditions in which the disordered cell expresses a specific antigen. The antibody binds to a protein expressing on the cell surface as its antigen and effectively acts upon the bound cell. The antibody has a characteristic of long blood half life and high specificity for its antigen and is also markedly useful as an antitumor agent. For example, when an antibody targets at a tumor-specific antigen, it can be expected that the administered antibody accumulates into the tumor and thereby attacks the tumor cell via complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). In addition, by binding a radioactive substance, a cytotoxic substance and the like to an antibody, it becomes possible to transfer an agent efficiently to the tumor part and thereby to allow to act thereon. At the same time, it can decrease the amount of the reached agent to non-specific other tissues and reduction of side effects can also be expected. Inhibition of tumor growth or regression of tumor can be expected by administering an antibody having agonistic activity when a tumor-specific antigen has an activity to induce cell death, or by administering an antibody having neutralization activity when a tumor-specific antigen relates to in the growth and survival of cells. Due to the above characteristics, it is considered that antibodies are suited in applying as antitumor agents.

Regarding therapeutic antibodies:

[0011] In the original antibody preparation, a mouse was used as the animal to be immunized. However, use of mouse antibodies as drugs is limited due to a large number of reasons. A mouse antibody which can be recognized as a foreign substances in the human body can induce so-called "human anti-mouse antibody" namely "HAMA" response (Nonpatent Document 6). Further, the Fc region of mouse antibody is not effective for the attack on disease cells via human complement or cellular toxicity.

[0012] As one of the approaches for avoiding such problems, a chimeric antibody has been developed (Patent Documents 1 and 2). The chimeric antibody contains parts of antibodies derived from two or more species (mouse antibody variable region, human antibody constant region and the like). An advantageous point of such a chimeric antibody is that it keeps the characteristics of mouse antibody but can stimulate human complement or cellular cytotoxicity since it has human Fc. However, it is known that such a chimeric antibody still induces "human anti-chimeric antibody" namely "HACA" response (Non-patent Document 7).

[0013] Further, it has been developed a recombinant antibody in which only a part of a substituted antibody is a complementarity determining region ("CDR") (Patent Documents 3 and 4). By the use of a CDR grafting technique, an antibody comprising mouse CDR and human variable region framework and human constant region, so-called "humanized antibody" (Non-patent Document 8). Further, by the use of a human antibody producing mouse or by a screening using a human antibody library, broadly utilized techniques have been provided also regarding preparation of complete human antibodies (Non-patent Documents 9 and 10).

Regarding IL-3R α :

[0014] IL-3R α is the α chain of IL-3 receptor, belongs to a cytokine receptor family and shows weak affinity for IL-3

as its ligand. By forming a hetero receptor with its β chain (CD131, hereinafter also referred to as IL-3R β), an IL-3 receptor has a strong binding and transfers a signal such as growth, differentiation and the like into a cell through intracellular region of the β chain. IL-5 receptor α chain and GM-CSF receptor α chain share the β chain in common.

[0015] IL-3R α is a type I membrane protein of single-pass transmembrane, and it is known based on the sequence that an IL-3 binding site and a fibronectin type III site are present in the extramembrane region. It is known that there is no structure which can transfer a signal in the intramembrane region. Though three-dimensional structure of IL-3R α has not been analyzed yet, it can be assumed that structures of cytokine receptors are similar between families since position of cysteine residue which forms the structurally important S-S bond is preserved in most cases. Among the same cytokine receptors, crystalline structures of IL-13 receptor α chain, IL-4 receptor α chain and GM-CSF receptor α chain have been analyzed. Based on the information of these cytokine receptor families, it can be assumed that the extramembrane region of IL-3R α is roughly divided into 3 domains (A-B-C domains). It is known that an antibody 7G3 which recognizes A domain of human IL-3R α blocks IL-3 signaling (Non-patent Document 11). In addition, expression of an A domain-deficient IL-3R α molecule has been reported (Non-patent Document 12), and as a matter of course, an antibody which recognizes A domain cannot recognize A domain-deficient IL-3R α . In addition, it is considered that C domain is the root of IL-3R α molecule and has a high possibility to three-dimensionally inhibit association of IL-3R β with IL-3R α .

10

20

30

35

40

45

50

55

[0016] IL-3 is the only a ligand which is known as a ligand of IL-3R α . IL-3 is a hematopoietic factor which is known to accelerate colony formation of the following: erythrocyte, megakaryocyte, neutrophil, eosinophil, basophil, mast cell and a monocyte system cell. It is known that IL-3 also stimulates a precursor cell having pluripotency, but IL-3 is rather said to accelerate a differentiation of not an immature stem cell having autonomous replication ability but a precursor cell committed to differentiation.

[0017] It is known that IL-3R α relates to the growth and differentiation of myeloid cells by forming a heterodimer with β chain and thereby transferring the IL-3 signaling into the cell via the Serine/Threonine phosphorylation pathway. It is known that IL-3R α is expressed in Granulocyte-Macrophage Progenitor (GMP) or Common Myeloid Progenitor (CMP) among hematopoietic precursor cells and induces growth and differentiation into neutrophil and macrophage systems via the IL-3 signaling. On the other hand, it has been reported that the Megakaryocyte Erythroid Progenitor (MEP) presenting in the downstream of CMP does not express IL-3R α different from the GMP which is also present in the downstream.

[0018] Regarding the AML stem cell, Bonnet and Dick have reported that the AML stem cell is present in the CD34 positive CD38 negative fraction (Non-patent reference 13). Further, by comparing with the same fraction (CD34 positive CD38 negative) of normal stem cell, Jordan *et al.* have found that IL-3R α is highly expressed in the AML stem cell (Non-patent reference 14). A high potential of IL-3R α as a marker of not only AML stem cell but also leukemia stem cell has also been reported in the plural of reports thereafter (Non-patent references 15 and 16). In the treatment of cancers including leukemia, it is important that only the cancer cells are removed without injuring normal cells as many as possible, and it is considered that this difference in the expression of IL-3R α between normal stem cell and leukemia stem cell is useful in the treatment targeting at the leukemia stem cell.

[0019] Regarding IL-3R β which forms a heterodimer with IL-3R α , there is no report that IL-3R β is highly expressed leukemia stem cell, and also in the case of a microarray in which expression of mRNA in leukemia stem cell and normal stem cell is compared in fact, IL-3R β is not identified as a molecule in which its expression is increased in leukemia stem cell (Non-patent reference 17).

[0020] Regarding IL-3R β which forms a heterodimer with IL-3R α , there is no report that IL-3R β is highly expressed leukemia stem cell, and also in the case of a microarray in which expression of mRNA in leukemia stem cell and normal stem cell is compared in fact, IL-3R β is not identified as a molecule of which expression is increased in leukemia stem cell (Non-patent reference 18).

[0021] The presence of a leukemia cell which depends on IL-3 has been known for a long time, and the old studies are studies focused on a blast cell which occupies most of the leukemia cells. According to the recent studies on leukemia stem cell, it is said that the leukemia stem cell acquires antitumor agent resistance by exhaustively suppressing its growth. In addition, it is considered that an IL-3 reactive blast cell has high proliferation ability so that it is assumed that such a cell is effective in the general treatment using an antitumor agent.

[0022] As a candidate of the agent targeting at an IL-3R receptor, the IL-3 itself was administered for a long time to patients of hematopoietic insufficiency but it did not become a drug as a result. A clinical trial for a fusion protein in which diphtheria toxin is added to IL-3 is in progress aiming leukemia as a target of the disease. Regarding the IL-3 and diphtheria toxin-IL-3 fusion, these are not suitable as the agents which are targeting at cells in which expression of IL-3R α is specifically increased, since IL-3 binds strongly not a protein of IL-3R α alone but a hetero protein of IL-3R α and β due to properties of IL-3. On the other hand, as a candidate of an agent targeting at IL-3R α , a first phase result of an IL-3R α human mouse chimeric antibody 7G3 has been reported (Non-patent Document 19). Since the 7G3 chimeric antibody uses for the purpose of blocking of IL-3 signaling as the mechanism of AML therapy, this is not an agent aimed at removing IL-3R α positive cells. Also, although some other IL-3R α antibodies are known (9F5 (Becton Dickinson), 6H6 (SANTA CRUZ BIOTECHNOLOGY) and AC 145 (Miltenyi-Biotech)), these do not have the ability to remove the

cells highly expressing IL-3R α .

CITATION LIST

5 Patent Document

[0023]

Patent Document 1 : EP Published Patent Application 120694
Patent Document 2 : EP Published Patent Application No. 125023
Patent Document 3 : GB Patent application No. GB2188638A

Patent Document 4: US Patent No. 5,585,089

Non-Patent Document

15

20

25

30

35

55

10

[0024]

Non-patent Document 1: Osawa M et al., Science. 273:2 42-5 (1996)

Non-patent Document 2: Goodell MA et al., J Exp Med. 183: 1797-806 (1996)

Non-patent Document 3: Yamazaki S et al., EMBO J. 25: 3515-23 (2006)

Non-patent Document 4: Ishikawa F et al., Nat Biotechnol. 25:1315-21. (2007)

Non-patent Document 5: Bao S et al., Nature. 444: 756-60 (2006)

Non-patent Document 6: Schiff et al., Canc. Res., 45, 879-885 (1985)

Non-patent Document 7: Bruggemann et al., J. Exp. Med., 170:2153-2157 (1989)

Non-patent Document 8 : Riechmann et al., Nature, 332:323-327 (1988)

Non-patent Document 9: Ishida I et al., Cloning Stem Cells. 4:91-102 (2002)

Non-patent Document 10: Wu et al., J Mol Biol. 19:151-62 (1999)

Non-patent Document 11: Sun et al., Blood, 87:83 (1996)

Non-patent Document 12: Chen et al., JBiol Chem, 284: 5763(2009)

Non-patent Document 13: Bonnet et al., Nat Med, 1997; 3: 730

Non-patent Document 14: Jordan et al., Leukemia, 2000; 14: 1777

Non-patent Document 15: Haematologica, 2001; 86:1261

Non-patent Document 16: LeukLymphoma, 2006; 47:207

Non-patent Document 17: Majeti et al., Proc Natl Acad Sci USA. 2009; 106:3396

Non-patent Document 18: Majeti et al., Proc Natl Acad Sci USA. 106:3396(2009)

Non-patent Document 19: Blood, 2008 112 (11): Abstract 2956

SUMMARY OF THE INVENTION

40 TECHNICAL PROBLEMS

[0025] An object of the invention is to provide a therapeutic agent which can remove leukemia stem cells alone and also can hardly exhibit adverse effects upon normal cells (shows fewer side effects). Specifically, the present invention provides an antibody to human IL-3R α chain, which does not inhibit IL-3 signaling and binds to B domain of human IL-3R α chain but does not bind to C domain; a composition comprising the antibody; and a therapeutic method or detection method comprising the antibody.

SOLUTION TO PROBLEMS

- 50 **[0026]** The invention relates to the following (1) to (9).
 - (1) An antibody to a human IL-3R α chain, which does not inhibit IL-3 signaling and binds to B domain of human IL-3R α chain but does not bind to C domain.
 - (2) The antibody described in the above-mentioned (1), further having high antibody-dependent cellular cytotoxicity (ADCC).
 - (3) The antibody described in the above-mentioned (1) or (2), wherein the high antibody-dependent cellular cytotoxicity (ADCC) shows a specific lysis rate of 10% at an antibody concentration of 0.01 μ g/ml, by a Colon-26/hCD123 ADCC assay method which uses PBMC cultured with IL-2.

- (4) The antibody described in any one of the above-mentioned (1) to (3), which comprises amino acid sequences of CDRs of heavy chain and CDRs of light chain selected from the group consisting of the following (a) to (e);
 - (a) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:113 to 115, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs:131 to 133, respectively,
 - (b) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:116 to 118, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs: 134 to 136, respectively,
 - (c) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs: 119 to 121, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs:137 to 139, respectively, (d) CDR 1 to 3 of heavy chain are the amino acid sequences represented by SEQ ID NOs: 122 to 124, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs:140 to 142, respectively, and
 - (e) CDR 1 to 3 of heavy chain are the amino acid sequences represented by SEQ ID NOs: 125 to 127, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs: 143 to 145, respectively.
- (5) The antibody described in any one of the above-mentioned (1) to (4), which comprises the heavy chain variable region and light chain variable region selected from the group consisting of the following (a) to (f);
 - (a) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:53 and a light chain variable region comprising an amino acid sequence from valine (V) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:55;
 - (b) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence represented by SEQ ID NO:57 and a light chain variable region comprising an amino acid sequence from valine (V) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:59;
 - (c) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence represented by SEQ ID NO:61 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:63;
 - (d) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:65 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:67;
 - (e) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 138 in the amino acid sequence represented by SEQ ID NO:69 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:71 and;
 - (f) a heavy chain variable region and/or light chain variable region, which comprise amino acid sequences in which 1 to 3 amino acid residues are deleted, substituted, added or inserted in the heavy chain variable region and/or light chain variable region shown by the above (a) to (e).
- (6) A composition for preventing or treating a blood tumor in which a cell expressing IL-3R α is found in bone marrow or peripheral blood of a subject, which comprises the IL-3R α antibody described in any one of (1) to (5) as an active ingredient.
- (7) A method for treating a blood tumor in which a cell expressing IL-3R α is found in bone marrow or peripheral blood, which comprises administering, to a subject, a composition comprising the IL-3R α antibody described in any one of (1) to (5) as an active ingredient.
- (8) A composition for detecting a blood tumor in which a cell expressing IL-3R α is found in bone marrow or peripheral blood of a biological sample from a subject, which comprises the IL-3R α antibody described in any one of (1) to (5).
- (9) The composition or method described in any one of (1) to (5), wherein the aforementioned blood tumor is acute myeloid leukemia (AML).

ADVANTAGEOUS EFFECT OF THE INVENTION

5

10

15

20

25

30

35

40

45

50

55

[0027] The invention can provide an antibody to human IL-3R α chain, which does not inhibit IL-3 signaling and binds to B domain of human IL-3R α chain but does not bind to C domain; a composition which comprises said antibody and a therapeutic method or detection method using said antibody.

BRIFF DESCRIPTION OF THE DRAWINGS

[0028]

5

10

15

20

25

30

35

40

- [Fig. 1] and [Fig. 2] Figs. 1 and 2 are results of a flow cytometry analysis of a cell expressing an IL-3R α /GM-CSFR α chimeric protein using a labeled anti-IL-3R α antibody.
 - [Fig. 3] Fig. 3 is a result of a flow cytometry analysis of a cell expressing an IL-3R α /GM-CSFR α chimeric protein using a labeled anti-IL-3R α antibody.
 - [Fig. 4] Fig. 4 is a graph in which, among the nucleotide and amino acid sequences of A and B domains of human IL-3R α molecule, parts of regions in which the regions 1 to 7 arranged on the outside of the molecule are substituted by the GM-CSFR α sequence are shown by dotted lines.
 - [Fig. 5] Fig. 5 is a result of a cell growth test for examining blocking activity of IL-3 signaling. The ordinate represents the cell growth inhibition ratio (%) and the abscissa represents various IL-3R α antibody names.
- [Fig. 6] Fig. 6 is a result of a colony assay test for examining blocking activity of IL-3 signaling. GM, E, and GEMM show results using Granulocyte/Macrophage system, Erythroid system colony and mixed colonies, respectively. [Fig. 7] Fig. 7 is a result of examining anti-tumor effects of various human antibodies in a tumor bearing model. The
 - ordinate represents the number of MOLM13 cells, and the abscissa represents the various IL-3R α antibody names. [Fig. 8] and [Fig. 9] Figs. 8 and 9 are results of ADCC test for IL-3R α expressing cell lines using anti-IL-3R α antibody. PBMC not cultured with IL-2 was used in Fig. 8, and PBMC cultured with IL-2 was used in Fig. 9.
 - [Fig. 10] Fig. 10 is a result of flow cytometry analysis of cells expressing a *Macaca fascicularis* IL-3R α by anti-IL-3R α antibody and a PE-labeled anti-human IgG secondary antibody. The upper column shows the cells expressing *Macaca fascicularis* IL-3R α , and the lower column shows the cells expressing human IL-3R α .

MODE FOR CARRYING OUT THE INVENTION

(Detailed description of specified desirable embodiments)

[0029] Headings of the sections to be used in this specification are only for the purpose of organization and should not be interpreted as limitation to the main subject to be described. All of the cited references cited in this application are clearly incorporated by references into this specification for optional purposes.

(Outline)

[0030] This invention relates to an antibody to human IL-3R α chain, which does not inhibit IL-3 signaling and binds to B domain of human IL-3R α chain (hereinafter referred to as IL-3R α) but does not bind to C domain.

[0031] IL-3 receptors (hereinafter referred to as IL-3R), particularly IL-3R α , are expressed on the cell surface of a leukemia stem cell. In general, IL-3 receptor β chain (hereinafter referred to as IL-3R β) transfers IL-3 signaling into the cell and therefore induces growth and differentiation.

[0032] Accordingly, there is a possibility that inhibition of IL-3 signaling cause side effects such as inhibition of normal hematopoietic action by a normal stem cell. Thus, as a new therapeutic method which targets at leukemia stem cell, it is preferable that the method targets at IL-3R α and also does not inhibit IL-3 signaling.

 $(IL-3R\alpha)$

[0033] IL-3Rα gene is a type I transmembrane protein which belongs to a cytokine receptor family. In normal cells, the IL-3Rα molecule is expressed on a part of hematopoietic precursor cells, basophil, a part of dendritic cells and the like. In the case of tumors, it is known to be expressed in a hematopoietic system cancer and leukemia. As examples of tumors which express IL-3Rα, it is known that IL-3Rα is expressed on the blast cell of AML and CML in blastic crisis phase, and in the case of a differentiation marker-negative CD34 positive CD38 negative fraction considered to be a leukemia stem cell, in AML, CML, MDS, ALL and SM. In blood, IL-3 which is a known ligand of IL-3Rα is expressed on an activated T cell, a natural killer cell, a mast cell and a part of cells of megakaryocyte system. In addition, the IL-3Rα is also called CD123. The IL-3Rα includes a mammal (e.g., the primates and human) type IL-3Rα. The IL-3Rα sequence includes polymorphic variants. Specific examples of the full length human IL-3Rα include the following amino acid sequences.

55

MVLLWLTLLIALPCLLQTKEDPNPPITNLRMKAKAQQLTWDLNRNVTDIECVK DADYSMPAVNNSYCQFGAISLCEVTNYTVRVANPPFSTWILFPENSGKPWAGAE NLTCWIHDVDFLSCSWAVGPGAPADVQYDLYLNVANRRQQYECLHYKTDAQG TRIGCRFDDISRLSSGSQSSHILVRGRSAAFGIPCTDKFVVFSQIEILTPPNMTAKC NKTHSFMHWKMRSHFNRKFRYELQIQKRMQPVITEQVRDRTSFQLLNPGTYTV

QIRARERVYEFLSAWSTPQRFECDQEEGANTRAWRTSLLIALGTLLALVCVFVIC RRYLVMQRLFPRIPHMKDPIGDSFQNDKLVVWEAGKAGLEECLVTEVQVVQKT (SEQ ID NO:1)

[0034] Specific examples of amino acid sequence of the extracellular region of human IL-3R α include the following amino acid sequence.

MVLLWLTLLLIALPCLLQTKEDPNPPITNLRMKAKAQQLTWDLNRNVTDIECVK DADYSMPAVNNSYCQFGAISLCEVTNYTVRVANPPFSTWILFPENSGKPWAGAE NLTCWIHDVDFLSCSWAVGPGAPADVQYDLYLNVANRRQQYECLHYKTDAQG TRIGCRFDDISRLSSGSQSSHILVRGRSAAFGIPCTDKFVVFSQIEILTPPNMTAKC NKTHSFMHWKMRSHFNRKFRYELQIQKRMQPVITEQVRDRTSFQLLNPGTYTV QIRARERVYEFLSAWSTPQRFECDQEEGANTRAWRTSL (SEQ ID NO:2)

[0035] In addition, the extracellular region of IL-3R α is divided into three domains of AtoC.

5

15

20

25

35

50

[0036] A domain comprises a region from glutamine (Q) at position 18 to serine (S) at position 100 in the amino acids of SEQ ID NO:2, and B domain comprises from glycine (G) at position 101 to serine (S) at position 203 in the amino acids of SEQ ID NO:2 and C domain that from glutamine (Q) at position 204 to leucine (L) at position 308 in the amino acids of SEQ ID NO:2.

[0037] Further, in A domain and B domain, the following 7 regions are arranged on the outside of the molecule.

[0038] The region 1 is from aspartic acid (D) at position 55 to proline (P) at position 61 in the amino acids of SEQ ID NO:2, the region 2 is from valine (V) at position 63 to phenylalanine (F) at position 70 in the amino acids of SEQ ID NO:2, the region 3 is from serine (S) at position 91 to glutamic acid (E) at position 98 in the amino acids of SEQ ID NO:2, the region 4 is from proline (P) at position 97 to tryptophan (W) at position 104 in the amino acids of SEQ ID NO:2, the region 5 is from cysteine (C) at position 122 to proline (P) at position 128 in the amino acids of SEQ ID NO:2, the region 6 is from isoleucine (I) at position 182 to serine (S) at position 188 in the amino acids of SEQ ID NO:2 and the region 7 is from glycine (G) at position 192 to lysine (K) at position 198 in the amino acids of SEQ ID NO:2.

[0039] Accordingly, examples of the antibody of the invention include an antibody which binds to an amino acid sequence of positions 101 to 203 in the amino acids of SEQ ID NO:2 which is the extracellular region of IL-3R α , but does not bind to an amino acid sequence of positions 204 to 308, and an antibody which further binds to amino acid sequences of positions 182 to 188 and positions 192 to 198 in the amino acid sequence of SEQ ID NO:2.

[0040] The antibody of the invention binds to the above-mentioned specific regions of the extracellular region of IL- $3R\alpha$ and does not inhibit IL-3 signaling.

[0041] The term "does not inhibit IL-3 signaling" as used in the invention means that it does not inhibit the intracellular signal through IL-3R by IL-3, and it includes a case in which the association of IL-3 with IL-3R is not inhibited and the binding of IL-3R α chain and β chain is not inhibited. Specifically, it means that the cell growth inhibition ratio shown by Fig. 5 according to the analysis in Example 8 is 40% or more, preferably 60% or more, further preferably 80% or more, when the antibody concentration is set to 10 μ g/ml. According to this specification, the terms "blocking of IL-3 signaling" and "inhibition of IL-3 signaling" are used as the same meaning and not discriminated, and the blocking activity of IL-3 signaling means the ability to inhibit IL-3 signaling.

[0042] Also, the antibody of the invention has high antibody-dependent cellular cytotoxicity (ADCC) in addition to the above-mentioned properties.

[0043] The IL-3R α antibody having ADCC activity means an antibody which binds to a cell expressing IL-3R α to kill

the IL-3R α -expressing cell via an effector cell having cytotoxicity such as NK cell and the like.

10

20

25

30

35

40

45

50

55

[0044] The high ADCC activity means that the specific lysis rate is 10% or more at an antibody concentration of 0.01 μ g/ml or less when measured by a Colon-26/hCD123 ADCC assay method which uses PBMC cultured with IL-2.

[0045] The specific lysis rate means a value obtained by measuring the lysis rate of a target cell by an antibody and specifically it can be calculated in accordance with the following Example 11.

[0046] Examples of the cell expressing IL-3R α , include blood cancer cells (acute myeloid leukemia (AML) cells, chronic myeloid leukemia (CML) cells, myelody splastic syndromes (MDS) cells, acute lymphoid leukemia (ALL) cells, chronic lymphoid leukemia (CLL) cells, multiple myeloma (multiple myeloma: MM) cells, systemic mastocytoma (SM) cells etc.), regulatory T cells (such as CD4-positive CD25-positive cell), antigen presenting cells (such as dendritic cells, monocytes, macrophages and similar cells thereto (hepatic stellate cells, osteoclasts, microglial cells, the major epidermal phagocytic cells, dust cells (alveolar macrophages), etc.)), basophils and the like.

[0047] In addition, AML cell, CML cell, ALL cell, CLL cell, MDS cell, SM cell, MM cell, various lymphoma cells include their cancer stem cells.

[0048] The cancer stem cell is one of the cell groups constituting tumor. For example, in acute myeloid leukemia (AML) it is represented by Lineage(-)CD34(+)CD38(-) myeloid cell. Accordingly, since the antibody of the invention has high ADCC activity, it induces reduction or elimination of cells expressing IL-3R α .

[0049] Also, the IL-3R α antibody of the invention includes an IL-3R α antibody which has CDRs of heavy chain and CDRs of light chain selected from the group consisting of the following (a) to (e);

(a) CDR 1 to 3 of heavy chain are the amino acid sequences represented by SEQ ID NOs:113 to 115, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs:131 to 133, respectively, (b) CDR 1 to 3 of heavy chain are the amino acid sequences represented by SEQ ID NOs:116 to 118, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs:134 to 136, respectively, (c) CDR 1 to 3 of heavy chain are the amino acid sequences represented by SEQ ID NOs:119 to 121, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs:137 to 139, respectively, (d) CDR 1 to 3 of heavy chain are the amino acid sequences represented by SEQ ID NOs:122 to 124, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs:140 to 142, respectively, and (e) CDR 1 to 3 of heavy chain are the amino acid sequences represented by SEQ ID NOs:125 to 127, respectively, and CDR 1 to 3 of light chain are the amino acid sequences represented by SEQ ID NOs:143 to 145, respectively.

[0050] In addition, the antibody of the invention includes an IL-3R α antibody which comprises the heavy chain variable region and the light chain variable region selected from the group consisting of the following (a) to (f) (shown in parentheses are names of the antibodies which are described in the following Examples from which each of variable regions are derived);

- (a) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence represented by SEQ ID NO:53 and a light chain variable region comprising an amino acid sequence from valine (V) at position 23 to lysine (K) at position 129 in the amino acid sequence represented by SEQ ID NO:55 (name of antibody: Old4)
- (b) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence represented by SEQ ID NO:57 and a light chain variable region comprising an amino acid sequence from valine (V) at position 23 to lysine (K) at position 129 in the amino acid sequence represented by SEQ ID NO:59 (name of antibody: Old5)
- (c) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence represented by SEQ ID NO:61 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence represented by SEQ ID NO:63 (name of antibody: Old17)
- (d) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence represented by SEQ ID NO:65 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence represented by SEQ ID NO:67 (name of antibody: Old19)
- (e) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 138 in the amino acid sequence represented by SEQ ID NO:69 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence represented by SEQ ID NO:71 (name of antibody: New102) and
- (f) a heavy chain variable region and/or light chain variable region, which comprise amino acid sequences in which 1 to 3 amino acid residues are deleted, substituted, added or inserted in the heavy chain variable region and/or light

chain variable region shown by (a) to (e).

(Antibody)

10

20

30

35

40

45

50

55

[0051] The antibody is used in a most broad sense and includes a monoclonal antibody, a polyclonal antibody, a multivalent antibody, a multispecific antibody (e.g., bispecific antibody) and also antibody fragments as long as these exhibit the desired biological activity.

[0052] The antibody contains a mature heavy chain or light chain variable region sequence. In addition, the antibody also includes a modified form and variant form such as substitutions within or outside of a constant region, a complementary determining region (CDR) or a framework (FR) region antibody of a mature heavy or light chain variable region sequence of the antibody, and the like. In a specific embodiment, the substitution includes a conservative amino acid substitution is included in the substitution.

[0053] In addition, the antibody also includes a subsequence of the mature heavy chain or light chain variable region sequence. In a specific embodiment, the subsequence is selected from Fab, Fab', F(ab')₂, Fv, Fd, single chain Fv (scFv), disulfide bond Fv (sdFv) and VL or VH.

[0054] In addition, the antibody also includes a heterogeneous domain. In a specific embodiment, the heterogeneous domain includes a tag, a detectable label or a cytotoxic agent.

[0055] Examples of the antibody include a monoclonal antibody and a polyclonal antibody and any isotype or subclass thereof. In a specific embodiment, the aforementioned antibody is an isotype of IgG (e.g., IgG1, IgG2, IgG3 or IgG4), IgA, IgM, IgE or IgD. The "monoclonal" antibody means an antibody that is based upon, obtained from a single clone including a eukaryote clone, a prokaryote clone or a phage clone or derived from a single clone including a eukaryote clone, a prokaryote clone, a prokaryote clone, based on a single clone including a eukaryote clone, a prokaryote clone or a phage clone. Accordingly, the "monoclonal" antibody is a structurally defined substance and not a method by which it is produced.

[0056] The IL- $3R\alpha$ antibody, anti-IL- $3R\alpha$ and anti-IL- $3R\alpha$ antibody mean an antibody which specifically binds to IL- $3R\alpha$. The specific binding means that it is selective for the epitope presenting in IL- $3R\alpha$. The specific binding can be distinguished from non-specific binding using a known assay in the technical field (e.g., immunoprecipitation, ELISA, flow cytometry, Western blotting).

[0057] When all or a part of antigen epitopes to which an IL-3R α antibody specifically binds are present in different proteins, there is a possibility that this antibody can bind to the different proteins. Therefore, there is a possibility that the IL-3R α antibody specifically binds to other protein having high sequence or structural homology to IL-3R α epitope depending on the sequence or structural homology to IL-3R α epitope. Accordingly, there is a possibility that IL-3R α antibody binds to a different protein when an epitope having sufficient sequence or structural homology is present in the different protein.

[0058] The IL-3R α antibody includes isolated and purified antibodies. The antibody of the invention including an isolated or purified IL-3R α antibody includes human.

[0059] The term "(be) isolated" to be used as a modifier of a composition means that the composition is prepared by the hand of man or separated from one or more other components in *in vivo* environment presenting in nature generally by one or more manipulative steps or processes. In general, a composition separated in this manner does not substantially contain one or more materials with which they normally associate in nature, such as one or more proteins, nucleic acids, lipids, carbohydrates and cell membranes. Because of this, the isolated composition is separated from other biological components in the cells of the organism in which the composition naturally occurs, or from the artificial medium in which it is produced (e.g., by synthesis or cell culture). For example, an isolated IL-3R α antibody can be obtained from an animal in which the antibody is produced (e.g., non-transgenic mammals or transgenic mammals (rodents (mouse) or the ungulates (cattle)) and is separated from other polypeptides and nucleic acids. Accordingly, it is considered that the serum containing an antibody obtained from such an animal is isolated. The term "(be) isolated" does not exclude alternative physical forms, and for example, an isolated antibody could include antibody subsequences and chimeras, multimers or derivatized forms.

[0060] The term "(be) purified" to be used as a modifier of a composition refers to a composition which is free of most of or substantially all of the materials with which it typically associates in nature. In general, a purified antibody is obtained from the components generally presenting in the antibody environment. Because of this, it is considered that an antibody supernatant which is separated from a cell culture mixture of an antibody producing hybridoma is purified. Accordingly, the "(be) purified" does not require absolute purity and is context specific. Furthermore, the "(be) purified" composition can be combined with one or more other molecules. Because of this, the term "(be) purified" does not exclude combination of composition. The purity can be determined by an optional appropriate method such as UV spectrometry, chromatography (e.g., HPLC, gas phase), gel electrophoresis (e.g., silver or Coomassie staining), sequence analysis (peptide and nucleic acid) and the like.

[0061] The "(be) purified" protein and nucleic acid include a protein and a nucleic acid which are obtained by a standard

purification method. Also, a protein and a nucleic acid obtained by recombination expression in a host cell and chemical synthesis are also included in this term. In addition, the "(be) purified" can also refer to a composition in which the level of contaminants is lower than the level which is acceptable to a regulatory agency for administration to human or non-human animals, such as the Food and Drug Administration (FDA).

[0062] The IL-3R α antibody includes an antibody which binds to IL-3R α and modulates function or activity of IL-3R α in vivo or in vitro (e.g., in a subject). In the specification, the "to modulate" and the grammatical variations thereof when used in relation to the activity or function of IL-3R α mean that the IL-3R α activity or function is detectably affected, modified or altered but does not include inhibition of IL-3 signaling. Accordingly, the IL-3R α antibody which modulates the activity or function of IL-3R α is an antibody that provides influence, modification or alteration such that one or more of the IL-3R α activity or function can be detected without inhibiting IL-3 signaling, and such an activity or function of IL-3R α can includes, for example, binding of IL-3R α with an IL-3R α ligand (e.g., IL-3), an IL-3R α -mediated signal transfer or an IL-3R α -mediated cell response or a cell response that can be modulated by IL-3R α , or the activity or function of other IL-3R α described in the specification or, otherwise, is commonly known or can be known.

10

20

30

35

40

45

50

55

[0063] Examples of various non-limited IL-3R α activities and functions which can be modulated include IL-3R α mediated signal transduction or IL-3R α mediated cellular response, cellular response which can be modulated via IL-3R α , cell proliferation or cell expansion (e.g., AML cell, CML cell, ALL cell, CLL cell, MDS cell, MM cell, SM cell, various lymphoma cells, monocytes, macrophages, mast cells, basophils, helper T cells, regulatory T cells, natural killer cells, myeloid progenitor cells and lymphoid progenitor cells), cell survival or apoptosis (e.g., AML cell, CML cell, ALL cell, CLL cell, MDS cell, MM cell, SM cell, various lymphoma cells, monocytes, macrophages, mast cells, basophils, helper T cells, regulatory T cells, natural killer cells, myeloid progenitor cells and lymphoid progenitor cells), cytokines (e.g., Th1, Th2 and non-Th1/Th2 cytokines) and interferon expression or production, expression or production of anti-apoptosis protein or proapoptosis protein, treatment, suppression or improvement of disorder, disease, physiological condition, pathological condition and symptom. Specific cytokines to be modulated are not limited and examples include IL-1, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-14, IL-16, IL-17, IL-23, IL-26, TNF- α , and interferon γ (in vitro or in vivo). Specific antiapoptosis proteins and proapoptosis proteins are not limited and examples include Bcl-xL, Bcl-2, Bad, Bim, and Mcl-1. [0064] Therefore, examples of anti-IL- $3R\alpha$ antibody described in the present specification include an antibody which modulates IL-3R α mediated signal transduction or IL-3R α mediated cellular response, cellular response which can be modulated via IL-3Rα, cell proliferation or cell growth (e.g., AML cell, CML cell, ALL cell, CLL cell, MDS cell, MM cell, SM cell, various lymphoma cells, monocytes, macrophages, mast cells, basophils, helper T cells, regulatory T cells, natural killer cells, myeloid progenitor cells and lymphoid progenitor cells), cell survival or apoptosis (e.g., AML cell, CML cell, ALL cell, CLL cell, MDS cell, MM cell, SM cell, various lymphoma cells, monocytes, macrophages, mast cells, basophils, helper T cells, regulatory T cells, natural killer cells, myeloid progenitor cells and lymphoid progenitor cells), cytokines (e.g., Th1, Th2 and non-Th1/Th2 cytokines) and interferon expression or production, expression or production of anti-apoptosis protein or proapoptosis protein, treatment, suppression or improvement of disorder, disease, physiological condition, pathological condition and symptom. In the specific embodiments, anti-IL-3R α antibody of the present invention can modulate expansion or survival of AML cell, number of other blood cancer cell (e.g., CML cell, ALL cell, MDS cell, MM cell, SM cell or various lymphoma cell), growth or survival of non-cancer blood cell such as monocytes, macrophages, mast cells, basophils, helper T cells, regulatory T cells, natural killer cells, myeloid progenitor cells and lymphoid progenitor cells, and reduces, disappears or depletes AML cell, CML cell, ALL cell, CLL cell, MDS cell, MM cell, SM cell, or various lymphoma cells.

[0065] The IL-3R α antibody includes a modified form such as a substitution product (e.g., an amino acid substitution product) which is also called as "variant", an addition product, deletion product (e.g., a subsequence or fragment) and the like. Such modified antibody forms and variants retain at least partial function or activity of the IL-3R α antibody shown by the invention, such as binding with IL-3R α , or modulation of activity or function (e.g., IL-3R α signal transfer) of IL-3R α . Accordingly, the modified IL-3R α antibody can retain the ability to modulate, for example, at least partial of IL-3R α binding or one or more of the IL-3R α functions or activities (e.g., signal transfer, cell response and the like).

[0066] According to this specification, the term "to alter" ("to modify") and the grammatical variations thereof means that the composition derivarates a reference composition. The modified proteins, nucleic acids and other compositions can have higher or lower activities than a reference unmodified protein, nucleic acid or other composition or can have a different function from a reference unmodified protein, nucleic acid or other composition.

[0067] Such an antibody containing an amino acid substitution can be encoded by nucleic acid. Accordingly, the present invention also provides a nucleotide sequence encoding an antibody containing an amino acid substitution.

[0068] The term "identity" or "identical" means that two or more referenced substances are the same. Accordingly, when two protein sequences (e.g., IL-3R α antibodies) are identical, they have the same amino acid sequences at least within the referenced regions or portion. The term "identical region" means an identical region of two or more referenced substances. Thus, when two protein sequences are identical over one or more sequence regions, they have identity within the regions. "Substantial identity" means that a molecule is structurally or functionally conserved such that the molecule has or is predicted to have at least partial function or activity of one or more of reference molecule functions

or activities or relevant/corresponding region or a portion of the reference molecule to which it shares identity. Thus, polypeptides having substantial identity (e.g., IL-3R α antibodies) have or are predicted to have at least a part of the activity or function as a referenced polypeptide (e.g., IL-3R α antibody). For example, in a specific embodiment, it is considered that an IL-3R α antibody having one or more modifications (e.g., deletion, substitution, addition or insertion of 1 to 3 amino acid residues) which retain at least partial activity or function of the unmodified IL-3R α antibody has substantial identity to the reference IL-3R α antibody.

[0069] Due to variations between structurally related protein and functionally related protein, the amount of sequence identity required to retain functions or activity on the protein, region and function or activity of the region. In the case of protein, an activity or function can be retained by the presence of merely 30% of amino acid sequence identity, but in general, higher identity of 50%, 60%, 75%, 85%, 90%, 95%, 96%, 97% or 98%, to the reference sequence is present. The extent of identity between two sequences can be verified using a computer program or mathematic algorithm conventionally known in the technical field. In such an algorithm which calculates ratio of sequence identity (homology), in general, sequence gaps and mismatches over the comparison region are accounted. For example, BLAST (e.g., BLAST 2.0) retrieval algorithm (e.g., see Altschul et al., J. Mol. Biol., 215: 403 (1990), publicly available through NCBI) has the following illustrative retrieval parameters: mismatch-2; gap start 5; gap elongation 2. In the polypeptide sequence comparison, the BLASTP algorithm is typically used in combination with a scoring matrix such as PAM 100, PAM 250, BLOSUM 62, BLOSUM50.FASTA (e.g., FASTA 2 and FASTA 3) and the like, and SSEARCH sequence comparison program is also used for determining the extent of identity (Pearson et al., Proc. Natl. Acad. Sci. USA, 85: 2444 (1988); Pearson, Methods Mol. Bio., 132: 185 (2000); and Smith et al., J. Mol. Biol., 147: 195 (1981)). A program has also been developed for determining protein structural similarity using topological mapping based on Delaunary (Bostick et al., Biochem. Biophys. Res. Commun., 304: 320 (2003)).

10

20

30

35

40

45

50

55

[0070] A "conservative substitution" is a substitution of one amino acid by a biologically, chemically or structurally similar residue. Biological similarity means that a biological activity such as IL-3R α binding activity is not destroyed by the substitution. Structural similarity means that amino acids have side chain with similar length (e.g., alanine, glycine and serine) or have similar size. Chemical similarity means that the residues have the same charge or are hydrophilic or hydrophobic. Specific examples include substitution of one hydrophobic residue such as isoleucine, valine, leucine, and methionine with other residue, or the substitution of one polar residue with other residue such as the substitution of arginine with lysine, the substitution of glutamic acid with aspartic acid, or the substitution of glutamine with asparagine, and the substitution of serine with threonine.

[0071] In addition, examples of the modified antibody include peptide mimetics having one or more D-amino acids substituted with L-amino acids (and a mixture thereof), structural and functional analogs such as synthesized or non-natural amino acids or amino acid analogs, and derivatized form thereof. Examples of modification include a cyclic structure such as an end-to-end amide bond between the amino and carboxy-terminus of the molecule or intra- or intermolecular disulfide bond or intramolecular or intermolecular disulfide bond.

[0072] Additional non-limiting specific examples of the amino acid modifications include partial sequence (subsequence) and fragment of IL-3R α . Exemplary subsequence and fragment of IL-3R α include a part of the IL-3R α sequence to which the exemplary IL-3R α antibody of the invention binds. Also, the exemplary subsequence and fragment of IL-3R α include an immunogenicity region such as a part of the IL-3R α to which the exemplary IL-3R α antibody of the invention binds.

[0073] According to the invention, there is provided a nucleic acid encoding an IL-3R α antibody subsequence of fragment which retains at least a part of the function or activity of the IL-3R α antibody and an unmodified or reference IL-3R α antibody. In this specification, the term "subsequence" or "fragment" means a portion of a full length molecule. The subsequence of the IL-3R α antibody encoding IL-3R α antibody has amino acids of smaller than those of the full length IL-3R α antibody by at least one (e.g., deletion of one or more inner or terminal amino acids from the amino terminus or carboxy terminus). The subsequence of IL-3R α antibody has amino acids of smaller than those of the full length IL-3R α antibody by at least one. The nucleic acid subsequence has nucleotides of smaller than those of the full length comparative nucleic acid sequence by at least one. Accordingly, the subsequence can be an optional length within the full length of native IL-3R α .

[0074] The IL- $3R\alpha$ antibody subsequence and fragment can have a binding affinity as the full length antibody, a binding specificity as the full length antibody or one or more activities or functions as the full length antibody, such as the function or activity of an IL- $3R\alpha$ antagonist or agonist antibody. The terms "functional subsequence" and "functional fragment" in the case of referring to the antibody mean an antibody portion which retains one or more functions or activities as the full length reference antibody, such as at least a part of the function or activity of IL- $3R\alpha$ antibody. For example, an antibody subsequence which binds to IL- $3R\alpha$ or a fragment of IL- $3R\alpha$ is considered a functional subsequence.

[0075] The antibody subsequence and fragment can be combined. For example, a VL or VH subsequence can be connected by a linker sequence and thereby can form a VL-VH chimeric body. A combination of single chain Fv(scFv) subsequences can be connected by a linker sequence and thereby can form a scFv-scFv-chimeric body. The $IL-3R\alpha$ antibody subsequence and fragment include a single chain antibody or variable region alone or in combination with all

or a portion of other IL-3R $\!\alpha$ antibody subsequence.

10

20

30

35

40

45

50

55

[0076] The antibody subsequence and fragment can be prepared by hydrolysis of the antibody by its proteolysis for example by a pepsin or papain digestion of the whole antibody. The antibody subsequence and fragment obtained by enzymatic cleavage with pepsin provide a 5S fragment represented by F(ab')₂. This fragment can be further cleaved using a thiol reducing agent to form a 3.5S Fab' monovalent fragment. Alternatively, an enzymatic cleavage using pepsin directly produces two monovalent Fab' fragments and Fc fragment (see e.g., US Patent No. 4,036,945 and US Patent No. 4,331,647; and Edelman et al., Methods Enzymol., 1: 422 (1967)). Other methods of cleaving an antibody, such as separation of heavy chain for forming a monovalent light chain-heavy chain fragment, further cleavage of the fragment or other enzymatic or chemical method may be used.

[0077] A protein and an antibody, as well as subsequence thereof and fragment can be prepared using a genetic engineering. The technology includes the full or partial gene encoding a protein or an antibody is expressed in a host cell such as a COS cell and *E. Coli*. A recombinant host cell synthesizes the full or subsequence such as scFv (such as Whitlow et al, In: Methods: A Companion to Methods in Enzymology 2:97 (1991), Bird et al, Science 242:423 (1988); and US Patent No.4,946,778). A single chain Fv and an antibody can be prepared in accordance with the procedure as described in US Patent No. 4,946,778 and US Patent No. 5,258,498; Huston et al, Methods Enzymol 203:46 (1991); Shu et al, Proc. Natl. Acad. Sci. USA 90:7995 (1993); and Skerra et al, Science 240:1038 (1988).

[0078] The modified form includes a derivatized sequence such as amino acids in which the free amino groups form amine hydrochloride, p-toluenesulfonyl group and carbobenzoquinone group; the free carboxy groups which form a salt or methyl and ethyl ester; and the free hydroxyl groups form an O-acyl or O-alkyl derivative, and naturally existing amino acid derivatives such as 4-hydroxyproline (derivative of proline), 5-hydroxylysine (derivative of lysine), homoserine (derivative of serine), ornithine (derivative of lysine) and the like. The modification can be carried out using a method conventionally known in the technical field (e.g., site-specific deletion or insertion mutagenesis based on PCR, chemical modification and mutagenesis, crosslinking and the like).

[0079] Addition products and insertion products are included in the modified forms of protein (e.g., antibody), nucleic acid and other compositions. For example, the addition can be a covalent or non-covalent bond with any type of molecules of protein (e.g., antibody), nucleic acid or other compositions. In general, addition and insertion confer different function or activity.

[0080] Fusion (chimeric) polypeptides or nucleic acid sequences are included in the addition product and insertion product, and these are sequences having one or more molecules which are generally not present in the reference native (wild type) sequence covalently attached to the aforementioned sequence. A specific example is an amino acid sequence of other protein (e.g., an antibody) for producing a multifunctional protein (e.g., a multispecific antibody).

[0081] Also, the antibody of the invention include a chimeric or fusion product in which one or more additional domains are covalently linked thereto in order to confer a different or complementary function or activity. Examples of the antibody include a chimeric or fusion product which does not naturally present in natural and in which two or more amino acid sequences are mutually bonded.

[0082] According to the invention, there are provided an IL- $3R\alpha$ antibody which contains a heterologous domain and a nucleic acid that encodes the IL- $3R\alpha$ antibody. The heterologous domain can be an amino acid addition product or insertion product, but does not limited to an amino acid residue. Accordingly, the heterologous domain can be composed of any one of various different types of small or large functional parts. Such a part includes a nucleic acid, a peptide, a carbohydrate, a lipid or small organic compound such as a drug, a metal (gold, silver) and the like.

[0083] Non-limiting specific examples of the heterologous domain include a tag, a detectable label and a cytotoxic agent. Specific examples of the tag and detectable label include T7-, His-, myc-, HA- and FLAG-tags; enzymes (horse-radish peroxidase, urease, catalase, alkaline phosphatase, β-galactosidase, chloramphenicol transferase); enzyme substrates; ligands (e.g., biotin); receptors (avidin); radionuclide (e.g., C14, S35, P32, P33, H3, I125 and I131); electron density reagents; energy transfer molecules; paramagnetic labels; fluorophore (fluorescein, Rhodamine, Phycoerythrin); chromophore; chemiluminescence agents (imidazole, luciferase) and bioluminescence agents. Specific examples of the cytotoxic agent include diphtheria toxin (diphtheria, toxin), cholera toxin and lysine.

[0084] A linker sequence may be inserted between the protein (e.g., an antibody), nucleic acid or other composition and the addition product or insertion product (e.g., a heterologous domain) so that the two substances maintain at least a part of different function or activity. The linker sequence may have one or more properties which can accelerate either of the domains or can carry out mutual reaction with either of the domains, and such characteristics include impossibility to form a flexible structure and an ordered secondary structure or hydrophobic property or charging property. Examples of the amino acids which are generally found in the flexible protein regions include glycine, asparagine and serine. Other amino acids close to neutral such as threonine and alanine may also be used in the linker sequence. The length of the linker sequence can be varied (e.g., see US Patent No. 6,087,329). The linker further include chemical crosslinking agents and binding agents (conjugating agents) such as a sulfo-succinimidyl derivative (sulfo-SMCC, sulfo-SMPB), disuccinimidyl suberate (DSS), disuccinimidyl glutarate (DSG) and disuccinimidyl tartarate (DST).

[0085] Further examples of the addition include any one of glycosylation, fatty acid, lipid, acetylation, phosphorylation,

amidation, formylation, ubiquitination and derivatiation by a protecting or blocking group and a large number of chemical modifications. Other substitutions and possibilities can be easily understood by those skilled in the art and are considered to be within the scope of the invention.

[0086] Such a modified sequence can be prepared using recombinant DNA techniques which mediate cell expression or in vitro translation. Polypeptides and nucleic acid sequences can also be prepared by a conventionally known method in the technical field such as chemical synthesis using an automatic peptide synthesizer (see e.g., Applied Biosystems, Foster City CA).

[0087] Modified and variant antibodies such as substitution products, subsequences addition products and the like can maintain detectable activity of IL-3R α antibody. In an embodiment, the modified antibody has the activity to bind to IL-3R α molecule and induces reduction or elimination of IL-3R α expression cells by an immune system mainly centering on an effector cell. The modified antibody relates to the functional control of IL-3R α expression cells and induces survival, growth, resting, cell death and the like of the cells. The cell death includes apoptosis, necrosis, autophagy and the like.

(Screening method of IL-3R α)

15

20

30

35

40

45

50

55

[0088] According to the invention, there are further provided a cell-free method and a cell-based method (e.g., $in\ vivo$ or $in\ vitro$) which screen, detect and identify IL-3R α (e.g., in a solution or by a solid phase). These methods can be carried out in a solution $in\ vitro$ using a biomaterial or sample, and $in\ vivo$ for example using a sample of an animal-derived cell (e.g., lymphocyte). In an embodiment, the method comprises a step of contacting a biomaterial or sample with an antibody bound to IL-3R α under a condition of allowing binding of the antibody with IL-3R α and a step of assaying for the antibody bound to IL-3R α . The presence of IL-3R α is detected by binding of the antibody to bind to IL-3R α . In an embodiment, IL-3R α is present in a cell or tissue. In another embodiment, the aforementioned biomaterial or sample is obtained from a mammal analyte.

[0089] The term "contacting" when it is used in relation to the composition such a protein (e.g., IL-3R α antibody), a material, a sample or treatment means a direct or indirect interaction between the composition (e.g., IL-3R α antibody) and other referenced substance. Specific examples of the direct interaction include bonding. Specific examples of the indirect interaction include a case in which the composition acts upon an intermediate molecule and this intermediate molecule then acts upon the referenced substance. Accordingly, for example, contacting a cell (e.g., lymphocyte) to IL-3R α antibody includes to allow the antibody to bind to the cell (e.g., through binding to IL-3R α) or to allow the antibody to act on an intermediate substance upon the cell.

[0090] The terms "assaying" and "measuring" and grammatical variations thereof are synonymously used in the specification and mean either of qualitative measurement and quantitative measurement or both of qualitative measurement and quantitative measurement. When these terms are used in relation to binding, they include any means of evaluating relative amount, affinity or specificity of binding including various methods which are described in the specification and conventionally known in the technical field. For example, binding of the IL-3R α antibody with IL-3R α can be assayed or measured by a flow cytometry assay.

(Production of antibody)

[0091] The invention also provides a method for producing a human IL- $3R\alpha$ antibody having cytotoxicity for IL- $3R\alpha$ positive cells. In an embodiment, the method comprises administering a human IL- $3R\alpha$ extracellular region conjugated with a human IL- $3R\alpha$ recombinant protein or an IL- $3R\alpha$ gene introduced cell into animals capable of expressing human immunoglobulin (e.g., transgenic mice or transgenic cattle); screening the animal for expression of a human IL- $3R\alpha$ antibody; selecting the animal producing the human IL- $3R\alpha$ antibody; and isolating the antibody from the selected animal. [0092] The IL- $3R\alpha$ protein suitable for the antibody production can be produced by any one of various standard protein purification and recombinant expression techniques. For example, the IL- $3R\alpha$ sequence can be prepared by standard peptide synthesis techniques such as a solid phase synthesis. In order to facilitate purification of the expressed or synthesized protein, a portion of the protein may contain an amino acid sequence such as a FLAG tag, a T7 tag, a polyhistidine sequence or the like. The protein is expressed inside the cells and can be purified. The protein can be expressed by a recombination method as a part of a further large protein (e.g., a fusion or chimeric product). The embodiment of the IL- $3R\alpha$ suitable for generating immune response includes IL- $3R\alpha$ subsequences such as an immunogenicity fragment. Further embodiment of IL- $3R\alpha$ includes an IL- $3R\alpha$ expressing cell, an IL- $3R\alpha$ containing preparation or cell extract or fraction and a partially purified IL- $3R\alpha$.

[0093] The method for preparing polyclonal antibody and monoclonal antibody is conventionally known in the technical field. For example, IL- $3R\alpha$ or its immunogenicity fragment used for immunizing an animal by optionally conjugating with a carrier such as keyhole limpet hemocyanin (KLH) or ovalbumin (e.g., BSA) or mixing with an adjuvant such as complete Freund's adjuvant or incomplete Freund's adjuvant. By isolating a spleen cell derived from an immunized animal which responds to IL- $3R\alpha$, it can be fused with myeloma cell using hybridoma techniques. The monoclonal antibodies produced

by hybridomas can be screened for reactivity with IL-3R α or immunogenicity fragment thereof.

10

30

35

40

45

50

55

[0094] The animal which can be immunized includes the primates, mouse, rat, rabbit, goat, sheep, cattle and guinea pig. The initial and any optionally subsequent immunization may be by intravenous route, intraperitoneal route, intramuscular route or subcutaneous route. Further, in order to increase immune response, the antigen can be conjugated with other protein such as keyhole limpet hemocyanin (KLH), thyroglobulin and tetanus toxoid, or can be mixed with an adjuvant such as complete Freund's adjuvant, incomplete Freund's adjuvant and the like. The initial and any optionally subsequence immunization may be through intraperitoneal route, intramuscular route, intraocular route or subcutaneous route. The immunization may be at the same concentration or different concentration of an IL-3R α preparation or at regular or irregular intervals.

[0095] The animal includes those which are genetically modified to include human gene loci, and a human antibody can be prepared using the same. Examples of the transgenic animals with one or more human immunoglobulin genes, are described for example in US Patent No. 5,939,598, WO02/43478 and WO02/092812. Using conventional hybridoma technique, an spleen cells which are isolated from immunized mouse having high responders to the antigen and are fused with myeloma cell. A monoclonal antibody which binds to IL-3R α can be obtained.

[0096] The method for producing a human polyclonal antibody and a human monoclonal antibody is further described (see, such as Kuroiwa et al, Nat. Biotechnol. 20:889 (2002); WO98/24893;WO92/01047; WO96/34096; WO96/33735; US Patent No. 5,413,923; US Patent No. 5,625,126; US Patent No. 5,633,425; US Patent No. 5,569,825; US Patent No. 5,561,016; US Patent No. 5,545,806; US Patent No. 5,814,318; US Patent No. 5,885,793; US Patent No. 5,916,771; and US Patent No.5,939,598).

[0097] The term "human" when it is used in reference to an antibody means that amino acid sequence of the antibody is completely the human amino acid sequence, namely is human heavy chain and human light chain variable regions and human constant region. Accordingly, all of the amino acids are human amino acids or present in the human antibody. An antibody which is a non-human antibody can be made into a complete human antibody by substituting the non-human amino acid residues with the amino acid residues which are present in the human antibody. The amino acid residues which are present in the human antibody, CDR region map and human antibody consensus residues are well known in the technical field (see e.g., Kabat, Sequences of Proteins of Immunological Interest, 4th edition, US Department of Health and Human Services, Public Health Service (1987); Chothia and Lesk (1987)). A consensus sequence of human VH subgroup III based on the investigation carried out using 22 known human VH III sequences as the object and a consensus sequence of human VL κ chain subgroup I based on the investigation carried out using 30 known human κ chain I sequences as the object are described in Padlan, Mol. Immunol., 31: 169 (1994) and Padlan, Mol. Immunol., 28: 489 (1991). Accordingly, the human antibody includes an antibody in which one or more amino acid residues have been substituted with one or more amino acids existing in an optional other human antibody.

[0098] Examples of the anti-IL-3R α antibody include antibodies prepared using a known method in the technical field, such as CDR-grafting (EP 239,400; WO91/09967; US Patent No. 5,225,539; US Patent No.5,530,101; and US Patent No.5,585,089), veneering, resurfacing (EP592,106; EP519,596; Padlan, Molecular Immunol. 28: 489 (1991); Studnicka et al., Protein Engineering 7: 805 (1994); Roguska et al., Proc. Nat'l Acad. Sci. USA 91: 969 (1994)) and chain shuffling (US Patent No.5,565,332). In order to produce a humanized antibody, human consensus sequence (Padlan, Mol. Immunol. 31:169 (1994); and Padlan, Mol. Immunol. 28: 489 (1991)) has been used (Carter et al., Proc. Natl. Acad. Sci. USA 89: 4285 (1992); and Presta et al, J. Immunol. 151:2623(1993)).

[0099] The term "humanized" when it is used in relation to an antibody means that amino acid sequence of the antibody has one or more non-human amino acid residues (e.g., mouse, rat, goat, rabbit and the like) of complement determining region (CDR) which specifically binds to a desired antigen in an acceptor human immunoglobulin molecule and one or more human amino acid residues (amino acid residues which are flanked with CDR) in Fv framework region (FR). The antibody called "primatized" is within the scope of meaning of "humanized", except that amino acid residues of the acceptor human immunoglobulin molecule and framework region can be any primate amino acid residues (e.g., monkey, gibbon, gorilla, chimpanzee, orangutan, macaque monkey) in addition to any human residues. Human FR residues of immunoglobulin can be substituted with corresponding non-human residues. Accordingly, for example, in order to alter, generally to improve, antigen affinity or specificity, residues in the CDR or human framework region can be substituted with corresponding residues from the non-human CDR or framework region donor antibody. The humanized antibody can contain residues which cannot be found in the human antibody and donor CDR or framework sequence. For example, it can be predicted that FR substitution at a particular position which cannot be found in human antibody or donor nonhuman antibody can improve binding affinity or specific human antibody at this position. Antibody framework and CDR substitutions based on the molecular modeling are conventionally known in the technical field, for example by the modeling of interaction of CDR and framework residues to identify framework residues important for antigen binding and the sequence comparison for identifying unusual framework residues at the specific position (see e.g., US Patent No. 5,585,089; and Riechmann et al., Nature, 332:323 (1988)).

[0100] Chimeric antibodies are included in the IL-3R α antibody. According to this specification, the term "chimeric" and the grammatical variations thereof when it is used in relation to antibodies mean that amino acid sequence of the

antibody contains one or more portion which is derived from two or more different species, is obtained or isolated from two or more different species or is based on two or more different species. For example, a portion of the antibody can be human (e.g., constant region) and other portion of the antibody can be non-human (e.g., a mouse heavy chain or a mouse light variable region). Accordingly, an example of the chimeric antibody includes an antibody in which the different portion of the antibody is derived from a different species. Different from the humanized or primatized antibody, the chimeric antibody can have a sequence of different species in an arbitrary region of the antibody.

[0101] The method for producing a chimeric antibody is known in the technical field (such as Morrison, Science 229: 1202 (1985); Oi et al., BioTechniques 4: 214 (1986); Gillies et al., J. Immunol. Methods 125: 191 (1989); US Patent No. 5,807,715; US Patent No. 4,816,567; and US Patent No. 4,816,397). For example, in Munro, Nature 312: 597 (1984); Neuberger et al., Nature 312: 604 (1984); Sharon et al., Nature 309: 364 (1984); Morrison et al., Proc. Nat'l. Acad. Sci. USA 81: 6851 (1984); Boulianne et al., Nature 312: 643 (1984); Capon et al, Nature 337: 525 (1989); and Traunecker et al., Nature 339: 68 (1989), a chimeric antibody in which a variable region of antibody derived from one species is replaced by a variable region of antibody derived from another species.

10

20

30

35

40

45

50

55

[0102] In addition, the anti-IL- $3R\alpha$ antibody can be prepared by hybridoma technique, recombinant technique, and phage display technique, and a combination thereof (see US Patent No. 4,902,614, US Patent No. 4,543,439, and US Patent No. 4,411,993; and also see Monoclonal Antibodies. Hybridomas: A New Dimensionin Biological Analyses, Plenum Press, Kennett, McKearn, and Bechtol et al, 1980, and Harlow et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, the second edition, 1988).

[0103] The human anti-human IL-3R α antibody of the invention was produced using chromosome-transferred mice (KM mice (trademark)) immunized with various forms of soluble form of recombinant human IL-3R α proteins or cell lines expressing IL-3R α (WO02/43478, WO02/092812, and Ishida et al., IBC's 11th Antibody Engineering Meeting, Abstract (2000)). Since the human anti-human IL-3R α antibody detectably stains not a non-transformed parent cell line but a human IL-3R α stable transfectant cell line, such as Jurkat-IL-3R α cell and L929-IL-3R α cell, the antibody specifically is shown to bind to human IL-3R α .

[0104] The antibody of the invention can have κ light chain sequence or λ light chain sequence, full length of either one of them as present in naturally existing antibody, a mixture thereof (namely a fusion product of κ chain sequence and λ chain sequence) and subsequences/fragments thereof. The naturally presenting antibody molecules contain two κ light chains or two λ light chains.

[0105] The invention provides a method for preparing an antibody which specifically binds to IL-3R α . In a specific embodiment, the method for preparing IL-3R α antibody comprises administering human IL-3R α , a subsequence thereof or a fragment thereof (e.g., IL-3R α extracellular region), conjugated with a human Fc recombinant protein if necessary, to animals which can express human immunoglobulin (e.g., transgenic mice or transgenic cattle), screening the animals for their expression of human IL-3R α antibody, selecting an animal which produces human IL-3R α antibody and isolating the antibody from the selected animal. In an embodiment, whether or not the human IL-3R α antibody has an IL-3R α antagonist or agonist activity is judged by this method.

[0106] The effector activity means an antibody-dependent activity induced via Fc region of antibody, and such as antibody-dependent cellular cytotoxicity (ADCC activity), complement-dependent cytotoxicity (CDC activity), antibody-dependent phagocytosis (ADP activity) by phagocytes such as macrophage and dendritic cell, and the like, are known. [0107] As a method for controlling effector activity of the anti-IL-3R α monoclonal antibody of the invention, examples include a method which controls the amount of the fucose (also called core fucose) which is bound to N-acetylglucosamine (GlcNAc) through α -1,6 bond in a reducing end of a complex-type N-linked sugar chain which is bound to asparagine (Asn) at position 297 of an Fc region of an antibody (WO2005/035586, WO2002/31140, and WO00/61739), a method in which is controlled by modifying amino acid residues of Fc region of the antibody, and the like. The effector activity can be controlled by applying any one of these methods to the anti-IL-3R α monoclonal antibody of the invention.

[0108] By controlling the content of the core fucose of complex-type N-linked sugar chain of Fc of the antibody, effector activity of the antibody can be increased or decreased. As a method for reducing the content of the fucose which binds to the complex-type N-linked sugar chain which is bound to Fc of the antibody, defucosylation (defucosylated or non-fucosylated) can be mentioned. The defucosylation is to express an antibody using CHO cell from which α 1,6-fucosyltransferase gene is deleted, and an antibody to which fucose is not bound can be obtained. The antibody to which fucose is not bound has high ADCC activity. On the other hand, as a method for increasing the content of the fucose which binds to the complex-type N-linked sugar chain to which Fc of the antibody is bound, the antibody to which fucose is bound can be obtained by expressing the antibody using a host cell in which α 1,6-fucosyltransferase gene is introduced. The antibody to which fucose is bound has the ADCC activity lower than that of the antibody to which fucose is not bound. [0109] In addition, ADCC activity and CDC activity can be increased or decreased by modifying amino acid residues of the Fc region of the antibody. For example, CDC activity of the antibody can be increased by using the amino acid sequence of the Fc region described in US 2007/0148165. Also, ADCC activity or CDC activity can be increased or decreased by carrying out the amino acid modification described in US 6,737,056, US 7,297,775 and US 7,317,091. Further, an antibody in which effector activity of the antibody is controlled can be obtained by using the above-mentioned

methods in combination in one antibody.

10

30

35

45

50

[0110] According to the invention, the nucleotide sequence of the invention such as of a vector and the like is further provided. In an embodiment, the vector comprises a nucleic acid sequence encoding an IL-3R α antibody or a subsequence or fragment thereof.

[0111] The nucleic acid can have various lengths. The length of the nucleic acid encoding the IL-3R α antibody of the present invention or the subsequence thereof is generally about 100 to 600 nucleotides, or any numerical value or range within encompassing such lengths the above described range; 100 to 150, 150 to 200, 200 to 250, 250 to 300, 300 to 350, 350 to 400, 400 to 450, 450 to 500, 500 to 550 or 550 to 600 nucleotide length, or any numerical value or range or value within or encompassing such length the above described range. Examples of the length of nucleic acid encoding the IL-3R α antibody of the present invention or the subsequence thereof include generally 10 to 20, 20 to 30, 30 to 50, 50 to 100, 100 to 150, 150 to 200, 200 to 250, 250 to 300, 300 to 400, 400 to 500, 500 to 600 nucleotides and any numerical value or range within or encompassing such length.

[0112] The terms "nucleic acid" and "polynucleotide" means at least two or more ribo- or deoxy-ribo nucleic acid base pairs (nucleotide) linked which are through a phosphoester bond or equivalent. The nucleic acid includes polynucleotide and polynucleoside. The nucleic acid includes a single molecule, a double molecule, a triple molecule, a circular molecule or a linear molecule. Examples of the nucleic acid include RNA, DNA, cDNA, a genomic nucleic acid, a naturally existing nucleic acid and a non-natural nucleic acid such as a synthetic nucleic acid, but are not limited. Short nucleic acids and polynucleotides (e.g., 10 to 20, 20 to 30, 30 to 50, 50 to 100 nucleotides) are commonly called "oligonucleotides" or "probes" of single-stranded or double-stranded DNA.

[0113] Nucleic acid can be prepared using various standard cloning techniques and chemical synthesis techniques. Examples of the techniques include but are not limited to, nucleic acid amplification such as polymerase chain reaction (PCR), with genomic DNA or cDNA targets using primers (e.g., a degenerate primer mixture) which can be annealed with an antibody encoding sequence. In addition, nucleic acid can also be prepared by chemical synthesis (e.g., solid phase phosphoamidite synthesis) or transcription from a gene. Thereafter, the prepared sequence can be expressed by a cell (e.g., a host cell such as yeast, bacteria or eukaryote (an animal or mammal cell or in a plant)) after the sequence cloned into a plasmid and then amplified, or the sequence is translated *in vitro*.

[0114] A vector is a vehicle which can be manipulated by insertion or incorporation of nucleic acid. Examples of the vector include a plasmid vector, a virus vector, a prokaryote (bacterium) vector and a eukaryote (plant, fungi, mammals) vector. The vector can be used for *in vitro* or *in vivo* expression of nucleic acid. Such a vector is called "expression vector" and is useful for the transfer of nucleic acid including a nucleic acid which encodes an IL-3R α antibody or its subsequence or fragment and the expression of an encoded protein by *in vitro* (e.g., in a solution or on solid phase), by a cell or by *in vivo* in a subject.

[0115] In addition, the vector can also be used for manipulation of nucleic acids. For genetic manipulation, an inserted nucleic acid can be transcribed or translated using a "cloning vector" *in vitro* (e.g., in a solution or on solid phase), in a cell or *in vivo* in a subject.

[0116] In general, the vector contains an origin of replication for amplification in a cell *in vitro* or *in vivo*. Control elements such as an expression control element present in the vector can be included in order to facilitate transcription and translation, if necessary.

[0117] A vector can include a selection marker. The "selection marker" is a gene which allows for the selection of a cell containing the gene. "Positive selection" means a process for selecting a cell containing the selection marker due to a positive selection. Drug resistance is an example of the positive selection marker, and a cell containing the marker will survive in culture medium containing the drug and a cell which does not contain the marker will die. Examples of the selection marker include drug resistance genes such as *neo* which provides resistance to G418; *hygr* which provides resistance to hygromycin; *puro* which provides resistance to puromycin, and the like. Other positive selection maker includes genes which enable identification or screening of a cell containing the marker. Examples of these genes include a fluorescent protein (GFP and GFP-like chromophore, luciferase) gene, *lacZ* gene, alkaline phosphatase gene, and a surface marker such as CD8. "Negative selection" means a process for killing cells which contain negative selection markers by exposing to an appropriate negative selection agent. For example, a cell containing a herpes simplex virus thymidine kinase (HSV-tk) gene (Wigler et al., Cell, 11: 223 (1977)) is sensitive to a drug ganciclovir (GANC). Similarly, *gpt* gene makes a cell sensitive to 6-thioxantine.

[0118] The virus vector includes those which are based on retroviral (a lentivirus for infecting not only dividing cells but also non-dividing cells), foamy virus (US Patent No. 5,624,820, US Patent No. 5,693,508, US Patent No. 5,665,577, US Patent No. 6,013,516 and US Patent No. 5,674,703; WO 92/05266 and WO 92/14829), adenovirus (US Patent No. 5,700,470, US Patent No. 5,731,172 and US Patent No. 5,928,944), adeno-associated virus (AAV) (US Patent No. 5,604,090), a herpes simplex virus vector (US Patent No. 5,501,979), a cytomegalovirus (CMV) system vector (US Patent No. 5,561,063), reovirus, rotavirus genome, simian virus 40 (SV40) or papilloma virus (Cone et al., Proc. Natl. Acad. Sci. USA, 81:6349 (1984); Eukaryotic Viral Vectors, Cold Spring Harbor Laboratory, edited by Gluzman, 1982; Sarver et al., Mol. Cell. Biol., 1: 486 (1981); US Patent No. 5,719,054). Adenovirus efficiently infects a slowly replicating

and/or terminally differentiated cell, and can be used to target the slowly replicating cell and/or terminally differentiated cell. Additional examples of virus vectors useful for expression include parbovirus, Norwalk virus, corona virus, paramyxo virus and rhabdo virus, toga virus (e.g., Sindobis virus and Semliki forest virus) and vesicular stomatitis virus (VSV).

[0119] A vector comprising a nucleotide acid can be expressed when the nucleic acid is connected to expression elements so as to function. The term "connected so as to function" (operably linked) means that a physical or functional relation between the elements referred to that permit them to operate in their intended fashion. Accordingly, the nucleic acid "operably linked" to an expression control element means that the control element modulates nucleic acid transcription and, as appropriate, translation of the transcription product.

10

30

35

40

45

50

55

[0120] The "expression control element" or "expression control sequence" is a polynucleotide which influences upon expression of an operably linked nucleic acid. Promoters and enhancers are non-limiting specific examples of expression controlling elements and sequences. The "promoter" is a cis-acting DNA regulatory region which can initiate transcription of downstream (3' direction) nucleic acid sequence. A nucleotide which accelerates transcription initiation is included in the promoter sequence. The enhancer also regulates nucleic acid expression but acts at a distance from the transcription initiation site of the nucleic acid to which it is operably linked. When the enhancer is present in either the 5' or 3' end of the nucleic acid as well as within the nucleic acid (e.g., intron or coding sequence), the enhancer further functions. Additional examples of the expression control element include a leader sequence and a fusion partner sequence, an internal ribosome entry site (IRES) element for preparing multigene, or polycistronic message, splicing signal of intron, maintenance of correct reading frame of gene to enable inframe translation of mRNA, polyadenylation signal which produces proper polyadenylation of the transcription product of interest, and stop codons.

[0121] Examples the expression control element include a "constitutional" element in which transcription of an operably linked nucleic acid occurs without the presence of signals or stimulus. The expression control element which confers expression in response to the signal or stimulus and increase or decrease expression of the operably linked nucleic acid is "adjustable". The adjustable element which increases expression of the operably linked nucleic acid in response to a signal or stimulus is called "inducible element". The adjustable element which decreases expression of the operably linked nucleic acid in response to a signal or stimulus is called "repressor element" (namely, the signal decreases the expression; and the expression increases when the signal is removed or not present).

[0122] Examples of the constitutional promoter for bacterial expression include an inducing promoter, such as T7 and pL, plac, ptrp and ptac (ptrp-lac hybrid promoter) of bacteriophage λ and the like. For insect cell system, a constitutional or an inducible promoter (e.g., ecdysone) can be used. The constitutional promoter for yeast include an inducing promoter such as ADH, LEU2, GAL and the like (e.g., see Ausubel et al., In: Current Protocols in Molecular Biology, Vol. 2, Chapter 13, Greene Publish. Assoc. & Wiley Interscience edition, 1988; Grant et al., In: Methods in Enzymology, 153: 516-544 (1987) Wu & Grossman, 1987, Acad. Press, N.Y; Glover, DNA Cloning, Vol. 11, Chapter 3, IRL Press, Wash., D.C., 1986; Bitter, In: Methods in Enzymology, 152: 673-684 (1987), edited by Berger & Kimmel, Acad. Press, N.Y; and Strathern et al., The Molecular Biology of the Yeast Saccharomyces, edited by Cold Spring Harbor Press, Vol. 1 and Vol. 11 (1982)).

[0123] For the expression in mammals, a constitutional promoter derived from a virus or other origin can be used. For example, inducible promoters derived from CMV, SV40, or a viral long terminal repeated sequence (LTR), or mammal cell genome (e.g., metallothionein IIA promoter; heat shock promoter, steroid/thyroid hormone/retinoic acid responding element) or mammal virus (e.g., adenovirus late promoter; mouse breast cancer virus LTR) can be used.

[0124] Examples of the expression control element include an element which is active in a specific tissue or cell types, and such an element is called "tissue specific expression control element". In general, the tissue specific expression control element is more active in specific cells or tissue types, and this is because this tissue specific expression control element is recognized by a transcription activating protein which is active in the specific cell or tissue types or by other transcription factor, as compared to other cells or tissue types. Non-limiting specific examples of such an expression control element are hexokinase II, COX-2, α -fetoprotein, carcinoembryonic antigen, DE3/MUC1, prostate specific antigen, C-erB2/neu, glucose-dependent insulin secretion stimulatory polypeptide (GIP), telomerase reverse transcriptase and a promoter such as hypoxia-responsive promoter.

[0125] According to the invention, a host cell transformed or transfected with IL-3R α nucleic acid or vector of the invention is provided. Examples of the host cells, but are not limited to, include prokaryotic cell and eukaryotic cell, such as, bacteria, fungi (yeast), and cells of plants, insects and animals (e.g., mammals such as primates, human and the like). Non-limiting examples of transformed cell include a bacteria transformed with a recombinant bacteriophage nucleic acid, a plasmid nucleic acid or cosmid nucleic acid expression vector; a yeast transformed with a recombinant yeast expression vector; a plant cell infected with a recombinant virus expression vector (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with a recombinant plasmid expression vector (e.g., Ti plasmid); an incest cell infected with a recombinant virus expression vector (e.g., baculovirus); and an animal cell infected with a recombinant virus expression vector (e.g., retrovirus, adenovirus, vaccinia virus) or a transformed animal cell manipulated for stable expression. CHO cell is a non-limiting example of a mammal host cell which expresses an IL-3R α antibody and its subsequence thereof and fragment. The host cell may be a plurality or population of cells from a primary cell-separated

line, an isolated secondary cell or subcultured cell, or an established cell line or immortalized cell culture.

[0126] The term "be transformed" or be transfected" when it is used in reference to a cell (e.g., host cell) or an organism means a change of gene in a cell after incorporation of an exogenous molecule, such as a protein or a nucleic acid (e.g., transgene), into the cell. Accordingly, the "transfected" or "transformed" cell is a cell into which the exogenous molecule is introduced by the hand of man by, for example, by recombinant DNA techniques or a progeny thereof.

[0127] The nucleic acid or protein can be transfected or transformed (expressed) in the cell or a progeny thereof stably or temporarily. The introduced protein can be expressed by growing the cell, or transcribing the nucleic acid. Since there is a possibility that a mutation occurs during replication, there is a case that a progeny of the transfected or transformed cell is not identical to the parent cell.

[0128] In general, a vector is used in the cell transfection or transformation. The vector can be included in a viral particle or vesicle and can be optionally directed demands to a specific cell types by including a protein on the particle or vesicle surface which binds to a target cell ligand or receptor. Accordingly, a cell can be used as a target by preparing the viral particle or vesicle itself or the viral surface protein, for the purpose of an *in vitro*, *ex vivo* or *in vivo* transfection or transformation. Accordingly, the vector includes *in vitro*, *in vivo* and *ex vivo* delivering techniques of viral and non-viral vectors into a cell, tissue or organ.

[0129] In addition, introduction of a nucleic acid into a target cell (e.g., a host cell) can also be carried out by a method conventionally known in the technical field, such as osmotic shock (e.g., calcium phosphate), electroporation, microinjection, cell fusion and the like. The introduction of nucleic acid and polypeptide *in vitro, ex vivo* and *in vivo* can also be carried out using other techniques. For example, a polymer substance such as polyester, poyamic acid, hydrogel, polyvinyl pyrrolidone, ethylene-vinyl acetate, methyl cellulose, carboxymethylcellulose, protamine sulfate, or lactide/glycolide copolymer, polylactide/glycolide copolymer, or ethylene vinyl acetate copolymer and the like. The nucleic acid can be enclosed in a hydroxymethyl cellulose or gelatin-microcapsule, or a microcapsule prepared using poly(methyl methacrylate microcapsule, or in a colloid system, respectively, by a coacervation technique or by interfacial polymerization. The colloid dispersion system includes a system based on a polymer complex, nanocapsule, microsphere, beads and lipid (oil-in-water type emulsion, micelle, mixed micelle, liposome and the like).

[0130] The liposome for introducing various compositions into cells is conventionally known in the technical field, and for example, phosphatidylcholine, phosphatidylserine, lipofectin and DOTAP are included therein (e.g., US Patent No. 4,844,904, US Patent No. 5,000,959, US Patent No. 4,863,740 and US Patent No. 4,975,282; and GIBCO-BRL, Gaithersburg, Md.). Piperazine based amphilic cationic lipids which is useful in gene therapy (see e.g., US Patent No. 5,861,397) are also known. A cationic lipid system is also known (see e.g., US Patent No. 5,459,127). In this specification, the polymer substance, microcapsule and colloid dispersion system (loposome and the like) are collectively called as "vesicle"

[0131] In addition, examples of the suitable techniques which can be used in the method for producing an antibody are affinity purification, non-modified gel purification, HPLC or RP-HPLC, size exclusion, purification by protein A column and an optional combination of these techniques. An IL-3R α antibody isotype can be determined using ELISA assay, and for example, human Ig can be identified using mouse Ig absorbed anti-human Ig.

[0132] Binding affinity can be determined by association (Ka) and dissociation (Kd) rates. The equilibrium affinity constant KD is the ratio of Ka/Kd. The association (Ka) and dissociation (Kd) rates can be measured using surface plasmon resonance (SPR) (Rich and Myszka, Curr. Opin. Biotechnol., 11: 54 (2000): Englebienne, Analyst., 123: 1599 (1998)). Instrumentation and methods for real time detection and monitoring of association rate are conventionally known and commercially available (BiaCore 2000, Biacore AB, Upsala, Sweden; and Malmqvist, Biochem. Soc. Trans., 27:335 (1999)). The KD value can be defined as the IL-3R α antibody concentration required to saturate one half of the binding site (50%) on IL-3R α .

45 (Crossing property in primates)

10

20

30

35

40

50

55

[0133] Currently, although as many as 500 therapeutic antibodies are being developed in the world, it is said that human antibodies have a high possibility to be able to avoid problems of immunogenicity. However, on the other hand, there are many cases in which drug efficacy of human antibodies are not exhibited at all in rodents. In that case, there are many cases in that primates have to be used in toxicity tests, and furthermore the reactivity is found only in chimpanzee is not rare in many cases. When the pharmacological reaction can be found only in chimpanzee, the toxicity test is further significantly constrained. In the first place, facilities where chimpanzee experiments can be carried out are considerably limited, individuals are infected with HIV in many cases and there are also problems of labor hygiene of workers involved in the experiments. In addition, regarding chimpanzee, there are large limitations that anatomy test after final drug administration cannot be carried out and of reproductive toxicity test is also impossible to carry out and the like. Accordingly, the ability to verify drug efficacy in monkey (*Macaca fascicularis* and/or *Macaca mulatta*) is useful from the viewpoint of advancing toxicity tests which are essential for developing pharmaceuticals.

[0134] Regarding the method for confirming monkey crossreactivity with monkey, it can be comfirmed by a conven-

tionally known method such as immunochemical tissue staining method, solid phase enzyme immunoassay (hereinafter, "ELISA"), flow cytometry (FCM) and the like.

(Pharmaceutical composition)

5

10

30

35

40

45

50

55

[0135] Antibodies can be included in a pharmaceutical composition. In an embodiment, an antibody comprises a pharmaceutically acceptable carrier, a stabilizer or a filler and is prepared in the form of aqueous solution or as a freezedried preparation. Typically, an appropriate amount of a pharmaceutically acceptable salt is used for isotonicity of the pharmaceutical preparation. Examples of the acceptable carrier, stabilizer or filler include a buffer solution such as phosphate, citrate and other organic acid and the like; a low molecular weight (less than 10 in the number of residues) polypeptide; a protein such as serum albumin, gelatin, immunoglobulin and the like; a hydrophilic polymer such as polyvinyl pyrrolidone; an amino acid such as glycine, glutamine, asparagine, histidine, arginine, lysine and the like; a monosaccharide, disaccharides and other carbohydrates such as glucose, mannose, dextrin and the like; a chelating agent such as EDTA and the like; saccharides such as sucrose, mannitol, trehalose, sorbitol and the like; a salt forming counter ion such as sodium and the like; a metal complex (e.g., Zn-protein complex); an antiseptic (octadecyl dimethylbenzylammonium chloride; hexamethonium chloride; banzalconium chloride; benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); and/or a nonionic surfactant such as TWEEN™, PLURONICS™, polyethylene glycol (PEG) and the like.

(Therapeutic use of antitumor substance which targets IL-3R α , expression cells)

[0136] Examples of the diseases for which the therapeutic use is examined, but are not limited thereto, include the diseases which can be considered to treat by binding or targeting IL-3Rα-expressing blood tumor cells (AML cell, CML cell, MDS cell, ALL cell, CLL cell, multiple myeloma cell and the like), mastocyte, basophile, helper T cell (e.g., Th1 cell, Th17 cell), regulatory T cell (e.g., CD4 positive CD25 positive cell), antigen presenting cell (e.g., dendritic cell, monocyte-macrophage and related cells (hepatic stellate cell, osteoclast, microglia, intraepidermal macrophage, dust cell (alveolar phagocyte) and the like)).

[0137] Examples of the disease for which therapeutic use is examined include a blood disease in which expression of IL- $3R\alpha$ is found in bone marrow or peripheral blood. Specific example may include acute myeloid leukemia (AML). Based on the FAB classification (French-American-British criteria) which can determine which stage of the cell among the cells in the course of differentiating into various blood cells from the hematopoietic stem cell caused tumorigenic transformation, the acute myeloid leukemia is classified into disease types of M0 (micro-differentiation type myeloblastic leukemia), M1 (undifferentiated myeloblastic leukemia), M2 (differentiated myeloblastic leukemia), M3 (acute promyelocytic leukemia), M4 (myelomonocytic leukemia), M5 (monocytic leukemia), M6 (erythroleukemia), M7 (megakaryocytic leukemia) and subtypes thereof. In addition, further examples of diseases include acute lymphocytic leukemia, atypical leukemia, chronic lymphocytic leukemia, adult T cell leukemia, NK/T cell lymphoma, granular lymphocytosis (LGL leukemia), polycythemia vera, essential thrombocythemia, hypereosinophilic syndrome, Hodgkin lymphoma, non-Hodgkin lymphoma, follicular lymphoma, MALT lymphoma, mantle cell lymphoma, diffuse large B-cell lymphoma, Burkitt lymphoma, lymphoblastic lymphoma and Catsleman disease.

[0138] The method of the invention which comprises administration or delivery of an IL-3R α antibody and an antitumor substance which targets an IL-3R α expression cell can be carried out by any acceptable method. In a specified embodiment, these are administered to a subject, locally, regionally or systemically.

[0139] In addition, regarding the IL-3R α antibody, the antitumor substance which targets IL-3R α expression cell for treating the above-mentioned diseases can also be considered to combine with other therapeutic agent suitable for the same disease (typically a chemotherapeutic agent) or be administered in combination with radiotherapy. Examples of the suitable other therapeutic agent include a chemotherapeutic agent such as cytarabine (Ara-C), an anthracycline system antitumor agent (typically, daunorubicin (DNR), idarubicin (IDA)) and the like, a differentiation induction therapeutic agent such as all-trans retinoic acid (ATRA), arsenious acid, Am80 (tamibarotene), gemtuzumab-ozogamicin (ozogamicin conjugate anti-CD33 antibody), topotecan, fludarabine, cyclosporine, mitoxantrone (MIT), interferon and imatinib, but are not limited thereto, and also include a combination with a therapeutic method considered to be clinically effective

[0140] Mammals (e.g., human) are included in the subject which can be treated by the invention. In a specified embodiment, it is a subject who is a candidate of blood tumor or a subject who received treatment of the blood tumor, a subject having a possibility causing IL-3R α -mediated cellular response or a subject who received treatment of the IL-3R α -mediated cellular response, a subject who is a candidate of a myelocytic malignant tumor or a subject who received treatment of the myelocytic malignant tumor or a subject who is a candidate of acute myeloid leukemia or a subject who received treatment of the acute myeloid leukemia.

[0141] According to this specification, the terms "treat", "treating", "treatment" and the grammatical variations thereof

mean a protocol, a planning, a process or an improving method which is carried out on each subject who is desirable to obtain physiological effect or good outcome on the patient. Accordingly, the method of the invention includes a treatment and a treating method which produce measurable improvement or beneficial effect, particularly on a disorder, a disease, pathology, a condition of a disease or a symptom of a given subject. The measurable improvement or profitable effect is objective or subjective, immoderate, transient or long-term improvement of any one of disorders, diseases, pathology, conditions of a disease or symptoms, or a reduction in onset, severity, duration or frequency of adverse symptom related to or caused by disorders, diseases, physiological conditions, pathology or state. According to the method of the invention, there is a possibility that its effect is not always exhibited immediately, but eventual improvement or beneficial effect is found a little later with the lapse of time, so that stabilization or amelioration in a give subject will occur. [0142] Unless otherwise noted, all of the technical terms and scientific terms used in this specification have the same meanings of those which are generally evident for persons in the technical field to which the invention is related. Methods and materials similar or equivalent to those described in this specification can be used in the operations or examinations of the invention, but those which are described in this specification are suitable methods and materials.

15 EXAMPLES

10

20

25

30

35

50

55

Example 1 Preparation of human, *Macaca fascicularis* or *Macaca mulatta* IL-3Rα, expression cell

(Molecular cloning of IL-3Rα cDNA and preparation of expression vector)

[0143] Human IL- $3R\alpha$ cDNA was amplified from a blood cell-derived DNA (CLONTECH Human MTC Panel) by PCR using ExTaq (TAKARA BIO INC.). As a PCR device, GeneAmp PCR System 9700 (Applied Biosystems, hereinafter, the PCR device is the same in this specification) was used. Regarding the PCR, after a denaturation step at 94°C for 5 minutes, a three step reaction at 94°C 30 seconds-55°C 30 seconds-72°C 2 minutes was carried out 40 cycles and then a reaction at 99°C for 30 seconds was carried out. The PCR primers used are as follows.

IL-3R α _Fw: 5'-CGGCAATTGCCACCATGGTCCTCCTTTGGCTCAC-3' (SEQ ID NO:3) IL-3R α _Re: 5'-ATTGCGGCCGCTCAAGTTTTCTGCACGACCT-3' (SEQ ID NO:4)

[0144] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A band at around 1.2 kb was cut out and extracted using JetSob (Genomed). The extracted DNA was digested with *Mfel* and *Notl*, mixed with pEGFP-N1 vector (Clontech) or pEF6/Myc-His vector which had been digested with *Eco*RI and *Notl* and ligated using TaKaRa Ligation Kit. Regarding the transformation, the ligation sample and a DH10B competent cell were mixed and spread on LB plate (containing kanamycin). Insert check of the pEGFP-N1 vector was carried out by colony direct PCR using LA Taq (Takara Shuzo Co., Ltd.). Regarding the PCR, after a denaturation step at 94°C for 5 minutes, a three step reaction at 94°C 30 seconds-55°C 30 seconds-72°C 2 minutes was carried out 40 cycles and then a reaction at 99°C for 30 seconds was carried out. Regarding the primers used, IL-3R α -Fw and IL-3R α -Re were used.

[0145] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. Using a colony from which amplification at around 1.2 kb was obtained, nucleotide sequence was determined by a direct sequencing method. In the reaction of sequence samples, BigDye(R) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and GeneAmp PCR System 9700 (Applied Biosystems) were used (these were used in the all DNA sequence analyses in this specification). Regarding the primers, IL-3R α -Fw, IL-3R α -Re and the following primer were used. IL-3R α _seqF1: 5'-GTCTTCACTACAAAACGGAT-3' (SEQ ID NO:5)

[0146] ABI 3700XL DNA analyzer (Applied Biosystems) was used as the sequence analyzing device. A clone having the same sequence of the coding region of GenBank association number NP-002174.1 was selected and a plasmid DNA was extracted by a Miniprep method. The vector names were pEGFR-N1/hCD123 and pEF6/Myc-His/hCD123, respectively.

[0147] The sequence of the insert (Mfel to Notl) was as follows.

CAATTGCCACCATGGTCCTCCTTTGGCTCACGCTGCTCCTGATCGCCCTGCCC
TGTCTCCTGCAAACGAAGGAAGATCCAAACCCACCAATCACGAACCTAAGG
ATGAAAGCAAAGGCTCAGCAGTTGACCTGGGACCTTAACAGAAATGTGACC
GATATCGAGTGTGTTAAAAGACGCCGACTATTCTATGCCGGCAGTGAACAATAG
CTATTGCCAGTTTGGAGCAATTTCCTTATGTGAAGTGACCAACTACACCGTCC
GAGTGGCCAACCCACCATTCTCCACGTGGATCCTCTTCCCTGAGAACAGTGG

GAAGCCTTGGGCAGGTGCGGAGAATCTGACCTGCTGGATTCATGACGTGGAT TTCTTGAGCTGCAGCTGGGCGGTAGGCCCGGGGGCCCCCGCGGACGTCCAG TACGACCTGTACTTGAACGTTGCCAACAGGCGTCAACAGTACGAGTGTCTTC ACTACAAAACGGATGCTCAGGGAACACGTATCGGGTGTCGTTTCGATGACAT CTCTCGACTCTCCAGCGGTTCTCAAAGTTCCCACATCCTGGTGCGGGGCAGG AGCGCAGCCTTCGGTATCCCCTGCACAGATAAGTTTGTCGTCTTTTCACAGAT TGAGATATTAACTCCACCCAACATGACTGCAAAGTGTAATAAGACACATTCCT TTATGCACTGGAAAATGAGAAGTCATTTCAATCGCAAATTTCGCTATGAGCTT CAGATACAAAAGAGAATGCAGCCTGTAATCACAGAACAGGTCAGAGACAGA ACCTCCTTCCAGCTACTCAATCCTGGAACGTACACAGTACAAATAAGAGCCC GGGAAAGAGTGTATGAATTCTTGAGCGCCTGGAGCACCCCCAGCGCTTCGA GTGCGACCAGGAGGAGGCGCAAACACACGTGCCTGGCGGACGTCGCTGCT GATCGCGCTGGGACGCTGCTGGCCCTGGTCTGTGTCTTCGTGATCTGCAGA AGGTATCTGGTGATGCAGAGACTCTTTCCCCGCATCCCTCACATGAAAGACC CCATCGGTGACAGCTTCCAAAACGACAAGCTGGTGGTCTGGGAGGCGGCA AAGCCGGCCTGGAGGAGTGTCTGGTGACTGAAGTACAGGTCGTGCAGAAAA CTTGAGCGGCCGC (SEQ ID NO:6)

[0148] The Macaca fascicularis and Macaca mulatta cDNA samples were amplified from a Macaca fascicularis bone marrow-derived cDNA or Macaca mulatta bone marrow-derived cDNA by a PCR method using LA Taq (TAKARA BIO INC). GeneAmp PCR System 9700 (Applied Biosystems) was used as the PCR device. Regarding the PCR, after a denaturation step at 95°C for 1 minute, a three step reaction at 95°C 15 seconds-56°C 15 seconds-72°C 70 seconds was carried out 40 cycles and then a reaction at 72°C for 2 minutes was carried out. Subsequences were obtained through BLAST retrieval for the public data base of Macaca mulatta genome (http://www.hgsc.bnm.tmc.edu/blast.hgsc), based on the hIL-3Ra cDNA sequence to design primers. The used primer sequences were as follows.

Rhe123Fw1:CGGCAATTGCCACCATGACCCTCCTTTGGCTGACGCTG (SEQ ID NO:7) Rhe123Rv1:TATATTGCGGCCGCTCAAGTTTTCTCCACCACCTGCAC (SEQ ID NO:8)

[0149] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A band at around 1.2 kb was cut out and the DNA was extracted using Gel Extraction Kit (QIAGEN). The thus extracted DNA was mixed with pGEM-T Easy vector (Promega) and ligated using TaKaRa Ligation Kit. Regarding the transformation, the ligation sample and a DH10B competent cell were mixed and spread on LB plate (containing ampicillin). Insert check of the pGEM-T Easy vector was carried out by colony direct PCR using LA Taq (Takara Shuzo Co., Ltd.). Regarding the PCR, after a denaturation step at 95°C for 1 minute, a three step reaction at 95°C 15 seconds-56°C 15 seconds-72°C 1 minute was carried out 35 cycles and then a reaction at 72°C for 2 minutes was carried out. The following were used as the primers.

T7: TAATACGACTCACTATAGGG (SEQ ID NO:9) SP6: GATTTAGGTGACACTATAG (SEQ ID NO: 10)

5

10

15

20

25

30

35

50

[0150] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. Using a colony from which amplification at around 1.2 kb was obtained, nucleotide sequence was determined by a direct sequencing method. As the PCR primers, T7 and SP6 were used. A clone showing no mutation by PCR was selected and its plasmid DNA was extracted by the Miniprep method. The thus obtained DNA was digested with *Mfel* and *Notl*, mixed with pEGFP-N1 vector (Clontech) which had been cleaved with *Eco*Rl and *Notl* and ligated using TaKaRa Ligation Kit. Regarding the transformation, the ligation sample and a DH10B competent cell were mixed and spread on LB plate (containing kanamycin).

[0151] Insert check of the pEGFP-N1 vector was carried out by a colony direct PCR using La Taq (Takara Shuzo Co., Ltd.). Regarding the PCR, after a denaturation step at 94°C for 5 minutes, a three step reaction at 94°C 30 seconds-55°C 30 seconds-72°C 2 minutes was carried out 40 cycles and then a reaction at 99°C for 30 seconds was carried out. Regarding the used PCR primers, Rhe123Fw1 and Rhe123Rv1 were used.

[0152] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. Using a colony from which amplification at around 1.2 kb was obtained, nucleotide sequence was determined by a direct sequencing method. BigDye(R) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and GeneAmp PCR System 9700 (Applied Biosystems) were used in the reaction of sequence sample (these were used in all of the DNA sequence analyses in this specification). As the primers, Rhe123Fw1 and Rhe123Rv1 were used. The vectors were named pEGFR-N1/cyCD123 and pEGFR-N1/rhCD123, respectively.

[0153] The sequence of the insert (Mefl to Notl) of Macaca fascicularis IL-3R α was as follows.

CAATTGCCACCATGACCCTCCTTTGGCTGACGCTGCTCCTGGTCGCCACGCC CTGTCTCCTGCAAACGAAGGAGGATCCAAATGCACCAATCAGGAATCTAAGG ATGAAAGAAAAGGCTCAGCAGTTGATGTGGGACCTGAACAGAAACGTGACC GACGTGGAGTGTATCAAAGGCACCGACTATTCTATGCCGGCAATGAACAACA GCTATTGCCAGTTCGGAGCCATTTCCTTATGTGAAGTGACCAACTACACCGTC CGAGTGGCCAGTCCCCCGTTCTCCACGTGGATCCTCTTCCCTGAGAACAGTG GGACGCCTCAGGCAGGCGCGGAGAATCTGACCTGCTGGGTTCATGACGTGG ATTTCTTGAGCTGCAGCTGGGTGGCAGGCCCGGCGCCCCCGCTGACGTCCA GTACGACCTGTACTTGAACAATCCCAACAGCCACGAACAGTACAGGTGCCTT CACTACAAAACGGATGCTCGGGGAACACAGATCGGGTGTCGGTTCGATGACA TCGCTCGACTCTCCCGCGGTTCTCAAAGTTCCCACATCCTGGTGAGGGGCAG GAGCGCAGCCGTCAGTATCCCCTGCACAGATAAGTTTGTCTTCTTTTCACAGA TTGAGAGATTAACTCCACCCAACATGACTGGAGAGTGTAATGAGACACATTC CTTCATGCACTGGAAAATGAAAAGTCATTTCAATCGCAAATTCCGCTATGAGC TTCGGATCCAAAAGAGAATGCAGCCTGTAAGGACAGAACAGGTCAGAGACA CAACCTCCTTCCAGCTACCCAATCCTGGAACGTACACAGTGCAAATAAGAGC CCGGGAAACAGTGTATGAATTCTTGAGTGCCTGGAGCACCCCCAGCGCTTC GAGTGCGACCAGGAGGAGGGCGCGAGCTCGCGTGCCTGGCGGACGTCGCTG CTGATCGCGCTGGGGACGCTGCTGGCCTTGCTCTGTGTTCCTCATCTGCAG AAGGTATCTGGTGATGCAGAGGCTGTTTCCCCGCATCCCACACATGAAAGAC CCCATCGGTGACACCTTCCAACAGGACAAGCTGGTGGTCTGGGAGGCGGGC AAAGCCGGCCTGGAGGAGTGTCTGGTGTCTGAAGTGCAGGTGGTGGAGAAA ACTTGAGCGGCCGC (SEQ ID NO:11)

[0154] The sequence of the insert (*Mefl* to *Not*I) of *Macaca mulatta* IL-3R α was as follows.

55

10

15

20

25

30

35

40

45

50

CAATTGCCACCATGACCCTCCTTTGGCTGACGCTGCTCCTGGTCGCCACGCC
CTGTCTCCTGCAAACCAAGGAGGATCCAAATGCACCAATCAGGAATCTAAGG
ATGAAAGAAAAGGCTCAGCAGTTGATGTGGGACCTGAACAGAAACGTGACC
GACGTGGAGTGTATCAAAGGCACCGACTATTCTATGCCGGCAATGAACGACA
GCTATTGCCAGTTCGGAGCCATTTCCTTATGTGAAGTGACCAACTACACCGTC
CGAGTGGCCAGTCCTCCGTTCTCCACGTGGATCCTCTTCCCTGAGAACAGTG
GGACGCCTCGGGCAGGCGCGGAGAATTTGACCTGCTGGGTTCATGACGTGG
ATTTCTTGAGCTGCAGCTGGGTGGTAGGCCCGGCGCCCCCGCTGACGTCCA
GTACGACCTGTACTTGAACAATCCCAACAGCCACGAACAGTACAGGTGCCTT
CGCTACAAAAACGGATGCTCGGGGAACACAGATCGGGTGTCGATGACA
TCGCTCGACTCTCCCGCGGTTCTCAAAGTTCCCACATCCTGGTGAGGGGCAG

GAGCGCAGCCGTCAGTATCCCCTGCACAGATAAGTTTGTCTTCTTTTCACAGA
TTGAGAGATTAACTCCACCCAACATGACTGGAGAGTGTAATGAGACACATTC
CTTCATGCACTGGAAAAATGAAAAGTCATTTCAATCGCAAAATTCCACTATGAGC
TTCGGATCCAAAAGAGAATGCAGCCTGTAAGGACAGAACAGGTCAGAGACA
CAACCTCCTTCCAGCTACCCAATCCTGGAACGTACACAGTGCAAATAAGAGC
CCGGGAAACAGTGTATGAATTCTTGAGTGCCTGGAGCACCCCCCAGCGCTTC
GAGTGCGACCAGGAGGAGGGCGCGAGCTCGCGTGCCTGGCGGACGTCGCTG
CTGATCGCGCTGGGGACGCTGCTGGCCTTGCTCTGTGTTCCTCATCTGCAG
AAGGTATCTGGTGATGCAGAGGCTGTTTCCCCGCATCCCACACATGAAAGAC
CCCATCGGTGACACCTTCCAACAGGACAAGCTGGTGGTCTTGGGAGGCGGGC
AAAGCCGGCCTGGAGGAGTGTCTGGTGTCTGAAGTGCAGGTGGTGGAGAAAA
ACTTGAGCGGCCGC (SEQ ID NO:12)

(Preparation of IL-3R α forced expression cell line)

5

10

15

20

25

30

35

40

50

[0155] L929 cell (manufactured by ATCC) and Colon-26 cell (manufactured by ATCC) were infected with pEGFP-N1 vector/hCD123 or pEF6/Myc-His vector/hCD123 using electroporation (BTX). Specifically, 10 to 20 μ g of DNA was mixed with one hundred thousand cells and allowed to react at 300 V and 950 μ F. Regarding the cells, drug resistant cells were selected using neomycin (Calbiochem) for pEGFP-N1/hCD123 or blasticidin (Invitrogen) for pEF6/Myc-His/hCD123. Regarding the thus selected cells, a GFP-positive cell or a cell highly expressing IL-3R α (CD123) was further selected by sorting using flow cytometry (FAC SVantage, FACSAria and the like, BD Biosciences) and named as L929/hCD123 and Colon-26/hCD123, respectively.

[0156] Regarding the preparation of *Macaca fascicularis* IL-3R α and *Macaca mulatta* IL-3R α forced expression cells, these were also prepared using L929 and Colon-26 in the same manner as the case of human IL-3R α forced expression cell and named L929/cyCD123, Colon-26/cyCD123, L929/rhCD123 and Colon-26/rhCD123. Example 2 Preparation of soluble form of IL-3R α extracellular region

(Preparation of soluble form of human IL-3Rα extracellular region expression vector)

⁵⁵ **[0157]** A cDNA encoding the extracellular region of human IL-3Rα was amplified by a PCR method, and FLAG tag was connected to its downstream. Specifically, the cDNA encoding the extracellular region of human IL-3Rα was amplified by PCR using pEF6/Myc-His/hCD123 plasmid DNA as the template and using Platinum Pfu polymerase (Invitrogen). Regarding the PCR, after a denaturation step at 96°C for 2 minutes, a three step reaction at 96°C 20 seconds-55°C 30

seconds-68°C 65 seconds was carried out 30 cycles. The primers used were IL-3R α -Fw and the following primer. hIL-3R α sol-FLAG-Notl: 5'- ATTGCGGCCGCTCACTTATCGTCGTCATCCTTGTAGTCCCGCCAGGCACGTGT GTTTG-3' (SEQ ID NO: 13)

[0158] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. The DNA was extracted using JetSorb (Genomed). Thus purified DNA was digested with *Mfel* and *Notl* and again subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). A band of around 1.0 kb was cut out and the DNA was extracted using JetSorb (Genomed). The obtained DNA was mixed with a pTracer-CMV/Bsd vector, which had been cleaved using the same enzymes of the purified DNA, and ligated using TaKaRa Ligation Kit. Regarding the transformation, the ligation sample and a DH10B competent cell were mixed and spread on LB plate (containing ampicillin). Insert check was carried out by colony direct PCR using LA Taq (Takara Shuzo Co., Ltd.). Regarding the PCR, after a denaturation step at 95°C for 1 minute, a three step reaction at 95°C 15 seconds-56°C 15 seconds-72°C 40 seconds was carried out 35 cycles and then an elongation reaction at 72°C for 2 minutes was carried out. The PCR primers used were IL-3Rα-Fw and IL-3Rasol-FLAG-Notl.

[0159] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A plasmid DNA was extracted by the Miniprep method from a colony in which amplification of around 1.0 kb was obtained. It was found by a DNA sequence analysis that the purified plasmid DNA has the sequence identical to the corresponding region of GenBank accession number NP-002174.1. **[0160]** The sequence of the insert (*Mfel* to *Notl*) was as follows.

CAATTGCCACCATGGTCCTCCTTTGGCTCACGCTGCTCCTGATCGCCCTGCCC
TGTCTCCTGCAAACGAAGGAAGGAAGATCCAAACCCACCAATCACGAACCTAAGG
ATGAAAGCAAAGGCTCAGCAGTTGACCTGGGACCTTAACAGAAATGTGACC
GATATCGAGTGTGTTAAAGACGCCGACTATTCTATGCCGGCAGTGAACAATAG
CTATTGCCAGTTTGGAGCAATTTCCTTATGTGAAGTGACCAACTACACCGTCC
GAGTGGCCAACCCACCATTCTCCACGTGGATCCTCTTCCCTGAGAACAGTGG
GAAGCCTTGGGCAGGTGCGGAGAATCTGACCTGCTGGATTCATGACGTGGAT

TTCTTGAGCTGCAGCTGGGCGGTAGGCCCGGGGGCCCCCGCGGACGTCCAG
TACGACCTGTACTTGAACGTTGCCAACAGGCGTCAACAGTACGAGTGTCTTC
ACTACAAAACGGATGCTCAGGGAACACGTATCGGGTGTCGTTTCGATGACAT
CTCTCGACTCTCCAGCGGTTCTCAAAGTTCCCACATCCTGGTGCGGGGCAGG
AGCGCAGCCTTCGGTATCCCCTGCACAGATAAGTTTGTCGTCTTTTCACAGAT
TGAGATATTAACTCCACCCAACATGACTGCAAAGTGTAATAAGACACATTCCT
TTATGCACTGGAAAATGAGAAGTCATTTCAATCGCAAATTTCGCTATGAGCTT
CAGATACAAAAGAGAATGCAGCCTGTAATCACAGAACAGGTCAGAGACAGA
ACCTCCTTCCAGCTACTCAATCCTGGAACGTACACAGTACAAATAAGAGCCC
GGGAAAGAGTGTATGAATTCTTGAGCGCCTGGAGCACCCCCCAGCGCTTCGA
GTGCGACCAGGAGGAGGGGCGCAAACACACGTGCCTGGCGGGACTACAAGG
ATGACGACGATAAGTGAGCGCCGC (SEQ ID NO:14)

(Preparation of soluble form of human IL-3Rα protein)

10

15

20

25

30

35

40

45

50

55

[0161] Plasmid DNA of pTracer CMV expression vector containing soluble form of IL-3Rα sequence was purified using QIAGEN Plasmid Maxi Kit. A CHOras1 cell was used as a host cell for expression. The CHOras1 cell was cultured with shaking using SFM II medium (Invitrogen) (37°C, 5% CO₂).

[0162] A PEI method was used in the gene introduction. Polyethylenimine, Linear, MW 25,000 (Polysciences) was weighed and dissolved in PBS while adjusting to around pH 7.0 with HCl (1 g/l). The obtained solution was stirred for 1

hour and then sterilized by filtering through a membrane filter having a pore size of 0.22 μ m, MILLEX-GV (Millipore). Then, 1 mg of the purified plasmid DNA was mixed with 20 ml of Opti-Pro SFM (Invitrogen) to obtain Solution A. Solution B was prepared by mixing 2.5 ml of PEI solution (1 g/l) with 20 ml of Opti-Pro SFM (Invitrogen). After solution A and Solution B were mixed, and then allowed to stand still for 10 minutes, the obtained solution was added to CHOras1 cells (1,000,000 cells per 1 ml). After six days, the cell supernatant was recovered and used for the protein purification.

[0163] Purification of the soluble form of human IL-3Ra protein was carried out by the following method. A culture supernatant containing soluble form of IL-3R α protein was recovered by centrifugation 6 days after the gene introduction and passed through a filter. The obtained solution was diluted 5 times with Tris buffered saline (TBS), an Anti-FLAG column was prepared using anti-FLAG M2 Agarose Affinity Gel (Sigma) and the solution was applied thereto using HiLoad Pump P-50 (Pharmacia Biotech). Elution was carried out using FLAG peptide (Sigma) and in accordance with the manual. The eluate was fractioned into several fractions, each fraction was subjected to SDS-PAGE (MultiGel II Mini 10/20% gradient gel; Cosmo Bio Co., Ltd.) under a reducing condition, and then silver staining and Western blotting were carried out. A silver staining reagent "Daiichi" (Daiichi Pure Chemicals Co., Ltd.) was used for the silver staining. Anti-FLAG M2 antibody (Sigma) and an alkaline phosphatase-labeled rabbit anti-mouse immunoglobulin antibody were used for the Western blotting. A fraction in which the protein of interest was found was concentrated using Amicon Ultra-4 10K (Millipore), and gel filtration chromatography was carried out using Superdex 200 gp (GE Healthcare). After fractionation, each fraction was subjected to SDS-PAGE (MultiGel II Mini 10/20% gradient gel; Cosmo Bio Co., Ltd.) under a reducing condition, and then silver staining and Western blotting were carried out. A silver staining reagent "Daiichi" (Daiichi Pure Chemicals Co., Ltd.) was used in the silver staining. Anti-FLAG M2 antibody (Sigma) and an alkaline phosphatase-labeled rabbit anti-mouse immunoglobulin antibody were used in the Western blotting. A fraction in which the protein of interest was found was concentrated using Amicon Ultra-4 10K (Millipore) and washed with PBS. By carrying out sterilization by filtration using a membrane filter MILLEX-GV (Millipore) having a pore size of 0.22 μm, a soluble form of human IL-3Rα protein was obtained. As a result of Limulus test using Limulus ES-II Kit Wako (Wako Pure Chemical Industries, Ltd.), endotoxin was not detected. Regarding concentration of the soluble form of human IL- $3R\alpha$ protein, absorbance at 280 nm was measured and 1 mg/ml was calculated as 1.4 OD.

Example 3 Preparation of anti-human IL-3R α human antibody using human antibody producing mouse

(Human antibody producing mouse)

10

30

35

40

45

50

55

[0164] The mouse used in the immunization has a genetic background of homozygote on both of endogenous Ig heavy chain and κ light chain disruptions and also simultaneously keeps the 14th chromosomal fragment containing human Ig heavy chain locus (SC20) and human Ig κ chain transgene (KCo5). This mouse was prepared by the crossing of a line A mouse having the human Ig heavy chain locus onto a line B mouse having the human Ig κ chain transgene. The line A is a homozygote on both of endogenous Ig heavy chain and κ light chain disruptions, is a mouse line which maintain the 14th chromosomal fragment (SC20) which can be transmitted to progeny and is described for example in a report by Tomizuka *et al.* [Tomizuka *et al.*, Proc. Natl. Acad. Sci. USA, 2000, Vol. 97: 722]. Also, the line B is a homozygote on both of endogenous Ig heavy chain and κ light chain disruptions, is a mouse line (transgenic mouse) which maintains a human Ig κ chain transgene (KCo5) and is described in a report by such as Fishwild et al. [Nat. Biotechnol (1996), 114: 845].

[0165] An individual in which human Ig heavy chain and κ light chain were simultaneously detected in serum, obtained by the crossing of a line A male mouse onto a line B female mouse or the crossing of a line A female mouse onto a line B male mouse, [Ishida & Lonberg, IBC's 11th Antibody Engineering, Abstract 2000] was used in the following immune test. In this connection, the aforementioned human antibody producing mouse (referred to as KM mouse) can be obtained from Kyowa Hakko Kirin Co., Ltd. by establishing a contract.

(Preparation of human monoclonal antibody to human IL-3R α)

[0166] Regarding the preparation of monoclonal antibody in this Example, it was prepared in accordance with a general method described *in* A Guide to Monoclonal Antibody Experimental Operations (written in Japanese) (edited by Tamie Ando et al. published by Kodansha, 1991) and the like. For the IL-3R α as an immunogen, an IL-3R α expressing L929 cell (CCL-1, ATCC), an IL-3R α expressing Colon-26 cell (Cell Resource Center for Biomedical Research Institute of Development, Aging and Cancer Tohoku University) or a soluble form of human IL-3R α Fc fusion protein was used. As an animal to be immunized, the above-mentioned KM mouse was used.

[0167] For the purpose of preparing human monoclonal antibody to human IL-3R α , the KM mouse was immunized with the IL-3R α expression L929 cell or IL-3R α expression Colon-26 cell prepared in Example 1, intraperitoneally at a dose of 1×10^7 cells/animal every 1 week to 2 weeks in a total of 4 times. Three days before the extraction of spleen which is described below, 20 µg/mouse individual of the soluble form of human IL-3R α protein was administered through

the caudal vein.

10

15

20

25

30

35

50

55

[0168] After the spleen was surgically obtained from the immunized mouse, the spleen was put into PBS and minced on a mesh (cell strainer, FALCON) using a syringe piston. After the cell suspension was passed through the mesh and was centrifuged, the obtained precipitated cells were re-suspended in Red Blood Cell Lysing Buffer (Sigma). After 5 minutes of incubation at room temperature, serum-free DMEM medium (Invitrogen) containing 350 mg/ml sodium bicarbonate, 50 units/ml penicillin and 50 μ g/ml streptomycin (hereinafter referred to as "serum-free DMEM medium") was added thereto to precipitate the cells. By suspending again in the serum-free DMEM medium, the number of cells was measured.

[0169] On the other hand, a myeloma cell SP2/0 (ATCC No. CRL-1581) was cultured at 37°C in the presence of 5% carbon dioxide using DMEM medium (Invitrogen) containing 10% FCS (Invitrogen), 50 units/ml penicillin and 50 μg/ml streptomycin (hereinafter referred to as "serum-containing DMEM medium"). The SP2/0 cells were washed with serumfree DMEM medium. In the same manner, the cells were suspended in serum-free DMEM medium to measure the number of cells. After the suspension of the recovered spleen-derived cells and a suspension of the mouse myeloma were mixed at a cell number ratio of 5:1, the mixed suspension was centrifuged, and then the supernatant was completely removed. As a fusion agent, 50% (w/v) polyethylene glycol 1500 (Boehringer-Mannheim) was slowly added to the obtained pellet while stirring the pellet with the tip of a pipette, and then serum-free DMEM medium heated to 37°C in advance was slowly added thereto. Furthermore, an appropriate amount of serum-free DMEM medium was slowly added thereto. Thereafter, the obtained solution was allowed to stand still at 37°C for 5 minutes in the presence of 5% carbon dioxide. After centrifugation, the supernatant was removed and thus obtained fused cells were suspended in DMEM medium (Invitrogen) containing 10% FCS (Invitrogen), penicillin-streptomycin-glutamine (Sigma), IL-6 (5 ng/ml) and 2mercaptoethanol (Invitrogen) (hereinafter, referred to as "IL-6-containing DMEM medium") and cultured at 37°C in the presence of 5% carbon dioxide. On the next day, the cells were recovered by pipetting, and precipitated by centrifugation. The obtained cell pellet was re-suspended in the IL-6-containing DMEM medium. The suspended cells were subjected to limiting dilution on a 96-well plate and cultured for about 7 days to 14 days. The culture supernatant was used in the hybridoma screening described in the following example.

(Screening of hybridoma producing a human monoclonal antibody which binds to human IL-3Ra)

[0170] Screening of hybridoma was carried out using the cell supernatant prepared in the above example. The method was, in short, carried out by a flow cytometry in which a human IL-3R α stable expression cell line was used.

[0171] Specifically, a combination of human IL-3R α expression L929 cell and parent cell line L929 cell or a combination of human IL-3R α expression Colon-26 cell and parent cell line Colon-26 cell, was mixed with the supernatant of hybridoma and allowed to stand still at 4°C for 30 minutes. After washing the obtained cells twice with a staining medium (Dulbecco's PBS containing 2% fetal calf serum, 2 mM EDTA, 0.05% NaN₃), Goat F(ab')₂ Anti-Human IgG-PE (Southern Biotech) as a secondary antibody was added thereto and allowed to stand still at 4°C for 30 minutes. After washing twice with the staining medium, the obtained cells were analyzed by FACSCalibur (BD Biosciences). A hybridoma which reacted with only human IL-3R α expression L929 cell was collected.

[0172] The selected hybridoma was subjected to limiting dilution, and screening was carried out using its culture supernatant. Specifically, each of human IL-3R α expression L929 cell and parent cell line L929 cell was mixed with the supernatant of hybridoma and allowed to stand still at 4°C for 30 minutes. After washing twice with the staining medium, Goat F(ab')₂ Anti-Human kappa-PE (Dako) as a secondary antibody was added thereto and allowed to stand still at 4°C for 30 minutes. After washing twice with the staining medium, the cells were analyzed by FACSCalibur (BD Biosciences). A hybridoma which reacted with only human IL-3R α expression L929 cell was collected.

Example 4 Preparation of recombinant anti-human IL-3R α human antibody (Obtaining of anti-human IL-3R α human antibody gene from hybridoma and preparation of expression vector)

[0173] From the hybridoma obtained in Example 3, clone names Old 4, Old5, Old17, Old19, New102 and Old6 were cultured using eRDF medium (Kyokuto Pharmaceutical Industrial Co., Ltd.) containing 10 ng/ml IL-6 (R & D Systems) and 10% Fetal Bovine Serum (SIGMA) and then cells were collected by centrifugation. To the obtained cells, and then TRIZOL (GIBCO) was added and total RNA was extracted in accordance with the instructions. Cloning of variable region of the antibody cDNA was carried out using SMART RACE cDNA Amplification Kit (Clontech) in accordance with the instructions attached thereto.

[0174] In addition, variable region was cloned from a hybridoma ATCC, HB12009, which produces an anti-human IL- $3R\alpha$ mouse antibody 7G3 and was used as a control. By connecting the thus obtained cDNA with a DNA encoding human IgG1 constant region, a chimeric antibody expression vector was prepared. Specifically, the cells were collected by centrifugation from the cryopreserved hybridoma, and then TRIZOL (GIBCO) was added thereto to extract total RNA in accordance with the instructions. Cloning of variable region of the antibody cDNA was carried out using mouse IgG

antibody-specific primes in addition to the SMART RACE cDNA Amplification Kit (Clontech), in accordance with the instructions attached thereto.

[0175] Using 5 μg of the total RNA as a template, the 1st strand cDNA was prepared.

5 1) Synthesis of the 1st strand cDNA

[0176] Total RNA 5μgm/3μL

5'CDS 1μL

SMART oligo 1µL

10 [0177] After the reaction mixture comprising the above compositions was incubated at 72°C for 2 minutes,

 $5{\times} Buffer~2{\mu} L$

DTT 1μL

DNTP mix 1µL and

SuperscriptII 1µL

were added to the reaction mixture and incubated at 42°C for 1.5 hours.

[0178] To the obtained mixture, 100 µl of Tricine Buffer was further added and incubated at 72°C for 7 minutes.

2) Amplification of heavy chain gene and light chain gene by PCR and construction of expression vector of recombinant antibody

20

[0179] For amplification of cDNA, Z-Taq manufactured by Takara was used.

cDNA 2μL

10×Z-Taq Buffer 5μL

dNTPmix 4μL

²⁵ Z-Taq1μL

Primer 1

Primer 2

[0180] A reaction solution comprising the above-mentioned composition was adjusted to a final volume of 50 μ l with re-distilled water to be subjected to PCR.

[0181] For amplification of the heavy chain, UPM (SMART RACE cDNA Amplification Kit; manufactured by Clontech) and hh-6 primer (5'-GGTCCGGGAGATCATGAGGGTGTCCTT-3') (SEQ ID NO:15) were used and a cycle of reactions at 98°C 1 second and 68°C 30 seconds was repeated 30 times. Further, using 1 μl of the obtained reaction solution as a template and using NUP (SMART RACE cDNA Amplification Kit; manufactured by Clontech) and hh-3 primer (5'-GTGCACGCCGCT GGT CAGGGCGCCTG-3') (SEQ ID NO:16) as primers, a cycle of reactions at 98°C 1 second and 68°C 30 seconds was repeated 20 times. Thereafter, the amplified PCR products were purified using PCR purification kit (QIAGEN), and nucleotide sequences was determined using hh-4 (5'-GGT GCC AGG GGG AAG ACC GAT GG-3') (SEQ ID NO: 17) as a primer. The following specific primers were synthesized based on sequence information, and the sequences were also determined from the opposite direction using the following primers.

Old4 neavy chain specific primer Fw

40 (5'-AGAGAGAGAGGTCGACCACCATGGACTGGACCTGGAGGTTCCTCTTTG T -3') (SEQ ID NO:18)

Old4 heavy chain specific primer Rv

(5'-AGAGAGAGAGGCTAGCTGAAGAGACGGTGACCATTGTCCC -3') (SEQ ID NO:19)

Old5 heavy chain specific primer Fw

(5'-AGAGAGAGAGGTCGACCACCATGGACTGGACCTGGAGGTTCCTCT TTG T -3') (SEQ ID NO:20)

Old5 heavy chain specific primer Rv

(5'-AGAGAGAGAGCTGAAGAGACGGTGACCATTGTCCC-3') (SEQ ID NO:21)

Old17 heavy chain specific primer Fw

 $(5'\text{-}AGAGAGAGAGGTCGACCACGATGGACTTGGACCTTGGAGGTTCCTCT\ TTG\ T\ -3')\ (SEQ\ ID\ NO:22)$

Old 17 heavy chain specific primer Rv

50 (5'-AGAGAGAGAGGCTAGCTGAGGAGACGGTGACAAGGGTTCCC-3') (SEQ ID NO:23)

Old19 heavy chain specific primer Fw

(5'-AGAGAGAGAGGTCGACCACCATGGACTGGACCTGGAGGTTCCTCT TTG T -3') (SEQ ID NO:24)

Old19 heavy chain specific primer Rv

(5'-AGAGAGAGAGGCTAGCTGAGGAGACGGTGACCAGGGTTC -3') (SEQ ID NO:25)

New102 heavy chain specific primer Fw

(5'-AGAGAGAGAGGTCGACCACCATGGACTGGACCTGGAGGTTCCTCTTTG T -3') (SEQ ID NO:26)

New102 heavy chain specific primer Rv

(5'-AGAGAGAGAGGCTAGCTGAGGAGACGGTGACCAGGGTT -3') (SEQ ID NO:27)

Old6 heavy chain specific primer Fw

(5'-AGAGAGAGAGGTCGACCCACCATGGAACTGGGGCTCCGCTG-3') (SEQ ID NO:28)

Old6 heavy chain specific primer Rv

(5'-AGAGAGAGAGGCTAGCTGAGGAGACGGTGACCAGGGTTC-3') (SEQ ID NO:29)

[0182] For the amplification of the heavy chain of mouse antibody 7G3, UPM (SMART RACE cDNA amplification Kit; manufactured by Clontech) and mH-Rv1 primer (5'-ATTTTG TCG ACC KYG GTS YTG CTG GCY GGGTG-3') (SEQ ID NO:30) were used and a cycle of reactions at 98°C 1 second and 68°C 30 seconds was repeated 30 times. Further, using 1 μl of this reaction solution as a template and using NUP (SMART RACE cDNA Amplification Kit; manufactured by Clontech) and mH-Rv2 primer (5'-GCACACYRCTGGACAGGGATCCAGAGTTCC-3') (SEQ ID NO:31), a cycle of reactions at 98°C 1 second and 68°C 30 seconds was repeated 20 times. Thereafter, the amplified PCR products were purified using PCR purification kit (QIAGEN), and the nucleotide sequence of heavy chain variable region was determined by using mH-Rv2 primer (SEQ ID NO:31) as a primer. The following specific primers were synthesized based on sequence information, and the sequences were also determined from the opposite direction using the following primers.

15 (5'-AGAGAGAGGTCGACCACCATGGGATGGAGCTGGATCTTTCTC-3') (SEQ ID NO:32)

7G3 heavy chain specific primer Rv

20

30

(5'-AGAGAGAGAGGCTAGCTGCAGAGACAGTGACCAGAGTCCC-3') (SEQ ID NO:33)

[0183] PCR was carried out using the above-mentioned specific primers (98°C 1 second, 60°C 30 seconds, 72°C 30 seconds), and heavy chain amplification cDNA fragment was digested with *Sal*I and *NheI* and inserted into a N5KG1-Val Lark vector [a modified vector of NSKG1 (US6,001,358, Idec Pharmaceuticals)] which had been cleaved with the same enzymes. By determining the sequence using the vector as a template, it was found that the inserted sequence is identical to the one determined by direct sequence.

[0184] The light chain was amplified using UPM (SMART RACE cDNA Amplification Kit; manufactured by Clontech) and hk-2 primer (5'-GTT GAAGCT CTT TGT GAC GGG CGA GC-3') (SEQ ID NO:34) and repeating a cycle of reactions at 98°C 1 second and 68°C 30 seconds 30 times. Further, using 1 μ l of this reaction solution as a template and using NUP (SMART RACE cDNA Amplification Kit; manufactured by Clontech) and hk-6 (5'-TGGCGGGAAGATGAAGACA-GATGGT G-3') (SEQ ID NO:35), a cycle of reactions at 98°C 1 second and 68°C 30 seconds was repeated 20 times. Thereafter, the amplified PCR products were purified using PCR purification kit (QIAGEN), and the nucleotide sequence was determined using hk-6 primer. The following specific primers were synthesized based on sequence information, and the sequences were determined also from the opposite direction.

Old4 light chain specific primer Fw

(5'-AGAGAGAGAGATCTCTCACCATGGACATGAGGGTCC CCG CTC AGC -3') (SEQ ID NO:36)

Old4 light chain specific primer Rv

(5'-AGAGAGAGAGCGTACGTTTGATCTCCAGCTTGGTCC CCT G -3') (SEQ ID NO:37)

Old5 light chain specific primer Fw

 $(5'\text{-}AGA\ GAGAGAGATCTCTCACCATGGACATGAGGGTCCCCG\ CTC\ AGC\ -3')\ (SEQ\ ID\ NO:38)$

Old5 light chain specific primer Rv

(5'-AGAGAGAGAGCGTACGTTTGATCTCCAGCTTGGTCC CCT G -3') (SEQ ID NO:39)

Old17 light chain specific primer Fw

(5'-AGAGAGAGATCTCTCACCATGGACATGAGGGTCC TCG CTC AG -3') (SEQ ID NO:40)

Old 17 light chain specific primer Rv

(5'-AGAGAGAGAGCGTACGTTTGATCTCCAGCTTGGTCC CCT G -3') (SEQ ID NO:41)

Old19 light chain specific primer Fw

(5'-AGAGAGAGAGATCTCTCACCATGGACATGAGGGTCCTCGCTCAG-3') (SEQ ID NO:42)

Old 19 light chain specific primer Rv

(5'-AGAGAGAGAGCGTACGTTTGATTTCCACCTTGGTCC CTT GGC -3') (SEQ ID NO:43)

New102 light chain specific primer Fw

 $(5'\text{-}AGAGAGAGAGATCTCTCACCATGGACATGAGGGTCC} \ TCG \ CTC \ AG \ -3') \ (SEQ \ ID \ NO:44)$

New102 light chain specific primer Rv

50 (5'-AGAGAGAGAGCGTACGTTTGATCTCCAGCTTGG TCC CCT G -3') (SEQ ID NO:45)

Old6 light chain specific primer Fw

(5'-AGAGAGAGAGATCTCTCACCATGGACATGAGGGTCCCCGCTCAGC-3') (SEQ ID NO:46)

Old6 light chain specific primer Rv

(5'-AGAGAGAGAGCGTACGTTTGATATCCACTTTGGTCCCAGGGC-3') (SEQ ID NO:47)

[0185] Light chain of the mouse antibody 7G3 was amplified using UPM (SMART RACE cDNA amplification Kit; manufactured by Clontech) and mK-Rv1 primer mK_Rv1 (5'-TT GAA GCT CTT GAC AAT GGG TGAAGT TGAT-3') (SEQ ID NO:48) and repeating a cycle of reactions at 98°C 1 second and 68°C 30 seconds 30 times. Further, using 1 μl of this reaction solution as a template and using NUP (SMART RACE cDNA Amplification Kit; manufactured by

Clontech) and mK-Rv2 (5'-GTAGGTGCTGTCTTTGCTGTCCTGATCAGT-3') (SEQ ID NO:49), a cycle of reactions at 98°C 1 second and 68°C 30 seconds was repeated 20 times. Thereafter, the amplified PCR products were purified using PCR purification kit (QIAGEN), and the nucleotide sequence was determined using mK-Rv2 primer. The following specific primers were synthesized based on sequence information, and the sequences were also determined from the opposite direction.

7G3 light chain specific primer Fw

(5'-AGAGAGAGAGATCTCACCATGGAATCACAGACTCAGGTCCTC-3') (SEQ ID NO:50)

7G3 light chain specific primer Rv

(5'-AGAGAGAGAGCGTACGTTTTATTTCCAGCTTGGTCCCCCC-3') (SEQ ID NO:51)

[0186] PCR was carried out using the above-mentioned specific primers (98°C 1 second, 60°C 30 seconds, 72°C 30 seconds), and s light chain amplification cDNA fragment was digested with Bg/II and BsiWI and inserted into a N5KG1-Val Lark vector which had been cleaved with the same enzymes. By determining the sequence using the vector as a template, it was found that the inserted sequence is identical to the one determined by direct sequence.

[0187] Each of DNA molecules encoding the heavy chain variable region and light chain variable region of Old4 and amino acid sequences of the heavy chain variable region and light chain variable region are shown in the following.

<Old4 heavy chain variable region>

[0188]

5

10

15

20

25

30

35

40

45

50

55

GACCCGTCGACCACCATGGACTGGACCTGGAGGTTCCTCTTTGTGGTGGCAG CAGCTACAGGTGTCCAGTCCCAGGTCCAGCTGCTACAGTCTGGGGCTGAGGT

GAAGAAGCCTGGGTCCTCGGTGAAGGTCTCATGCAAGGCTTCTGGAGGCAC CTTCAGCACCTATGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTT GAGTGGATGGGAGGGATCATCCCTATCTTTGGTATAGTAAACTACGCACAGAA GTTCCAGGGCAGAGTCACGATTACCGCGGACGAATCCACGAGTACAGCCTAC ATGGAACTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTATTGTGCGA GAGGGGGGCCCAGATGTTCTTGATATCTGGGGCCAAGGGACAAT GGTCACCGTCTCTTCAGCTAGCACCAA (SEQ ID NO:52)

<Old4 heavy chain variable region>

[0189]

MDWTWRFLFVVAAATGVQSQVQLLQSGAEVKKPGSSVKVSCKASGGTFSTYAI SWVRQAPGQGLEWMGGIIPIFGIVNYAQKFQGRVTITADESTSTAYMELSSLRSE DTAVYYCARGGGSGPDVLDIWGQGTMVTVSSASTX (SEQ ID NO:53)

[0190] The translation initiation site of the heavy chain DNA is an ATG codon which starts from adenine (A) at position 16 from the 5'-terminal of SEQ ID NO:52, and a boundary between the antibody variable region and the constant region is located between adenine (A) at position 432 and guanine (G) at position 433 from the 5'-terminal. In the heavy chain amino acid sequence, the heavy chain variable region is up to serine (S) residue at position 139 from the N-terminal of SEQ ID NO:53, and the constant region is on and after alanine (A) at position 140. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of heavy chain was estimated to be up to serine (S) at position 19 from the N-terminal of SEQ ID NO:53. The N-terminal of the mature form was considered to be glutamine (Q) at position 20 of SEQ ID NO:53.

<Old4 light chain variable region>

[0191]

CACAGATCTCTCACCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCC
TGCTGCTCTGGCTCCCAGGTGCCAGATGTGTCATCTGGATGACCCAGTCTCCA
TCCTTACTCTCTGCATCTACAGGAGACAGAGTCACCATCAGTTGTCGGATGA
GTCAGGGCATTAGGAGTTATTTAGCCTGGTATCAGCAAAAAACCAGGGAAAGC
CCCTGAGCTCCTGATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAA
GGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCT
GCAGTCTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTTCCCGTA
CACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGTACGGTGG (SEQ ID
NO:54)

15

20

5

10

<Old4 light chain variable region>

[0192]

[0132

MDMRVPAQLLGLLLWLPGARCVIWMTQSPSLLSASTGDRVTISCRMSQGIRSY LAWYQQKPGKAPELLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQSEDFATYYC QQYYSFPYTFGQGTKLEIKRTVX (SEQ ID NO:55)

25

30

35

[0193] The translation initiation site of the light chain DNA is an ATG codon which starts from adenine (A) at position 16 from the 5'-terminal of SEQ ID NO:54, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 402 and cytosine (C) at position 403 from the 5'-terminal. In the light chain amino acid sequence, the light chain variable region is up to lysine (K) residue at position 129 from the N-terminal of SEQ ID NO:55, and the constant region is on and after arginine (R) at position 130. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of light chain was estimated to be up to cysteine (C) at position 23 from the N-terminal of SEQ ID NO:55. The N-terminal of the mature form was considered to be valine (V) at position 23 of SEQ ID NO:55.

[0194] Each of DNA molecules encoding the heavy chain variable region and the light chain variable region of Old5 and amino acid sequences of the heavy chain variable region and light chain variable region was shown in the following.

<Old5 heavy chain variable region>

[0195]

45

50

40

GTCGACCACCATGGACCTGGAGGTTCCTCTTTGTGGTGGCAGCAGCT
ACAGGTGTCCAGTCCCAGGTCCAGCTGGTGCAGTCTGGGGCTGAGGTGAAG
AAGCCTGGGTCCTCGGTGAAGGTCTCATGCAAGGCTTCTGGAGGCACCTTCA
GCACCTATGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTG
GATGGGAGGGCTCATCCTATCTTTGATATAGAAAACTACGCACAGAAGTTCC
AGGGCAGAGTCACCGATTACCGCGGACGAATCCACGAGCACAGTCTATATGGA
ACTGAGCAGCCTGAGATCTGAGGACACGGCCATGTATTACTGTGCGAGAGGG
GGGGGTTCGGGCCCTGATGTTCTTGATATCTGGGGCCAAGGGACAATGGTCA
CCGTCTCTTCAGCTAGC (SEQ ID NO:56)

55

<Old5 heavy chain variable region>

[0196]

MDWTWRFLFVVAAATGVQSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYAI SWVRQAPGQGLEWMGGLIPIFDIENYAQKFQGRVTITADESTSTVYMELSSLRSE DTAMYYCARGGGSGPDVLDIWGQGTMVTVSSAS (SEQ ID NO:57)

[0197] The translation initiation site of the heavy chain DNA is an ATG codon which starts from adenine (A) at position 16 from the 5'-terminal of SEQ ID NO:56, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 427 and guanine (G) at position 428 from the 5'-terminal. In the heavy chain amino acid sequence, the heavy chain variable region is up to serine (S) residue at position 139 from the N-terminal of SEQ ID NO:57, and the constant region is on and after alanine (A) at position 140. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of heavy chain was estimated to be up to serine (S) at position 19 from the N-terminal of SEQ ID NO:57. The N-terminal of the mature form was considered to be glutamine (Q) at position 20 of SEQ ID NO:57.

<Old5 light chain variable region>

[0198]

5

15

CACAGATCTCTCACCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCC
 TGCTGCTCTGGCTCCCAGGTGCCAGATGTGTCATCTGGATGACCCAGTCTCCA
 TCCTTACTCTCTGCATCTACAGGAGACAGAGTCACCATCAGTTGTCGGATGA

 GTCAGGGCATTAGGAGTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGC
 CCCTGAGCTCCTGATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAA
 GGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCT
 GCAGTCTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTTCCCGTA
 CACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGTACGGTGG (SEQ ID
 NO:58)

35 <Old5 light chain variable region>

[0199]

55

MDMRVPAQLLGLLLWLPGARCVIWMTQSPSLLSASTGDRVTISCRMSQGIRSY LAWYQQKPGKAPELLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQSEDFATYYC QQYYSFPYTFGQGTKLEIKRTVX (SEQ ID NO:59)

[0200] The translation initiation site of the light chain DNA is an ATG codon which starts from adenine (A) at position 16 from the 5'-terminal of SEQ ID NO:58, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 402 and cytosine (C) at position 403 from the 5'-terminal. In the light chain amino acid sequence, the light chain variable region is up to lysine (K) residue at position 129 from the N-terminal of SEQ ID NO:59, and the constant region is on and after arginine (R) at position 130. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of light chain was estimated to be up to cysteine (C) at position 22 from the N-terminal of SEQ ID NO:59. The N-terminal of the mature form was considered to be valine (V) at position 23 of SEQ ID NO:59.

[0201] Each of DNA molecules encoding the heavy chain variable region and the light chain variable region of Old17 and the amino acid sequences of the heavy chain variable region and the light chain variable region are shown in the following.

<Old17 heavy chain variable region>

[0202]

5

10

15

20

25

30

40

GACCCGTCGACCACC<u>ATG</u>GACTGGACCTGGAGGTTCCTCTTTGTGGTGGCAG CAGCTACAGGTGTCCAGTCCCAGGTCCAGCTGGTGCAGTCTGGGGCTGAGG

TGAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGACTTCTGGAGGCA
CCTTCAGCAACTTTGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCT
TGAGTGGATGGGAGGGATCATCCCTATCTTTGGTTCAACAAACTACGCACAG
AAGTTCCAGGGCAGAGTCACGATTAACGCGGACGAATCCACGAGCACAGCC
TACATGGAGCTGAGCAGTCTGAGATCTGAGGACACGGCCGTGTATTACTGTG
CGGGTGGAGACAAATATGGTCCTTACTACTTTCACTACTGGGGCCAGGGAAC
CCTTGTCACCGTCTCCTCAGCTAGC (SEQ ID NO:60)

<Old17 heavy chain variable region>

[0203]

MDWTWRFLFVVAAATGVQSQVQLVQSGAEVKKPGSSVKVSCKTSGGTFSNFAI SWVRQAPGQGLEWMGGIIPIFGSTNYAQKFQGRVTINADESTSTAYMELSSLRSE DTAVYYCAGGDKYGPYYFHYWGQGTLVTVSSAS (SEQ ID NO:61)

[0204] The translation initiation site of the heavy chain DNA is an ATG codon which starts from adenine (A) at position 16 from the 5'-terminal of SEQ ID NO:60, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 432 and guanine (G) at position 433 from the 5'-terminal. In the heavy chain amino acid sequence, the heavy chain variable region is up to serine (S) residue at position 139 from the N-terminal of SEQ ID NO:61, and the constant region is on and after alanine (A) at position 140. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of heavy chain was estimated to be up to serine (S) at position 19 from the N-terminal of SEQ ID NO:61. The N-terminal of the mature form was considered to be glutamine (Q) at position 20 of SEQ ID NO:61.

<Old17 light chain variable region>

[0205]

AGATCTCTCACCATGGACATGAGGGTCCTCGCTCAGCTCCTGGGGCTCCTGC
TGCTCTGTTTCCCAGGTGCCAGATGTGACATCCAGATGACCCAGTCTCCATCC
TCACTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTC
AGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAGAAACCAGAGAAAGCCCC
TAAGTCCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGT
TCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCA
GCCTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTACCCGTACA
CTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGTACGGT (SEQ ID NO:62)

<Old17 light chain variable region>

[0206]

MDMRVLAQLLGLLLCFPGARCDIQMTQSPSSLSASVGDRVTITCRASQGISSW LAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC QQYNSYPYTFGQGTKLEIKRTX (SEQ ID NO:63)

10

15

20

5

[0207] The translation initiation site of the light chain DNA is an ATG codon which starts from adenine (A) at position 19 from the 5'-terminal of SEQ ID NO:62, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 399 and cytosine (C) at position 400 from the 5'-terminal. In the light chain amino acid sequence, the light chain variable region is up to lysine (K) residue at position 129 from the N-terminal of SEQ ID NO:63, and the constant region is on and after arginine (R) at position 130. By a gene sequence estimation software (Signal P ver. 2), it was estimated that the signal sequence of light chain is up to cysteine (C) at position 22 from the N-terminal of SEQ ID NO:63. It is considered that the N-terminal of the mature form is aspartic acid (D) at position 23 of SEQ ID NO:63.

[0208] Each of DNA molecules encoding the heavy chain variable region and the light chain variable region of Old19 and the amino acid sequences of the heavy chain variable region and light chain variable region was shown in the following.

<Old19 heavy chain variable region>

[0209]

25

30

40

35

<Old19 heavy chain variable region>

[0210]

50

45

MDWTWRFLFVVAAATGVQSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAI SWVRQAPGQGLEWVGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSE DTAVYYCARGHKYGPYYFDYWGQGTLVTVSSASTK (SEQ ID NO:65)

[0211] The translation initiation site of the heavy chain DNA is an ATG codon which starts from adenine (A) at position

9 from the 5'-terminal of SEQ ID NO:64, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 425 and guanine (G) at position 426 from the 5'-terminal. In the heavy chain amino acid sequence, the heavy chain variable region is up to serine (S) residue at position 139 from the N-terminal of SEQ ID NO:65, and the constant region is on and after alanine (A) at position 140. By a gene sequence estimation software (Signal P ver. 2), it was estimated that the signal sequence of heavy chain is up to serine (S) at position 19 from the N-terminal of SEQ ID NO:65. It is considered that the N-terminal of the mature form is the glutamine

(Q) at position 20 of SEQ ID NO:65.

<Old19 light chain variable region>

[0212]

5 AGATCTCTCACCATGGACATGAGGGTCCTCGCTCAGCTCCTGGGGCTCCTGC TGCTCTGTTTCCCAGGTGCCAGATGTGACATCCAGATGACCCAGTCTCCATCC TCACTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTC 10 AGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAGAAACCAGAGAAAGCCCC TAAGTCCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGT TCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCA GCCTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTACCCTCGGA 15 CGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACGGTGGCT (SEQ ID NO:66)

20 <Old19 light chain variable region>

[0213]

MDMRVLAQLLGLLLLCFPGARCDIQMTQSPSSLSASVGDRVTITCRASQGISSW 25 LAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC QQYNSYPRTFGQGTKVEIKRTVA (SEQ ID NO:67)

30 [0214] The translation initiation site of the light chain DNA is an ATG codon which starts from adenine (A) at position 13 from the 5'-terminal of SEQ ID NO:66, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 399 and cytosine (C) at position 400 from the 5'-terminal. In the light chain amino acid sequence, the light chain variable region is up to lysine (K) residue at position 129 from the N-terminal of SEQ ID NO:67, and the constant region is on and after arginine (R) at position 130. By a gene sequence estimation software (Signal P ver. 2), it was estimated that the signal sequence of light chain is up to cysteine (C) at position 22 from the N-terminal of SEQ ID NO:67. It is considered that the N-terminal of the mature form is aspartic acid (D) at position 23 of SEQ ID NO:67.

[0215] Each of DNA molecules encoding the heavy chain variable region and the light chain variable region of New102 and the amino acid sequences of the heavy chain variable region and light chain variable region was shown in the following.

<New102 heavy chain variable region>

[0216]

40

50

55

45 TCGACCACCATGGACTGGACCTGGAGGTTCCTCTTTGTGGTGGCAGCAGCTA CAGGTGTCCAGTCCCAGGTCCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGA

35

AGCCTGGATCCTCGGTGAAGGTCTCCTGCATGGCTTCAGGAGGCACCGTCAG
CAGCTACGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTG
GATGGGAGAGATCATCCCTATCTTTGGTATAGTAAACTACGCACAGAAGTTCC
AGGGCAGAGTCACGATTACCGCGGACGAATCCACGAACACACCCTACATGG
AGCTGAGCAGCCTGAGATCTGAGGACACGGCCATATATTACTGTGCGAGAGA
GACAGCAGTGGCTGGTATTCTTGGTTACTGGGGCCAGGGAACCCTGGTCACC
GTCTCCTCAGCTAGCACCAAG (SEQ ID NO:68)

<New102 heavy chain variable region>

15 **[0217]**

5

10

20

30

40

45

50

MDWTWRFLFVVAAATGVQSQVQLVQSGAEVKKPGSSVKVSCMASGGTVSSYA ISWVRQAPGQGLEWMGEIIPIFGIVNYAQKFQGRVTITADESTNTAYMELSSLRS EDTAIYYCARETAVAGILGYWGQGTLVTVSSASTK (SEQ ID NO:69)

[0218] The translation initiation site of the heavy chain DNA is an ATG codon which starts from adenine (A) at position 9 from the 5'-terminal of SEQ ID NO:68, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 423 and guanine (G) at position 424 from the 5'-terminal. In the heavy chain amino acid sequence, the heavy chain variable region is up to serine (S) residue at position 138 from the N-terminal of SEQ ID NO:69, and the constant region is on and after alanine (A) at position 139. By a gene sequence estimation software (Signal P ver. 2), it was estimated that the signal sequence of heavy chain is up to serine (S) at position 19 from the N-terminal of SEQ ID NO:69. It is considered that the N-terminal of the mature form is glutamine (Q) at position 20 of SEQ ID NO:69.

<New102 light chain variable region>

[0219]

35

AGATCTCTCACCATGGACATGAGGGTCCTCGCTCAGCTCCTGGGGCTCCTGC
TGCTCTGTTTCCCAGGTGCCAGATGTGACATCCAGATGACCCAGTCTCCATCC
TCACTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTC
AGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAGAAACCAGAGAAAGCCCC
TAAGTCCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGT
TCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCA
GCCTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTACCCGTACA
CTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGTACGGTGGCTGCA (SEQ
ID NO:70)

<New102 light chain variable region>

[0220]

55

MDMRVLAQLLGLLLCFPGARCDIQMTQSPSSLSASVGDRVTITCRASQGISSW LAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC OOYNSYPYTFGQGTKLEIKRTVAA (SEQ ID NO:71)

[0221] The translation initiation site of the light chain DNA is an ATG codon which starts from adenine (A) at position 13 from the 5'-terminal of SEQ ID NO:70, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 399 and cytosine (C) at position 400 from the 5'-terminal. In the light chain amino acid sequence, the light chain variable region is up to lysine (K) residue at position 129 from the N-terminal of SEQ ID NO:71, and the constant region is on and after arginine (R) at position 130. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of light chain was estimated to be up to cysteine (C) at position 22 from the N-terminal of SEQ ID NO:71. The N-terminal of the mature form was considered to be aspartic acid (D) at position 23 of SEQ ID NO:71.

[0222] Each of DNA molecules encoding the heavy chain variable region and the light chain variable region of Old6 and amino acid sequences of the heavy chain variable region and the light chain variable region was shown in the following.

<Old6 heavy chain variable region>

20 [0223]

5

10

15

25

30

35

40

45

50

55

CGACCCACCATGGAACTGGGGCTCCGCTGGGTTTTCCTTGTTGCTATTTTAGA
AGGTGTCCAGTGTGAGGTGCAGTTGGTGGAGTCTGGGGGAGGCCTGGTCAA
GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGT
AGCCATAACATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGG
GTCTCATCCATTAGTAGTAGTAGTAGTTACATATATTATGCAGACTCAGTGAAG
GGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAA
TGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAGG
ACTGGGGCTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC
AGCTAGC (SEQ ID NO:72)

<Old6 heavy chain variable region>

[0224]

[022

MELGLRWVFLVAILEGVQCEVQLVESGGGLVKPGGSLRLSCAASGFTFSSHNMN WVRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAE DTAVYYCAREDWGYFDYWGQGTLVTVSSASTK (SEQ ID NO:73)

[0225] The translation initiation site of the heavy chain DNA is an ATG codon which starts from adenine (A) at position 10 from the 5'-terminal of SEQ ID NO:72, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 417 and guanine (G) at position 418 from the 5'-terminal. In the heavy chain amino acid sequence, the heavy chain variable region is up to serine (S) residue at position 136 from the N-terminal of SEQ ID NO:73, and the constant region is on and after alanine (A) at position 137. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of heavy chain was estimated to be up to cysteine (C) at position 19 from the N-terminal of SEQ ID NO:73. The N-terminal of the mature form was considered to be glutamic acid (E) at position 20 of SEQ ID NO:73.

<Old6 light chain variable region>

[0226]

AGATCTCTCACCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTTCTGC
TGCTCTGGCTCCCAGGTGCCAGATGTGCCATCCAGTTGACCCAGTCTCCATCC
TCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTC
AGGGCATTAGCAGTGATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCTCC
TAAGCTCCTGATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGT
TCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCA
GCCTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAGTTACCCATTCAC
TTTCGGCCCTGGGACCAAAGTGGATATCAAACGTACGGT (SEQ ID NO:74)

15 <Old6 light chain variable region>

[0227]

5

10

20

35

40

45

50

55

MDMRVPAQLLGLLLWLPGARCAIQLTQSPSSLSASVGDRVTITCRASQGISSDL AWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC QQFNSYPFTFGPGTKVDIKRTVAA (SEQ ID NO:75)

[0228] The translation initiation site of the light chain DNA is an ATG codon which starts from adenine (A) at position 13 from the 5'-terminal of SEQ ID NO:74, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 399 and cytosine (C) at position 400 from the 5'-terminal. In the light chain amino acid sequence, the light chain variable region is up to lysine (K) residue at position 129 from the N-terminal of SEQ ID NO:75, and the constant region is on and after arginine (R) at position 130. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of light chain was estimated to be up to cysteine (C) at position 23 from the N-terminal of SEQ ID NO:75. The N-terminal of the mature form was considered to be alanine (A) at position 24 of SEQ ID NO:75.

[0229] Each of DNA molecules encoding the heavy chain variable region and the light chain variable region of 7G3 and the amino acid sequences of the heavy chain variable region and light chain variable region was shown in the following.

<7G3 heavy chain variable region>

[0230]

GTCGACCACCATGGG<u>ATG</u>GAGCTGGATCTTTCTCTTTCTCGTGTCAGGAACT GGAGGTGTCCTCTCTGAGGTCCAGCTGCAACAGTCTGGACCTGAGCTGGTG AAGCCTGGGGCTTCAGTAAAGATGTCCTGCAAGGCTTCTGGATACACCTTCA

CTGACTACATGAAGTGGGTGAAACAGAGCCATGGAAAGAGCCTTGAGT
GGATTGGAGATATTATTCCTAGCAATGGTGCCACTTTCTACAACCAGAAGTTC
AAGGGCAAGGCCACTTTGACTGTGGACAGATCCTCCAGCACAGCCTACATGC
ACCTCAACAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTACAAGATCG
CATTTACTGCGGGCCTCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGGTCA
CTGTCTCTGCAGCTAGC (SEQ ID NO:76)

<7G3 heavy chain variable region>

[0231]

5

10

15

20

MGWSWIFLFLVSGTGGVLSEVQLQQSGPELVKPGASVKMSCKASGYTFTDYY MKWVKQSHGKSLEWIGDIIPSNGATFYNQKFKGKATLTVDRSSSTAYMHLNSLT SEDSAVYYCTRSHLLRASWFAYWGQGTLVTVSAAS (SEQ ID NO:77)

[0232] The translation initiation site of the heavy chain DNA is an ATG codon which starts from adenine (A) at position 16 from the 5'-terminal of SEQ ID NO:76, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 427 and guanine (G) at position 428 from the 5'-terminal. In the heavy chain amino acid sequence, the heavy chain variable region is up to alanine (A) residue at position 139 from the N-terminal of SEQ ID NO:77, and the constant region is on and after alanine (A) at position 140. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of heavy chain was estimated to be up to serine (S) at position 19 from the N-terminal of SEQ ID NO:77. The N-terminal of the mature form was considered to be glutamic acid (E) at position 20 of SEQ ID NO:77.

<7G3 light chain variable region>

[0233]

25 AGATCTCACCATGGAATCACAGACTCAGGTCCTCATGTCCCTGCTGTTCTGGG
TATCTGGTACCTGTGGGGACTTTGTGATGACACAGTCTCCATCCTCCCTGACT
GTGACAGCAGGAGAGAAGGTCACTATGAGCTGCAAGTCTAGTCAGAGTCTG
TTAAACAGTGGAAATCAAAAGAACTACTTGACCTGGTATCTGCAGAAACCAG
GGCAGCCTCCTAAATTGTTGATCTATTGGGCATCCACTAGGGAATCTGGGGTC
CCTGATCGCTTCACAGGCAGTGGATCTGGAACAGATTTCACTCTCACCATCA
GCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGTCAGAATGATTATAGT
TATCCGTACACGTTCGGAGGGGGGGACCAAGCTGGAAATAAAACGT (SEQ ID
NO:78)

<7G3 light chain variable region>

[0234]

40

45

50

MESQTQVLMSLLFWVSGTCG<u>D</u>FVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSG NQKNYLTWYLQKPGQPPKLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAE DLAVYYCQNDYSYPYTFGGGTKLEI<u>K</u>R (SEQ ID NO:79)

[0235] The translation initiation site of the light chain DNA is an ATG codon which starts from adenine (A) at position 11 from the 5'-terminal of SEQ ID NO:78, and a boundary between the variable region and the constant region of the antibody is located between adenine (A) at position 409 and cytosine (C) at position 410 from the 5'-terminal. In the light chain amino acid sequence, the light chain variable region is up to lysine (K) residue at position 133 from the N-terminal of SEQ ID NO:79, and the constant region is on and after arginine (R) at position 134. By a gene sequence estimation software (Signal P ver. 2), the signal sequence of light chain was estimated to be up to the glycine (G) at position 22 from the N-terminal of SEQ ID NO:79. The N-terminal of the mature form was considered to be aspartic acid (D) at position 22 of SEQ ID NO:79.

(Preparation of recombinant type antibodies)

5

10

15

[0236] Cells expressing a recombinant antibody were prepared by introducing each of the constructed six recombinant antibody expression vectors into a host cell. HEK293F (Invitrogen) was used as a host cell for expression.

[0237] Each expression vector was introduced into HEK293F using 293Fectin (Invitrogen). The HEK293F was cultured under conditions of 5% $\rm CO_2$ and 37°C using a shaker, and the culture supernatant was recovered about 5 days after culturing. The recovered culture supernatant was subjected to affinity purification using rmp Protein A (Amersham-Pharmacia Biotech). PBS as an adsorption buffer and 0.02 M of glycine buffer (pH 3) as an elution buffer, using 0.8×40 cm column (Bio-Rad Laboratories) and the like depending on the amount for the purification. The elution fraction was adjusted to about pH 7.2 by adding 1 M of Tris (pH 9.0). The thus prepared antibody solution was substituted to PBS using a dialysis membrane (10,000 cut, Spectrum Laboratories) and subjected to sterilization by filtration using a membrane filter MILLEX-GV having a pore size of $0.22~\mu m$ (Millipore), thereby obtaining a purified human anti-IL-3R α monoclonal antibody. The concentration of the purified antibody was calculated by measuring absorbance at 280 nm and regarding 1 mg/ml as 1.4 OD.

[0238] A summary of amino acid sequences and SEQ ID NOs of each human antibody CDR (complementarity-determining region) was shown in Table 1.

[Table 1]

			[rable i]		
20	Heavy chain variable region	SEQ ID NO CDR 1 CDR 2 CDR 3	CDR 1	CDR 2	CDR3
25	Old4	113 114 115	TYAIS	GIIPIFGIVNYAQKFQG	GGGSGPDVLDI
30	Old5	116 117 118	TYAIS	GLIPIFDIENYAQKFQG	GGGSGPDVLDI
	Old17	119 120 121	NFAIS	GIIPIFGSTNYAQKFQG	GDKYGPYYFHY
35	Old19	122 123 124	SYAIS	GIIPIFGTANYAQKFQG	GHKYGPYYFDY
40	New102	125 126 127	SYAIS	EIIPIFGIVNYAQKFQG	ETAVAGILGY
45	Old6	128 129 130	SHNMN	SISSSSYIYYADSVKG	EDWGYFD
	Light chain variable region	SEQ ID NO CDR 1, CDR 2, CDR 3	CDR 1	CDR 2	CDR 3
	Old4	131, 132, 133	RMSQGIRSYLA	AASTLQS	QQYYSFPYT
50	Old5	134, 135, 136	RMSQGIRSYLA	AASTLQS	QQYYSFPYT
	Old17	137, 138, 139	RASQGISSWLA	AASSLQS	QQYNSYPYT
	Old19	140, 141, 142	RASQGISSWLA	AASSLQS	QQYNSYPRT
<i></i>	New102	143, 144, 145	RASQGISSWLA	AASSLQS	QQYNSYPYT
55	Old6	146, 147, 148	RASQGISSDLA	DASSLES	QQFNSYPFT

Example 5 Purification of anti-IL-3R α human antibody from hybridoma culture supernatant

[0239] A hybridoma was cultured after adapting from the IL-6-containing DMEM medium used in Example 3 to E-RDF medium (Kyokuto Pharmaceutical Industrial Co., Ltd.). An antibody was purified from the culture supernatant. The purification of the antibody was carried out in accordance with Example 4.

[0240] Firstly, a hybridoma producing a human anti-IL-3R α monoclonal antibody was adapted to eRDF medium (Kyokuto Pharmaceutical Industrial Co., Ltd.) containing 10 ng/ml IL-6 and 10% fetal calf serum (FCS: SIGMA). Next, the obtained hybridoma was adapted to eRDF medium (Kyokuto Pharmaceutical Industrial Co., Ltd.) containing bovine insulin (5 μ g/ml, GIBCO BRL), human transferrin (5 μ g/ml, GIBCO BRL), ethanolamine (0.01 mM, SIGMA), sodium selenite (2.5×10-5 mM, SIGMA) and 1% low IgG FCS (HyClone). This adapted hybridoma was cultured in a flask, and the culture supernatant was recovered. The recovered supernatant was subjected to 10 μ m and 0.2 μ m filters (Gelman Sciences Inc.) to remove useless articles such as a hybridoma and the like. The antibody was purified from the thus recovered supernatant by the same method as Example 4.

15 Example 6 Calculation of association and dissociation constants using the purified anti-IL-3Rα human antibody

[0241] The association and dissociation constants of the purified anti-IL-3R α antibody were analyzed using an analyzer which is based on a surface plasmon resonance principal (Biacore, GE Healthcare, hereinafter GE). Briefly, an antihuman antibody or anti-mouse antibody was immobilized on a CM5 sensor tip, then an anti-IL-3R α human or mouse antibody was applied thereto to allow to bind, then the soluble form of IL-3R α protein prepared in Example 2 was applied thereto, and the association and dissociation were observed using Biacore 2000. Through the whole test steps, the test method of GE Healthcare for the calculation of association and dissociation constants was basically employed.

[0242] Specifically, CM5 (research grade) was used for a sensor tip (each GE). Firstly, the CM5 tip was activated by applying an equivalent mixture of 400 mM EDC (N-ethyl-N'-(3-dimethylaminopropyl)carbodiimidehydrochloride) and 100 mM NHS (N-hydroxysuccinimide) to the CM5 tip. Next, an antibody to the human antibody attached to the Human Antibody Capture Kit (GE) (hereinafter, referred to as anti-human antibody antibody) was diluted with the solution attached to the kit and applied thereto, thereby immobilizing the required amount of the anti-human antibody antibody to the CM5 tip. Regarding the mouse antibody to be used as a control, an antibody to the mouse antibody attached to the Mouse Antibody Capture Kit (GE) (hereinafter, referred to as anti-mouse antibody antibody) was diluted with the solution attached to the kit and applied thereto, thereby immobilizing a necessary amount thereof to the CM5 tip. Next, the surface of the activated tip was blocked and inactivated by applying 1 M of ethanolamine dihydrochloride thereto. By the above steps until this, preparation of a CM5 sensor tip which can measure the dissociation constant K_D was completed.

[0243] Next, each of anti-IL-3R α antibodies, , was diluted to give a concentration of 5 μ g/ml with HBS-FP buffer (GE) one kind per one flow cell and applied, thereby allowing it to bind to the immobilized anti-human antibody antibody or anti-mouse antibody antibody. Next, the soluble form of IL-3R α protein was applied thereto. In order to dissociate the bound anti-IL-3R α antibody and soluble form of IL-3R α protein, 3 M MgCl₂ attached to Human Antibody Capture Kit or pH 1.7 of Glycine-HCl attached to Mouse Antibody Capture Kit was applied in the amount attached to the kit. The steps until this were regarded as one step. By repeating the same steps using two or more concentrations of the soluble form of IL-3R α protein, data for calculating association and dissociation constants (sensorgram) were obtained.

[0244] The concentration of the soluble form of human IL-3R α protein applied to a subject was calculated as described in Example 2 by measuring the absorbance at 280 nm and regarding 1 mg/ml as 1.4 OD. The molecular weight of the soluble form of human IL-3R α protein was calculated as follows. Regarding molecular weight of human IL-3R α protein, it has been reported that it comprises 360 amino acid residues, has six N-type sugar chain binding sites and the molecular weight is 70 kDa (The Cytokine Facts Book second edition, Academic Press). Accordingly, the molecular weight of the soluble form of human IL-3R α protein was calculated as about 63 kDa by subtracting molecular weights of the amino acids of the transmembrane region and the intracellular region from 70 kDa known as a reference information and adding, to the resulting value, the molecular weight of the amino acids of the Flag sequence.

[0245] In the analysis, Biaevaluation software (GE) was used and Biaevaluation Software Handbook was refered. Specifically, by carrying out simultaneous analysis of kinetics analysis, employing basically the 1:1 Langmuir binding reaction model and fitting, association rate constant (Ka) and dissociation rate constant (Kd) were calculated, and the value of dissociation constant K_D was calculated by the calculation of Kd/Ka.

[0246] The results are shown in the following table 2.

10

30

35

40

45

50

[Table 2]

Antibody name	Ka	Kd	K _D
Human antibodies			
Old4	3.88×10 ⁵	5.15×10 ⁻⁴	1.33×10 ⁻⁹
Old5	7.17×10 ⁵	4.72×10 ⁻⁴	6.58×10 ⁻¹⁰
Old7	2.08×10 ⁵	2.98×10 ⁻⁴	1.43×10 ⁻⁹
Old19	1.54×10 ⁵	4.99×10 ⁻⁴	3.24×10 ⁻⁹
New102	6.02×10 ⁵	4.80×10 ⁻⁴	7.98×10 ⁻¹⁰
Old6	1.71×10 ⁶	2.15×10 ⁻⁵	1.26×10 ⁻⁹
Chimeric antibody			
7G3	2.48×10 ⁵	4.66×10 ⁻⁴	1.88×10 ⁻⁹
Mouse antibodies			
7G3	1.68×10 ⁵	9.52×10 ⁻⁵	5.66×10 ⁻¹⁰
9F5	7.13×10 ⁴	6.5×10 ⁻⁵	9.11×10 ⁻¹⁰
107D2.08	4,16×10 ⁵	2.03×10 ⁻⁵	4.88×10 ⁻⁸
AC145	7.66×10 ⁴	4.26×10 ⁻⁵	5.57×10 ⁻⁸
L-16	8.13×10 ⁵	4.16×10 ⁻⁵	5.12×10 ⁻⁹

Example 7 Epitope analysis of anti-human IL-3R α human antibody

5

10

15

20

25

30

35

50

55

(Preparation of IL-3R α /GM-CSFR α chimeric protein expression cell)

[0247] In order to carry out epitope analysis of IL-3R α antibody, a chimeric protein in which a portion of the extramembrane region of IL-3R α was replaced by GM-CSFR α was expressed in a cell, and binding activity of each anti-IL-3R α antibody to the cell was analyzed. In brief, firstly, the IL-3R α molecule and GM-CSFR α molecule were divided into three regions (A, B and C domains from the above-mentioned N-terminal), secondly vectors which express molecules in which each of the A, B and C domains of the IL-3R α molecule was replaced by the corresponding domain of GM-CSFR α molecule were respectively constructed, thirdly, these were forcedly expressed in HEK293F cell, and fourthly, whether or not each anti-IL-3R α antibody labeled with a fluorescence dye binds thereto was observed by flow cytometry.

(Preparation of GM-CSFR/pEF6/Myc-HisC plasmid DNA)

[0248] A cDNA of human GM-CSFR receptor α chain (GM-CSFR α , CD116) was amplified from a spleen-derived cDNA (CLONTECH Human MTC Panel) by a PCR method using KOD-Plus-Ver. 2 (Toyobo Co., Ltd.). As a PCR device, GeneAmp PCR System 9700 (Applied Biosystems) was used. Regarding the PCR, after a denaturation step at 94°C for 2 minutes, a three step reaction at 98°C 10 seconds-55°C 30 seconds-68°C 75 seconds was carried out 35 cycles. The PCR primers used are as follows. hCD116Fw-Mfel:

5'-CGGCAATTGCCACCATGCTTCTCCTGGTGACAAGCCT-3' (SEQ ID NO:80) hCD116Rv-NotI: 5'-ATTGCGGCCGCTCAGGTAATTTCCTTCACGG-3' (SEQ ID NO:81)

[0249] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (TAE buffer). DNA was visualized by ethidium bromide staining. A band of at around 1.2 kb was cut out, and the DNA was extracted using JETsorb Kit (Genomed, Bad Oeynhausen, Germany) and then digested with *Not*I and *Mfe*I. A pEF6/Myc-HisC plasmid DNA (Invitrogen) was digested with *Eco*RI and *Not*I. Each DNA was subjected to 0.8% agarose gel electrophoresis and bands of at around 1.2 kb and around 6 kb were cut out, and the DNA molecules were extracted using JETsorb Kit (Genomed, Bad Oeynhausen, Germany). Then, 0.5 μI of a pEF6/Myc-HisC plasmid DNA-derived DNA solution and 4 μI of a PCR product-derived DNA solution were mixed and subjected to ligation using TaKaRa Ligation Kit (TAKARA BIO INC.). Regarding the transformation, a ligation sample and DH5 alpha competent cells were mixed and spread on an LB plate. Insertion check was carried out by colony direct PCR using LA Taq (TAKARA BIO INC.). Regarding the PCR, after a denaturation step at 94°C for 5 minutes, a three step reaction at 94°C 30 seconds-55°C 30 seconds-72°C

2 minutes was carried out 40 cycles and then a treatment at 99°C for 30 minutes was carried out.

[0250] The PCR primers used were as follows.

hCD116Fw-Mfel:5'-CGGCAATTGCCACCATGCTTCTCCTGGTGACAAGCCT-3' (SEQ ID NO:82)

hCD116Rv-Notl:5'-ATTGCGGCCGCTCAGGTAATTTCCTTCACGG-3' (SEQ ID NO:83)

[0251] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. Using a colony from which amplification of around 1.2 kb was obtained, nucleotide sequence was determined by a direct sequencing method. In the reaction of sequence samples, BigDye(R) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and GeneAmp PCR System 9700 (Applied Biosystems) were used (these were used in the all DNA sequence analyses in this specification). The PCR primers used are as follows.

hCD116Rv-Notl: 5'-ATTGCGGCCGCTCAGGTAATTTCCTTCACGG-3' (SEQ ID NO:85)

hCD116SeqFw1: 5'-TGAACTGTACCTGGGCGAGG-3' (SEQ ID NO:86)

hCD116SeqFw2: 5'-CTGGCACGGAAAACCTACTG-3' (SEQ ID NO:87)

hCD116SegRv1: 5'-CCTGAATTTGGATAAAGCAG-3' (SEQ ID NO:88)

[0252] ABI 3700XL DNA analyzer (Applied Biosystems) was used as a sequence analyzing device (this was used in the all DNA sequence analyses in this specification). By selecting a clone in which mutation in the amino acid sequence by PCR was not found, plasmid DNA was extracted by Largeprep method (QIAGEN).

(Preparation of IL-3RA-FLAG/pEGFP-N1)

10

20

30

35

50

[0253] The full length cDNA of human IL-3R α (CD123) was amplified by PCR and FLAG tag was linked to its downstream (IL-3RA-FLAG/pEGFP-N1).

[0254] Human IL-3RA cDNA was amplified by a PCR method using hCD123/pEGFP-N1 plasmid DNA as a template and LA Taq (TAKARA BIO INC.). Regarding the PCR, after a denaturation step at 95°C for 30 seconds, a three step reaction at 95°C 15 seconds-56°C 15 seconds-72°C 60 seconds was carried out 10 cycles and then 2 minutes of an elongation reaction was carried out. The PCR primers used are as follows.

T7: 5'-TAATACGACTCACTATAGGG -3' (SEQ ID NO:89) hCD123-C-FLAG-R1:

5'-TCGTCATCGTCCTTGTAGTCAGTTTTCTGCACGACCTGTA-3' (SEQ ID NO:90)

[0255] Using 2 μ I of the PCR product as a template, amplification was carried out by a PCR method using LA Taq (TAKARA BIO INC.). Regarding the PCR, after a denaturation step at 95°C for 1 minute, a three step reaction at 95°C 15 seconds-56°C 15 seconds-72°C 60 seconds was carried out 15 cycles and then an elongation reaction at 72°C for 2 minutes was carried out. The PCR primers used are as follows. IL-3R α Fw:

5'-CGGCAATTGCCACCATGGTCCTCCTTTGGCTCAC-3' (SEQ ID NO:91) C-FLAG-NotR2:

5'-AAAAGCGGCCGCTCACTTGTCGTCATCGTCCTTGTAGTC-3' (SEQ ID NO:92)

[0256] The thus obtained PCR products were subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A band of at around 1 kb was cut out, and the DNA was extracted using Wizard SV Gel and PCR Clean-Up System. The whole amount of the extracted DNA was digested with *Mf*el and *Not*l and subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A band of at around 1 kb was cut out, and the DNA was extracted using Wizard SV Gel and PCR Clean-Up System. Then, 5 μl of the thus extracted IL-3RA-FLAG cDNA and 1 μl of the pEGFP-N1 plasmid DNA which had been cleaved with *Eco*Rl and *Not*l were mixed and ligated using TaKaRa Ligation Kit (TAKARA BIO INC.). Regarding the transformation, a ligation sample and DH10B competent cells were mixed and spread on an LB plate (containing kanamycin). Insertion check was carried out by colony direct PCR using LA Taq (TAKARA BIO INC.). Regarding the PCR, after a denaturation step at 95°C for 1 minute, a three step reaction at 95°C 15 seconds-56°C 15 seconds-72°C 60 seconds was carried out 35 cycles and then an elongation reaction at 72°C for 2 minutes was carried out. The PCR primers used are as follows.

pEGFP-N1-Fw: 5'-CGTGTACGGTGGGAGGTCTA-3' (SEQ ID NO:93)

pEGFP-N1-Re: 5'-TTTATGTTTCAGGTTCAGG-3' (SEQ ID NO:94)

[0257] A plasmid DNA was extracted by a Miniprep method from a colony in which amplification of around 0.8 kb was obtained.

[0258] It was found by a DNA sequence analysis that the purified IL-3RA-FLAG/pEGFP-N1 plasmid DNA does not have a mutation caused by the PCR and that the FLAG tag is present therein. The primers used in the DNA sequence analysis are as follows.

pEGFP-N1-Fw: 5'-CGTGTACGGTGGGAGGTCTA-3' (SEQ ID NO:95)

pEGFP-N1-Re: 5'-TTTATGTTTCAGGTTCAGG-3' (SEQ ID NO:96)

(Domain mapping of IL-3R α)

[0259] As a result of BLASTP search (database: Protein Data Bank proteins (pdb)), IL-13 receptor alpha chain (IL-13R α) was hit with the highest score (PDB: 3BPNC; Chain C, Crystal Structure of the II4-II4r-II13ra Ternary Complex). Using the PDB file down-loaded from Protein Data Bank and a graphic software RasMol, three-dimensional structure of the IL-13R α , protein was visualized and three domains constituting the extracellular region (the above-mentioned A, B and C domains) were divided. Using a Multiple Alignment software MUSCLE, IL-3R α amino acid sequence and IL-13R α amino acid sequence were compared and IL-3R α extracellular region was also divided into three domains. Further, GM-CSFR α and IL-3R α were compared in the same manner and GM-CSFR α extracellular region was also divided into three domains.

[0260] In order to assign epitopes of anti-human IL-3R α human antibodies, proteins in which each of the three domains of IL-3R α was replaced one by one by said domains of GM-CSFR α were prepared and expressed on the cell membrane and the presence or absence of antibody binding was confirmed.

[0261] Using the IL-3RA-FLAG/pEGFP-N1 plasmid DNA as a template, amplification was carried out by a PCR method which uses PrimeSTAR(R) HS DNA Polymerase (TAKARA BIO INC.). Regarding the PCR, a two step reaction at 98°C 10 seconds-68°C 6 minutes was carried out 25 cycles. The PCR primers used are as follows. A domain deficiency;

CD123R11pEGFPN1: AAAGGTACCGAATTCGAAGCTTGAGCTC (SEQ ID NO:97)

CD123F11: AAAGGTACCGGGAAGCCTTGGGCAGGT (SEQ ID NO:98)

20 B domain deficiency;

30

55

CD123R12-2: AAAGGTACCACTGTTCTCAGGGAAGAGGAT (SEQ ID NO:99)

CD123F12-2: AAAGGTACCCAGATTGAGATATTAACTCC (SEQ ID NO:100)

C domain deficiency;

CD123R13: AAAGGTACCTGAAAAGACGACAAACTT (SEQ ID NO:101)

CD123F13: AAAGGTACCTCGCTGCTGATCGCGCTG (SEQ ID NO:102)

[0262] The thus obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. After confirming the amplification, this was purified using Wizard SV Gel and PCR Clean-Up System. The thus obtained DNA was digested with *Kpn*l and *Dpnl*, purified using Wizard SV Gel and PCR Clean-Up System and ligated using TaKaRa Ligation Kit. Regarding the transformation, a ligation sample and DH10B competent cells were mixed and spread on an LB plate (containing kanamycin). Insert check was carried out by colony direct PCR using LA Taq (TAKARA BIO INC.). Regarding the PCR, after a denaturation step at 95°C for 1 minute, a three step reaction at 95°C 15 seconds-56°C 15 seconds-72°C 40 seconds was carried out 38 cycles and then an elongation reaction at 72°C for 2 minutes was carried out. The PCR primers used are as follows. pEGFP-N1-Fw:5'-CGTGTACGGTGGGAGGTCTA-3' (SEQ ID NO:103)

pEGFP-N1-Re:5'-TTTATGTTTCAGGTTCAGG -3' (SEQ ID NO:104)

[0263] The thus obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A plasmid DNA was extracted by the Miniprep method from a colony in which amplification at around 1 kb was obtained.

[0264] Using the GM-CSFR/pEF6/Myc-HisC plasmid DNA as a template, amplification was carried out by a PCR method which uses PrimeSTAR(R) HS DNA Polymerase (TAKARA BIO INC.). Regarding the PCR, a two step reaction at 98°C 10 seconds-68°C 30 seconds was carried out 25 cycles. The PCR primers used are as follows.

A domain insertion;

GM-CSFRF11: AAAGGTACCGCCACCATGCTTCTCCTGGTGACA (SEQ ID NO:105)

GM-CSFRR11: AAAGGTACCTGAATTTGGATAAAGCAG (SEQ ID NO:106)

45 B domain insertion;

GM-CSFRF12: AAAGGTACCGGAAGGGAGGGTACCGCT (SEQ ID NO:107)

GM-CSFRR12: AAAGGTACCCTTTGTGTCCAAAAGTGA (SEQ ID NO:108)

C domain insertion;

GM-CSFRF13: AAAGGTACCAAAATAGAACGATTCAAC (SEQ ID NO:109)

50 GM-CSFRR13: AAAGGTACCAATGTACACAGAGCCGAG (SEQ ID NO:110)

[0265] The thus obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. After confirming the amplification, this was purified using Wizard SV Gel and PCR Clean-Up System.

[0266] The thus obtained DNA was digested with *KpnI* and then purified using QIAquick Gel Extraction Kit (QIAGEN), mixed with IL-3RA-FLAG/pEGFP-N1 plasmid DNA in which the corresponding domain was deleted (already cleaved with KpnI and purified) and ligated using TaKaRa Ligation Kit. Regarding the transformation, a ligation sample and DH10B competent cells were mixed and spread on an LB plate (containing kanamycin). Insert check was carried out by colony direct PCR using LA Taq (TAKARA BIO INC.). Regarding the PCR, after a denaturation step at 95°C for 1

minute, a three step reaction at 95°C 15 seconds-56°C 15 seconds-72°C 40 seconds was carried out 38 cycles and then an elongation reaction at 72°C for 2 minutes was carried out. The PCR primers used are as follows.

pEGFP-N1-Fw: 5'-CGTGTACGGTGGGAGGTCTA-3' (SEQ ID NO:111)

pEGFP-N1-Re: 5'-TTTATGTTTCAGGTTCAGG -3' (SEQ ID NO:112)

[0267] The thus obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A plasmid DNA was extracted by the Miniprep method from a colony in which amplification at around 1 kb was obtained.

(Labeling of anti-IL-3R α human antibody with fluorescence dye)

10

25

30

35

50

55

[0268] In order to determine binding activity of anti-human IL-3R α human antibodies, each human antibody was labeled with a fluorescence dye AlexaFlour488 (Molecular Probe, Invitrogen). Regarding the labeling method, it was carried out in accordance with the manual provided by Invitrogen, and regarding the detection, fluorescence was detected by FL1 of a flow cytometry (FACS Calibur, BD Biosciences).

[0269] Specifically, 1/10 volume of 1 M Na_2CO_3 was added to an antibody solution dissolved in PBS. Next, a predetermined amount of the antibody solution described in the manual was added to a container containing powder of AlexaFlour488 to which tetrafluorophenyl (TFP) had been added, and allowed to undergo the reaction in the dark at room temperature for 1 hour while stirring. Next, after a gel filtration column (NAP-10 and the like, GE Healthcare) was sufficiently substituted with PBS, the solution of antibody reacted with AlexaFlour488 was added thereto while the buffer of the antibody solution was substituted with PBS. An antibody fraction which showed yellow green was obtained. Regarding the AlexaFlour488-labeled anti-human IL-3R α antibody obtained in the above manner, the absorbances at wavelengths of 280 nm and 494 nm (A280 and A494, respectively) were measured using a spectrometer, and the antibody concentration was calculated by the following calculation formula.

Antibody concentration (mg/ml) = $(A280 - A494 \times 0.11)/1.4$

(Flow cytometry analysis of IL-3R α /GM-CSFR α chimeric protein expression cell using labeled anti-IL-3R α antibody) **[0270]** HEK293T cell (ATCC CRL 1268) was used for the preparation of the IL-3R α /GM-CSFR α chimeric protein expression cell. Using 293Fectin (Invitrogen), the plasmid DNA obtained in the above was introduced as an expression vector into the HEK293T. The HEK293T to which the expression vector was introduced was cultured using a shaker under conditions of 5% CO $_2$ and 37°C after 2 days of the introduction, the obtained protein was used for in the flow cytometry analysis.

[0271] From 100,000 to 1,000,000 cells of the chimeric protein expression cell were allowed to react for 30 minutes on ice with at a concentration of 1 μ g/ml with an AlexaFlour488-labeled human antibody or a commercially available FITC-labeled anti-IL-3R α mouse antibody (7G3 or 9F5: both from BD Biosciences, 6H6: Acris Antibodies, AC 145: Milteny Biotech, 107D2.08: Dendritics). A staining medium (Dulbecco's PBS supplemented with 2% fetal bovine serum, 2 mM EDTA and 0.05% NaN $_3$) was used for the dilution of antibodies and cells. Next, the cells reacted with antibodies were washed three times with the staining medium and whether the labeled antibody bound to the cell was confirmed by flow cytometry.

[0272] The results are shown in Figs. 1 and 2. Reactions of 7G3, 9F5, 6H6 and AC 145 antibodies disappeared only in the cells expressing a protein in which A domain was replaced by GM-CSFR α . On the other hand, reactions of Old4, Old5, Old19 and New102 antibodies disappeared in the cells expressing a protein in which B domain was replaced by GM-CSFR α . Regarding Old19, its reaction with the cells expressing a protein in which A domain was replaced by GM-CSFR α also disappeared. Regarding the Old6 and 107D2.08, their reaction to B domain- and C domain-substituted protein expression cells disappeared.

[0273] Based on the above, it was shown a possibility that 7G3, 9F5, 6H6 and AC 145 recognized A domain, and Old4, Old5 and New102 recognized B domain, Old19 recognized A domain and B domain, and Old6 and 107D2.08 recognized B domain and C domain. Accordingly, the reactivity of various anti-IL-3R α antibodies to A to C domains of IL-3R α was as the following Table 3.

[Table 3]

	7G3	9F5	6H6	AC 145	107D2.08	Old19	New102	Old4	Old5	Old6	Old28
No substitution	++	++	++	++	++	++	++	++	++	++	++
A domain substitution	-	-	-	-	++	-	++	++	++	++	+
B domain substitution	++	++	++	+	-	-	-	-	-	-	-

(continued)

	7G3	9F5	6H6	AC 145	107D2.08	Old19	New102	Old4	Old5	Old6	Old28
C domain substitution	++	++	++	++	-	++	++	++	++	-	++

Example 8 Analysis of IL-3 signaling blocking activity of anti-IL-3R α antibodies

5

10

15

20

25

30

35

50

55

[0274] In order to examine whether the thus obtained IL-3R α antibodies inhibit IL-3 signaling, a cell line TF-1 (DMSZ no. ACC344) which grows IL-3- or GM-CSF-dependently was used. Specifically, the TF-1 cell was diluted with RPMI 1640 medium containing 1 ng/ml of IL-3 and 10% fetal calf serum (TF-1 medium) and dispensed on a 96-well plate. Further, various IL-3R α antibodies and a human serum-derived IgG as a negative control antibody were diluted with the TF-1 medium, transferred to the 96-well plate and added in such a manner that final concentration of each antibody gave a final concentration of 10 or 100 μ g/ml. As a control, a well of cell-free medium alone and a well to which the TF-1 cell was added were prepared. After 3 days of culturing under an environment of 37°C and 5% CO₂, CelltiterGlo (Promega) was added thereto in an amount equivalent to the medium. After 30 minutes of still standing, the emission was determined using a plate reader (ARBO, Perkin Elmer).

[0275] For the growth inhibition ratio, the following calculation was carried out.

(emission of sample - well with no cells)/(well to which TF-1 cell alone was added - well with no cells)×100 (%)

[0276] Regarding the commercially available antibodies 9F5, 6H6 and 107D2.08, an NAP-5 column was used for the purpose of substituting the buffer with PBS. Specifically, $0.5 \, \text{ml}$ of an antibody solution was added to the NAP-5 column sufficiently substituted with PBS. Next, by adding 1.0 ml of PBS, the solution discharged from the column was recovered. By carrying out sterilization by filtration using a membrane filter MILLEX-GV (Millipore) having a pore size of $0.22 \, \mu \text{m}$, an antibody dissolved in PBS as a solvent was obtained.

[0277] The results are shown in Fig. 5. It was found that the antibody Old4, antibody Old5, antibody Old17, antibody Old19, antibody New102, antibody 9F5 and antibody 6H6 did not inhibit the IL-3 signaling, and on the other hand, it was found that the antibody 7G3, antibody Old6 and antibody 107D2.08 inhibited IL-3 signaling. Example 9 Examination of influence upon colony forming ability using anti-IL-3R α human antibody

[0278] A colony assay was carried out to find whether various IL-3R α antibodies have effects upon the colony forming ability by hematopoietic precursor cells.

[0279] In brief, 400 cells/ml of cord blood-derived CD34 positive cell (AllCells) was added to a Methocult medium (Stem Cell Technologie) supplemented with erythropoietin, IL-3, G-CSF and Stem Cell Factor, and the number of colonies was measured 14 days to 16 days thereafter. The colonies were counted by dividing them into a granulocyte/macrophage system colony (CFU-GM), an erythroid system colony (BFU-E) and mixed colonies (CFU-Mix or CFU-GEMM). Regarding the classification method of colony types, a manual provided by Stem Cell Technologie or various textbooks on hematology was used as references.

[0280] As the antibodies, each of the chimeric 7G3 antibody as an antibody in which IL-3 signaling blocking activity was found in Example 8 and the New102 antibody as an antibody in which the blocking activity was not found was used. [0281] The results are shown in Fig. 6. In the colony assay in which erythropoietin, IL-3, G-CSF and Stem Cell Factor were added, decrease in the number of colonies and decrease in the colony size were found by the addition of the 7G3 antibody which had the blocking activity of IL-3 signaling. On the other hand, change in the number of colonies by the addition of the New102 antibody was not found. Based on this result, it is considered that the influence upon the normal hematopoietic function is small and side effects are few when the IL-3 signaling is not inhibited or blocked.

Example 10 Antitumor effect in a mouse tumor bearing model using anti-IL-3Rα, human antibody

[0282] The thus obtained anti-IL- $3R\alpha$ antibody was administered to mouse tumor bearing model and its antitumor effect was examined. In brief, a leukemia cell was transferred into a mouse through its caudal vein, the antibody was administered thereto on the next day, and about 3 weeks thereafter, the number of leukemia cells in bone marrow cells collected from a bone of the mouse was counted.

[0283] Specifically, 0.01 ml equivalent of anti-asialoGM1 antiserum (Wako Pure Chemical Industries, Ltd.) was diluted with physiological saline and administered to SCID mouse (CLEA Japan Inc.) (Day -1). On the next day, 500,000 cells of a cell line of acute myeloid leukemia, MOLM13 (ATCC), were transplanted through caudal vein (Day 0). Further on

the next day (Day 1), 10 μ g of the anti-IL-3R α antibody was intraperitoneally administered. The mouse was sacrificed on Day 21, bone marrow was collected from thighbones and shinbones and the bone marrow cells were stained with FITC-labeled human CD45 antibody and PE-labeled anti-IL-3R α (both from BD Biosciences). Specifically, the antibody was added to about 1,000,000 cells of the bone marrow cell, to give a final concentration of 1 μ g/ml for each and allowed to stand still on ice for 30 minutes under shade. Thereafter, the cells stained with the antibody was washed 3 times using a staining medium (a solution prepared by adding 2% fetal bovine serum, 0.05% sodium azide and 2 mM EDTA to PBS (GIBCO)), and a human CD45 positive and human IL-3R α positive cell was detected by a flow cytometry (FACSCalibur, BD Biosciences). Also, at the time of collecting mouse bone marrow, the number of bone marrow cells was counted using TURK solution. Further, the absolute number of the MOLM13 cells contained in one thighbone was counted by simultaneously adding quantified fluorescent beads (Flow-Count, Beckman Coulter) at the time of the above-mentioned antibody staining.

[0284] The results are shown in Fig. 7. It was found that the number of MOLM13 cells in the thighbone bone marrow in each antibody administered group is markedly reduced in comparison with the Vehicle group to which the antibody was not administered. This result shows that the anti-IL-3R α antibody has a possibility as a therapeutic agent for leukemia.

Example 11 Toxicity test of IL-3R α expression cell by anti-IL-3R α antibody

15

30

35

45

50

55

[0285] In order to measure antibody-mediated cytotoxicity (antibody-dependent cellular cytotoxicity, hereinafter referred to as ADCC), this was carried out in the presence of antibody using a human peripheral blood mononuclear cells (peripheral blood mononuclear cells, hereinafter PBMC) as an effector.

[0286] Peripheral blood was collected from a healthy volunteer and an anticoagulant was added thereto. The blood was put statically on FicoII-Plaque Plus (GE Healthcare) such that the interface was not disturbed and centrifuged at 2,000 rpm for 20 minutes using a large centrifuge (CF9RX, Hitachi, Ltd.) The intermediate layer containing the cells was collected and washed with PBS, platelets were removed by centrifugation at 900 rpm for 20 minutes, and the peripheral blood-derived mononuclear cells (PBMC) were used as an effector.

[0287] Further, PBMC cultured overnight under conditions of 37°C and 5% CO₂ using RPMI 1640 medium containing 10% fetal bovine serum to which human IL-2 (Peprotech) was added to a final concentration of 4 ng/ml (40 IU/ml or more) was also used as an effector of ADCC assay.

[0288] In the method, in simple, a target cell is cultured in the presence of an antibody and PBMC and the lysis rate of specific target cell by the antibody is measured.

[0289] The following "Colon-26/hCD123 ADCC assay method" was used for the measurement of the lysis rate. Specifically, a target cell was labeled with 51 Cr by culturing the IL-3R α forced expression Colon-26 cell as a target cell at 37°C for 1 hour in the presence of 5% CO $_2$, together with sodium chromate labeled with a radioisotope 51 Cr (Na $_2$ ⁵¹CrO $_4$, Perkin Elmer, NEZ030S). The labeled target cell was washed 3 times to remove excess 51 Cr and then suspended in the medium and transferred to a 96-well plate to which antibodies had been added in advance at various concentrations. PBMC was suspended in the medium and transferred to the plate to which the target cell and antibodies had been added (effector/target ratio = 100). As the antibodies, the anti-IL-3R α antibody purified in Example 4 was used, and human serum-derived IgG (SIGMA) as a negative control. As various controls, a well of the medium and target cell alone, a well of PBMC and target alone and a well supplemented with Triton-X were prepared. The 96-well plate filled with mixed solutions was cultured at 37°C for 4 hours in the presence of 5% CO $_2$.

[0290] After centrifugation of the plate, $50 \mu l$ of each supernatant was transferred to a scintillator-containing 96-well plate (Lumaplate-TM, Perkin Elmer) and dried at 56° C for 2 hours. The plate was sealed (TopSeal-A, Packard) and measured using a microplate reader (TopCount, Perkin Elmer).

[0291] Regarding the lysis rate of the target cell, amount of ⁵¹Cr in the sodium chromate released into the medium due to the lysis of cells was measured. That is, the "specific lysis rate" was calculated by dividing a value obtained by subtracting the value of a well to which the antibody was not added from the value of each well, by a value obtained by subtracting the value of a well to which the antibody was not added from the value of a well to which Triton-X was added (specific lysis rate is set to 100%).

[0292] The results are shown in Fig. 8 and Fig. 9. In each IL-3R α antibodies, the ADCC activity for the target cell was found depending on the concentration. Also, these antibodies exhibited higher ADCC activity than the chimeric 7G3 antibody as a control. This shows that the IL-3R α antibody exhibit high ADCC activity for IL-3R α expression cells and has a possibility of a treatment in which drug efficacy is a removal of the IL-3R α positive cell.

Example 12 Affinity test of anti-IL-3R α antibody to monkey IL-3R α protein

[0293] Regarding the presence or absence of binding of the thus obtained anti-human IL-3R α antibody to monkey IL-3R α , whether or not the anti-human IL-3R α antibody prepared in Example 7 binds to the *Macaca fascicularis* IL-3R α forced expression cell prepared in Example 1 was analyzed using flow cytometry.

[0294] Specifically, 2×10^5 cells of the monkey IL-3R α forced expression L929 cell were allowed to react with 100 μl so that a final concentration of 10 μg/ml, of the anti-human IL-3R α antibody at 4°C for 30 minutes. The antibodies used are anti-dinitrophenol (DNP) human IgG1 antibody (manufactured by this firm) as a negative control and Old4, Old5, Old17, Old19, New102 and chimeric 7G3 antibodies. Thereafter, this was washed 3 times using a staining medium (Dulbecco's PBS supplemented with 2% fetal bovine serum, 2 mM EDTA and 0.05% NaN₃). Next, a PE-labeled antihuman antibody λ chain specific antibody (Southern Bio) was allowed to undergo the reaction in the staining medium at a final concentration of 1 μg/ml and washed 3 times with the staining medium in the same manner. Finally, the cells were mixed with the staining medium and whether the presence or absence of PE positive was analyzed by flow cytometry. **[0295]** The results are shown in Fig. 10. It was found that the anti-human IL-3R α human antibodies, Old4, Old5, Old17, Old19, New102 and chimeric 7G3 antibodies, react with the *Macaca fascicularis* IL-3R α .

Example 13 Detailed epitope analysis of anti-human IL-3R α human antibodies

(Preparation of IL-3Ra/GM-CSFRa chimeric protein expression cell)

[0296] In order to carry out further detailed epitope analysis of IL-3R α antibodies, a chimeric protein in which a region smaller than the domain of IL-3R α extra-membrane region was replaced by GM-CSFR α was expressed in a cell and affinity of each anti-IL-3R α antibody to the cell was analyzed. In brief, firstly, a region considered to be positioned at outside based on a three dimensional structure prediction of IL-3R α molecule was determined, secondly, vectors which express IL-3R α molecules in which the small region was replaced by GM-CSFR α were respectively constructed, thirdly, these were forcedly expressed in HEK293F cell and fourthly, whether or not each anti-IL-3R α antibody labeled with fluorescence dye binds thereto was observed by flow cytometry.

(Domain mapping of IL-3R α)

15

20

25

30

35

55

[0297] Among the 3 domains divided according to Example 7, A and B domains which were recognized by the obtained antibodies Old19 and New102 were selected and analyzed in detail. Based on the three dimensional structure of IL-4 receptor alpha chain (IL-4R α , CD124) (PDB: 3BPNC; Chain C, Crystal Structure of the II4-II4r-II3ra Ternary Complex), three dimensional structure of IL-3R α was subjected to homology modeling using SWISS-MODEL (http://swissmod-el.expasy.org// SWISS-MODEL.html). The predicted IL-3R α protein structure was visualized using a graphic software RasMol (http://rasmol.org/) and 7 regions considered to be positioned at extracellular amino acid region of IL-3Ra molecule were determined (Fig. 4).

[0298] In order to specify epitope of anti-human IL-3R α human antibody, a protein in which corresponding regions of GM-CSFR α were replaced by the 6 regions of IL-3R α divided as described in the above was prepared and expressed on the cell membrane, and the presence or absence of binding of antibodies was determined.

[0299] Using the IL-3RA-Flag/pEGFP-N1 plasmid DNA as a template, amplification was carried out by a PCR method which uses PrimeSTAR(R) HS DNA polymerase (TAKARA BIO INC.). Regarding the PCR, a two step reaction at 98°C 10 seconds-68°C 5 minutes was carried out 25 cycles. The PCR primers used are as follows. Region 1 Deficiency:

CD123-Fw21: CGTGGAACCCGCAGTGAACAATAGCTATT (SEQ ID NO:149)

CD123-Re21: ACTCTGTTCTTTTTAACACACTCGATATCG (SEQ ID NO:150)

Region 2 Deficiency;

CD123-Fw22: CTTTATCCAAATAACAGTGGGAAGCCTTG (SEQ ID NO:151)

CD123-Re22: CAGTTTCTGTTGGAATGGTGGGTTGGCCACT (SEQ ID NO:152)

45 Region 3 Deficiency;

CD123-Fw23: AGGGAGGGTACCGGTGCGGAGAATCTGACCTGCT (SEQ ID NO: 153)

CD123-Re23: TCCTGAATTTGGATAGAAGAGGATCCACGTGG (SEQ ID NO:154)

Region 4 Deficiency;

CD123-Fw24: GGTCCGACGGCCCCGCGGACGTCCAGTA (SEQ ID NO:155)

50 CD123-Re24 : CCTCGCCCAGGTACAGCTCAAGAAATCCACGT (SEQ ID NO:156)

Region 5 Deficiency;

CD123-Fw25: ACGGAACCAGCGCAGCCTTCGGTATCCCCT (SEQ ID NO:157)

CD123-Re25: TAACCAGAAAGTGGGAACTTTGAGAACC (SEQ ID NO:158)

Region 6 Deficiency;

CD123-Fw26: TCTTTGATTCATTTGTCGTCTTTTCACA (SEQ ID NO:159)

CD123-Re26: ATTGGATGCCGAAGGCTGCGCTCCTGCCC (SEQ ID NO:160)

[0300] The thus obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethicium bromide staining. After confirming the amplification, purification was carried out

using Wizard SV Gel and PCR Clean-Up System. The thus obtained DNA was subjected to phosphorylation using polynucleotide kinase (New England Biolabs) and to ethanol precipitation and then a part thereof was allowed to undergo the reaction using TaKaRa Ligation Kit. Regarding the transformation, a ligation sample and DH10B competent cell were mixed and spread on an LB plate (containing kanamycin). A plasmid DNA was extracted from the thus obtained colony by the Miniprep method and digested with *Xho*I and *Not*I and the insert was verified.

(Flow cytometry analysis of IL-3Ra/GM-CSFRa chimeric protein expression cell using labeled anti-IL-3Rα antibody)

[0301] HEK293T cell was used in the preparation of IL-3R α /GM-CSFR α chimeric protein expression cell. The plasmid DNA obtained in the above was introduced as an expression vector into the HEK293T. HEK293T introduced with the expression vector was cultured under an environment of 5% CO₂ and 37°C and used in the flow cytometry analysis 2 days after the introduction.

[0302] Each of Alexa Flour488-labeled human antibodies or commercially available FITC-labeled anti-IL-3R α mouse antibodies (7G3 and 9F5: both available from BD Biosciences, 6H6: from Acris Antibodies) at a concentration of 1 μ g/ml was allowed to react for 30 minutes on ice with 100,000 to 1,000,000 cells of the chimeric protein expression cell. A staining medium (Dulbecco's PBS containing 2% fetal calf serum, 2 mM EDTA and 0.05% NaN₃) was used for diluting the antibodies and cells. Next, the cells reacted with each antibody were washed 3 times with the staining medium, and whether or not the labeled antibody bound to the cells was confirmed by flow cytometry.

[0303] The results are shown in Fig. 3. The reaction of the antibody c7G3 disappeared only in the case of the protein expression cell in which the region 1 was replaced by GM-CSFR α . Reaction of the Old19 disappeared in the case of the protein expression cell in which the region 2 and region 3 in A domain and region 5 and region 6 in B domain were replaced by GM-CSFR α . Reaction of the New102 disappeared in the case of the protein expression cell in which the region 5 and region 6 of B domain was replaced by GM-CSFR α .

[0304] Based on the above, it was shown a possibility that the antibody Old19 recognized the regions 2 and 3 of A domain and regions 5 and 6 of B domain, and the antibody New102 recognized the regions 5 and 6 of B domain. The above results are summarized as Table 4.

гт	ab	ما	41
LI	au	ııc	4]

Region (domain)	Replacing sequence	7G3	9F5	6H6	Old19	New102
Region 1 (A)	55-DADYSMP-61	-	++	++	++	++
Region 2 (A)	91-STWLFPE-98	++	++	++	-	++
Region 3 (A-B)	97-PENSGKPWA-104	++	++	++	-	++
Region 4 (B)	122-CSWAVGPG-128	++	++	++	++	++
Region 5 (B)	182-ILVRGRS-188	++	++	++	-	-
Region 6 (B)	192-GIPCTDK-198	++	++	++	-	_

INDUSTRIAL APPLICABILITY

[0305] According to the invention, there is provided an antibody to human IL-3R α protein (another name: human CD 123) and a therapeutic agent and a diagnostic agent for myelocytic malignant tumors, particularly acute myeloid leukemia (AML), which comprises a human IL-3R α antibody as an active ingredient.

FREE TEXT OF SEQUENCE LISTING

[0306]

5

10

25

30

35

40

55

SEQ ID NO : 3 : IL-3R α _Fw primer SEQ ID NO : 4 : IL-3R α _Re primer SEQ ID NO : 5 : IL-3R α _ seqF1 primer

SEQ ID NO: 6: Insert (Mfel from Notl) SEQ ID NO: 7: Rhe123Fwl primer SEQ ID NO: 8: Rhe123Rv1 primer

SEQ ID NO: 9: T7 primer SEQ ID NO: 10: SP6 primer

```
SEQ ID NO: 11: Insert (Mefl to Notl) of Macaca fascicularis IL-3Rα
         SEQ ID NO: 12: Insert (Mefl to Notl) of Macaca mulatta IL-3Rα
         SEQ ID NO: 13: hIL-3Rαso1-FLAG-Notl primer
         SEQ ID NO: 14: Insert (Mejl to Notl)
5
         SEQ ID NO: 15: hh-6 primer
         SEQ ID NO: 16: hh-3 primer
         SEQ ID NO: 17: hh-4 primer
         SEQ ID NO: 18: Old4 heavy chain specific primer Fw
         SEQ ID NO: 19: Old4 heavy chain specific primer Rv
10
         SEQ ID NO: 20: Old5 heavy chain specific primer Fw
         SEQ ID NO: 21: Old5 heavy chain specific primer Rv
         SEQ ID NO: 22: Old17 heavy chain specific primer Fw
         SEQ ID NO: 23: Old17 heavy chain specific primer Rv
         SEQ ID NO: 24: Old19 heavy chain specific primer Fw
15
         SEQ ID NO: 25: Old19 heavy chain specific primer Rv
         SEQ ID NO: 26: New102 heavy chain specific primer Fw
         SEQ ID NO: 27: New102 heavy chain specific primer Rv
         SEQ ID NO: 28: Old6 heavy chain specific primer Fw
         SEQ ID NO: 29: Old6 heavy chain specific primer Rv
20
         SEQ ID NO: 30: mH_Rv1 primer
         SEQ ID NO: 31: mH_Rv2 primer
         SEQ ID NO: 32: 7G3 heavy chain specific primer Fw
         SEQ ID NO: 33: 7G3 heavy chain specific primer Rv
         SEQ ID NO: 34: hk-2 primer
25
         SEQ ID NO: 35: hk-6 primer
         SEQ ID NO: 36: Old4 light chain specific primer Fw
         SEQ ID NO: 37: Old4 light chain specific primer Rv
         SEQ ID NO: 3: Old5 light chain specific primer Fw
         SEQ ID NO: 39: Old5 light chain specific primer Rv
30
         SEQ ID NO: 40: Old17 light chain specific primer Fw
         SEQ ID NO: 41: Old17 light chain specific primer Rv
         SEQ ID NO: 42: Old19 light chain specific primer Fw
         SEQ ID NO: 43: Old 19 light chain specific primer Rv
         SEQ ID NO: 44: New102 light chain specific primer Fw
35
         SEQ ID NO: 45: New102 light chain specific primer Rv
         SEQ ID NO: 46: Old6 light chain specific primer Fw
         SEQ ID NO: 47: Old6 light chain specific primer Rv
         SEQ ID NO: 48: mK Rv1 primer
         SEQ ID NO: 49: mK Rv2 primer
40
         SEQ ID NO: 50: 7G3 light chain specific primer Fw
         SEQ ID NO: 51: 7G3 light chain specific primer Rv
         SEQ ID NO: 80: hCD116Fw-Mfel primer
         SEQ ID NO: 81: hCD116Rv-Notl primer
         SEQ ID NO: 82: hCD116Fw-Mfel primer
45
         SEQ ID NO: 83: hCD116Rv-Notl primer
         SEQ ID NO: 84: hCD116Fw-Mfel primer
         SEQ ID NO: 85: hCD116Rv-Notl primer
         SEQ ID NO: 86: hCD116SeqFw1 primer
         SEQ ID NO: 87: hCD116SegFw2 primer
         SEQ ID NO: 88: hCD116SeqRv1 primer
50
         SEQ ID NO: 89: T7 primer
         SEQ ID NO: 90: hCD123-C-FLAG-R1 primer
         SEQ ID NO : 91 : IL-3R\alpha_Fw primer
         SEQ ID NO: 92: C-FLAG-NotR2 primer
         SEQ ID NO: 93: pEGFP-N1-Fw primer
55
         SEQ ID NO: 94: pEGFP-N1-Re primer
         SEQ ID NO: 95: pEGFP-N1-Fw primer
         SEQ ID NO: 96: pEGFP-N1-Re primer
```

```
SEQ ID NO: 97: CD123R11pEGFPN1 primer
        SEQ ID NO: 98: CD123F11 primer
        SEQ ID NO: 99: CD123R12-2 primer
        SEQ ID NO: 100: CD123F12-2 primer
5
        SEQ ID NO: 101: CD123R13 primer
        SEQ ID NO: 102: CD123F13 primer
        SEQ ID NO: 103: pEGFP-N1-Fw primer
        SEQ ID NO: 104: pEGFP-N1-Re primer
        SEQ ID NO: 105: GM-CSFRF11 primer
10
        SEQ ID NO: 106: GM-CSFRR11 primer
        SEQ ID NO: 107: GM-CSFRF12 primer
        SEQ ID NO: 108: GM-CSFRR12 primer
        SEQ ID NO: 109: GM-CSFRF13 primer
        SEQ ID NO: 110: GM-CSFRR13 primer
15
        SEQ ID NO: 111: pEGFP-N1-Fw primer
        SEQ ID NO: 112: pEGFP-N1-Re primer
        SEQ ID NO: 149: CD123-Fw21 primer
        SEQ ID NO: 150: CD123-Re21 primer
        SEQ ID NO: 151: CD 123-Fw22 primer
20
        SEQ ID NO: 152: CD123-Re22 primer
        SEQ ID NO: 153: CD123-Fw23 primer
        SEQ ID NO: 154: CD123-Re23 primer
        SEQ ID NO: 155: CD123-Fw24 primer
        SEQ ID NO: 156: CD123-Re24 primer
25
        SEQ ID NO: 157: CD123-Fw25 primer
        SEQ ID NO: 158: CD123-Re25 primer
        SEQ ID NO: 159: CD123-Fw26 primer
        SEQ ID NO: 160: CD123-Re26 primer
```

30 ASPECTS OF THE INVENTION

[0307]

40

45

50

55

- 1. An antibody to a human IL-3R α chain, which does not inhibit IL-3 signaling and binds to B domain of the human IL-3R α chain but does not bind to C domain of the human IL-3R α chain.
 - 2. The antibody according to aspect 1, further having high antibody-dependent cellular cytotoxicity (ADCC).
 - 3. The antibody according to aspect 1 or 2, wherein the high antibody-dependent cellular cytotoxicity (ADCC) shows a specific lysis rate of 10% at an antibody concentration of 0.01 µg/ml, by a Colon-26/hCD123 ADCC assay method using PBMC cultured with IL-2.
 - 4. The antibody according to any one of aspects 1 to 3, which comprises amino acid sequences of CDRs of heavy chain and CDRs of light chain selected from the group consisting of the following (a) to (e);
 - (a) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:113 to 115, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:131 to 133, respectively,
 - (b) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:116 to 118, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:134 to 136, respectively,
 - (c) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs: 119 to 121, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:137 to 139, respectively,
 - (d) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs: 122 to 124, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:140 to 142, respectively, and
 - (e) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:125 to 127, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:143 to 145, respectively.
 - 5. The antibody according to any one of aspects 1 to 4, which comprises a heavy chain variable region and a light chain variable region selected from the group consisting of the following (a) to (f);

5

10

15

20

30

35

40

45

50

55

- (a) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:53 and a light chain variable region comprising an amino acid sequence from valine (V) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:55;
- (b) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:57 and a light chain variable region comprising an amino acid sequence from valine (V) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:59;
- (c) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:61 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:63;
- (d) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:65 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:67;
- (e) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 138 in the amino acid sequence of SEQ ID NO:69 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:71 and;
- (f) a heavy chain variable region and/or light chain variable region, which comprise amino acid sequences in which 1 to 3 amino acid residues are deleted, substituted, added or inserted in the heavy chain variable region and/or light chain variable region shown by the above (a) to (e).
- 6. A composition for preventing or treating a blood tumor in which a cell expressing IL-3Rα is found in bone marrow or peripheral blood of a subject, which comprises the IL-3Rα antibody according to any one of aspects 1 to 5 as an active ingredient.
 - 7. A method for treating a blood tumor in which a cell expressing IL- $3R\alpha$ is found in bone marrow or peripheral blood, which comprises administering, to a subject, a composition comprising the IL- $3R\alpha$ antibody according to any one of aspects 1 to 5 as an active ingredient.
 - 8. A composition for detecting a blood tumor in which a cell expressing IL-3R α is found in bone marrow or peripheral blood of a biological sample from a subject, which comprises the IL-3R α antibody according to any one of aspects 1 to 5.
 - 9. The composition or method according to any one of aspects 1 to 5, wherein the blood tumor is acute myeloid leukemia (AML).

52

SEQUENCE LISTING

	<110>	Kyowa	Hakko 1	Kirin	Co.,	Ltd.							
5	<120>	Anti-I	L-3RA	Antibo	ody f	for use	in t	reat	ment	of	bloc	d tu	mor
	<130>	N11553	30A-EP										
	<150>		172923										
10	<151>	2009-0	14-27										
	<160>	160											
	<170>	Patent	In ver	sion 3	3.3								
15	<210> <211>	1 378											
	<212> <213>	PRT Homo s	sapiens										
	<400>	1											
20	Met Va	l Leu I	Leu Trp	Leu 1	Thr I	Leu Leu	Leu	Ile	Ala	Leu	Pro	Cys	Leu
	1		5				10					15	
	Leu Gl	n Thr I	Lys Glu	Asp I	Pro <i>P</i>	Asn Pro	Pro	Ile	Thr	Asn	Leu	Arg	Met
25		2	20			25					30		
	Lys Al	a Lys A	Ala Gln	Gln 1	Leu 1	Thr Trp	Asp	Leu	Asn	Arg	Asn	Val	Thr
30		35			4	40				45			
30	Asp Il	e Glu C	Cys Val	Lys A	Asp A	Ala Asp	Tyr	Ser	Met	Pro	Ala	Val	Asn
	50				55				60				
35	Asn Se	r Tyr C	Cys Gln	Phe (Gly A	Ala Ile	Ser	Leu	Cys	Glu	Val	Thr	Asn
	65			70				75					80
	Tyr Th	r Val A	Arg Val	Ala A	Asn E	Pro Pro	Phe	Ser	Thr	Trp	Ile	Leu	Phe
40			85				90					95	
	Pro Gl	u Asn S	Ser Gly	Lys E	Pro 1	rp Ala	Gly	Ala	Glu	Asn	Leu	Thr	Cys
		1	00			105					110		
45	Trp Il	e His A	Asp Val	Asp I	Phe I	Leu Ser	Cys	Ser	Trp	Ala	Val	Gly	Pro
		115			1	L20				125			
	Gly Al	a Pro A	Ala Asp	Val (Gln 1	Tyr Asp	Leu	Tyr	Leu	Asn	Val	Ala	Asn
50	13	0	-	1	135	_			140				
	Arg Ar	g Gln G	3ln Tyr	Glu (Cys I	Leu His	Tyr	Lys	Thr	Asp	Ala	Gln	Gly
55	145		_	150			-	155		_			160
55	Thr Ar	g Ile G	Gly Cys	Arg I	Phe <i>I</i>	Asp Asp	Ile	Ser	Arq	Leu	Ser	Ser	Gly
		-		-					-				-

				165					170					175	
5	Ser Gl	n Ser	Ser 180	His	Ile	Leu	Val	Arg 185	Gly	Arg	Ser	Ala	Ala 190	Phe	Gly
	Ile Pr	o Cys 195	Thr	Asp	Lys	Phe	Val 200	Val	Phe	Ser	Gln	Ile 205	Glu	Ile	Leu
10	Thr Pr 21		Asn	Met	Thr	Ala 215	Lys	Cys	Asn	Lys	Thr 220	His	Ser	Phe	Met
15	His Tr	p Lys	Met	Arg	Ser 230	His	Phe	Asn	Arg	Lys 235	Phe	Arg	Tyr	Glu	Leu 240
20	Gln Il	e Gln	Lys	Arg 245	Met	Gln	Pro	Val	Ile 250	Thr	Glu	Gln	Val	Arg 255	Asp
	Arg Th	r Ser	Phe 260	Gln	Leu	Leu	Asn	Pro 265	Gly	Thr	Tyr	Thr	Val 270	Gln	Ile
25	Arg Al	a Arg 275	Glu	Arg	Val	Tyr	Glu 280	Phe	Leu	Ser	Ala	Trp 285	Ser	Thr	Pro
30	Gln Ar 29		Glu	Cys	Asp	Gln 295	Glu	Glu	Gly	Ala	Asn 300	Thr	Arg	Ala	Trp
	Arg Th	r Ser	Leu	Leu	Ile 310	Ala	Leu	Gly	Thr	Leu 315	Leu	Ala	Leu	Val	Cys 320
35	Val Ph	e Val	Ile	Cys 325	Arg	Arg	Tyr	Leu	Val 330	Met	Gln	Arg	Leu	Phe 335	Pro
40	Arg Il	e Pro	His 340	Met	Lys	Asp	Pro	Ile 345	Gly	Asp	Ser	Phe	Gln 350	Asn	Asp
45	Lys Le	u Va l 355	Val	Trp	Glu	Ala	Gly 360	Lys	Ala	Gly	Leu	Glu 365	Glu	Суз	Leu
	Val Th		Val	Gln	Val	Val 375	Gln	Lys	Thr						
50	<210> <211> <212> <213>	2 308 PRT Homo	sapi	iens											
55	<400>	2													
	Met Va	l Leu	Leu	Trp	Leu	Thr	Leu	Leu	Leu	Ile	Ala	Leu	Pro	Cys	Leu

	1				5					10					15	
5	Leu	Gln	Thr	Lys 20	Glu	Asp	Pro	Asn	Pro 25	Pro	Ile	Thr	Asn	Leu 30	Arg	Met
10	Lys	Ala	Lys 35	Ala	Gln	Gln	Leu	Thr 40	Trp	Asp	Leu	Asn	Arg 45	Asn	Val	Thr
	Asp	Ile 50	Glu	Cys	Val	Lys	Asp 55	Ala	Asp	Tyr	Ser	Met 60	Pro	Ala	Val	Asn
15	Asn 65	Ser	Tyr	Cys	Gln	Phe 70	Gly	Ala	Ile	Ser	Leu 75	Cys	Glu	Val	Thr	Asn 80
20	Tyr	Thr	Val	Arg	Val 85	Ala	Asn	Pro	Pro	Phe 90	Ser	Thr	Trp	Ile	Leu 95	Phe
05	Pro	Glu	Asn	Ser 100	Gly	Lys	Pro	Trp	Ala 105	Gly	Ala	Glu	Asn	Leu 110	Thr	Cys
25	Trp	Ile	His 115	Asp	Val	Asp	Phe	Leu 120	Ser	Cys	Ser	Trp	Ala 125	Val	Gly	Pro
30	Gly	Ala 130	Pro	Ala	Asp	Val	Gln 135	Tyr	Asp	Leu	Tyr	Leu 140	Asn	Val	Ala	Asn
35	Arg 145	Arg	Gln	Gln	Tyr	Glu 150	Cys	Leu	His	Tyr	Lys 155	Thr	Asp	Ala	Gln	Gly 160
	Thr	Arg	Ile	Gly	Cys 165	Arg	Phe	Asp	Asp	Ile 170	Ser	Arg	Leu	Ser	Ser 175	Gly
40	Ser	Gln	Ser	Ser 180	His	Ile	Leu	Val	Arg 185	Gly	Arg	Ser	Ala	Ala 190	Phe	Gly
45	Ile	Pro	Cys 195	Thr	Asp	Lys	Phe	Val 200	Val	Phe	Ser	Gln	Ile 205	Glu	Ile	Leu
50	Thr	Pro 210	Pro	Asn	Met	Thr	Ala 215	Lys	Cys	Asn	Lys	Thr 220	His	Ser	Phe	Met
	His 225	Trp	Lys	Met	Arg	Ser 230	His	Phe	Asn	Arg	Lys 235	Phe	Arg	Tyr	Glu	Leu 240
55	Gln	Ile	Gln	Lys	Arg 245	Met	Gln	Pro	Val	Ile 250	Thr	Glu	Gln	Val	A rg 255	Asp

	Arg 1	[hr	Ser	Phe 260	Gln	Leu	Leu	Asn	Pro 265	Gly	Thr	Tyr	Thr	Val 270	Gln	Ile	
5	Arg A		Arg 275	Glu	Arg	Val	Tyr	Glu 280	Phe	Leu	Ser	Ala	Trp 285	Ser	Thr	Pro	
10	Gln 2	Arg 290	Phe	Glu	Cys	Asp	Gln 295	Glu	Glu	Gly	Ala	Asn 300	Thr	Arg	Ala	Trp	
	Arg 7	Thr	Ser	Leu													
15	<210><211><211><212><212><213>	> 3 > D	A NA	ficia	al												
20	<220> <223>		rime	er II	L-3R#	A_Fw											
	<400> cggca			cacca	atggt	c ct	cctt	tggc	tca	ac							34
25																	
	<210>																
	<211>																
	<212>				_												
30	<213>	> <i>1</i> 9	rtif	icia	al												
30	<220>																
	<223>		L-3F	RA_Re	€												
	<400>																
35	attgo	cggc	cg c	etcaa	agttt	t ct	gcad	cgaco	: t								31
	<210>	> 5	5														
	<211>		0														
	<212>																
40	<213>	> <i>1</i> A	rtif	icia	al												
	<220>	>															
	<223>		rime	er II	L-3R#	A_sec	ĮF1										
	<400>	> 5															
45	gtctt			caaaa	acgga	at											20
	<210>	> 6	;														
	<211>																
50	<212>																
	<213>	> A	rtif	icia	al												
	<220>																
	<223>		.nser	t se	equer	ıce											
55																	
55	<400>																
	caatt	tgcc	ac c	catgo	gtcct	c ct	ttg	gctca	cgo	ctgct	cct	gate	cgccc	ctg o	ccct	gtctcc	60

	tgcaaacgaa	ggaagatcca	aacccaccaa	tcacgaacct	aaggatgaaa	gcaaaggctc	120
	agcagttgac	ctgggacctt	aacagaaatg	tgaccgatat	cgagtgtgtt	aaagacgccg	180
5	actattctat	gccggcagtg	aacaatagct	attgccagtt	tggagcaatt	tccttatgtg	240
	aagtgaccaa	ctacaccgtc	cgagtggcca	acccaccatt	ctccacgtgg	atcctcttcc	300
	ctgagaacag	tgggaagcct	tgggcaggtg	cggagaatct	gacctgctgg	attcatgacg	360
10	tggatttctt	gagctgcagc	tgggcggtag	gcccgggggc	ccccgcggac	gtccagtacg	420
	acctgtactt	gaacgttgcc	aacaggcgtc	aacagtacga	gtgtcttcac	tacaaaacgg	480
4.5	atgctcaggg	aacacgtatc	gggtgtcgtt	tcgatgacat	ctctcgactc	tccagcggtt	540
15	ctcaaagttc	ccacatcctg	gtgcggggca	ggagcgcagc	cttcggtatc	ccctgcacag	600
	ataagtttgt	cgtcttttca	cagattgaga	tattaactcc	acccaacatg	actgcaaagt	660
20	gtaataagac	acattccttt	atgcactgga	aaatgagaag	tcatttcaat	cgcaaatttc	720
	gctatgagct	tcagatacaa	aagagaatgc	agcctgtaat	cacagaacag	gtcagagaca	780
	gaacctcctt	ccagctactc	aatcctggaa	cgtacacagt	acaaataaga	gcccgggaaa	840
25	gagtgtatga	attcttgagc	gcctggagca	cccccagcg	cttcgagtgc	gaccaggagg	900
	agggcgcaaa	cacacgtgcc	tggcggacgt	cgctgctgat	cgcgctgggg	acgctgctgg	960
	ccctggtctg	tgtcttcgtg	atctgcagaa	ggtatctggt	gatgcagaga	ctctttcccc	1020
30	gcatccctca	catgaaagac	cccatcggtg	acagcttcca	aaacgacaag	ctggtggtct	1080
	gggaggcggg	caaagccggc	ctggaggagt	gtctggtgac	tgaagtacag	gtcgtgcaga	1140
35	aaacttgagc	ggccgc					1156
40 45	<400> 7	ificial mer Rhe123Fw caccatgacc		tgacgctg			38
50 55	<212> DNA <213> Arts <220> <223> prin	ificial ner Rhe123Rv	71				
	<400> 8 tatattgcgg	ccgctcaagt	tttctccacc	acctgcac			38

	<210>	9						
	<211>	20						
	<212>	DNA						
	<213>	Arti	ficial.					
5								
	<220>							
	<223>	prim	er T7					
	<400>	9						
		-	cactataggg					20
10		•	333					
	<210>	10						
	<211>	19						
	<212>	DNA	6: -: -1					
15	<213>	Artı	ficial					
	<220>							
	<223>	prim	er SP6					
		L						
	<400>	10						
20	gatttag	ggtg	acactatag					19
	.010							
	<210> <211>	11 1156	•					
	<212>	DNA						
25	<213>		ficial					
	<220>							
	<223>	inse	rt sequence	9				
00								
30	<400>	11						60
	caattg	ccac	catgaccctc	ctttggctga	cgctgctcct	ggtcgccacg	ccctgtctcc	60
	+00222	ccan	aaaaaat aa	aatocaccaa	tcaggaatct	aaggatgaaa	gaaaagggtg	120
	cycaaa	cyaa	ggaggaccca	aatycaccaa	ccayyaaccc	aaggacgaaa	gaaaaggccc	120
25	agcagti	tgat	gtgggacctg	aacagaaacg	tgaccgacgt	ggagtgtatc	aaaggcaccg	180
35		-				33 3 3		
	actatto	ctat	gccggcaatg	aacaacagct	attgccagtt	cggagccatt	tccttatgtg	240
	aagtga	ccaa	ctacaccgtc	cgagtggcca	gtcccccgtt	ctccacgtgg	atcctcttcc	300
40			L					260
40	ctgaga	acag	tgggacgcct	caggcaggcg	cggagaatct	gacctgctgg	gttcatgacg	360
	tagatti	tctt	gagetgeage	tagatagcaa	gcccggcggc	ccccactasc	atccaataca	420
	oggaco		gagoogoago	0999099009	goooggoggo	cccogcoguc	gooougouog	
	acctgta	actt	gaacaatccc	aacagccacg	aacagtacag	gtgccttcac	tacaaaacgg	480
45								
7.0	atgctc	gggg	aacacagatc	gggtgtcggt	tcgatgacat	cgctcgactc	tcccgcggtt	540
	ctcaaa	gttc	ccacatcctg	gtgaggggca	ggagcgcagc	cgtcagtatc	ccctgcacag	600
	2+224+		attattta.	aaaattaaa	~~++~~ <i>c</i> + <i>cc</i>	2000200	20100000	660
50	ataagti	ttgt	ettetttea	cagattgaga	gattaactcc	acceaacatg	actggagagt	660
30	gtaatg	agac	acattccttc	atgcactgga	aaatgaaaag	tcatttcaat	cocaaattcc	720
	,uy	-5					- 3	, _ 0
	gctatga	agct	tcggatccaa	aagagaatgc	agcctgtaag	gacagaacag	gtcagagaca	780
	_			- -		_		
55	caacct	cctt	ccagctaccc	aatcctggaa	cgtacacagt	gcaaataaga	gcccgggaaa	840
								000
	cagtgta	atga	attcttgagt	gcctggagca	cccccagcg	cttcgagtgc	gaccaggagg	900

	agggcgcgag	ctcgcgtgcc	tggcggacgt	cgctgctgat	cgcgctgggg	acgctgctgg	960
	ccttgctctg	tgtgttcctc	atctgcagaa	ggtatctggt	gatgcagagg	ctgtttcccc	1020
5	gcatcccaca	catgaaagac	cccatcggtg	acaccttcca	acaggacaag	ctggtggtct	1080
	gggaggcggg	caaagccggc	ctggaggagt	gtctggtgtc	tgaagtgcag	gtggtggaga	1140
	aaacttgagc	ggccgc					1156
10	<210> 12 <211> 115 <212> DNA <213> Art	-					
15	<220> <223> ins	ert sequence	.				
20	<400> 12 caattgccac	catgaccctc	ctttggctga	cgctgctcct	ggtcgccacg	ccctgtctcc	60
	tgcaaaccaa	ggaggatcca	aatgcaccaa	tcaggaatct	aaggatgaaa	gaaaaggctc	120
	agcagttgat	gtgggacctg	aacagaaacg	tgaccgacgt	ggagtgtatc	aaaggcaccg	180
25	actattctat	gccggcaatg	aacgacagct	attgccagtt	cggagccatt	tccttatgtg	240
	aagtgaccaa	ctacaccgtc	cgagtggcca	gtcctccgtt	ctccacgtgg	atcctcttcc	300
	ctgagaacag	tgggacgcct	cgggcaggcg	cggagaattt	gacctgctgg	gttcatgacg	360
30	tggatttctt	gagctgcagc	tgggtggtag	gcccggcggc	ccccgctgac	gtccagtacg	420
	acctgtactt	gaacaatccc	aacagccacg	aacagtacag	gtgccttcgc	tacaaaacgg	480
	atgctcgggg	aacacagatc	gggtgtcggt	tcgatgacat	cgctcgactc	tcccgcggtt	540
35	ctcaaagttc	ccacatcctg	gtgaggggca	ggagcgcagc	cgtcagtatc	ccctgcacag	600
	ataagtttgt	cttcttttca	cagattgaga	gattaactcc	acccaacatg	actggagagt	660
	gtaatgagac	acattccttc	atgcactgga	aaatgaaaag	tcatttcaat	cgcaaattcc	720
40	actatgagct	teggatecaa	aagagaatgc	agcctgtaag	gacagaacag	gtcagagaca	780
	caacctcctt	ccagctaccc	aatcctggaa	cgtacacagt	gcaaataaga	gcccgggaaa	840
4E	cagtgtatga	attcttgagt	gcctggagca	cccccagcg	cttcgagtgc	gaccaggagg	900
45	agggcgcgag	ctcgcgtgcc	tggcggacgt	cgctgctgat	cgcgctgggg	acgctgctgg	960
	ccttgctctg	tgtgttcctc	atctgcagaa	ggtatctggt	gatgcagagg	ctgtttcccc	1020
50	gcatcccaca	catgaaagac	cccatcggtg	acaccttcca	acaggacaag	ctggtggtct	1080
	gggaggcggg	caaagccggc	ctggaggagt	gtctggtgtc	tgaagtgcag	gtggtggaga	1140
	aaacttgagc	ggccgc					1156
55	<210> 13 <211> 58						

	<212> DNA <213> Artificial	
5	<220> <223> primer hIL-3RAsol-FLAG-NotI	
	<400> 13 attgcggccg ctcacttatc gtcgtcatcc ttgtagtccc gccaggcacg tgtgtttg	58
10	<210> 14 <211> 961 <212> DNA <213> Artificial	
15	<220> <223> insert seqence	
	<400> 14 caattgccac catggteete etttggetea egetgeteet gategeeetg eeetgtetee	60
20	tgcaaacgaa ggaagatcca aacccaccaa tcacgaacct aaggatgaaa gcaaaggctc	120
	agcagttgac ctgggacctt aacagaaatg tgaccgatat cgagtgtgtt aaagacgccg	180
	actattctat gccggcagtg aacaatagct attgccagtt tggagcaatt tccttatgtg	240
25	aagtgaccaa ctacaccgtc cgagtggcca acccaccatt ctccacgtgg atcctcttcc	300
	ctgagaacag tgggaagcct tgggcaggtg cggagaatct gacctgctgg attcatgacg	360
	tggatttctt gagctgcagc tgggcggtag gcccgggggc ccccgcggac gtccagtacg	420
30	acctgtactt gaacgttgcc aacaggcgtc aacagtacga gtgtcttcac tacaaaacgg	480
	atgctcaggg aacacgtatc gggtgtcgtt tcgatgacat ctctcgactc tccagcggtt	540
35	ctcaaagttc ccacatcctg gtgcggggca ggagcgcagc cttcggtatc ccctgcacag	600
	ataagtttgt cgtcttttca cagattgaga tattaactcc acccaacatg actgcaaagt	660
	gtaataagac acatteettt atgeactgga aaatgagaag teattteaat egeaaattte	720
40	gctatgagct tcagatacaa aagagaatgc agcctgtaat cacagaacag gtcagagaca	780
	gaacctcctt ccagctactc aatcctggaa cgtacacagt acaaataaga gcccgggaaa	840
	gagtgtatga attcttgagc gcctggagca cccccagcg cttcgagtgc gaccaggagg	900
45	agggcgcaaa cacacgtgcc tggcgggact acaaggatga cgacgataag tgagcggccg	960
	С	961
50	<210> 15 <211> 27 <212> DNA <213> Artificial	
55	<220> <223> primer hh-6	
	<400> 15	

	ggtccc	ggag atcatgaggg tgtcctt	27
-	<210> <211>		
5	<211>		
		Artificial	
	<220>		
10		primer hh-3	
10			
	<400>		26
	gtgcac	cgccg ctggtcaggg cgcctg	26
15	<210>	17	
	<211>		
	<212>	DNA	
	<213>	Artificial	
20	<220>		
	<223>	primer hh-4	
	<400>	17	
	ggtgco	caggg ggaagaccga tgg	23
25			
	<210>	18	
	<211>	49	
	<212>		
	<213>	Artificial	
30	<220>		
		primer Fw spcific for Old4 Heavy chain	
	<400>		49
35	agagag	gagag gtcgaccacc atggactgga cctggaggtt cctctttgt	49
	<210>	19	
	<211>		
	<212>		
40	<213>	Artificial	
	<220>		
	<223>	primer Rv specific for Old4 heavy chain	
	<400>	19	
45	agagag	gagag gctagctgaa gagacggtga ccattgtccc	40
	<210>		
	<211>		
50	<212>		
	<213>	Artificial	
	<220>		
	<223>	primer Fw specific for Old5 heavy chain	
55	<400>	20	
		gagag gtcgaccacc atggactgga cctggaggtt cctctttgt	49

	<210>	21	
	<211>	40	
	<212>	DNA	
		Artificial	
	\213/	ALCILICIAL	
5	.000		
	<220>		
	<223>	primer Rv specific for Old5 heavy chain	
	<400>	21	
	agagag	gagag gctagctgaa gagacggtga ccattgtccc	40
10	-9-9-9	,-,-,-, ,,,-,-,-,-,-,-,	
	.010.	00	
	<210>		
	<211>		
	<212>	DNA	
15	<213>	Artificial	
13			
	<220>		
		primer Fw specific for Old17 Heavy chain	
	\225/	primer iw specific for Ordiv heavy chain	
	.400	00	
	<400>	22	
20	agagag	gagag gtcgaccacc atggactgga cctggaggtt cctctttgt	49
	<210>	23	
	<211>		
25	<212>		
20	<213>	Artificial	
	<220>		
	<223>	primer Rv specific for Old 17 heavy chain	
		•	
00	<400>	23	
30			41
	agagag	gagag getagetgag gagaeggtga caagggttee e	41
	<210>	24	
	<211>	49	
35	<212>	DNA	
	<213>	Artificial	
	1210	111 011 101 01	
	40005		
	<220>		
	<223>	primer Fw specific for Old19 heavy chain	
40			
40	<400>	24	
	agagag	gagag gtcgaccacc atggactgga cctggaggtt cctctttgt	49
	, , ,	, , , , , , , , , , , , , , , , , , , ,	
	<210>	25	
		_ -	
45	<211>		
	<212>		
	<213>	Artificial	
	<220>		
		primer Rv specific for Old19 heavy chain	
50	\443	brimer we shecriff for Ordra Heavy Chain	
		05	
	<400>	25	
	agagag	gagag getagetgag gagaeggtga eeagggtte	39
	<210>	26	
55	<211>	-	
	<211>		
	5/1/2	LINA	

	<213>	Artificial	
	<220>		
	<223>	primer Fw specific for New102 Heavy chain	
5	<400>	26	
	agagag	agag gtcgaccacc atggactgga cctggaggtt cctctttgt	49
10	<210> <211>		
	<212>		
	<213>	Artificial	
	<220>		
15	<223>	primer Rv specific for New102 heavy chain	
	<400>	27	
	agagag	agag gctagctgag gagacggtga ccagggtt	38
20	<210> <211>		
	<212>		
	<213>	Artificial	
	<220>		
25	<223>	primer Fw specific for Old6 heavy chain	
	<400>	28	
	agagag	agag gtcgacccac catggaactg gggctccgct g	41
30			
	<210>		
	<211> <212>		
		Artificial	
35	<220>		
		primer Rv specific for Old6 heavy chain	
	<400>	29	
	agagag	agag gctagctgag gagacggtga ccagggttc	39
40			
	<210>		
	<211> <212>		
		Artificial	
45			
	<220>	primer mH_Rv1	
	<400>	30	32
50	accety	tcga cckyggtsyt gctggcyggg tg	32
	Z210×	31	
	<210> <211>		
	<212>		
55	<213>	Artificial	
	<220>		

	<223>	primer mH_Rv2	
	<400>	31	
			30
5			
	.010.	20	
	<210> <211>		
	<211>		
		Artificial	
10			
	<220>		
	<223>	primer Fw specific for 7G3 heavy chain	
	<400>	32	
			44
15	-9-9-9	-9-9 9-09-0-0 -0955-095- 9-095-000	
	<210>		
	<211> <212>		
20		Artificial	
20	1213/	ALCITICIAL	
	<220>		
	<223>	primer Rv specific for 7G3 heavy chain	
	<400>	33	
25			40
	agagag	agag goodgoogoa gagacagoga coagagooco	
	<210>		
	<211> <212>		
30		Artificial	
	\213/	ALCITICIAL	
	<220>		
	<223>	primer hk-2	
35	<400>	34	
			26
	9009	gggg	
	<210>	35	
40	<211> <212>	26 DNA	
		Artificial	
	<220>		
	<223>	primer hk-6	
45	<400>	35	
			26
	099099	gaag acgaagacag acggog	
50	<210>		
50	<211>		
	<212>	DNA Artificial	
	\L13/	WI CITICIAL	
	<220>		
55		primer Fw specific for Old4 light chain	
	.400		
	<400>	36	

	agagag	gagag atctctcacc atggacatga gggtccccgc tcagc	45
	<210>		
5	<211>		
	<212>		
	<213>	Artificial	
	<220>		
10	<223>	primer Rv specific for Old4 light chain	
	<400>		
	agagag	gagag cgtacgtttg atctccagct tggtcccctg	40
45	٠٥١٥٠	20	
15	<210> <211>		
	<211>		
		Artificial	
	_	ALCIICIAI	
20	<220>		
	<223>	primer Fw specific for Old5 light chain	
	<400>		
	agagag	gagag atctctcacc atggacatga gggtccccgc tcagc	45
25			
20	<210>	39	
	<211>		
	<212>		
		Artificial	
30			
00	<220>		
	<223>	primer Rv specific for Old5 light chain	
	<400>	39	
	agagag	gagag cgtacgtttg atctccagct tggtcccctg	40
35			
	<210>	40	
	<211>		
	<212>	DNA	
40	<213>	Artificial	
	<220>		
		primer Fw specific for Old17 light chain	
	<400>	40	
45	agagag	gagag atctctcacc atggacatga gggtcctcgc tcag	44
	<210>		
	<211>		
50	<212>		
	<213>	Artificial	
	<220>		
	<223>	primer Rv specific for light chain	
55	<400>	<i>A</i> 1	
		gagag egtaegtttg atetecaget tggteeeetg	40
	-gagag	,-jjgood accorded bygococod	10

	<210>	42	
	<211>	44	
	<212>	DNA	
		Artificial	
	\213/	ALCITICIAL	
5			
	<220>		
	<223>	primer Fw specific for Old19 light chain	
	<400>	42	
	agagag	gagag atctctcacc atggacatga gggtcctcgc tcag	44
10	agaga	gagag accoccace acggacacga gggcccccgc ccag	
	.010	40	
	<210>		
	<211>		
	<212>	DNA	
15	<213>	Artificial	
15			
	<220>		
		primer Rv specific for Old19 light chain	
	1225/	primer hy specific for orders right chain	
	.400	40	
	<400>	43	
20	agagag	gagag cgtacgtttg atttccacct tggtcccttg gc	42
	<210>	44	
	<211>	44	
	<212>		
25		Artificial	
	\213/	Artificial	
	<220>		
	<223>	primer Fw specific for New102 light chain	
30	<400>	44	
30	agagag	gagag ateteteace atggaeatga gggteetege teag	44
	-5-5-:	g-g-ggg- ggggg	
	-010	45	
	<210>		
	<211>		
35	<212>		
	<213>	Artificial	
	<220>		
		primer Rv specific for New102 light chain	
	1225	primer in opecitio for newron right charm	
40	44005	4 E	
	<400>		
	agagag	gagag cgtacgtttg atctccagct tggtcccctg	40
	<210>	46	
45	<211>	44	
	<212>	DNA	
		Artificial	
	12132	ALCITICIAL	
	.000		
	<220>		
50	<223>	primer Fw specific for Old6 light chain	
50			
	<400>	46	
	gagaga	agaga teteteacea tggacatgag ggteeceget eage	44
	2 3 3		
	<210>	47	
55	<211>		
	<212>		
	\4±4/	~1714	

	<213>	Artificial	
	<220>		
	<223>	primer Rv specific for Old6 light chain	
5	4400s	47	
		agag cgtacgtttg atatccactt tggtcccagg gc	42
	agagag	agag egoaegeoog acaeecaeee eggeeecagg ge	
	-010-	40	
10	<210> <211>		
	<212>		
	<213>	Artificial	
	<220>		
45		primer mK_Rv1	
15			
	<400>	48	
	ttgaag	retet tgacaatggg tgaagttgat	30
20	<210>		
	<211> <212>		
		Artificial	
25	<220>		
20	<223>	primer mK_Rv2	
	<400>	49	
	gtaggt	gctg tctttgctgt cctgatcagt	30
30	<210>	5.0	
	<211>		
	<212>		
	<213>	Artificial	
35	<220>		
		primer Fw specific for 7G3 light chain	
	<400>		
	agagag	agag agateteace atggaateae agaeteaggt eete	44
40			
	<210>		
	<211>		
	<212>	DNA Artificial	
45	1215/	111111111	
	<220>		
	<223>	primer Rv specific for 7G3 light chain	
	<400>	51	
		agag cgtacgtttt atttccagct tggtcccccc	40
50			
	<210>	52	
	<210> <211>		
	<212>	DNA	
55		Homo sapiens	
	400:	F0	
	<400>	52	

	gacccgtcga ccaccatgga ctggacctgg aggttcctct ttgtggtggc agcagctaca	60
	ggtgtccagt cccaggtcca gctgctacag tctggggctg aggtgaagaa gcctgggtcc	120
5	teggtgaagg teteatgeaa ggettetgga ggeacettea geacetatge tateagetgg	180
	gtgcgacagg cccctggaca agggcttgag tggatgggag ggatcatccc tatctttggt	240
	atagtaaact acgcacagaa gttccagggc agagtcacga ttaccgcgga cgaatccacg	300
10	agtacagcct acatggaact gagcagcctg agatctgagg acacggccgt gtattattgt	360
	gcgagagggg ggggctcggg cccagatgtt cttgatatct ggggccaagg gacaatggtc	420
	accgtctctt cagctagcac caa	443
15	<210> 53 <211> 143 <212> PRT <213> Homo sapiens	
20	<220>	
25	<pre><221> misc_feature <222> (143)(143) <223> Xaa can be any naturally occurring amino acid <400> 53</pre>	
	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly	
	1 5 10 15	
30	Val Gln Ser Gln Val Gln Leu Leu Gln Ser Gly Ala Glu Val Lys Lys	
	20 25 30	
35	Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe 35 40 45	
40	Ser Thr Tyr Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu 50 55 60	
	Glu Trp Met Gly Gly Ile Ile Pro Ile Phe Gly Ile Val Asn Tyr Ala 65 70 75 80	
45	Gln Lys Phe Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser 85 90 95	
50	Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val	
55	Tyr Tyr Cys Ala Arg Gly Gly Ser Gly Pro Asp Val Leu Asp Ile 115 120 125	
	Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Xaa	

5	<210 <211 <212 <213	1>		sap	iens													
10	<400 caca		5 4 ctc	tcac	catgo	ga ca	atgaç	gggto	ccc	cgcto	cagc	tcct	gggg	gct (cctgo	ctgct	С	60
10	tgg	ctcc	cag	gtgc	cagat	g to	gtcat	tatgo	, ato	gacco	cagt	ctc	catco	ctt a	actct	ctgc	a	120
	tcta	acag	gag	acaga	agtca	ac ca	atcaç	gttgt	. cgc	gatga	agtc	aggg	gcati	ag q	gagti	attt	a	180
15	gcct	tggt	atc	agca	aaaac	cc aq	gggaa	aagco	cct	gago	ctcc	tgat	cta	.gc t	tgcat	ccac	t	240
	ttg	caaa	gtg	gggt	cccat	c a	aggtt	cagt	ggo	cagto	ggat	ctg	ggaca	aga t	tttca	actct	C	300
	acca	atca	gca	gcct	gcagt	c to	gaaga	atttt	gca	actt	tatt	acto	gtcaa	aca q	gtatt	tatag	t	360
20	ttc	ccgt	aca	cttti	tggco	a g	ggga	ccaaç	, cto	ggaga	atca	aacq	gtac	ggt (gg			412
25	<210 <211 <212 <211	1> 2> :		sap:	iens													
30	<220 <221 <221 <221	1> 1 2>	(133	_feat)(: can l	133)	ny na	atura	ally	occı	ırrin	ng ar	nino	acio	i				
	<400	0>	55															
35	Met 1	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp		
	Leu	Pro	Gly	Ala 20	Arg	Сув	Val	Ile	Trp 25	Met	Thr	Gln	Ser	Pro 30	Ser	Leu		
40				_	_					_	_	_						
	Leu	Ser	Ala 35	Ser	Thr	Gly	Asp	Arg 40	Val	Thr	Ile	Ser	Cys 45	Arg	Met	Ser		
45	Gln	Gly 50	Ile	Arg	Ser	Tyr	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Gly	Lys		
50	Ala 65	Pro	Glu	Leu	Leu	Ile 70	Tyr	Ala	Ala	Ser	Thr 75	Leu	Gln	Ser	Gly	Val 80		
	Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr		
55	Ile	Ser	Ser	Leu 100	Gln	Ser	Glu	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln		

	Tyr Tyr Ser Phe Pro Tyr Thr 115	Phe Gly Gln Gly 120	Thr Lys Leu Glu Ile 125	
5	Lys Arg Thr Val Xaa 130			
10	<210> 56 <211> 433 <212> DNA <213> Homo sapiens			
15	<400> 56 gtcgaccacc atggactgga cctgg	aggtt cctctttgtg	gtggcagcag ctacaggtgt	60
	ccagtcccag gtccagctgg tgcag	tctgg ggctgaggtg	aagaagcctg ggtcctcggt	120
	gaaggtetea tgeaaggett etgga	ggcac cttcagcacc	tatgctatca gctgggtgcg	180
20	acaggeeet ggacaaggge ttgag	tggat gggagggctc	atccctatct ttgatataga	240
	aaactacgca cagaagttcc agggc	agagt cacgattacc	gcggacgaat ccacgagcac	300
	agtetatatg gaactgagea geete	agatc tgaggacacg	gccatgtatt actgtgcgag	360
25	agggggggt tegggeeetg atgtt	cttga tatctggggc	caagggacaa tggtcaccgt	420
	ctcttcagct agc			433
30	<210> 57 <211> 141 <212> PRT <213> Homo sapiens			
35	<400> 57			
	Met Asp Trp Thr Trp Arg Phe 1 5	Leu Phe Val Val 10	Ala Ala Ala Thr Gly 15	
40	Val Gln Ser Gln Val Gln Leu 20	Val Gln Ser Gly 25	Ala Glu Val Lys Lys 30	
45	Pro Gly Ser Ser Val Lys Val 35	Ser Cys Lys Ala 40	Ser Gly Gly Thr Phe 45	
50	Ser Thr Tyr Ala Ile Ser Trp 50 55	Val Arg Gln Ala	Pro Gly Gln Gly Leu 60	
	Glu Trp Met Gly Gly Leu Ile 65 70	Pro Ile Phe Asp 75	Ile Glu Asn Tyr Ala 80	
55	Gln Lys Phe Gln Gly Arg Val 85	Thr Ile Thr Ala	Asp Glu Ser Thr Ser 95	

	Thr Val Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Met 100 105 110	
5	Tyr Tyr Cys Ala Arg Gly Gly Gly Ser Gly Pro Asp Val Leu Asp Ile 115 120 125	
10	Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser 130 135 140	
15	<210> 58 <211> 412 <212> DNA <213> Homo sapiens	
	<400> 58 cacagatete teaceatgga catgagggte ecegeteage teetgggget eetgetgete	60
20	tggctcccag gtgccagatg tgtcatctgg atgacccagt ctccatcctt actctctgca	120
	tctacaggag acagagtcac catcagttgt cggatgagtc agggcattag gagttattta	180
	geetggtate ageaaaaee agggaaagee eetgagetee tgatetatge tgeateeaet	240
25	ttgcaaagtg gggtcccatc aaggttcagt ggcagtggat ctgggacaga tttcactctc	300
	accatcagca gcctgcagtc tgaagatttt gcaacttatt actgtcaaca gtattatagt	360
30	ttcccgtaca cttttggcca ggggaccaag ctggagatca aacgtacggt gg	412
35	<210> 59 <211> 133 <212> PRT <213> Homo sapiens	
40	<220> <221> misc_feature <222> (133)(133) <223> Xaa can be any naturally occurring amino acid	
	<400> 59	
45	Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 1 5 10 15	
	Leu Pro Gly Ala Arg Cys Val Ile Trp Met Thr Gln Ser Pro Ser Leu 20 25 30	
50	Leu Ser Ala Ser Thr Gly Asp Arg Val Thr Ile Ser Cys Arg Met Ser 35 40 45	
55	Gln Gly Ile Arg Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys 50 55 60	

	Ala Pro Glu Leu Leu Ile Tyr Ala Ala Ser Thr Leu Gln Ser Gly Val 65 75 80	
5	Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 85 90 95	
10	Ile Ser Ser Leu Gln Ser Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln 100 105 110	
	Tyr Tyr Ser Phe Pro Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile 115 120 125	
15	Lys Arg Thr Val Xaa 130	
20	<210> 60 <211> 438 <212> DNA <213> Homo sapiens	
25	<400> 60 gacccgtcga ccaccatgga ctggacctgg aggttcctct ttgtggtggc agcagctaca	60
	ggtgtccagt cccaggtcca gctggtgcag tctggggctg aggtgaagaa gcctgggtcc 1	20
	tcggtgaagg tctcctgcaa gacttctgga ggcaccttca gcaactttgc tatcagctgg 1	80
30	gtgcgacagg cccctggaca agggcttgag tggatgggag ggatcatccc tatctttggt 2	4(
	tcaacaaact acgcacagaa gttccagggc agagtcacga ttaacgcgga cgaatccacg 3	0 (
	agcacagcct acatggagct gagcagtctg agatctgagg acacggccgt gtattactgt 3	60
35	gcgggtggag acaaatatgg tccttactac tttcactact ggggccaggg aacccttgtc 4	20
	accgtctcct cagctagc 4	38
40	<210> 61 <211> 141 <212> PRT <213> Homo sapiens	
	<400> 61	
45	Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15	
50	Val Gln Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 20 25 30	
55	Pro Gly Ser Ser Val Lys Val Ser Cys Lys Thr Ser Gly Gly Thr Phe 35 40 45	
	Ser Asn Phe Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu	

5	Glu Trp Met Gly Gly Ile Ile Pro Ile Phe Gly Ser Thr Asn Tyr Ala 65 70 75 80
	Gln Lys Phe Gln Gly Arg Val Thr Ile Asn Ala Asp Glu Ser Thr Ser 85 90 95
10	Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val 100 105 110
15	Tyr Tyr Cys Ala Gly Gly Asp Lys Tyr Gly Pro Tyr Tyr Phe His Tyr 115 120 125
20	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser 130 135 140
	<210> 62 <211> 407 <212> DNA
25	<213> Homo sapiens <400> 62 agatetetea ceatggacat gagggteete geteagetee tggggeteet getgetetgt 6
	ttcccaggtg ccagatgtga catccagatg acccagtctc catcctcact gtctgcatct 12
30	gtaggagaca gagtcaccat cacttgtcgg gcgagtcagg gtattagcag ctggttagcc 18
	tggtatcagc agaaaccaga gaaagcccct aagtccctga tctatgctgc atccagtttg 24
	caaagtgggg teceateaag gtteagegge agtggatetg ggacagattt caeteteace 30
35	atcagcagcc tgcagcctga agattttgca acttattact gccaacagta taatagttac 36
	ccgtacactt ttggccaggg gaccaagctg gagatcaaac gtacggt 40
40	<210> 63 <211> 132 <212> PRT <213> Homo sapiens
45	<220> <221> misc_feature <222> (132)(132) <223> Xaa can be any naturally occurring amino acid
50	<400> 63
	Met Asp Met Arg Val Leu Ala Gln Leu Leu Gly Leu Leu Leu Cys 1 5 10 15
55	Phe Pro Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser 20 25 30

	Leu	Ser	A1a 35	Ser	Val	GLy	Asp	Arg 40	Val	Thr	Ile	Thr	Cys 45	Arg	Ala	Ser	
5	Gln	Gly 50	Ile	Ser	Ser	Trp	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Glu	Lys	
10	Ala 65	Pro	Lys	Ser	Leu	Ile 70	Tyr	Ala	Ala	Ser	Ser 75	Leu	Gln	Ser	Gly	Val 80	
	Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr	
15	Ile	Ser	Ser	Leu 100	Gln	Pro	Glu	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln	
20	Tyr	Asn	Ser 115	Tyr	Pro	Tyr	Thr	Phe 120	Gly	Gln	Gly	Thr	Lys 125	Leu	Glu	Ile	
25	Lys	Arg 130	Thr	Xaa													
30	<210 <211 <212 <213	.> 4 ?> [64 137 ONA Homo	sap	iens												
	<400 tcga		64 cat c	ggact	ggad	ec to	ggag	gttco	c tct	ttgt	ggt	ggca	agcaç	gct a	acag	gtgtcc	60
35	agto	ccaç	ggt d	ccago	ctggt	g ca	agtct	gggg	g cto	gaggt	gaa	gaag	gaat	ggg 1	tcct	eggtga	120
	aggt	ctc	ctg o	caag	gctto	ct go	gaggo	cacct	t tca	agcaç	gcta	tgct	tatca	agc 1	tgggt	gcgac	180
	aggo	ccct	.gg a	caaç	gggct	t ga	agtg	ggtgg	g gad	gggat	cat	ccct	atct	tt q	ggtad	cagcaa	240
40	acta	cgca	aca c	gaagt	tcca	ag go	gcaga	agtca	a cga	attac	ccgc	ggad	cgaat	ccc a	acga	gcacag	300
	ccta	cato	gga ç	gctga	agcaç	gc ct	gaga	atcto	g ago	gacad	cggc	cgt	gtatt	cac t	tgtgd	gagag	360
45	gaca	caaa	ata t	ggc	cccta	ac ta	actt	gact	act	gggg	gcca	ggga	aacco	ctg q	gtcad	ccgtct	420
	ccto	cagct	ag o	cacca	aag												437
50	<210 <211 <212 <213	.> 1 ?> E	55 L43 PRT Homo	sap	iens												
	<400)> (65														
55	Met 1	Asp	Trp	Thr	Trp 5	Arg	Phe	Leu	Phe	Val 10	Val	Ala	Ala	Ala	Thr 15	Gly	

	Val	Gln	Ser	Gln 20	Val	Gln	Leu	Val	Gln 25	Ser	Gly	Ala	Glu	Val 30	Lys	Lys	
5	Pro	Gly	Ser 35	Ser	Val	Lys	Val	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Gly	Thr	Phe	
10	Ser	Ser 50	Tyr	Ala	Ile	Ser	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Gln	Gly	Leu	
	Glu 65	Trp	Val	Gly	Gly	Ile 70	Ile	Pro	Ile	Phe	Gly 75	Thr	Ala	Asn	Tyr	Ala 80	
15	Gln	Lys	Phe	Gln	Gly 85	Arg	Val	Thr	Ile	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Ser	
20	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Val	
25	Tyr	Tyr	Cys 115	Ala	Arg	Gly	His	Lys 120	Tyr	Gly	Pro	Tyr	Tyr 125	Phe	Asp	Tyr	
20	Trp	Gly 130	Gln	Gly	Thr	Leu	Val 135	Thr	Val	Ser	Ser	Ala 140	Ser	Thr	Lys		
30	<210 <210 <210 <210	1> 4 2> I	66 411 ONA Homo	sapi	iens												
35	<40 aga		66 tca d	ccato	ggaca	at ga	agggt	ccto	c gct	cago	etcc	tggg	ggata	ect o	gctgo	ctctgt	60
	ttc	ccag	gtg d	ccaga	atgto	ga ca	atcca	agato	g acc	ccagt	ctc	cato	cctca	act o	gtcto	gcatct	120
40	gta	ggaga	aca q	gagto	cacca	at ca	actt	gtaga	g gcd	gagto	cagg	gtat	tago	cag d	ctggt	tagcc	180
	tgg	tatca	agc a	agaaa	accaç	ga ga	aaago	ccct	aaq	gtcc	ctga	tcta	atgct	ige a	atcca	agtttg	240
	caa	agtg	ggg t	ccca	atcaa	ag gt	tcaç	gegge	c agt	ggat	ctg	ggad	cagat	tt d	cacto	ctcacc	300
45	atc	agca	gaa t	gcaç	gaat	ga aç	gatti	tgca	a act	tatt	act	gcca	acaç	gta t	aata	agttac	360
	cct	cggad	cgt t	cggd	ccaaç	gg ga	accaa	aggto	g gaa	aatca	aaac	gtad	cggto	ggc t	=		411
50	<210 <210 <210 <210	1> : 2> :	67 133 PRT Homo	sapi	iens												
	<40	0> (67														
55	Met 1	Asp	Met	Arg	V al 5	Leu	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Cys	

	Phe	Pro	Gly	Ala 20	Arg	Cys	Asp	Ile	Gln 25	Met	Thr	Gln	Ser	Pro 30	Ser	Ser	
5	Leu	Ser	Ala 35	Ser	Val	Gly	Asp	Arg 40	Val	Thr	Ile	Thr	Cys 45	Arg	Ala	Ser	
10	Gln	Gly 50	Ile	Ser	Ser	Trp	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Glu	Lys	
	Ala 65	Pro	Lys	Ser	Leu	Ile 70	Tyr	Ala	Ala	Ser	Ser 75	Leu	Gln	Ser	Gly	Val 80	
15	Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr	
20	Ile	Ser	Ser	Leu 100	Gln	Pro	Glu	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln	
25	Tyr	Asn	Ser 115	Tyr	Pro	Arg	Thr	Phe 120	Gly	Gln	Gly	Thr	Lys 125	Val	Glu	Ile	
	Lys	Arg 130	Thr	Val	Ala												
30	<210 <211 <212 <213	L> 4 2> [58 135 ONA Homo	sapi	lens												
35		accad														ggtgtc	60
	cagt	ccca	agg t	ccaç	gctgg	gt go	agto	ctggg	g gct	gagg	gtga	agaa	agcct	gg a	atcct	cggtg	120
40																gtgcga	180
																atagta	240
45																acaca	300
																gcgaga 	360
50			gca d			it to	ettg	gttac	c tg	gggco	cagg	gaad	ccct	ggt (cacco	gtctcc	420 435
55	<210 <211 <212 <213	L> 1 2> E	59 L42 PRT Homo	sapi	Lens												
	<400		59														

	Met 1	Asp	Trp	Thr	Trp 5	Arg	Phe	Leu	Phe	Val 10	Val	Ala	Ala	Ala	Thr 15	GIĀ	
5	Val	Gln	Ser	Gln 20	Val	Gln	Leu	Val	Gln 25	Ser	Gly	Ala	Glu	Val 30	Lys	Lys	
10	Pro	Gly	Ser 35	Ser	Val	Lys	Val	Ser 40	Cys	Met	Ala	Ser	Gly 45	Gly	Thr	Val	
	Ser	Ser 50	Tyr	Ala	Ile	Ser	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Gln	Gly	Leu	
15	Glu 65	Trp	Met	Gly	Glu	Ile 70	Ile	Pro	Ile	Phe	Gly 75	Ile	Val	Asn	Tyr	Ala 80	
20	Gln	Lys	Phe	Gln	Gly 85	Arg	Val	Thr	Ile	Thr 90	Ala	Asp	Glu	Ser	Thr 95	Asn	
25	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Ile	
	Tyr	Tyr	Cys 115	Ala	Arg	Glu	Thr	Ala 120	Val	Ala	Gly	Ile	Leu 125	Gly	Tyr	Trp	
30	Gly	Gln 130	Gly	Thr	Leu	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys			
35	<210 <211 <212 <213	L> 4 2> 1	70 414 ONA Homo	sapi	iens												
40	<400 agat		70 tca d	ccato	ggaca	at ga	agggt	cata	c gct	cago	etcc	tgg	ggcto	cat q	gctgo	ctctgt	60
	ttc	ccag	gtg d	ccaga	atgto	ga ca	atcca	agato	g acc	ccagt	cctc	cato	cctca	act o	gtcto	gcatct	120
	gtag	ggag	aca q	gagto	cacca	at ca	actto	gtaga	g gcd	gagto	cagg	gtat	tago	cag o	ctggt	tagcc	180
45	tggt	tatca	agc a	agaaa	accaç	ga ga	aaago	cccct	aaq	gtccc	ctga	tcta	atgci	cgc a	atcca	agtttg	240
	caaa	agtg	ggg t	taca	atcaa	ag gt	tcag	gegge	agt	ggat	cctg	ggad	cagat	tt d	cacto	ctcacc	300
50	atca	agca	gaa t	tgcag	gaato	ya aç	gattt	tgca	act	tatt	act	gcca	aacaq	gta 1	taata	agttac	360
50	ccgt	caca	ctt 1	ttggd	ccago	gg ga	accaa	agcto	g gaç	gatca	aaac	gtad	cggt	ggc 1	tgca		414
55	<210 <211 <212 <213	L> : 2> 1	71 134 PRT Homo	sap	iens												

	<400)> 7	71															
5	Met 1	Asp	Met	Arg	Val 5	Leu	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Cys		
	Phe	Pro	Gly	Ala 20	Arg	Cys	Asp	Ile	Gln 25	Met	Thr	Gln	Ser	Pro 30	Ser	Ser		
10	Leu	Ser	Ala 35	Ser	Val	Gly	Asp	Arg 40	Val	Thr	Ile	Thr	Cys 45	Arg	Ala	Ser		
15	Gln	Gly 50	Ile	Ser	Ser	Trp	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Glu	Lys		
	Ala 65	Pro	Lys	Ser	Leu	Ile 70	Tyr	Ala	Ala	Ser	Ser 75	Leu	Gln	Ser	Gly	Val 80		
20	Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr		
25	Ile	Ser	Ser	Leu 100	Gln	Pro	Glu	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln		
30	Tyr	Asn	Ser 115	Tyr	Pro	Tyr	Thr	Phe 120	Gly	Gln	Gly	Thr	Lys 125	Leu	Glu	Ile		
	Lys	Arg 130	Thr	Val	Ala	Ala												
35	<210 <211 <212 <213	.> 4 !> [72 423 DNA Homo	sapi	iens													
40	<400 cgac			ggaa	actgo	gg go	ctac	gatgo	g gtt	ttc	cttg	ttgo	ctatt	itt a	agaaç	ggtgtc	6	0
	cagt	gtga	agg t	gcaç	gttg	gt go	gagto	ctggg	g gga	aggco	ctgg	tcaa	agcct	gg (ggggt	ccctg	12	3
45	agac	tcto	cat q	gtgca	agcct	c to	ggatt	caco	tto	cagta	agcc	ataa	acato	gaa d	ctggg	gtccgc	18	3
45	cago	ctco	cag q	ggaaq	gggg	et go	gagto	gggto	tca	atcca	atta	gtag	gtagt	ag t	agtt	acata	24	3
	tatt	atgo	cag a	actca	agtga	a go	ggcc	gatto	c acc	catct	cca	gaga	acaa	ege d	caaga	actca	30	3
50	ctgt	atct	tgc a	aaato	gaaca	ag co	ctga	gagco	gaç	ggaca	acgg	ctgt	gtat	ta d	ctgto	rcgaga	36	2
	gago	gacto	ggg g	gctad	ctttç	ga ct	cacto	gggg	caç	gggaa	accc	tggt	caco	cgt o	ctcct	cagct	42	2
	agc																423	3
55	<210 <211		73 140															

	<213		Homo	sap	iens													
-	<400	0>	73															
5	Met 1	Glu	Leu	Gly	Leu 5	Arg	Trp	Val	Phe	Leu 10	Val	Ala	Ile	Leu	Glu 15	Gly		
10	Val	Gln	Cys	Glu 20	Val	Gln	Leu	Val	Glu 25	Ser	Gly	Gly	Gly	Leu 30	Val	Lys		
15	Pro	Gly	Gly 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe		
10	Ser	Ser 50	His	Asn	Met	Asn	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu		
20	Glu 65	Trp	Val	Ser	Ser	Ile 70	Ser	Ser	Ser	Ser	Ser 75	Tyr	Ile	Tyr	Tyr	Ala 80		
25	Asp	Ser	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ala	Lys 95	Asn		
	Ser	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val		
30	Tyr	Tyr	Cys 115	Ala	Arg	Glu	Asp	Trp 120	Gly	Tyr	Phe	Asp	Tyr 125	Trp	Gly	Gln		
35	Gly	Thr 130	Leu	Val	Thr	Val	Ser 135	Ser	Ala	Ser	Thr	Lys 140						
40	<210 <211 <212 <213	1> 2>	74 407 DNA Homo	sap	iens													
	<40(agat	-	74 tca (ccato	ggaca	at ga	agggt	ccc	c gct	cago	ctcc	tggg	gctt	ct q	gctgo	ctctgg		60
45	ctc	ccag	gtg (ccaga	atgto	gc ca	atcca	agtto	g acc	ccagt	ctc	cato	cctcc	cct q	gtata	gcatct	1	20
	gtag	ggag	aca 🤄	gagto	cacca	at ca	actto	geege	g gca	agto	cagg	gcat	tago	cag t	gatt	tagcc	1	80
	tggt	tatc	agc a	agaaa	acca	gg ga	aaago	ctcct	aaq	gata	ctga	tcta	atgat	gc o	ctcca	agtttg	2	40
50	gaaa	agtg	ggg t	ccca	atcaa	ag gt	tcaç	gegge	agt	ggat	ctg	ggad	cagat	tt d	cacto	ctcacc	3	00
	atca	agca	gcc t	cgcaq	gaatq	ga aç	gattt	tgca	a act	tatt	act	gtca	acaç	gtt t	taata	agttac	3	60
55	ccat	ttca	ctt 1	cgg	ccet	gg ga	accaa	aagto	g gat	atca	aaac	gtad	eggt				4	07
	<210	0>	75															

	<211 <212 <213	!>	134 PRT Homo	sapi	iens												
5	<400)>	75														
	Met 1	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp	
10	Leu	Pro	Gly	Ala 20	Arg	Cys	Ala	Ile	Gln 25	Leu	Thr	Gln	Ser	Pro 30	Ser	Ser	
15	Leu	Ser	Ala 35	Ser	Val	Gly	Asp	Arg 40	Val	Thr	Ile	Thr	Cys 45	Arg	Ala	Ser	
	Gln	Gly 50	Ile	Ser	Ser	Asp	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Gly	Lys	
20	Ala 65	Pro	Lys	Leu	Leu	Ile 70	Tyr	Asp	Ala	Ser	Ser 75	Leu	Glu	Ser	Gly	Val 80	
25	Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr	
30	Ile	Ser	Ser	Leu 100	Gln	Pro	Glu	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln	
	Phe	Asn	Ser 115	Tyr	Pro	Phe	Thr	Phe 120	Gly	Pro	Gly	Thr	Lys 125	Val	Asp	Ile	
35	Lys	Arg 130	Thr	Val	Ala	Ala											
40	<210 <211 <212 <213	.> !>	76 433 DNA Homo	sapi	iens												
	<400		76														
45																aggtgt ctcagt	60 120
	aaag	ratg	tcc 1	tgcaa	aggct	t ct	ggat	acao	ctt	cact	gac	tact	acat	ga a	agtgo	ggtgaa	180
50	acag	gago	cat	ggaaa	agago	cc tt	gagt	ggat	tgg	gagat	att	atto	ctaç	gca a	atggt	gccac	240
50	tttc	tac	aac (cagaa	agtto	ca aç	gggca	aggo	cac	tttc	gact	gtgg	gacaç	gat o	cctcc	cagcac	300
	agco	tac	atg (cacct	caad	ca go	cctga	cato	tga	aggac	ctct	gcaç	gtcta	att a	actgt	acaag	360
55	atcg	rcat	tta (ctgcg	gggc	et co	ctggt	ttgo	tta	actgo	gggc	caaç	ggad	etc t	ggto	cactgt	420
	ctct	gca	gct a	agc													433

	<21: <21: <21: <21:	1> 2>	141 PRT Homo	sap:	iens												
5	<40	0>	77														
	Met 1	Gly	Trp	Ser	Trp 5	Ile	Phe	Leu	Phe	Leu 10	Val	Ser	Gly	Thr	Gly 15	Gly	
10	Val	Leu	Ser	Glu 20	Val	Gln	Leu	Gln	Gln 25	Ser	Gly	Pro	Glu	Leu 30	Val	Lys	
15	Pro	Gly	Ala 35	Ser	Val	Lys	Met	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe	
20	Thr	Asp 50	Tyr	Tyr	Met	Lys	Trp 55	Val	Lys	Gln	Ser	His 60	Gly	Lys	Ser	Leu	
25	Glu 65	Trp) Ile	Gly	Asp	Ile 70	Ile	Pro	Ser	Asn	Gly 75	Ala	Thr	Phe	Tyr	Asn 80	
	Gln	Lys	Phe	Lys	Gly 85	Lys	Ala	Thr	Leu	Thr 90	Val	Asp	Arg	Ser	Ser 95	Ser	
30	Thr	Ala	Tyr	Met 100	His	Leu	Asn	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val	
35	Tyr	Tyr	Cys 115	Thr	Arg	Ser	His	Leu 120	Leu	Arg	Ala	Ser	Trp 125	Phe	Ala	Tyr	
40	Trp	Gly 130	Gln	Gly	Thr	Leu	Val 135	Thr	Val	Ser	Ala	Ala 140	Ser				
	<21: <21: <21: <21:	1> 2>	78 412 DNA	425	iona												
45	<40	0>	Homo 78			ac aç	gacto	caggt	c cct	cato	gtcc	ctgo	etgtt	cct (gggta	atctgg	60
50	tac	ctgt	ggg (gacti	ttgt	ga to	gacad	cagto	c tco	catco	ctcc	ctga	actgt	cga (cagca	aggaga	120
50	gaa	ggto	act a	atga	gctgo	ca aç	gtcta	agtca	a gaç	gtcto	gtta	aaca	agtg	gaa a	atcaa	aaagaa	180
	cta	cttg	racc 1	tggta	atcto	gc ag	gaaad	ccag	g gca	agcct	cct	aaat	tgtt	ga ·	tctat	tgggc	240
55	atc	cact	agg (gaato	ctgg	gg to	ccct	gatc	g ctt	caca	aggc	agto	ggato	ctg (gaaca	agattt	300
	cact	tctc	acc	atca	gcagt	g to	gcag	gctga	a aga	accto	ggca	gttt	atta	act (gtcag	gaatga	360

	ttata	agti	tat d	ccgta	acaco	gt to	cgga	gggg	g gad	ccaaç	gctg	gaaa	ataaa	aac q	gt		412
5	<2102 <2112 <2122 <2132	> : > I	79 134 PRT Homo	sapi	iens												
	<400	> '	79														
10	Met (Glu	Ser	Gln	Thr 5	Gln	Val	Leu	Met	Ser 10	Leu	Leu	Phe	Trp	Val 15	Ser	
15	Gly :	Thr	Cys	Gly 20	Asp	Phe	Val	Met	Thr 25	Gln	Ser	Pro	Ser	Ser 30	Leu	Thr	
	Val :	Thr	Ala 35	Gly	Glu	Lys	Val	Thr 40	Met	Ser	Cys	Lys	Ser 45	Ser	Gln	Ser	
20	Leu]	Leu 50	Asn	Ser	Gly	Asn	Gln 55	Lys	Asn	Tyr	Leu	Thr 60	Trp	Tyr	Leu	Gln	
25	Lys I 65	Pro	Gly	Gln	Pro	Pro 70	Lys	Leu	Leu	Ile	Tyr 75	Trp	Ala	Ser	Thr	Arg 80	
30	Glu s	Ser	Gly	Val	Pro 85	Asp	Arg	Phe	Thr	Gly 90	Ser	Gly	Ser	Gly	Thr 95	Asp	
	Phe :	Thr	Leu	Thr 100	Ile	Ser	Ser	Val	Gln 105	Ala	Glu	Asp	Leu	Ala 110	Val	Tyr	
35	Tyr (Cys	Gln 115	Asn	Asp	Tyr	Ser	Tyr 120	Pro	Tyr	Thr	Phe	Gly 125	Gly	Gly	Thr	
40	Lys 1	Leu 130	Glu	Ile	Lys	Arg											
45	<210: <211: <212: <213:	> ; > I		ficia	al												
	<220 <223		oni m	an he	י 1 1 חיי	\$ Ervv≥	Æ≏T										
50			=	er u(,DIT (oe W−ľ	лет										
50	<4002 cggca		80 tgc (cacca	atgct	ct ct	cat	ggtga	a caa	agcct	5						37
55	<210: <211: <212: <213:	> ; > I	81 31 O NA Artii	fici:	a 1												

	<220> <223>	primer hCD116Rv-NotI	
	<400>	81	
5		gccg ctcaggtaat ttccttcacg g	31
	<210>		
	<211> <212>		
10		Artificial	
	<220> <223>	primer hCD116Fw-MfeI	
15	<400> cggcaat	82 ttgc caccatgctt ctcctggtga caagcct	37
	<210>		
20	<211> <212>		
		Artificial	
	<220> <223>	primer hCD116Rv-NotI	
25			
	<400> attgcg	83 gccg ctcaggtaat ttccttcacg g	31
	<210>		
30	<211>		
	<212> <213>	Artificial	
	<220>		
35		primer hCD116Fw-MfeI	
	<400>		
	cggcaat	ttgc caccatgctt ctcctggtga caagcct	37
40	<210>		
	<211>		
	<212>		
	<213>	Artificial	
45	<220>		
		primer hCD116Rv-NotI	
	<400>		21
	attgcg	gccg ctcaggtaat ttccttcacg g	31
50			
	<210>		
	<211> <212>		
		Artificial	
55	<220>		
		primer hCDl16SeqFw1	

	<400> tgaact	86 gtac ctgggcgagg	20
5	<210>	87	
Ü	<211>		
	<212>		
		Artificial	
	<220>		
10	<223>	primer hCD116SeqFw2	
	<400>	87	
	ctggca	cgga aaacctactg	20
15			
10	<210>	88	
	<211>		
	<212>	DNA	
	<213>	Artificial	
20	<220>		
		primer hCD116SeqRv1	
	<400>	88	
		oo tttg gataaagcag	20
25	-		
	<210>		
	<211>		
	<212>		
30	<213>	Artificial	
30	40005		
	<220> <223>	primer T7	
	12257	PIIMEI I'	
	<400>	89	
35	taatac	gact cactataggg	20
	<210>		
	<211>	40	
	<212>		
40	<213>	Artificial	
	<220>		
	<223>	primer hCD123-C-FLAG-R1	
	<400>	90	
45		tegt cettgtagte agttttetge aegaeetgta	40
	3 - 2 -		-
	<210>	91	
	<211>		
50	<212>		
•		Artificial	
	<220>		
		primer IL-3RA_Fw	
	-2237	F====== += 0:22.* H	
55	<400>	91	_
	cggcaa	ttgc caccatggtc ctcctttggc tcac	34

	<210>	92	
		39	
	<212>		
	<213>	Artificial	
5			
_	<220>		
		primer C-FLAG-NotR2	
	1225	primer C ried Nock2	
	<400>	92	
10	aaaagc	ggcc gctcacttgt cgtcatcgtc cttgtagtc	39
		93	
	<211>		
	<212>		
15	<213>	Artificial	
	<220>		
		primer pEGFP-N1-Fw	
		F	
	<400>	93	
20			
	cgtgta	cggt gggaggtcta	20
	<210>		
	<211>		
25	<212>	DNA	
20	<213>	Artificial	
	<220>		
		primer pEGFP-N1-Re	
	\225/	PITMET PEGFF-NI-RE	
30	.400.		
00	<400>	94	
	tttatg	tttc aggttcagg	19
		95	
35	<211>	20	
	<212>	DNA	
		Artificial	
	<220>		
		primer pEGFP-N1-Fw	
40	\223/	PITHEL PEGFF-NI-FW	
	-400-	0.5	
	<400>		
	cgtgta	cggt gggaggtcta	20
45	<210>		
	<211>	19	
	<212>	DNA	
		Artificial	
	<220>		
50		primer pecep N1 pe	
00	~443>	primer pEGFP-N1-Re	
	.400		
	<400>		
	tttatg	tttc aggttcagg	19
55			
	<210>	97	
	<211>		

	<212>	DNA Artificial	
	\213/	ALLITICIAI	
	<220>		
5	<223>	primer CD123R11pEGFPN1	
	<400>	97	
	aaaggt	accg aattcgaagc ttgagctc	28
10			
70	<210>		
	<211> <212>		
		Artificial	
	-2225		
15	<220> <223>	primer CD123F11	
	<400>		27
	aaaggt	accg ggaageettg ggeaggt	21
20			
	<210>		
	<211> <212>		
		Artificial	
25	1220		
20	<220>		
	<223>	primer CD123R12-2	
	<400>	99	
		acca ctgttctcag ggaagaggat	30
30			
	<210>	100	
	<211>		
	<212>		
35	<213>	Artificial	
	<220>		
	<223>	primer CD123F12-2	
	<400>	100	
40		accc agattgagat attaactcc	29
	<210>	101	
	<211>		
45	<212>		
40		Artificial	
	<220>		
		primer CD123R13	
50			
-	<400>	IVI acct gaaaagacga caaactt	27
	aaayyt	acct gaaaagacga caaactt	21
	<210>	102	
	<211>		
55	<212>		
		Artificial	

	<220> <223>	primer CD123F13	
	<400>	102	
5		acct cgctgctgat cgcgctg	27
	<210>	103	
	<211>		
	<212>		
10	<213>	Artificial	
	<220>		
	<223>	primer pEGFP-N1-Fw	
15	<400>	103	
	cgtgta	cggt gggaggtcta	20
	<210>	1.04	
	<211>		
20	<212>		
	<213>	Artificial	
	<220>		
	<223>	primer pEGFP-N1-Re	
25	<400>	104	
		tttc aggttcagg	19
	<210>		
30	<211>		
	<212>		
		Artificial	
	<220>		
35	<223>	primer GM-CSFRF11	
		105	
	aaaggt	accg ccaccatgct tctcctggtg aca	33
40	<210>	106	
	<211>		
	<212>		
	<213>	Artificial	
45	<220>		
.0	<223>	primer GM-CSFRR11	
	<400>	106	
	aaaggt	acct gaatttggat aaagcag	27
50			
	<210>		
	<211>		
	<212> <213>	DNA Artificial	
55			
- -	<220>	nnimon CM_CCEDE12	
	\443	primer GM-CSFRF12	

	<400>	107	
	aaaggt	accg gaagggaggg taccgct	27
5	<210>	108	
	<211>	27	
	<212>	DNA	
	<213>	Artificial	
	<220>		
10	<223>	primer GM-CSFRR12	
		•	
	<400>	108	
		accc tttgtgtcca aaagtga	27
15			
	<210>	109	
	<211>	27	
	<212>	DNA	
	<213>	Artificial	
20	<220>		
	<223>	primer GM-CSFRF13	
	<400>	109	
	aaaggt	acca aaatagaacg attcaac	27
25		•	
20			
	<210>	110	
	<211>	27	
	<212>		
	<213>	Artificial	
30			
	<220>		
	<223>	primer GM-CSFRR13	
	<400>	110	
35	aaaggt	acca atgtacacag agccgag	27
	<210>	111	
	<211>	20	
40	<212>		
40	<213>	Artificial	
	<220>		
	<223>	primer pEGFP-N1-Fw	
45	<400>	111	••
	cgtgta	cggt gggaggtcta	20
	.0.4.0	440	
	<210>		
50	<211>		
50	<212>		
	<213>	Artificial	
	4000		
	<220>	and and a FORD AVI. De	
	<223>	primer pEGFP-N1-Re	
55	4400.	110	
	<400>		
	tttato	tttc aggttcagg	19

```
<210> 113
           <211> 5
           <212> PRT
           <213> Homo sapiens
5
           <400> 113
           Thr Tyr Ala Ile Ser
10
           <210> 114
           <211> 17
<212> PRT
           <213> Homo sapiens
15
           <400> 114
           Gly Ile Ile Pro Ile Phe Gly Ile Val Asn Tyr Ala Gln Lys Phe Gln
20
           Gly
           <210> 115
           <211> 11
           <212> PRT
           <213> Homo sapiens
30
           <400> 115
           Gly Gly Gly Ser Gly Pro Asp Val Leu Asp Ile
                           5
35
           <210> 116
           <211> 5
<212> PRT
           <213> Homo sapiens
40
           <400> 116
           Thr Tyr Ala Ile Ser
45
           <210> 117
           <211> 17
           <212> PRT
           <213> Homo sapiens
50
           <400> 117
           Gly Leu Ile Pro Ile Phe Asp Ile Glu Asn Tyr Ala Gln Lys Phe Gln
                            5
55
           Gly
```

```
<210> 118
             <211> 11
              <212> PRT
              <213> Homo sapiens
5
              <400> 118
             Gly Gly Gly Ser Gly Pro Asp Val Leu Asp Ile
                               5
10
             <210> 119
             <211> 5
<212> PRT
              <213> Homo sapiens
15
             <400> 119
             Asn Phe Ala Ile Ser
20
             <210> 120
              <211> 17
              <212> PRT
              <213> Homo sapiens
25
             <400> 120
             Gly Ile Ile Pro Ile Phe Gly Ser Thr Asn Tyr Ala Gln Lys Phe Gln
                                                     10
30
             Gly
             <210> 121
<211> 11
35
              <212> PRT
              <213> Homo sapiens
              <400> 121
40
             Gly Asp Lys Tyr Gly Pro Tyr Tyr Phe His Tyr
             <210> 122
<211> 5
<212> PRT
<213> Homo sapiens
45
             <400> 122
50
             Ser Tyr Ala Ile Ser
             <210> 123
<211> 17
              <212> PRT
```

```
<213> Homo sapiens
              <400> 123
              Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe Gln
5
              Gly
10
              <210> 124
              <211> 11
              <212> PRT
              <213> Homo sapiens
15
              <400> 124
              Gly His Lys Tyr Gly Pro Tyr Tyr Phe Asp Tyr
20
              <210> 125
              <211> 5
              <212> PRT
              <213> Homo sapiens
25
              <400> 125
              Ser Tyr Ala Ile Ser
30
              <210> 126
              <211> 17
<212> PRT
<213> Homo sapiens
35
              <400> 126
              Glu Ile Ile Pro Ile Phe Gly Ile Val Asn Tyr Ala Gln Lys Phe Gln
                               5
                                                    10
40
              Gly
              <210> 127
45
              <211> 10
<212> PRT
<213> Homo sapiens
              <400> 127
50
              Glu Thr Ala Val Ala Gly Ile Leu Gly Tyr
                               5
                                                    10
              <210> 128
55
              <211> 5
              <212> PRT
```

```
<213> Homo sapiens
               <400> 128
               Ser His Asn Met Asn
5
               <210> 129
               <211> 17
<212> PRT
<213> Homo sapiens
10
               <400> 129
               Ser Ile Ser Ser Ser Ser Tyr Ile Tyr Tyr Ala Asp Ser Val Lys
15
               Gly
20
               <210> 130
               <211> 7
<212> PRT
<213> Homo sapiens
25
               <400> 130
               Glu Asp Trp Gly Tyr Phe Asp
                                    5
30
               <210> 131
               <211> 11
<212> PRT
<213> Homo sapiens
35
               <400> 131
               Arg Met Ser Gln Gly Ile Arg Ser Tyr Leu Ala
40
               <210> 132
<211> 7
<212> PRT
<213> Homo sapiens
45
               <400> 132
               Ala Ala Ser Thr Leu Gln Ser
                                   5
50
               <210> 133
<211> 9
<212> PRT
<213> Homo sapiens
               <400> 133
```

	Gln Gln Tyr Tyr Ser Phe Pro Tyr Thr 1 5
5	<210> 134 <211> 11 <212> PRT <213> Homo sapiens
10	<400> 134 Arg Met Ser Gln Gly Ile Arg Ser Tyr Leu Ala
	1 5 10
15	<210> 135 <211> 7 <212> PRT
20	<213> Homo sapiens <400> 135
20	Ala Ala Ser Thr Leu Gln Ser 1 5
25	<210> 136 <211> 9 <212> PRT <213> Homo sapiens
30	<400> 136
	Gln Gln Tyr Tyr Ser Phe Pro Tyr Thr 1 5
35	<210> 137 <211> 11 <212> PRT <213> Homo sapiens
	<4 00> 137
40	Arg Ala Ser Gln Gly Ile Ser Ser Trp Leu Ala 1 5 10
45	<210> 138 <211> 7 <212> PRT <213> Homo sapiens
	<400> 138
50	Ala Ala Ser Ser Leu Gln Ser 1 5
55	<210> 139 <211> 9 <212> PRT
	<213> Homo sapiens

	<400>	139								
	Gln Gl	n Tyr	Asn	Ser 5	Tyr	Pro	Tyr	Thr		
5										
	<210> <211>									
	<212>									
10	<213>	Homo	sap	iens						
	<400>	140								
	Arg Ala	a Ser	Gln	Gly 5	Ile	Ser	Ser	Trp	Leu 10	Ala
15	-			J					10	
	<210>	141								
	<211>									
	<212>									
20	<213>	Homo	sap:	lens						
	<400>	141								
	Ala Ala	a Ser	Ser		Gln	Ser				
	1			5						
25										
	<210>	142								
	<211>									
	<212>									
30	<213>	Homo	sap:	ıens						
	<400>	142								
	Gln Gl	n Tyr	Asn	Ser	Tyr	Pro	Arg	Thr		
	1			5						
35										
	<210>	143								
	<211>	11								
	<212>	PRT								
40	<213>	Homo	sap:	iens						
	<400>	143								
	Arg Ala	a Ser	Gln		Ile	Ser	Ser	Trp		Ala
	1			5					10	
45										
	<210>	144								
	<211>	7								
	<212>			_						
50	<213>	Homo	sap:	Lens						
	<400>	144								
	ות בום	a 6v~	g_~	Len	G1 ~	Sa~				
	Ala Ala	a ser	Ser	ьеи 5	GTII	SET				
55										
	-01 O:	1 45								
	<210>	140								

```
<211> 9
         <212> PRT
         <213> Homo sapiens
         <400> 145
5
         Gln Gln Tyr Asn Ser Tyr Pro Tyr Thr
10
         <210> 146
        <211> 11
<212> PRT
<213> Homo sapiens
         <400> 146
15
         Arg Ala Ser Gln Gly Ile Ser Ser Asp Leu Ala
20
         <210> 147
         <211> 7
         <212> PRT
<213> Homo sapiens
         <400> 147
25
         Asp Ala Ser Ser Leu Glu Ser
         1 5
30
         <210> 148
        <211> 9
<212> PRT
<213> Homo sapiens
         <400> 148
35
         Gln Gln Phe Asn Ser Tyr Pro Phe Thr
        <210> 149
<211> 29
<212> DNA
<213> Artificial
40
         <220>
45
         <223> primer CD123-Fw21
         <400> 149
                                                                                      29
         cgtggaaccc gcagtgaaca atagctatt
50
         <210> 150
         <211> 30
         <212> DNA
         <213> Artificial
55
         <220>
         <223> primer CD123-Re21
```

	<400>	150	
	actcto	gttct ttttaacaca ctcgatatcg	30
		,	
5	<210>		
	<211>	29	
	<213>	Artificial	
10	<220>		
	\223>	primer CD123-Fw22	
	<400>	151	
	ctttat	tccaa ataacagtgg gaagccttg	29
15	.010.	150	
	<211>		
	<212>		
	<213>	Artificial	
20	<220>		
		primer CD123-Re22	
		F	
	<400>	152	
	cagttt	tctgt tggaatggtg ggttggccac t	31
25			
	201 AS	152	
	<211>		
		Artificial	
30	\Z13>	Artificial	
	<220>		
		primer CD123-Fw23	
	12257	PIIMEI ODIZO I WZO	
	<400>	153	
35	agggag	gggta ccggtgcgga gaatctgacc tgct	34
	401 As	154	
	<210> <211>	15 4 32	
40	<212>	Artificial	
40	\Z13/	Arciniciai	
	<220>		
		primer CD123-Re23	
45	<400>		
	tcctga	aattt ggatagaaga ggatccacgt gg	32
	<210>	155	
	<211>		
50	<211>		
50		Artificial	
	-L1J/	01110141	
	<220>		
		primer CD123-Fw24	
55			
55			
	gataca	gacgg cccccgcgga cgtccagta	29

	<21U>	156	
	<211>	32	
	<212>		
		Artificial	
5	\Z13 >	Arcilicial	
Ü			
	<220>		
	<223>	primer CD123-Re24	
	<400>	156	
10	cctcac	ccag gtacagctca agaaatccac gt	32
		y y y y -	_
	<210>	157	
	<211>		
	<212>		
15			
	<213>	Artificial	
	<220>		
	<223>	primer CD123-Fw25	
20	<400>	157	
		accag cgcagccttc ggtatcccct	30
	99		
	<210>	150	
	<211>		
25			
	<212>		
	<213>	Artificial	
	<220>		
30	<223>	primer CD123-Re25	
30			
	<400>	158	
		agaaa gtgggaactt tgagaacc	28
35	<210>	150	
	<211>		
	<212>		
	<213>	Artificial	
40	<220>		
	<223>	primer CD123-Fw26	
	<400>	159	
		gattc atttgtcgtc ttttcaca	28
45			
	<210>	160	
	<211>		
	<212>		
	<213>	Artificial	
50			
	<220>		
	<223>	primer CD123-Re26	
	_	-	
	<400>	160	
e e		atgcc gaaggctgcg ctcctgccc	29
55	actyga	augue gaaggeegeg deedeegeee	29

Claims

5

15

20

25

30

35

40

45

50

- 1. A method for producing an antibody to a human IL-3R α chain which does not inhibit IL-3 signaling and binds to B domain of the human IL-3R α chain but does not bind to C domain of the human IL-3R α chain.
- The method according to claim 1, wherein the human IL-3Rα antibody further has high antibody-dependent cellular cytotoxicity (ADCC).
- 3. The method according to claim 1 or 2, wherein the high antibody-dependent cellular cytotoxicity (ADCC) shows a specific lysis rate of 10% at an antibody concentration of 0.01 μg/ml, by a Colon-26/hCD123 ADCC assay method using PBMC cultured with IL-2.
 - **4.** The method according to any one of claims 1 to 3, wherein the human IL-3Rα antibody comprises amino acid sequences of CDRs of heavy chain and CDRs of light chain selected from the group consisting of the following (a) to (e);
 - (a) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:113 to 115, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:131 to 133, respectively,
 - (b) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:116 to 118, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs: 134 to 136, respectively,
 - (c) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:119 to 121, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:137 to 139, respectively,
 - (d) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:122 to 124, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:140 to 142, respectively, and
 - (e) CDR 1 to 3 of heavy chain are the amino acid sequences of SEQ ID NOs:125 to 127, respectively, and CDR 1 to 3 of light chain are the amino acid sequences of SEQ ID NOs:143 to 145, respectively.
 - 5. The method according to any one of claims 1 to 4, wherein the human IL- $3R\alpha$ antibody comprises a heavy chain variable region and a light chain variable region selected from the group consisting of the following (a) to (e);
 - (a) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:53 and a light chain variable region comprising an amino acid sequence from valine (V) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:55:
 - (b) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:57 and a light chain variable region comprising an amino acid sequence from valine (V) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:59:
 - (c) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:61 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:63;
 - (d) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 139 in the amino acid sequence of SEQ ID NO:65 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:67; and
 - (e) a heavy chain variable region comprising an amino acid sequence from glutamine (Q) at position 20 to serine (S) at position 138 in the amino acid sequence of SEQ ID NO:69 and a light chain variable region comprising an amino acid sequence from aspartic acid (D) at position 23 to lysine (K) at position 129 in the amino acid sequence of SEQ ID NO:71.
 - 6. The method of any one of claims 1 to 5, wherein the method comprises:
 - administering human IL-3R α , a subsequence thereof or a fragment thereof to animals which can express human immunoglobin;
 - screening the animals for their expression of human IL-3R α antibody;
 - selecting an animal which produces human IL-3R $\!\alpha$ antibody; and
 - isolating the human IL-3R α antibody from the selected animal.

7. The method of claim 6, wherein the human IL- $3R\alpha$, subsequence thereof or fragment thereof is conjugated with a human Fc recombinant protein. **8.** The method of claim 6 or 7, wherein the fragment of human IL-3R α is the IL-3R α extracellular region. The method according to any one of claims 1 to 5, wherein the human IL-3R α antibody is produced by a recombinant technique. **10.** The method according to any one of claims 1 to 5, wherein the method comprises:

10

- transforming a host cell with vector comprising a nucleic acid sequence encoding the antibody;
- expressing the antibody by growing the cell; and
- purifying the antibody.

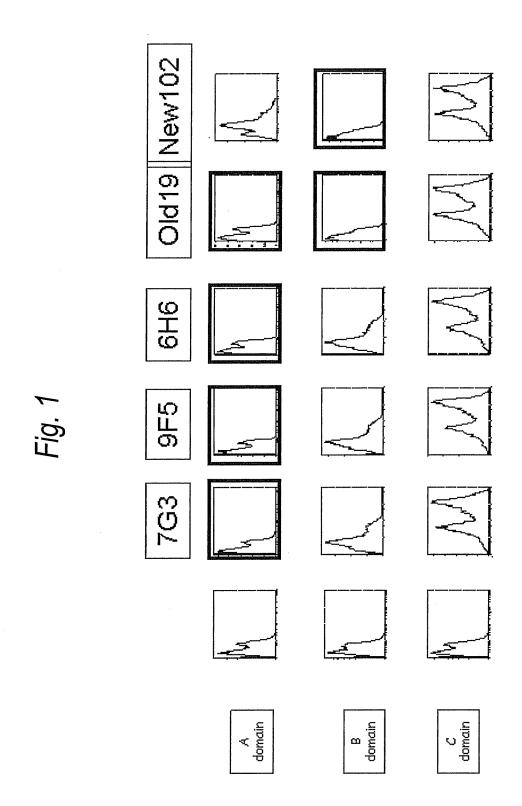
5

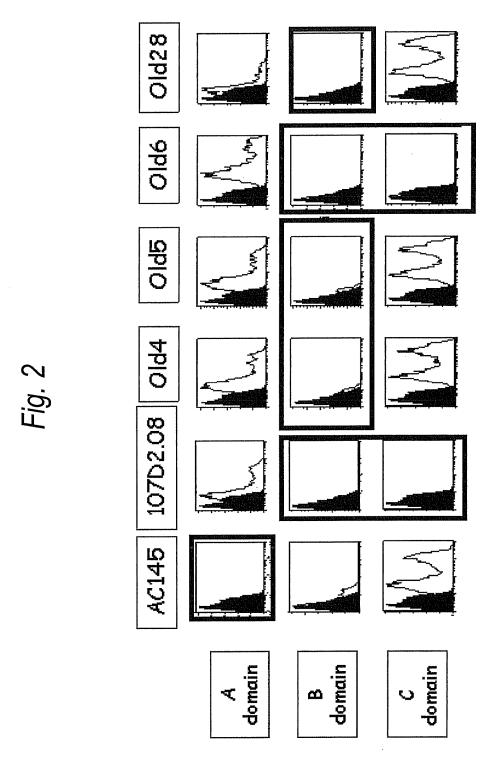
20

25

30

35

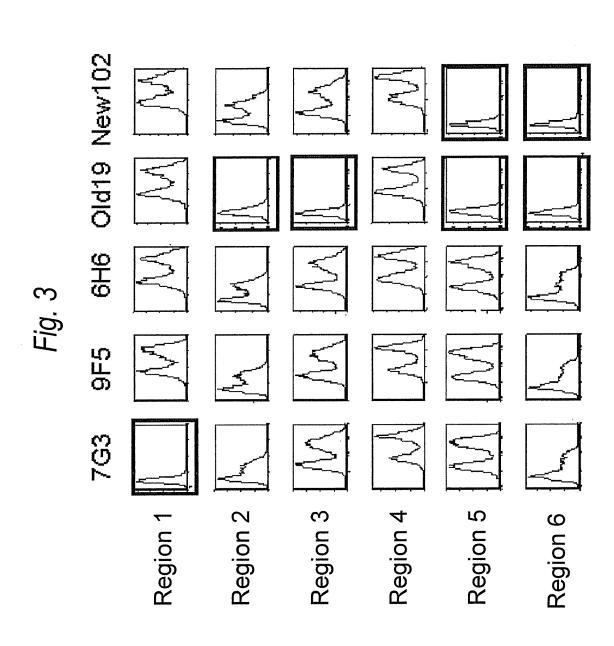
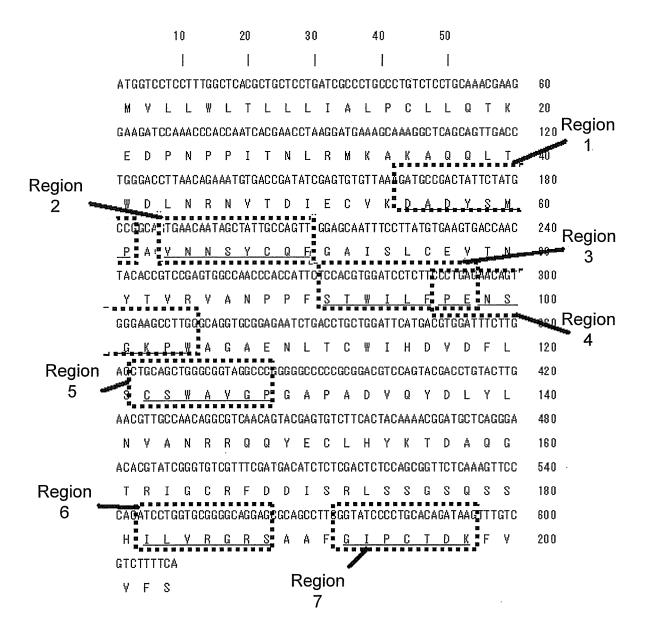
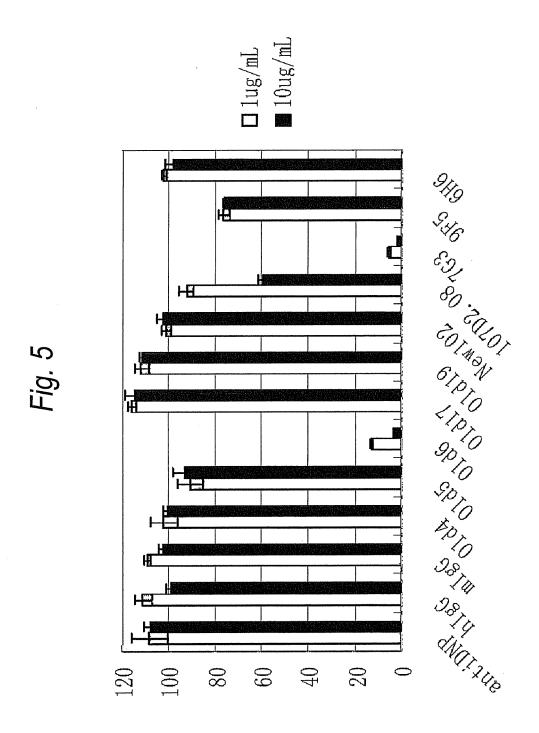
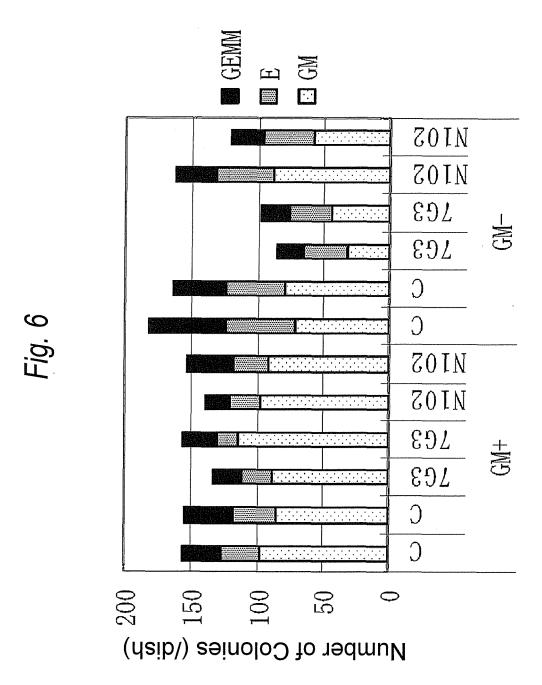
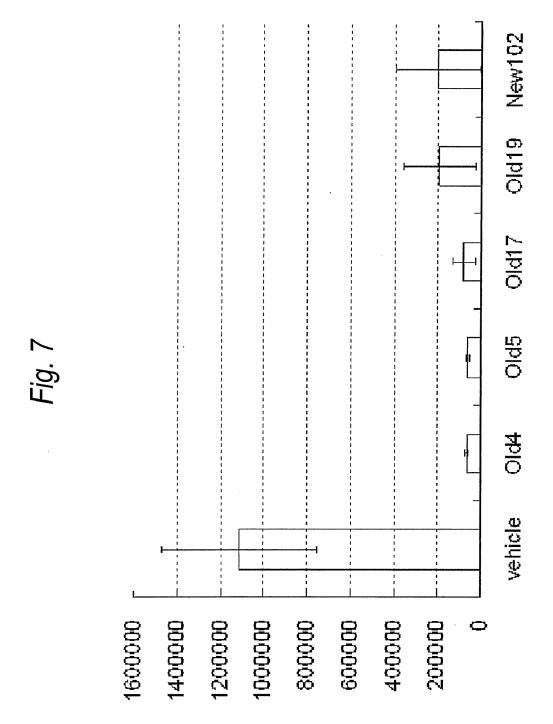

40

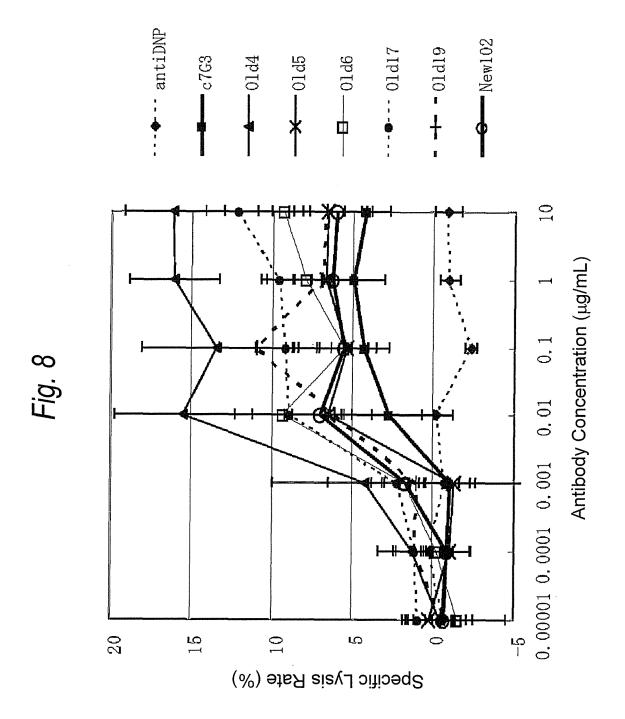

45

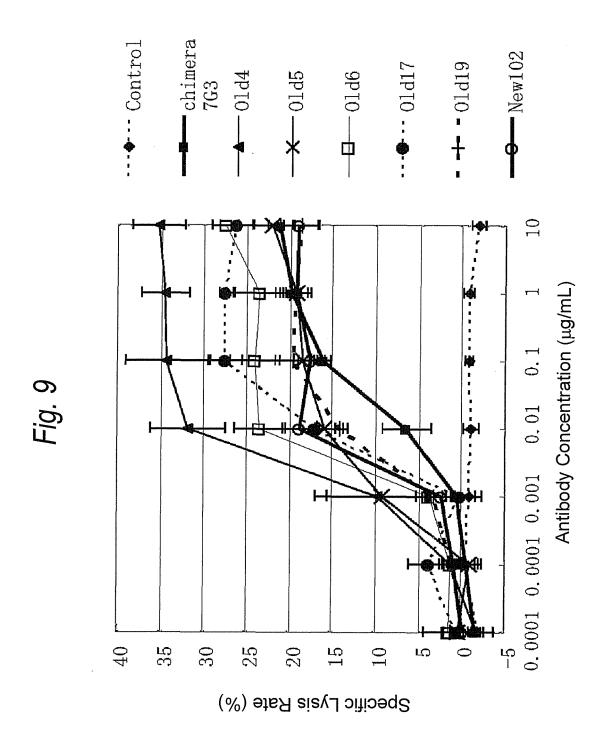
50

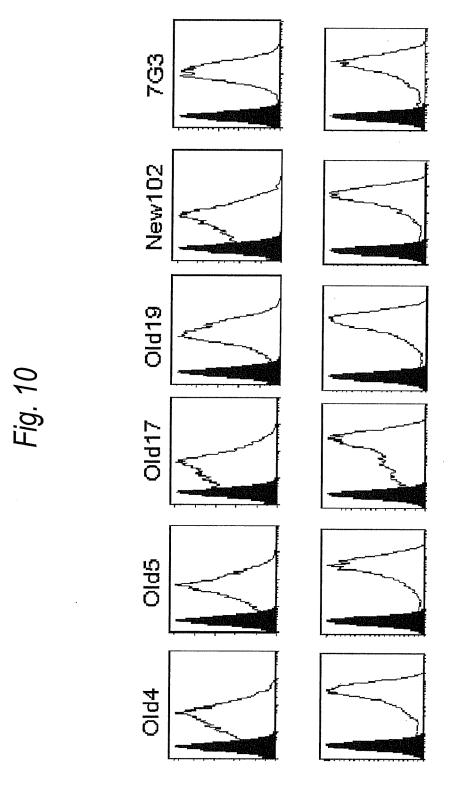
55

- 15 11. Use of the IL- $3R\alpha$ antibody as defined in any one of claims 1 to 5 for the manufacture of a pharmaceutical composition for use in a method for preventing or treating a blood tumor in which a cell expressing IL-3R α is found in bone marrow or peripheral blood of a subject.
 - 12. The use according to claim 11, wherein the blood tumor is acute myeloid leukemia (AML).


Fig. 4





EUROPEAN SEARCH REPORT

Application Number EP 15 17 2601

	DOCUMENTS CONSIDE	RED TO BE RELEVANT	Г	
Category	Citation of document with inc of relevant passaç		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
A	Human Interleukin-3 alpha-Chain and Fund IL-3 Receptor Antago BLOOD, AMERICAN SOCI vol. 87, no. 1,	rminal Domain of the (IL-3) Receptor etions as a Specific onist", ETY OF HEMATOLOGY, US, 5-01-01), pages 83-92,	1-12	INV. C07K16/28 A61K39/395 A61P35/02 C07K16/46 G01N33/53 G01N33/574 G01N33/577 C12N15/02 C12N15/09 C12P21/08 C12R1/91
A	WO 97/24373 A1 (MEDV [AU]; LOPEZ ANGEL F 10 July 1997 (1997-6 * page 3, lines 22-2	07-10)	1-12	GIERI, JI
A	Correlative Biologic (anti-CD123 mAb) in BLOOD, vol. 112, no. 11, No pages 1015-1016, XPG & 50TH ANNUAL MEETIN	AML", ovember 2008 (2008-11), 009161393, NG OF THE AMERICAN- GY; SAN FRANCISCO, CA, 0, 2008 - * -/	1-12	TECHNICAL FIELDS SEARCHED (IPC) C07K A61K
	Place of search	Date of completion of the search	<u> </u>	Examiner
	Munich	14 September 2019	5 Dom	ningues, Helena
X : parti Y : parti docu A : tech O : non-	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category nological background written disclosure mediate document	L : document cited for	ument, but publise the application r other reasons	shed on, or

EUROPEAN SEARCH REPORT

Application Number EP 15 17 2601

Category	Citation of document with ir	dication, where appropriate,	R	elevant	CLASSIFIC	ATION OF THE
Category	of relevant passa			claim	APPLICAT	
A	TransChromo animals CLONING AND STEM CE LARCHMONT, US,	clonal antibodies i ", LLS, MARY ANN LIEBE nuary 2002 (2002-01 02970309, I: 3632084	RT,	12		
A		AREX INC [US]; KIRI UKA KAZUMA [JP]; IS 002-06-06)		12		
A		MEDAREX INC [US]; SELBY MARK J [US]; nuary 2007 (2007-01	-11)	12	TEOURIS	AL FIELDS
A	from transgenic mic HANDBOOK OF EXPERIM SPRINGER VERLAG, BE	ENTAL PHARMACOLOGY, RLIN, DE, 2008 (2008-01-01), 99873, I: 3259-4 4	es 1-	12	SEARCHE	AL FIELDS ED (IPC)
	The present search report has I	peen drawn up for all claims				
	Place of search	Date of completion of the se	arch		Examiner	
	Munich	14 September	2015	Dom	ingues,	Helena
X : parti Y : parti	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category	E : earliér pa after the f ner D : documen	principle unde tent documen ling date t cited in the a t cited for othe	t, but publis pplication		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 15 17 2601

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-09-2015

10	
15	
20	
25	
30	
35	
40	
45	
50	

	Patent document cited in search report				Patent family member(s)	Publication date	
WO	9724373	A1	10-07-1997	US WO	6177078 9724373		23-01-2001 10-07-1997
 WO	0243478	A2	06-06-2002	ATUUAA CONDEKPESSKLLPPRXXTWSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	1354034 1354034 1916303 2295228 2405944 1064708 155977 3523245 2004515230 20030074634 PA03004793 1354034 1313299 2002199213 2006026698 2006037093 2011003319	A B2 A1 A A A A B1 A A A B A1 A1 A1 A1 A1	15-11-2007 11-06-2002 07-12-2006 06-06-2002 07-04-2004 12-01-2011 10-07-2008 25-03-2008 22-10-2003 30-04-2008 16-04-2008 04-06-2013 15-10-2010 26-04-2004 27-05-2004 19-09-2003 03-12-2004 28-02-2008 11-08-2009 26-12-2008 06-01-2011 25-12-2014 06-06-2002
WO	2007005874	A2	11-01-2007	AU BR CN CN EP HR JP JP KR KR SG	1907424 P20080053	A2 A1 A A1 A2 A2 B2 A A A A	11-01-2007 04-01-2011 11-01-2007 20-08-2008 18-02-2015 30-06-2008 09-04-2008 31-08-2009 31-07-2013 11-12-2008 08-08-2013 23-05-2008 07-01-2014 15-07-2015 25-11-2011

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 15 17 2601

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-09-2015

1	0	

10					
	Patent document cited in search report	Publication date		Patent family member(s)	Publication date
15			UA US US WO ZA	99701 C2 2009055944 A1 2013122014 A1 2007005874 A2 200710919 A	25-09-2012 26-02-2009 16-05-2013 11-01-2007 29-10-2008
20					
25					

35

30

40

45

50

55

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 120694 A [0023]
- EP 125023 A [0023]
- GB 2188638 A [0023]
- US 5585089 A [0023] [0098] [0099]
- US 4036945 A [0076]
- US 4331647 A [0076]
- US 4946778 A [0077]
- US 5258498 A [0077]
- US 6087329 A [0084]
- US 5939598 A [0095] [0096]
- WO 0243478 A [0095] [0103]
- WO 02092812 A [0095] [0103]
- WO 9824893 A [0096]
- WO 9201047 A [0096]
- WO 9634096 A [0096]
- WO 9633735 A [0096]
- US 5413923 A [0096]
- US 5625126 A [0096]
- US 5633425 A [0096]
- US 5569825 A [0096]
- US 5661016 A [0096]
- US 5545806 A [0096]
- UO 5044040 A [0000]
- US 5814318 A [0096]
 US 5885793 A [0096]
- US 5916771 A [0096]
- EP 239400 A [0098]
- WO 9109967 A [0098]
- US 5225539 A [0098]
- US 5530101 A [0098]
- EP 592106 A [0098]
- EP 519596 A [0098]
- US 5565332 A [0098]
- US 5807715 A [0101]

- US 4816567 A [0101]
- US 4816397 A [0101]
- US 4902614 A [0102]
- US 4543439 A [0102]
- US 4411993 A [0102]
- WO 2005035586 A [0107]
- WO 200231140 A [0107]
- WO 0061739 A [0107]
- US 20070148165 A [0109]
- US 6737056 B [0109]
- US 7297775 B [0109]
- US 7317091 B [0109]
- US 5624820 A [0118]
- US 5693508 A [0118]
- US 5665577 A [0118]
- US 6013516 A [0118]
- US 5674703 A [0118]
- WO 9205266 A [0118]
- WO 9205266 A [0116]
- WO 9214829 A **[0118]**
- US 5700470 A [0118]
- US 5731172 A [0118]
- US 5928944 A [0118]
- US 5604090 A [0118]
 US 5501979 A [0118]
- US 5561063 A [0118]
- US 5719054 A [0118]
- US 4844904 A [0130]
 US 5000959 A [0130]
- 03 3000939 A [0130
- US 4863740 A **[0130]**
- US 4975282 A [0130]
- US 5861397 A [0130]US 5459127 A [0130]
- US 6001358 A [0183]

Non-patent literature cited in the description

- OSAWA M et al. Science, 1996, vol. 273:2, 42-5
 [0024]
- **GOODELL MA et al.** *J Exp Med.,* 1996, vol. 183, 1797-806 **[0024]**
- YAMAZAKI S et al. *EMBO J.*, 2006, vol. 25, 3515-23 [0024]
- ISHIKAWA F et al. Nat Biotechnol., 2007, vol. 25, 1315-21 [0024]
- BAO S et al. Nature, 2006, vol. 444, 756-60 [0024]
- SCHIFF et al. Canc. Res., 1985, vol. 45, 879-885 [0024]

- **BRUGGEMANN et al.** *J. Exp. Med.,* 1989, vol. 170, 2153-2157 [0024]
- RIECHMANN et al. *Nature*, 1988, vol. 332, 323-327 [0024]
- ISHIDA I et al. Cloning Stem Cells, 2002, vol. 4, 91-102 [0024]
- WU et al. J Mol Biol., 1999, vol. 19, 151-62 [0024]
- SUN et al. Blood, 1996, vol. 87, 83 [0024]
- CHEN et al. JBiol Chem, 2009, vol. 284, 5763 [0024]
- BONNET et al. Nat Med, 1997, vol. 3, 730 [0024]
- JORDAN et al. Leukemia, 2000, vol. 14, 1777 [0024]
- Haematologica, 2001, vol. 86, 1261 [0024]

- LeukLymphoma, 2006, vol. 47, 207 [0024]
- MAJETI et al. Proc Natl Acad Sci USA., 2009, vol. 106, 3396 [0024]
- Blood, 2008, vol. 112 (11 [0024]
- ALTSCHUL et al. J. Mol. Biol., 1990, vol. 215, 403 [0069]
- PEARSON et al. Proc. Natl. Acad. Sci. USA, 1988, vol. 85, 2444 [0069]
- PEARSON. Methods Mol. Bio., 2000, vol. 132, 185
 [0069]
- SMITH et al. J. Mol. Biol., 1981, vol. 147, 195 [0069]
- BOSTICK et al. Biochem. Biophys. Res. Commun., 2003, vol. 304, 320 [0069]
- EDELMAN et al. Methods Enzymol., 1967, vol. 1, 422 [0076]
- WHITLOW et al. Methods: A Companion to Methods in Enzymology, 1991, vol. 2, 97 [0077]
- BIRD et al. Science, 1988, vol. 242, 423 [0077]
- HUSTON et al. Methods Enzymol, 1991, vol. 203, 46 [0077]
- SHU et al. Proc. Natl. Acad. Sci. USA, 1993, vol. 90, 7995 [0077]
- SKERRA et al. Science, 1988, vol. 240, 1038 [0077]
- KUROIWA et al. Nat. Biotechnol., 2002, vol. 20, 889
 [0096]
- KABAT. Sequences of Proteins of Immunological Interest. US Department of Health and Human Services, 1987 [0097]
- PADLAN. Mol. Immunol., 1994, vol. 31, 169 [0097]
 [0098]
- PADLAN. Mol. Immunol., 1991, vol. 28, 489 [0097]
 [0098]
- PADLAN. Molecular Immunol., vol. 28, 489 [0098]
- STUDNICKA et al. Protein Engineering 7, 1994, 805 [0098]
- ROGUSKA et al. Proc. Nat'l Acad. Sci. USA, 1994, vol. 91, 969 [0098]
- CARTER et al. Proc. Natl. Acad. Sci. USA, 1992, vol. 89, 4285 [0098]
- PRESTA et al. J. Immunol., 1993, vol. 151, 2623 [0098]
- RIECHMANN et al. Nature, 1988, vol. 332, 323 [0099]
- MORRISON. Science, 1985, vol. 229, 1202 [0101]
- Ol et al. BioTechniques, 1986, vol. 4, 214 [0101]
- GILLIES et al. J. Immunol. Methods, 1989, vol. 125, 191 [0101]
- MUNRO. Nature, 1984, vol. 312, 597 [0101]
- NEUBERGER et al. Nature, 1984, vol. 312, 604 [0101]

- SHARON et al. Nature, 1984, vol. 309, 364 [0101]
- MORRISON et al. Proc. Nat'l. Acad. Sci. USA, 1984,
 vol. 81, 6851 [0101]
- **BOULIANNE et al.** *Nature*, 1984, vol. 312, 643 [0101]
- CAPON et al. Nature, 1989, vol. 337, 525 [0101]
- TRAUNECKER et al. *Nature*, 1989, vol. 339, 68 [0101]
- KENNETT; MCKEARN; BECHTOL et al. Monoclonal Antibodies. Hybridomas: A New Dimensionin Biological Analyses. Plenum Press, 1980 [0102]
- HARLOW et al. Antibodies: A Laboratory Manual.
 Cold Spring Harbor Laboratory Press, 1988 [0102]
- ISHIDA et al. IBC's 11th Antibody Engineering Meeting, 2000 [0103]
- WIGLER et al. Cell, 1977, vol. 11, 223 [0117]
- CONE et al. Proc. Natl. Acad. Sci. USA, 1984, vol. 81, 6349 [0118]
- Eukaryotic Viral Vectors. Cold Spring Harbor Laboratory, 1982 [0118]
- SARVER et al. Mol. Cell. Biol., 1981, vol. 1, 486 [0118]
- AUSUBEL et al. Current Protocols in Molecular Biology. Greene Publish. Assoc. & Wiley Interscience, 1988, vol. 2 [0122]
- **GRANT et al.** Methods in Enzymology. Acad. Press, 1987, vol. 153, 516-544 **[0122]**
- GLOVER. DNA Cloning. IRL Press, 1986, vol. 11 [0122]
- **BITTER.** Methods in Enzymology. Acad. Press, 1987, vol. 152, 673-684 **[0122]**
- STRATHERN et al. The Molecular Biology of the Yeast Saccharomyces. Cold Spring Harbor Press, 1982, 1, , 2 [0122]
- RICH; MYSZKA. Curr. Opin. Biotechnol., 2000, vol. 11, 54 [0132]
- ENGLEBIENNE. Analyst, 1998, vol. 123, 1599
 [0132]
- MALMQVIST. Biochem. Soc. Trans., 1999, vol. 27, 335 [0132]
- TOMIZUKA et al. Proc. Natl. Acad. Sci. USA, 2000, vol. 97, 722 [0164]
- FISHWILD et al. Nat. Biotechnol, 1996, vol. 114, 845
 [0164]
- ISHIDA; LONBERG. IBC's 11th Antibody Engineering, 2000 [0165]
- A Guide to Monoclonal Antibody Experimental Operations. Kodansha, 1991 [0166]
- The Cytokine Facts Book. Academic Press [0244]