TECHNICAL FIELD
[0001] The invention relates to a container assembly wherein container contents can be dispensed
therefrom and more particularly, to a tandem packaging container assembly having a
first container in operative cooperation with a second container, wherein flowable
materials can be dispensed from the assembly.
BACKGROUND OF THE INVENTION
[0002] Containers capable of dispensing contents stored in the containers are known in the
art. In certain applications, it is desired to mix separately contained materials.
Containers may be constructed such that the materials are stored in separate compartments
and then mixed together at a desired time. The resulting mixture is then dispensed
from the container.
[0003] While such containers, according to the prior art, provide a number of advantageous
features, they nevertheless have certain limitations. For example, the container materials
may have limitations and/or may not be suitably compatible with the flowable substance
contained within the containers. The present invention is provided to overcome certain
of these limitations and other drawbacks of the prior art, and to provide new features
not heretofore available. A full discussion of the features and advantages of the
present invention is deferred to the following detailed description, which proceeds
with reference to the accompanying drawings.
SUMMARY OF THE INVENTION
[0004] The present invention provides a container assembly capable of separately storing
a plurality of components that can be mixed at a desired time and then dispensed from
the container assembly.
[0005] According to a first aspect of the invention, the container assembly has a first
container that is configured to hold a first flowable substance, and has a rupturable
weld seam in one exemplary embodiment. The container assembly has a second container
configured to hold a second flowable substance, and the second container is positioned
within the first container. The second container has a rupturable fusion-molded seam.
Upon rupturing of the fusion-molded seam of the second container, the second flowable
substance mixes with the first flowable substance to define a mixture. Upon rupturing
of the weld seam, the mixture is dispensable from the first container.
[0006] According to another aspect of the invention, the container assembly has a first
container and a second container that is operably associated with the first container.
One of the first container or the second container has a weld seam and the other of
the first container or the second container is selectively openable. In one preferred
embodiment, the first container is an extruded tube, and the second container has
a weld seam.
[0007] According to another aspect of the invention, the container assembly has a first
container configured to hold a first flowable substance, and has a weld seam. The
container assembly has a second container configured to hold a second flowable substance,
with the second container being selectively openable. The second container is a glass
ampoule. Upon opening of the second container, the second flowable substance mixes
with the first flowable substance to define a mixture. The weld seam is rupturable
and the mixture is dispensable through the weld seam from the first container. According
to a further aspect of the invention, the glass ampoule is surrounded by a non-absorbent
netting.
[0008] According to another aspect of the invention, the container assembly has a first
container and a second container. The second container is operably associated with
the first container, and the second container has a circumferential weld seam.
[0009] Other features and advantages of the invention will be apparent from the following
specification taken in conjunction with the following drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] To understand the present invention, it will now be described by way of example,
with reference to the accompanying drawings in which:
FIG. 1 is a perspective view of a container assembly of the present invention;
FIG. 2 is an exploded view of the container assembly of FIG. 1 prior to sealing the
distal end of the container assembly;
FIG. 3 is a cross-sectional view of a membrane taken along lines 3-3 in FIG. 2;
FIG. 4 is a cross-sectional view of the container assembly taken along lines 4-4 in
FIG. 1;
FIG. 5a-5f are a series of views showing the injection molding process of the membrane
wherein adjacent mold segments abut to form weld lines, or weld seams;
FIG. 6 is an enlarged partial cross-sectional view of a portion of the membrane;
FIG. 7 is a cross-sectional view of a weld line or weld seam taken along lines 7-7
of FIG. 3;
FIG. 8 is an end view of an alternative embodiment of the container assembly having
longitudinal ribs;
FIG. 9 is a perspective view of an inner container of the container assembly of FIG.
1;
FIG. 9a is a perspective view of a mold member used to make the inner container shown
in FIG. 9;
FIG. 10 is another perspective view of the inner container of FIG. 9, showing the
inner container in an open position;
FIG. 11 is an end view of the membrane having forces applied thereto wherein the membrane
is fractured along mold lines or weld seams;
FIG. 12 is a cross-sectional view as in FIG. 4, depicting a user rupturing the inner
container;
FIG. 13 is a cross-sectional view as in FIG. 4, showing the inner container in an
open position;
FIG. 14 is a cross-sectional view as in FIG. 4, depicting a user rupturing the membrane
of the outer container;
FIG. 15 is a perspective view of a user dispensing material from the container assembly;
FIG. 16 is a perspective view of another embodiment of a container assembly of the
present invention;
FIG. 17 is an exploded view of the container assembly of FIG. 16 prior to sealing
the distal end of the container assembly;
FIG. 18 is a cross-sectional view of the container assembly taken along lines 18-18
in FIG. 16;
FIG. 19 is a cross-sectional view as in FIG. 18 depicting a user rupturing the inner
container;
FIG. 20 is a perspective view of a user dispensing material from the container assembly;
FIG. 21 is a perspective view of another embodiment of a container assembly of the
present invention;
FIG. 22 is a cross-sectional view taken along lines 22-22 in FIG. 21 depicting a user
rupturing an inner container;
FIG. 23 is a cross-sectional view as in FIG. 22 depicting a user rupturing the container;
FIG. 24 is a perspective view of another embodiment of a container assembly of the
present invention;
FIG. 25 is an exploded view of the container assembly of FIG. 24 prior to sealing
the distal end of the container assembly;
FIG. 26 is a cross-sectional view of the container assembly taken along lines 26-26
in FIG. 24;
FIG. 27 is a perspective view of an inner container of FIG. 24;
FIG. 28 is a cross-sectional view as in FIG. 26 depicting a user rupturing the inner
container;
FIG. 29 is a cross-sectional view as in FIG. 26 of the inner container rupturing wherein
a first flowable substance mixes with a second flowable substance;
FIG. 30 is a cross-sectional view as in FIG. 26 depicting a user rupturing the outer
container;
FIG. 31 is a perspective view of another embodiment of a container assembly of the
present invention;
FIG. 32 is an exploded view of the container assembly of FIG. 31 prior to sealing
the distal end of the container assembly;
FIG. 33 is a side elevation view of an inner container of the container assembly of
FIG. 31;
FIG. 34 is a cross-sectional view of the container assembly taken along lines 34-34
in FIG. 31;
FIG. 35 is a cross-sectional view as in FIG. 34 depicting a user rupturing the inner
container; and
FIG. 36 is a cross-sectional view as in FIG. 34 of the inner container, showing the
inner container in an open position;
FIG. 37 is a cross-sectional view as in FIG. 34 depicting a user rupturing the outer
container;
FIG. 38 is a schematic cross-sectional view showing the formation of the inner container
shown in FIG. 32;
FIG. 38A is a partial enlarged schematic cross-sectional view from FIG. 38 showing
segments moving to abut to form a circumferential weld line or circumferential weld
seam; and
FIG. 39 is series of partial perspective views of the inner container of the container
assembly of FIG. 31 showing rupture of the circumferential weld seam.
DETAILED DESCRIPTION
[0011] While this invention is susceptible of embodiments in many different forms, there
is shown in the drawings, and will herein be described in detail, preferred embodiments
of the invention with the understanding that the present disclosure is to be considered
as an exemplification of the principles of the invention and is not intended to limit
the broad aspect of the invention to the embodiments illustrated.
[0012] The following embodiments generally include multiple containers operably associated
with one another. It will be understood that in many preferred embodiments, a first
container and a second container are disclosed. This may be referred to as a container
assembly or tandem container assembly. Additional containers could also be utilized
while still being considered a container assembly or tandem container assembly. In
addition, "first" and "second" etc. designations could be interchanged as desired.
Furthermore, the various features of the several different embodiments can be combined
as desired.
[0013] Referring to the drawings, FIG. 1 discloses a container assembly 10 according to
the present invention. FIG. 2 shows the container assembly 10 prior to having one
end sealed as will be described in greater detail below. As shown in FIG. 2, the container
assembly 10 generally comprises a first container 12 and a second container 14, operably
associated with one another. The container assembly 10 is configured to hold a first
flowable substance 16 and a second flowable substance 18 (FIG. 13). The container
12 has an elongated axis L and further has a peripheral wall or outer wall 20. In
one preferred embodiment, the first container 12 is cylindrical. However, the first
container 12 can be molded in numerous shapes, including an elliptical shape.
[0014] As further shown in FIGS. 1 and 2, the first container 12 of the container assembly
10 may be a plastic ampoule 22. The first container 12 is configured to hold the first
flowable substance 16. The first container 12 generally comprises a first chamber
24 and a second chamber 26 separated by a membrane or web 28 described in greater
detail below. While a two-chamber dispenser is one preferred embodiment, more or less
chambers can also be defined within the first container 12. As shown in FIG. 4, the
first chamber 24, which is adapted to contain the material to be dispensed, has an
interior surface 30, an exterior surface 32, and a distal end 34. FIG. 4 also shows,
the second chamber 26 having an interior surface 36, an exterior surface 38, and a
proximate end 40. An end portion 42 is located on the exterior surface 32 of the first
chamber 24 at the distal end 34. As explained in greater detail below, the distal
end 34 of the first chamber 24 can be closed by a number of sealing methods, including
heat or adhesive sealing. Alternatively, the distal end 34 can receive a cap to close
the first chamber 24. When the distal end 34 is sealed, and in cooperation with the
membrane 28, the first chamber 24 is a closed chamber for holding the first flowable
substance 16 such as a liquid medicinal fluid. If desired, the first container 12
can be necked down wherein the second chamber 26 has a smaller diameter than the diameter
of the first chamber 24.
[0015] As shown in FIGS. 3 and 5a-5f, the membrane 28 is formed as an integral part of the
first container 12 in an injection molded process described in greater detail below.
The membrane 28 formed is similar to the membrane structure disclosed in
U.S. Patent No. 6,641,319, which is incorporated by reference herein. The membrane 28 is preferably constructed
in the form of a disk 44. The disk 44 is preferably a flat plastic sheet having a
series of radial depressions 46 on a first surface 48 of the membrane 28. The radial
depressions 46 extend from substantially a center point 50 of the membrane 28 to an
outer edge 52 of the disk 44, for example, in the form of spokes of a wheel. Compression
of the first container 12 at the membrane 28, such as by finger pressure, causes the
membrane 28 to break, rupture, or fractionate only along the radial depressions 46
forming a series of finger-like projections 54 which are displaced in overlapping
fashion (FIG. 11) to create membrane openings 56 for release of the material from
the first chamber 24 to the second chamber 26. Since the projections 54 are "pie-shaped"
and widest at their outer edges 52, the center section of the membrane 28 breaks open
the widest. The amount of material that can be dispensed through the membrane 28 is
controlled by the degree of the opening 56. The size of the opening 56 is controlled
by the configuration of the radial depressions 46 and the pressure of the fingers
of the user pressing on the first container 12 to assert pressure on the membrane
28.
[0016] As further shown in FIGS. 1 and 2, the membrane 28 partitions the first container
12 to separate and, therefore, define the first chamber 24 and the second chamber
26. Although FIGS. 1 and 2 show the membrane 28 closer to the proximate end 40 than
the distal end 34, the placement of the membrane 28 is a function of the desired volume
capacity of the first chamber 24 and the second chamber 26. As such, the membrane
28 could be located at numerous locations in the first container 12.
[0017] As shown in FIG. 4, the membrane 28 has a first surface 48 and a second surface 58.
The first surface 48 faces towards the first chamber 24, while the second surface
58 faces towards with the second chamber 26. The second surface 58 is substantially
planar. The first surface 48, however, has a plurality of bands, mold seams, weld
lines or weld seams 66 thereon that generally correspond to the radial depressions
46. Also in a preferred embodiment, the membrane 28 is disposed substantially transverse
to the elongated axis L of the first container 12. As will be described in greater
detail below, and as generally shown in FIGS. 6 and 7, a first segment 62 of injected
molded material abuts a second segment 64 of injected molded material to form the
weld seam 66. The weld seams 66 are positioned in the membrane 28. As can be further
seen in FIG. 6, the membrane 28 has a base thickness "t1" between the first membrane
surface 48 and the second membrane surface 58. The thickness t1 is generally referred
to as the membrane thickness. The weld seam 66 has a thickness t2 that is less than
the membrane thickness t1. This facilitates rupture of the membrane 28 as described
below. The first mold segment 62 and the second mold segment 64 abut to form the weld
seam 66. During the molding process, the mold segments 62, 64 move toward the interface
area 68 in the directions of arrows A. Furthermore, the mold segments 62, 64 meet
substantially at the interface area 68 at the lesser thickness t2. This forms the
weld seam 66 at the lesser thickness facilitating rupture of the membrane 28. If the
mold segments 62, 64 did not meet at the interface area 68 but, for example, substantially
further to either side of the interface area 68, the weld seam 66 would be too thick
and not be able to rupture. Whichever mold segment 62, 64 moved past the interface
area 68, the segment would merely flex and not rupture as desired. Thus, as described
below, the molding process is controlled to insure that the mold segments abut substantially
at the interface area 68 to form the weld seam 66 having a thickness t2 less than
the membrane thickness t1.
[0018] As shown in FIG. 3, the membrane 28 preferably contains the plurality of weld seams
66, which can be arranged in a number of configurations including but not limited
to a cross, star, or asterisk. It is understood, however, that the benefits of the
invention can be realized with a single weld seam 66 formed from a pair of mold segments
abutting one another. In one preferred embodiment, the weld seams 66 are arranged
in an asterisk configuration wherein the membrane 28 has a pie-shape. Adjacent mold
segments 62, 64 abut with one another to form the weld seams 66. Due to the configuration
of the mold to be described below, the weld seams 66 are formed to have a lesser thickness
t2 than the membrane thickness t1. As further shown in FIG. 2 and 3, the plurality
of weld seams 66 extend radially from substantially a center point 50 on the membrane
28 completely to an outer edge 52 of the membrane 28 and to the interior surface of
the first container 12. It is understood, however, that the weld seams 66 do not need
to extend to the outer edge 52 of the membrane 28. In a most preferred embodiment,
the membrane 28 has four mold segments 62, 64. The mold segments cooperate wherein
adjacent mold segments abut at separate interface areas 68 to form the weld seams
66. In one preferred embodiment, the membrane has four sections with four weld seams.
It is understood the number of weld seams 66 can vary. As shown in FIG. 6, the process
is controlled such that the adjacent mold segments each meet at the separate interface
areas 68. Each weld seam 66 has a thickness less than the thicknesses of the segments.
The thicknesses of the mold segments are considered to be the membrane thickness t1.
[0019] Explained somewhat differently, FIG. 7 shows the first surface 48 of the membrane
28 has a channel 70 formed therein. The weld seam 66 confronts the channel 70. The
channel 70 is formed by a first wall 72 adjoining a second wall 74. In a preferred
embodiment, the first wall 72 adjoins the second wall 74 at substantially a 90 degree
angle. Acute angles or obtuse angles are also possible. Thus, in one preferred embodiment,
the channels are V-shaped.
[0020] As shown in FIGS. 12-15, the exterior surface 76 of the first container 12 has an
exterior extension 78 to indicate the exact location where force should be applied
to rupture the membrane 28. Specifically, the extension 78 is located directly adjacent
to the membrane 28. Although the extension 78 is shown as a thumb pad with a plurality
of ridges 80, any type of raised area or projection including a button, prong or ring
will suffice. In addition, a ring of material could be applied around the perimeter
of the first container 12 corresponding to the location of the membrane 28 so that
a user would know precisely where to apply finger pressure. An indicia-bearing marking
would also be sufficient.
[0021] In an alternative embodiment, the interior surface 36 of the second chamber 26 has
a circumferential rib 88. The circumferential rib 88 cooperates with a variety of
applicators 90. The circumferential rib 88 may also comprise a plurality of ribs.
As shown in FIG. 8, the interior surface 36 of the second chamber 26 may have a plurality
of longitudinal ribs 82. The ribs 82 are oriented axially in the second chamber 26
and can be of varying length. The ribs 82 could be shortened and extend radially inwardly.
The circumferential rib 88 or longitudinal ribs 82 secure different applicators 90,
such as a swab, a dropper, a brush, or a brush assembly (FIG. 2), which can be used
to apply the dispensed liquid or solid material. The applicator 90 forms an interference
fit with the circumferential or longitudinal ribs.
[0022] In one preferred embodiment, the applicator 90 engages the interior surface 36 of
the second chamber 26 and in particular the longitudinal ribs 82 to form an interference
fit. Once the membrane 28 is fractured as described below, the applicator 90 receives
the mixture 86 as it is dispensed from the second chamber 26. The applicator 90 could
have a contact surface that is used to dab a desired area such as a skin surface having
an insect bite. The container assembly 10 can be inverted and squeezed until the applicator
surface, such as a swab, is wet. The container assembly 10 can then be held in a vertical
position with the applicator 90 pointed upwardly. Alternatively, the applicator 90
can be made of a material of relatively large porosity for passing droplets through
the applicator 90 by gravity and for dispensing droplets from its exterior surface.
The applicator 90 can be made of polyester, laminated foamed plastic, cotton or the
like. In one preferred embodiment, the applicator 90 could be a dropper.
[0023] The method of making the first container 12 of the container assembly 10 is generally
illustrated in detail in
U.S. Patent No. 6,641,319, which was expressly incorporated by reference. A brief explanation is provided.
The first container 12 is produced in a single molding operation thus providing a
one-piece injected-molded part. As shown in
U.S. Patent No. 6,641,319, a mold is provided having a mold cavity therein. The mold cavity is dimensioned
to correspond to the exterior surface of the first container 12. Core pins are provided
within the mold as is known.
[0024] A second core pin has a generally planar end face. However, the first core pin has
an end face having the raised structures thereon. The raised structure is in the form
of a ridge. The ridge is what provides for the depressions or weld seams 66 at the
certain thickness in the membrane 28. Furthermore, in one preferred embodiment, the
ridge comprises a plurality of ridges radially extending substantially from a center
point of the end faces. The ridges define a plurality of membrane segments, or mold
gaps, between the ridges. Thus, it can be understood that the raised structure in
the form of the ridges provides the corresponding structure of the membrane 28. The
ridges can be formed in a number of shapes, including square or rounded. In addition,
the ridges can be arrayed in a multitude of shapes, including a single line, a cross,
a star, or an asterisk.
[0025] The first core pin is inserted into the mold with the raised structure facing into
the mold cavity. A first space is maintained between the mold and the length of the
first core pin. The second core pin is also inserted into the mold cavity wherein
a second space is maintained between the mold and the second core pin. The core pins
are generally axially aligned wherein the end face of the first core pin confronts
the end face of the second core pin in spaced relation. Thus, a membrane space is
defined between the respective end faces of the core pins. End plates are installed
on end portions of the mold to completely close the mold. An exterior extension cavity
is located on the surface of the mold and adjacent to a membrane space.
[0026] As will be understood, molten thermoplastic material is injected into the mold cavity
through an inlet. The material flows into the first space, second space, and membrane
space. The plastic injection is controlled such that the plastic enters the membrane
space simultaneously in the circumferential direction. The raised structures separate
the material into separate mold segments that flow into the mold gaps. The mold segments
62, 64 flow first into the wider portions of the mold gaps as this is the area of
least resistance. The material continues to flow into the membrane space and then
the adjacent mold segments 62, 64 abut at the interface area 68 to form the weld seams
66. The weld seams 66 have a lesser thickness than the membrane thickness. The first
raised structure of the first core pin forms the first weld seam. During this process,
air is vented from the mold cavity as is conventional.
[0027] Once the plastic injection is complete, the material is allowed to cool. A cold water
cooling system could be utilized wherein cold water is pumped into the mold outside
of the cavity if desired. Once cooled, the first container 12 can be removed from
the mold.
[0028] In a preferred embodiment, the first container 12 is made of a transparent, flexible
thermoplastic material. The preferred plastic material is polyethylene or polypropylene
but a number of other plastic materials can be used. For example, low-density polyethylene,
polyvinyl chloride or nylon copolymers can be used. In a preferred embodiment, a mixture
of polypropylene and polyethylene copolymer or thermoplastic olefin elastomer is used.
In another preferred embodiment, a mixture of polypropylene and Flexomer®, available
from Union Carbide, is utilized. It is essential that the dispenser be made of material
which is flexible enough to allow sufficient force to rupture or fracture the membrane
28. Additionally, it is possible for the first container 12 to be a one-piece injection
molded container wherein the membrane 28 is integral with the container 12.
[0029] As further shown in FIG. 1, the second container 14 of the container assembly 10
is positioned within the first container 12. In one preferred embodiment, the second
container 14 is positioned within the first chamber 24 of the first container 12.
The second container 14 is configured to hold the second flowable substance 18.
[0030] FIGS. 9 and 10 disclose the second container 14 in greater detail. The second container
14 has a general tubular shape defining a cavity therein. The second container 14
has a first end 15 and a second end 17 that is sealed after the second flowable substance
18 is injected into the second container 14. Between the first end 15 and the second
end 17, the second container 14 has a rupturable or fractionable seam 84. The rupturable
seam 84 can be provided in various forms. In one preferred embodiment, the rupturable
seam 84 is a fusion-molded seam 84 that is formed from methods described in greater
below such as dip molding or rotational molding. It is further understood that the
second container 14 can be provided with several different types of opening structures.
The fusion-molded seam 84 is generally formed along a circumference of the second
container 14. The seam 84, however, does not extend around a full periphery of the
second container 14. The seam 84 has a wall thickness less than the overall thickness
of the wall structure of the second container remote from the seam 84. The seam 84
forms a weakened section of the second container 14 wherein force can be applied at
the seam 84 wherein the seam 84 ruptures. Upon rupture, the second flowable substance
18 can flow from the cavity and out of the second container 14. The rupturing of the
seam 84 will be described in greater detail below.
[0031] As discussed, in one preferred embodiment, the second container 14 has the fusion-molded
rupturable seam 84 formed by a dip molding process. FIG. 9a is generally referenced
regarding the dip molding process. The dip molding process is a precision thermal
process which allows the formation of components that follow the exact negative details
of a mold or mandrel. As shown in FIG. 9a, a first mold member 83 is provided and
in an exemplary embodiment, is in the form of a mandrel 83. The mandrel may be made
from finished and polished steel bar stock. The mandrel 83 is shaped similarly to
the second container 14 of FIG. 9. The mandrel 83 has a projected ridge 85 on its
peripheral surface that will help form the fusion-molded seam 84. In the process,
a second member is also utilized in the form of a reservoir capable of holding a liquefied
polymeric material that will form the second container 14.
[0032] The mandrel 83 is preheated and a supply of liquefied polymeric material is provided
in the reservoir (not shown). The mandrel 83 is then dipped into the first mold member
wherein the polymeric material conforms or "gels" onto the mandrel 83. Temperature,
time, and material type contribute to the wall thickness of the second container 14.
It is understood that because of the ridge 85 on the mandrel 83, a weakened section
of lesser thickness is formed thus defining the fusion-molded seam 84. Once the desired
material thickness is gelled onto the mandrel 83, the mandrel 83 is removed from the
reservoir. The mandrel 83 with material thereon is then inserted into an oven. The
oven provides heat at an appropriate temperature to cure the material. Once the curing
process is complete, the mandrel 83 and material are cooled and then the material
is stripped from the mandrel 83. In one form, the material is blown off the mandrel
83 such as with the use of compressed air supplied to the mandrel 83. It is understood
that the mandrel 83 can have suitable structure and connections for this purpose.
Once the material is removed from the mandrel 83, the second container 14 is thereby
formed such as shown in FIG. 10. It is understood that the ridge 85 provides for a
portion of the wall thickness of the container 14 to be reduced. Thus, the ridge 85
provides the weakened area for the fusion molded seam 84. The fusion molded seam 84
corresponds to this reduced thickness area on the wall. The first end of the second
container 14 is generally rounded that matches the end of the mandrel shape. The second
end of the second container 14 remains open and defines the opening into the cavity
of the second container 14 defined by the walls of the second container 14. After
this molding process, the second container 14 can be trimmed as desired. As discussed,
the second container 14 is directed to a filling station where it is filled with the
second flowable substance 18. Once filled, the second end of the second container
14 is sealed by any known means. The second flowable substance 18 is then contained
within the second container 14.
[0033] It is understood that the shape of the mandrel 83 used to form the second container
14 can take various forms. The dip molding process can also be carried out in an automated
process. Finally as discussed in greater detail below, the liquefied polymeric material
can take various forms as known to those skilled in the art.
[0034] Another process known as rotational molding, rotocasting, or slush molding can be
used for manufacturing the second container 14 in order to achieve a part having a
fusion molded seam 84. The basic steps of rotational molding include: 1) mold charging;
2) mold heating; 3) mold cooling; and 4) part ejection. A hollow mold member is first
provided that defines an inner mold surface. An amount of liquefied polymeric material
is introduced into the hollow mold member. The hollow mold member is heated to generally
maintain the material at a desired temperature. The hollow mold member is then rotated
along two separate axes at a low speed. This causes the polymeric material to move
along and adhere to the inner mold surface. Movement of the material is due to gravity
and not centrifugal force. The process is continued and the material solidifies on
the inner mold surface to its desired shape. Once the material is sufficiently solidified,
rotation of the mold member is stopped to allow for the container 14 to be removed
from the mold. This process can then be repeated.
[0035] The advantages of rotational molding are that there are relatively low levels of
residual stresses in the parts formed. The mold members used in rotational molding
are also generally inexpensive.
[0036] While two methods of forming a fusion-molded seam are discussed above, it is contemplated
that a fusion-molded seam may also be formed using other processes. These processes
include spin casting or centrifugal casting, structural blow molding or thermoforming.
[0037] In a preferred embodiment, the second container 14 is made of a transparent, flexible
thermoplastic material. While a number of different plastics may be used, the preferred
plastics material are polyvinyl chloride (PVC), plastisol (vinyl compound), polyethylene
(LLDPE, LDPE, MDPE, HDPE), cross-linked polyethylene (XDPE), polycarbonate, nylon,
polypropylene (PP), unsaturated polyester, ABS, or polystyrenes.
[0038] FIGS. 1 and 2 provide an understanding of the overall assembly of the container assembly
10. The container assembly 10 is constructed by first providing the second container
14 which can be passed on to a filling apparatus. The second container 14 is filled
with a second flowable substance 18, and then the second end of the second container
14 is sealed by heat sealing dies. The excess end portion can then be cut-off and
discarded. It is understood that heat sealing is one preferred seal while other sealing
methods could also be utilized. The second container 14 may be suitably cleaned or
sterilized before and after the filling process as may be required for the particular
application of the container assembly 10. The second container 14 is then placed into
the first container 12 as shown in FIG. 2. After placing the second container 14 into
the first container 12, the first container 12 is then passed on to another filling
apparatus. The first container 12 is filled with a first flowable substance 16. As
shown in FIG. 4, the distal end 34 of the first container 12 is also sealed by heat
sealing dies. The excess portion can then be cut-off and discarded. As mentioned above,
it is understood that heat sealing is one preferred seal, while other sealing methods
could be utilized.
[0039] FIGS. 12-14 disclose the overall operation of the container assembly 10. Suitable
compression of the first container 12, such as by finger pressure, causes the fusion-molded
seam 84 of the second container 14 to break, rupture, or fractionate only along the
fusion-molded seam 84 to create an opening for release of the second flowable substance
18 from the second container 14. The second flowable substance 18 then flows into
the first chamber 24. The second flowable substance 18 then mixes with the first flowable
substance 16 in the first chamber 24 of the first container 12 to define a mixture
86. The container assembly 10 can be shaken if necessary.
[0040] As shown in FIGS. 14-15, in further operation the user applies a selective force
F on the container assembly 10 at the exterior extension 78 adjacent to the membrane
28. When sufficient force is applied, lateral pressure is applied to the membrane
28 causing the membrane 28 to shear and rupture along the weld seams 66. The membrane
28 ruptures only along the weld seams 66 to create membrane openings 56. Upon rupture
of the membrane 28, material passes from the first chamber 24 through the membrane
28 and into the second chamber 26. The material flow rate through the membrane 28
and into the second chamber 26 is controlled by the degree of membrane opening 56
which is directly related to the amount of force applied to the membrane 28 by the
user. Therefore the user can precisely regulate the flow of material after rupture
of the membrane 28. In addition, the membrane 28 can preferably have elastic characteristics
wherein when force is removed, the membrane 28 returns substantially to its original
position. While the weld seams 66 may be ruptured, the segments 62, 64 can form a
close enough fit to prevent material from flowing past the membrane 28 without additional
pressure on the material. Thus the membrane 28 can act as a check valve to prevent
unwanted discharge of the material. As shown in FIG. 15, the mixture 86 is then dispensed
from the first container 12 by applying the appropriate manipulation to the applicator
90. As shown in the one preferred in FIG. 2, the applicator 90 is a dropper attachment.
[0041] Referring to the drawings, FIG. 16 discloses a container assembly 110 according to
the present invention. As shown in FIG. 17 the container assembly 110 generally comprises
a first container 112 and a second container 114. The container assembly 110 is configured
to hold a first flowable substance 116 and a second flowable substance 118. The first
container 112 holds the first flowable substance 116, and the second container 114
holds the second flowable substance 118.
[0042] As further shown in FIGS. 17 and 18, the container assembly 110 generally comprises
a first container 112 with an elongated axis having a peripheral wall 120. In one
preferred embodiment, the first container 112 is cylindrical. However, the first container
112 can be molded in numerous shapes, including an elliptical shape. The first container
112 of the container assembly 110 may be an extruded tube 122. The first container
112 generally comprises an interior surface 124, an exterior surface 126, a distal
end 128, and a proximate end 130. The distal end 128 of the first container 112 can
be closed by a number of sealing methods, including heat or adhesive sealing. Additionally,
and as described in greater detail below, it is contemplated that the distal end of
the second container 114 can be heat sealed together with the distal end 128 of the
first container 112. The proximate end 130 of the first container 112 can be used
for dispensing a mixture 132 from the container assembly 110 as will be discussed
in further detail below. As such, the proximate end 130 is selectively openable and
may have a dispenser 134 with a removable twist off closure 136. In one embodiment,
a removable twist off closure is provided and reveals an opening at the proximate
end 130 through which the mixture 132 can be dispensed. It is further contemplated
that the proximate end 130 may have any of the applications 90 as described herein.
[0043] The container assembly 110 is configured with the second container 114 operably associated
and positioned within the first container 112. The second container 114 is similar
to the first container 12 of container assembly 10 as discussed above. It is understood
that the second container 114 of FIG. 17 is formed using the same process as described
above. The second container 114 in FIG. 17 has a smaller diameter than shown in FIG.
1. The second container 114 of container assembly 110 may be a plastic ampoule 138.
The second container 114 generally comprises a first chamber 140 and a second chamber
142 separated by a membrane or web 144. As mentioned above, a two-chamber dispenser
is one preferred embodiment, however more or less chambers are contemplated as being
defined within the second container 114. The first chamber 140, which is adapted to
contain the material to be dispensed, has an interior surface 146, an exterior surface
148, and a distal end 150. The second chamber 142 has an interior surface 152, an
exterior surface 154, and a proximate end 156. An end portion 158 is located on the
exterior surface 148 of the first chamber 140 at the distal end 150. As explained
above, the distal end 150 of the first chamber 140 can be closed by a number of sealing
methods, including heat sealing or adhesive sealing. When the distal end 150 is sealed,
and in cooperation with the membrane 144, the first chamber 140 is a closed chamber
for holding the first flowable substance 116. Alternatively, the second chamber 142
can be positioned at the proximate end 156.
[0044] As further shown in FIG. 17, the second container 114 has a membrane 144 that partitions
the second container 114 to separate and, therefore, define the first chamber 140
and the second chamber 142. In a preferred embodiment, the membrane 144 is disposed
substantially transverse to the elongated axis L of the second container 114. The
structure of membrane 144 of the second container 114 of the container assembly 110
is the same as the membrane 28 of the first container 12 of the container assembly
10 as discussed in great detail above. Thus, the membrane 144 has a plurality of weld
seams 166. Additionally, membrane 28 and membrane 144 are structurally the same and
function in the same manner. Although FIG. 17 shows the membrane 144 closer to the
proximate end 156 than the distal end 150, the placement of the membrane 144 is a
function of the desired volume capacity of the first chamber 140 and the second chamber
142. As such, the membrane 144 could be located at numerous locations in the second
container 114.
[0045] As shown in FIGS. 16-17, the exterior surface 154 of the second container 114 has
an exterior extension 160 to indicate the exact location where force should be applied
to rupture the membrane 144. Specifically, the extension 160 is located directly adjacent
to the membrane 144. Although the extension 160 is shown as a thumb pad with the plurality
of ridges 162, any type of raised area or projection including a button, prong or
ring will suffice. In addition, a ring of material could be applied around the perimeter
of the first container 112 corresponding to the location of the membrane 144 so that
a user would know precisely where to apply finger pressure in order to rupture the
membrane 144 of the second container 114. An indicia-bearing marking would also be
sufficient. As described in greater detail above, a user can apply a certain amount
of force to the membrane 144 causing the weld seam 166 to rupture in order to regulate
the amount of material that is dispensed from the first chamber 140 of the second
container 114 through the membrane 144 and into the second chamber 142 of the second
container 114 and the first container 112.
[0046] The first container 112 and the second container 114 can be formed from a variety
of materials. In one preferred embodiment, the second container 114 is made of a transparent,
flexible thermoplastic material. Also, in one preferred embodiment, the first container
112 may also be made of a transparent, flexible thermoplastic material. The preferred
plastic material is polyethylene or polypropylene but a number of other plastic materials
can be used. For example, low-density polyethylene, polyvinyl chloride or nylon copolymers
can be used. In a preferred embodiment, a mixture of polypropylene and polyethylene
copolymer or thermoplastic olefin elastomer is used. In another preferred embodiment,
a mixture of polypropylene and Flexomer®, available from Union Carbide, is utilized.
It is essential that the second container 114 be made of material which is flexible
enough to allow sufficient force to rupture or fracture the membrane 144. Additionally,
it is possible for the first container 112 or the second container 114 to be a one-piece
injection molded container.
[0047] The container assembly 110 is assembled or constructed by first providing the second
container 114 which can be passed on to a filling apparatus. The second container
114 is filled with a second flowable substance 118, and then sealed by heat sealing
dies. The excess end portion can then be cut-off and discarded. It is understood that
heat sealing is one preferred seal while other sealing methods could also be utilized.
The second container 114 may be suitably cleaned or sterilized before and after the
filling process for the particular application of the container assembly 110. The
second container 114 is then placed into the first container 114. After placing the
second container 114 into the first container 112, the first container 112 is then
passed on to another filling apparatus. The first container 112 is filled with a first
flowable substance 116. The distal end 128 of the first container 112 is also sealed
by heat sealing dies. In one preferred embodiment, the distal end 150 can be heat
sealed together with the distal end 128 of the first container 112. In such configuration,
the second container 114 is suspended into a first container 112 from the distal end
128. The excess portion can then be cut-off and discarded. Also, as previously discussed
and shown in FIG. 18, the respective ends of the first container 112 and the second
container 114 can be sealed together. In this configuration, the second container
114 is suspended into the chamber of the first container 112 from an end of the container
assembly 110. As mentioned above, it is understood that heat sealing is one preferred
seal, while other sealing methods could be utilized.
[0048] FIGS. 19-20 disclose the overall operation of the container assembly 10. Compression
of the first container 112 with sufficient force by finger pressure, causes the membrane
144 of the second container 114 to shear and rupture along the weld seams 166. The
membrane 144 ruptures only along the weld seams 166 to create membrane openings as
discussed in detail above. Upon rupture of the membrane 144, the second flowable substance
118 passes from the first chamber 140 through the membrane 144 and into the second
chamber 142. The material flow rate through the membrane 144 and into the second chamber
142 is controlled by the degree of membrane opening which is directly related to the
amount of force applied to the membrane 144 by the user. Therefore the user can precisely
regulate the flow of material after rupture of the membrane 144. In addition, the
membrane 144 can preferably have elastic characteristics wherein when force is removed,
the membrane 144 returns substantially to its original position. While the weld seams
166 may be ruptured, the segments can form a close enough fit to prevent material
from flowing past the membrane 144 without additional pressure on the material. Thus
the membrane 144 can act as a check valve to prevent unwanted discharge of the material.
[0049] Thus, upon rupturing the membrane 144 of the second container 114, the second flowable
substance 118 passes from the first chamber 140, past the membrane 144, and into the
second chamber 142. As the second chamber 142 has an open end, the second flowable
substance 118 is released into the first container 112. The second flowable substance
118 mixes with the first flowable substance 116 to define a mixture 132 within the
fist container 112. The mixture 132 can be dispensed from the first container 112
. As shown in FIGS. 20, the twist off closure 136 is removed to provide the opening
in the first container 112. As shown in FIG. 20, the mixture 132 can then be dispensed
from the assembly 110.
[0050] With the container configuration of FIGS. 16-20, the first container 112 can be an
extruded tube of polyethylene or polypropylene. Such material may not be conducive
to an injection molding process to form a weld seam as in the second container. However,
this material of the first container 112 may be more resistant to degradation by certain
types of flowable substances. Thus, this gives increased options with respect to the
flowable substances to be used.
[0051] Referring to the drawings, FIG. 21-23 discloses a container assembly 210 according
to the present invention. The container assembly 210 generally comprises a first container
212 and a second container 214. The first container 212 is configured to hold a first
flowable substance 216, and the second container 214 is configured to hold a second
flowable substance 218.
[0052] The first container 212 has an elongated axis L and has a peripheral wall 220. In
one preferred embodiment, the first container 212 is cylindrical. However, the first
container 212 can be molded in numerous shapes, including an elliptical shape.
[0053] As further shown in FIGS. 21-23, the first container 212 of the container assembly
210 may be a plastic ampoule 222. The first container 212 is configured to hold a
first flowable substance 216. The first container 212 is generally the same as the
first container 12 in FIG. 1 and similar elements will be referred to with similar
reference numerals but in a 200 series. The first container 212 generally comprises
a first chamber 224 and a second chamber 226 separated by a membrane or web 228 described
in greater detail below. While a two-chamber dispenser is one preferred embodiment,
more or less chambers can also be defined within the first container 212. The first
chamber 224 has an interior surface 230, an exterior surface 232 and a distal end
234. The second chamber 226 has an interior surface 236, an exterior surface 238,
and a proximate end 240. An end portion 242 is located on the exterior surface 232
of the first chamber 224 at the distal end 234. As explained above, in another embodiment,
the distal end 234 of the first chamber 224 can be closed by a number of sealing methods,
including heat or adhesive sealing. When the distal end 234 is sealed, and in cooperation
with the membrane 228, the first chamber 224 is a closed chamber for holding the first
flowable substance 216. If desired, the first container 212 can be necked down wherein
the second chamber 226 has a smaller diameter than the diameter of the first chamber
224. Alternatively, the second chamber 226 can be positioned at the proximate end
240.
[0054] As further shown in FIG. 22, the first container 212 has a membrane 228 that partitions
the first container 212 to separate and, therefore, define the first chamber 224 and
the second chamber 226. Also in a preferred embodiment, the membrane 228 is disposed
substantially transverse to the elongated axis L of the first container 212. The structure
of membrane 228 of the first container 214 of the container assembly 210 is the same
as the membrane 28 of the first container 12 of the container assembly 10 as discussed
in great detail above. Additionally, the membrane 28 of FIG. 2 and the membrane 228
of FIG. 22 are structurally the same and function in the same manner. Although FIGS.
21-23 show the membrane 228 closer to the proximate end 240 than the distal end 234,
the placement of the membrane 228 is a function of the desired volume capacity of
the first chamber 224 and the second chamber 226. As such, the membrane 228 could
be located at numerous locations in the first container 212.
[0055] As shown in FIGS. 21-23, the exterior surface 244 of the first container 212 has
an exterior extension 246 to indicate the exact location where force should be applied
to rupture the membrane 228. Specifically, the extension 246 is located directly adjacent
to the membrane 228. Although the extension 246 is shown as a thumb pad with the plurality
of ridges 248, any type of raised area or projection including a button, prong or
ring will suffice. In addition, a ring of material could be applied around the perimeter
of the first container 212 corresponding to the location of the membrane 228 so that
a user would know precisely where to apply finger pressure in order to rupture the
membrane 228 of the first container 212. An indicia-bearing marking would also be
sufficient. As described in greater detail above, a user can apply a certain amount
of force to the membrane 228 causing the weld seam 66 to rupture in order to regulate
the amount of material that is dispensed from the first chamber 224 of the first container
212 through the membrane 228 and into the second chamber 226 of the first container
212. The interior surface 238 of the second chamber 226 can secure different applicators,
such as a swab or dropper, which can be used to apply the dispensed liquid or solid
material. The swab or dropper forms an interference fit with the interior surface
238 of the second chamber 226.
[0056] As discussed in greater detail above, in a preferred embodiment, the first container
212 is made of a transparent, flexible thermoplastic material. It is essential that
the first container 212 be made of material which can be formed using the injection-molded
process described above to form a weld seam, and which is flexible enough to allow
sufficient force to rupture or fracture the membrane 228. Additionally, it is possible
for the first container 212 to be a one-piece injection molded container.
[0057] As further shown in FIGS. 21-23, the second container 214 of the container assembly
210 is positioned within the first container 212. In one preferred embodiment, the
second container 214 is positioned within the first chamber 224 of the first container
212. The second container 214 is configured to hold the second flowable substance
218. The second container 214 may be a traditional glass ampoule 250 that is known
in the art.
[0058] As shown in FIGS. 24-27, in one preferred embodiment the glass ampoule 250 has a
porous netting 254 that encapsulates the glass ampoule 250 in order to prevent any
shards of glass from contaminating the mixture to be formed. The netting 254 may comprise
an expandable monofilament sleeve which is produced by a braiding technique whereby
PET (Polyethylene Terehthalate) monofilaments are braided into a tubular sleeve 256
as shown in FIG. 25. PET has the physical characteristics of being tough, lightweight,
resistant to chemicals and fungus, and is approved for use up to 125° C. Additionally,
the netting may have the characteristics of being non-absorbent. In one exemplary
embodiment of the invention, the netting 254 is non-absorbent. Non-absorbency in such
exemplary embodiment maximizes the amount of second flowable substance passing through
the netting 254 and mixing with the first flowable substance. In certain applications,
it is undesirable for the netting 254 to be absorbent as too much of the flowable
substance will be absorbed by the netting 254 rather than mixing with the first flowable
substance. The tubular sleeve 256 may also comprise Nylon, Halar®, Teflon®, Ryton®,
Reflex, Mylar, Kevlar, fiberglass or other suitable materials known in the art. As
will be described in greater detail below, the netting 254 offers tough durable protection
for the glass ampoule until rupture is desired and contains the glass shards within
the netting upon rupture while allowing the flowable substance to pass through the
mesh openings 258. Generally, the netting 254 sleeve can expand to 1.5 times or more
than its original size. The netting 254 has mesh openings 258 as shown in FIGS. 25
and 27. The mesh openings 258 vary as the sleeve is flexed. The mesh openings 258
are determined by several factors, including the closeness of the weave , the number
of the filaments used as well as the outer diameter ("OD") of the filaments that are
braided to form the netting 254. Typically, the filament OD is generally within the
range of .018 of an inch to .060 of an inch. However, the OD can vary as desired.
In one preferred embodiment, the mesh openings 258 are generally within the range
of .001 of an inch to .010 of an inch to prevent any glass shards from contaminating
the mixture 252. This range can also vary depending on the application. Although one
preferred embodiment has a netting 254 encapsulating the second container 214, it
is further contemplated that the netting 254 may be omitted if desired (FIGS. 22 and
23), such as an application where containment of the glass shards is not important.
The tubular sleeve 256 is tested to several ASTM tests to assess for proper parameters
of the netting 254 for protection from glass shards.
[0059] The netting 254 is initially in a roll form. A supply of glass ampoules, prefilled
with the desired second flowable substance, is also provided. The netting material
254 is unrolled, and the glass ampoules are sequentially inserted into the an end
opening of the netting 254. A pre-determined space is maintained between each glass
ampoule. The netting material is then heat-sealed on each end of the glass ampoule.
The sealed netting is then cut between each ampoule. An assembly having the glass
ampoule surrounded by the sealed netting 254 is thus formed.
[0060] As shown in FIG. 25, the container assembly 210 is constructed by first providing
the second container, or the glass ampoule 214. The second container 214 is filled
with a second flowable substance 218 as is known in the art. The second container
214 is then placed into the netting 254 as described above. The second container 214,
surrounded by the sealed netting, is then placed within the first container 212 as
shown in FIG. 24. In an application that does not utilize the netting 254, only the
glass ampoule is placed within the first container 212 (FIG. 21). It is also understood
that the second container 214 may be cleaned or sterilized as is necessary for the
particular application. After placing the second container 214 into the first container
212, the first container 212 is then passed on to a filling apparatus. The first container
212 is filled with a first flowable substance 216. The distal end 234 of the first
container 212 is then sealed by heat sealing dies. The excess portion can then be
cut-off and discarded. As mentioned above, it is understood that heat sealing is one
preferred seal, while other sealing methods could be utilized.
[0061] FIGS. 21-23 and 28-30 disclose the operation of the container assembly 210. Compression
of the first container 212 with sufficient force by finger pressure, causes the second
container or glass ampoule 214 to fractionate. Upon fractionating the second container
214, the glass shards are trapped by the netting 254. Although the mesh openings 258
are of a size small enough to prevent glass shards from passing through, the mesh
openings 258 are big enough to allow the second flowable substance 218 to pass through
and mix with the first flowable substance 216 of the first container 212 to form a
mixture 252. The mixture 252 is then dispensed from the first container 212 by rupturing
the membrane 228 along the weld seams 266 to create membrane openings as discussed
in detail above. Upon rupture of the membrane 228, the mixture 252 passes from the
first chamber 224 of the first container 212 through the membrane 228 and into the
second chamber 226. As discussed above, the material flow rate through the membrane
228 and into the second chamber 226 is controlled by the degree of membrane opening
which is directly related to the amount of force applied to the membrane 228 by the
user. Therefore the user can precisely regulate the flow of material after rupture
of the membrane 228. In addition, the membrane 228 can preferably have elastic characteristics
wherein when force is removed, the membrane 228 returns substantially to its original
position. While the weld seams may be ruptured, the segments can form a close enough
fit to prevent material from flowing past the membrane 144 without additional pressure
on the material. Thus the membrane 228 can act as a check valve to prevent unwanted
discharge of the material. The mixture 252 can be dispensed from the first container
212 as discussed above. A variety of the applications can be used with the container
assembly 200. As shown in FIGS. 21-23, in applications where it is not important to
contain the glass shards from the second container 214, the netting 254 is omitted.
[0062] Referring to the drawings, FIG. 31 discloses a container assembly 310 according to
the present invention. As shown in FIGS. 31-32 the container assembly 310 generally
comprises a first container 312 and a second container 314. The first container 312
is configured to hold a first flowable substance 316, and the second container 314
is configured to hold a second flowable substance 318.
[0063] The first container 312 has an elongated axis L and has a peripheral wall 320. In
one preferred embodiment, the first container 312 is cylindrical. However, the first
container 312 can be molded in numerous shapes, including an elliptical shape.
[0064] As further shown in FIGS. 31-32, the first container 312 of the container assembly
310 may be a plastic ampoule 322 as described in great detail above. The first container
312 is configured to hold the first flowable substance 316. The first container 312
is generally the same as the first container 12 in FIG. 1 and similar elements will
be referred to with similar reference numerals but in a 300 series. The first container
312 generally comprises a first chamber 324 and a second chamber 326 separated by
a membrane or web 328 as described above. While a two-chamber dispenser is one preferred
embodiment, more or less chambers can also be defined within the first container 312.
The first chamber 324 has an interior surface 330, an exterior surface 332 and a distal
end 334. The second chamber 326 has an interior surface 336, an exterior surface 338,
and a proximate end 340. An end portion 342 is located on the exterior surface 332
of the first chamber 324 at the distal end 334. As explained above in another embodiment,
the distal end 334 of the first chamber 324 can be closed by a number of sealing methods,
including heat or adhesive sealing. When the distal end 334 is sealed, and in cooperation
with the membrane 328, the first chamber 324 is a closed chamber for holding the first
flowable substance 316. If desired, the first container 312 can be necked down wherein
the second chamber 326 has a smaller diameter than the diameter of the first chamber
324. Alternatively, the second chamber 326 can be positioned at the proximate end
340.
[0065] As further shown in FIG. 34, the first container 312 has a membrane 328 that partitions
the first container 312 to separate and, therefore, define the first chamber 324 and
the second chamber 326. Also in a preferred embodiment, the membrane 328 is disposed
substantially transverse to the elongated axis L of the first container 312. The structure
of membrane 328 of the first container 314 of the container assembly 310 is the same
as the membrane 28 of the first container 12 of the container assembly 10 as discussed
in great detail above. Additionally, the membrane 28 of FIG. 1 and the membrane 328
of FIGS. 31-37 are structurally the same and function in the same manner. Thus, the
membrane 328 has a plurality of weld seams 366 formed as described above. Although
FIG. 34 shows the membrane 328 closer to the proximate end 340 than the distal end
334, the placement of the membrane 328 is a function of the desired volume capacity
of the first chamber 324 and the second chamber 326. As such, the membrane 328 could
be located at numerous locations in the first container 312.
[0066] As shown in FIGS. 31 and 32, the exterior surface 344 of the first container 312
has an exterior extension 346 to indicate the exact location where force should be
applied to rupture the membrane 328. Specifically, the extension 346 is located directly
adjacent to the membrane 328. Although the extension 346 is shown as a thumb pad with
the plurality of ridges 348, any type of raised area or projection including a button,
prong or ring will suffice. In addition, a ring of material could be applied around
the perimeter of the first container 312 corresponding to the location of the membrane
328 so that a user would know precisely where to apply finger pressure in order to
rupture the membrane 328 of the first container 312. An indicia-bearing marking would
also be sufficient. As described in greater detail above, a user can apply a certain
amount of force to the membrane 328 causing the weld seam 366 to rupture in order
to regulate the amount of material that is dispensed from the first chamber 324 of
the first container 312 through the membrane 328 and into the second chamber 326 of
the first container 312.
[0067] As shown in FIG. 32, the interior surface 336 of the second chamber 326 can secure
different applicators 354, such as a swab or dropper (FIG. 32), which can be used
to apply the dispensed liquid or solid material. The swab or dropper forms an interference
fit with the interior surface 336 of the second chamber 326.
[0068] It is understood that the first container 312 can be made using the same injection-molded
process described above and using similar materials.
[0069] As further shown in FIGS. 31 and 34, the second container 314 of the container assembly
310 is positioned within the first container 312. In one preferred embodiment, the
second container 314 is positioned within the first chamber 324 of the first container
312. The second container 314 is configured to hold the second flowable substance
318. The second container 314 generally has a body 370 that has a rupturable or fractionable
weld seam 372. In one preferred embodiment, the weld seam 372 is a circumferential
weld seam 372.
[0070] As further shown in FIG. 33, the body 370 has a wall 374 and is generally cylindrical
although other shapes are possible. The body 370 is preferably sized similar to the
glass ampoule previously described in earlier embodiments. The body 370 has a proximal
end 376 that is closed and is generally dome-shaped. The body 370 also has a distal
end 378 that is initially opened but sealed after being filled. The wall 374 of the
body 370 defines an inner chamber to hold the second flowable substance 318.
[0071] As shown in FIGS. 33 and 34, the circumferential weld seam 372 is formed around a
periphery of the container 314. In one exemplary embodiment, the circumferential weld
seam 372 extends around a full periphery of the container 314. The circumferential
weld seam further extends around the periphery generally along a linear path. The
circumferential weld seam 372 is positioned in the wall 374 generally adjacent the
dome-shaped proximal end 376. The circumferential weld seam may be considered circumjacent
the dome-shaped proximal end 376. It is understood that the circumferential weld seam
372 could be positioned at various locations as desired for a particular application.
As can be understood from FIGS. 34 and 38A, the wall 374 has a general thickness t3.
The circumferential weld seam 372 has a thickness t4 that is less than the wall thickness
t3. Thus, the outer surface of the wall 374 may be considered to have an indentation
380 (FIG. 33) therein at the weld seam 350. This facilitates rupture of the weld seam
372 as described below.
[0072] FIGS. 38 and 38A disclose the process utilized for forming the second container 314.
The second container 314 of FIGS. 31 and 32 is formed in a single molding operation
to provide a one-piece injected-molded part. A mold is provided having an outer mold
part 392 and an inner mold part 394. The inner mold part 394 may be shaped like a
rod or mandrel. The mold parts 392, 394 confront each other and define a mold space
S between the mold parts 392, 394 that generally defines the overall shape of the
second container 314. The outer mold part 392 has a circumferential rib 390 thereon.
The rib 390 confronts in closer relation the inner mold part 392. The mold is provided
with suitable injection points. As shown in FIG. 38 and FIG. 38A, upon commencement
of the injection molded process, a first mold segment moves in the mold toward the
rib 390 in one direction and a second mold segment moves in the mold toward the rib
390 in an opposite direction. As further shown in FIG. 38A, the mold segments continue
to flow and abut at an interface area 396 generally at the circumferential rib 390
confronting the inner mold part 394. The mold segments meet and abut at the interface
area 396 to form the circumferential weld seam 372. The circumferential weld seam
372 has a lesser thickness t4 than the overall wall thickness t3 of the wall 374.
The mold is suitably cooled and vented as discussed above. Upon completion, the container
314 is removed from the mold.
[0073] The container assembly 310 is constructed by first providing the second container
314 which can be passed on to a filling apparatus. The second container 314 is filled
with a second flowable substance 318, and then sealed by heat sealing dies. The excess
end portion can then be cut-off and discarded. It is understood that heat sealing
is one preferred seal while other sealing methods could also be utilized. A cap could
also be provided for the distal end 378 of the container 314 if desired. The second
container 314 is then placed into the first container 314 as shown in FIGS. 32 and
34. The second container 314 may be suitable cleaned or sterilized as discussed above.
After placing the second container 314 into the first container 312, the first container
312 is then passed on to another filling apparatus. The first container 312 is filled
with a first flowable substance 316. As shown in FIG. 34, the distal end 334 of the
first container 312 is also sealed by heat sealing dies. The excess portion can then
be cut-off and discarded. As mentioned above, it is understood that heat sealing is
one preferred seal, while other sealing methods could be utilized.
[0074] FIGS. 35-37 disclose the overall operation of the container assembly 310. Compression
of the first container 312, such as by finger pressure, causes the circumferential
weld seam 372 of the second container 314 to break, rupture, or fractionate only along
the circumferential weld seam 372 to create an opening for release of the second flowable
substance 318 from the second container 314 to mix with the first flowable substance
316 in the first chamber 324 of the first container 312 to define a mixture 352. FIG.
39 shows a series of views that show the rupture of the circumferential weld seam
372 upon application of a generally transverse force F proximate the weld seam 372.
The weld seam 72 fractures along a circumferential path around the container 314 thereby
opening the container 314.
[0075] As further shown in FIG. 37, the user applies a selective force F on the container
assembly 310 at the exterior extension 346 adjacent to the membrane 328. When sufficient
force is applied, lateral pressure is applied to the membrane 328 causing the membrane
328 to shear and rupture along the weld seams 366. The membrane 328 ruptures only
along the weld seams 366 to create membrane openings 356. Upon rupture of the membrane
328, the mixture 352 passes from the first chamber 324 through the membrane 328 and
into the second chamber 326. The material flow rate through the membrane 328 and into
the second chamber 326 is controlled by the degree of membrane opening 356 which is
directly related to the amount of force applied to the membrane 328 by the user. Therefore
the user can precisely regulate the flow of material after rupture of the membrane
328. In addition, the membrane 328 can preferably have elastic characteristics wherein
when force is removed, the membrane 328 returns substantially to its original position.
While the weld seams 366 may be ruptured, the membrane segments can form a close enough
fit to prevent material from flowing past the membrane 328 without additional pressure
on the material. Thus the membrane 328 can act as a check valve to prevent unwanted
discharge of the material. In one preferred embodiment, the mixture 352 is then dispensed
from the first container 312 as discussed above. The applicator 354 shown in FIGS.
35-37 is in the form of a swab. Other applicators can be used to dispense the mixture
352.
[0076] It is also understood that a user could use the second container 314 as a separate
container for storing and dispensing a flowable substance. Such container 314 is easily
filled and sealed and selectively opened when desired. The container 314 resists opening
if subjected to compression of the flowable substance such as by squeezing a distal
end of the container 314. The container 314 can generally only be opened by applying
the force F proximate the circumferential weld seam 372. The container 314 can be
formed more efficiently as the weld seam 372 is formed during the injection molded
process and controlled during the process. An extra processing step to form a weakened
area around the container 314 is unnecessary.
[0077] The dispensers or container assemblies described above are designed to primarily
contain and dispense flowable substances or flowable materials that are fluids. Other
flowable materials can also be used. For example, in one embodiment the flowable materials
could both be fluids. In another embodiment, the first flowable material could be
a liquid, and the second flowable material could be a powder to be mixed with the
fluid. Other combinations depending on the use are also permissible. This permits
the dispenser to be used in a wide variety of uses, and contain and dispense a large
variety of fluids and other flowable substances. The following is a non-exhaustive
discussion regarding the many possible uses for the dispensers or container assemblies
of the present invention. It is understood that related uses to those described below
are also possible with the embodiments of the present invention.
[0078] In one example, the dispenser can be used in a two-part hair care product such as
a hair dye kit. A first flowable substance of the hair dye kit can be carried in the
first chamber, and a second flowable substance of the hair dye kit can be carried
in the second chamber. The membrane is ruptured wherein the two flowable substances
can be mixed together to form a mixture or solution. The mixture or solution can then
be dispensed from the dispenser onto the hair of a user. In a multitude of other examples,
the dispenser can dispense a flowable material or mixture that is an adhesive, epoxy,
or sealant, such as an epoxy adhesive, craft glue, non-medical super glue and medical
super glue, leak sealant, shoe glue, ceramic epoxy, fish tank sealant, formica repair
glue, tire repair patch adhesive, nut/bolt locker, screw tightener/gap filler, super
glue remover or goo-b-gone. Also, the dispenser can dispense a flowable material or
mixture that is an automotive product, such as a rear view mirror repair kit, a vinyl
repair kit, an auto paint touch up kit, a window replacement kit, a scent or air freshener,
a windshield wiper blade cleaner, a lock de-icer, a lock lubricant, a liquid car wax,
a rubbing compound, a paint scratch remover, a glass/mirror scratch remover, radiator
stop-leak, or a penetrating oil. The dispenser 10 can also dispense a flowable material
or mixture that is a chemistry material, such as a laboratory chemical, a fish tank
treatment, a plant food, a cat litter deodorant, a buffer solution, a rehydration
solution of bacteria, a biological stain, a rooting hormone, a colorant dispenser,
or disinfectants.
[0079] Moreover, the dispenser can dispense a flowable material or mixture that is a cosmetic,
fragrance or toiletry, such as nail polish, lip gloss, body cream, body gel, hand
sanitizer, cologne, perfume, nail polish remover, liquid soaps, skin moisturizers,
tooth whiteners, hotel samples, mineral oils, toothpastes, or mouthwash. The dispenser
can also dispense a flowable material or mixture that is an electronics product, such
as a cleaning compound, a telephone receiver sanitizer, a keyboard cleaner, a cassette
recorder cleaner, audio/video disc cleaner, a mouse cleaner, or a liquid electrical
tape. In addition, the dispenser can dispense a flowable material or mixture that
is a food product, such as food colorings, coffee flavorings, spices, food additives,
drink additives, confections, cake gel, sprinkles, breath drops, condiments, sauces,
liquors, alcohol mixes, energy drinks, or herbal teas and drinks. The dispenser can
also dispense a flowable material or mixture that is a hair care product, such as
hair bleaches, hair streaking agent, hair highlighter, shampoos, hair colorants, conditioners,
hair gels, mousse, hair removers, or eyebrow dye. The dispenser can also dispense
a flowable material that is a home repair product, such as a caulking compounds or
materials, a scratch touch up kit, a stain remover, a furniture repair product, a
wood glue, a patch lock, screw anchor, wood tone putty or porcelain touch-up.
[0080] In addition, the dispenser can dispense a flowable material or mixture that is a
test kit, such as a lead test kit, a drug kit, a radon test kit, a narcotic test kit,
a swimming pool test kit (e.g., chlorine, pH, alkalinity etc.), a home water quality
tester, a soil test kit, a gas leak detection fluid, or a pregnancy tester. The dispenser
can dispense a large variety of lubricants including industrial lubricants, oils,
greases, graphite lubricants or a dielectric grease. The dispenser can also dispense
a flowable material or mixture that as part of a medical device test kit, such as
a culture media, a drug monitoring system, a microbiological reagent, a streptococcus
test kit, or a residual disinfectant tester. In addition, the dispenser can dispense
a large variety of medicinal products, such as blister medicines, cold sore treatments,
insect sting and bit relief products, skin cleaning compounds, tissue markers, topical
antimicrobials, topical demulcent, treatments for acne such as acne medications, umbilical
area antiseptics, cough medicines, waterless hand sanitizers, toothache remedies,
cold medicines and sublingual dosages. Furthermore, the dispenser can dispense a flowable
material or mixture that is a novelty product, such as a chemiluminescent light, a
Christmas tree scent, a glitter gel, and a face paint. The dispenser can also dispense
a variety of paint products such as novelty paints, general paints, paint additives,
wood stain samples, caulk, paint mask fluid or paint remover. The dispenser can also
dispense a flowable material or mixture that is a personal care product, such as shaving
cream or gel, aftershave lotion, skin conditioner, skin cream, skin moisturizer, petroleum
jelly, insect repellant, personal lubricant, ear drops, eye drops, nose drops, corn
medications, nail fungal medication, aging liquids, acne cream, contact lens cleaner,
denture repair kit, finger nail repair kit, liquid soaps, sun screen, lip balm, tanning
cream, self-tanning solutions or homeopathic preparations. A large variety of pest
control products can be dispensed by the dispenser, including insect attractants,
pesticides, pet medications, pet insect repellants, pet shampoos, pest sterilizers,
insect repellants, lady bug attractant and fly trap attractant. Various safety products
can be dispensed through the dispenser including respirator tests and eye wash solution.
[0081] The dispenser can also dispense a large variety of stationery or craft products,
such as magic markers, glitter gels, glitter markers, glitter glues, gel markers,
craft clues, fabric dyes, fabric paints, permanent markers, dry erase markers, dry
eraser cleaner, glue sticks, rubber cement, typographic correction fluids, ink dispensers
and refills, paint pens, counterfeit bill detection pen, envelope squeeze moisturizers,
adhesive label removers, highlighters, and ink jet printer refills. The dispenser
can also dispense various vitamins, minerals, supplements and pet vitamins. The dispenser
can also dispense a flowable material or mixture in a variety of other applications
such as for aroma therapy products, breathalyzer tests, wildlife lures, eyeglass cleaners,
portable lighting fuels, bingo and other game markers, float and sinker devices, toilet
dyes and treatments, dye markers, microbiological reagents, shoe polishes, clothing
stain removers, carpet cleaners and spot removers, tent repair kits, plumbing flux
applicator, rust remover, tree wound treatment, animal medicine dispenser, animal
measured food dispenser, odor eliminator liquids, multi-purpose oils, ultrasonic cleaner
concentrate, manufacturing parts assembly liquids and irrigation solutions. In addition,
the dispenser can be used as, or in connection with a suction device for culture sampling,
taking various liquid samples, taking various swabbing samples and for acting as a
chemical tester, such as may be used for testing drinks for various "date rape" drugs.
In addition, the dispenser can dispense a variety of sports products including sports
eye black, football hand glue, and baseball glove conditioner and pine tar. The dispenser
can dispense any variety of flowable materials including liquids and powders, and
further including a liquid and a powder, two or more powders, or two or more liquids.
The dispenser may be used as part of 2-part system (mix before use) including a liquid
with a powder, a liquid with a liquid, a powder with a powder, or sealed inside another
tube or product container or partially sealed, connected or attached to another container.
The dispenser may also be used as part of a plunger dispensing system and diagnostic
testing. In addition, the dispensers and container assemblies may also be used in
other types of test kits such as testing for gun powder or explosives such as in a
bomb detection kit. The dispensers can further be used in radiation testing. The dispensers
can also be used in DNA sampling applications.
[0082] The dispenser of the present invention may also be used for windshield wiper blade
cleaner and other automotive applications, fragrances, pastry gels, eyebrow dye, paints,
hair paints, finger nail repair kit, animal medicine dispenser, animal food dispenser,
culture media samples, drug test kits, and chemical testers (e.g. date rape etc.).
As an illustration, although the applicator has been described as being utilized for
mechanical uses, it can similarly be used for applying adhesives, mastic or the like.
[0083] While the specific embodiments have been illustrated and described, numerous modifications
come to mind without significantly departing from the spirit of the invention, and
the scope of protection is only limited by the scope of the accompanying Claims.
[0084] The present teaching may also be extended to the feature of one or more of the following
numbered clauses
- 1. A container assembly comprising:
a first container configured to hold a first flowable substance; and
a second container configured to hold a second flowable substance, the second container
operably associated with the first container, wherein one of the first container and
the second container has a weld seam.
- 2. The container assembly of clause 1 wherein the second container is contained within
the first container, wherein the second container is rupturable and configured such
that the second flowable substance can mix with the first flowable substance to form
a mixture to be selectively dispensed from the container assembly.
- 3. The container assembly of clause 1 wherein the first container has the weld seam
and wherein the second container is rupturable and contained within the first container.
- 4. The container assembly of clause 3 wherein the second container has a fusion-molded
seam therein.
- 5. The container assembly of clause 4 where upon force is applied to the fusion-molded
seam of the second container through the first container to rupture the same wherein
the containers are configured such that the second flowable substance can mix with
the first flowable substance to form a mixture to be selectively dispensed from the
container assembly.
- 6. The container assembly of clause 1 wherein the first container is a one-piece injection
molded container and has the weld seam.
- 7. The container assembly of clause 1 wherein the first container has a membrane having
the weld seam therein, wherein a first chamber and a second chamber are defined in
the first container, and wherein the second container is positioned in the first chamber.
- 8. The container assembly of clause 7, wherein the second container has a rupturable
seam.
- 9. The container assembly of clause 7 wherein the membrane has a thickness and a weld
seam, the weld seam having a thickness less than the thickness of the membrane.
- 10. The container assembly of clause 9 wherein the weld seam comprises a plurality
of weld seams.
- 11. The container assembly of clause 10 wherein the plurality of weld seams extends
radially from substantially a center point of the membrane.
- 12. The container assembly of clause 11 wherein pressure applied to the rupturable
seam of the second container causes fractionation, wherein a second flowable substance
is dispensed from the second container into the first chamber of the first container
to define a mixture.
- 13. The container assembly of clause 12 wherein pressure applied to the membrane causes
the weld seam to rupture, wherein the mixture is dispensed from the first chamber
of the first container into the second chamber of the first container and further
dispensed from the container assembly.
- 14. A container assembly comprising:
a first container defining a first chamber and configured to hold a first flowable
substance in the first chamber, the first container having a membrane having a weld
seam;
a second container configured to hold a second flowable substance, the second container
positioned in the first chamber, the second container having a fusion-molded seam,
wherein upon rupturing of the fusion molded seam, the second flowable substance mixes
with the first flowable substance to define a mixture, wherein upon rupturing the
weld seam, the mixture is dispensable from the first container.
- 15. The container assembly of clause 14 wherein the first container further defines
a second chamber where upon rupturing the weld seam, the mixtures passes from the
first chamber to the second chamber to be dispensed from the first container.
- 16. The container assembly of clause 15 further comprising one of a dropper and a
swab in fluid communication with the second chamber.
- 17. The container assembly of clause 14 wherein the first container and the second
container are generally cylindrical.
- 18. The container assembly of clause 14 wherein the membrane has a thickness and the
weld seam has a thickness less than the membrane thickness.
- 19. The container assembly of clause 14 wherein the second container is rupturable
via force applied to the first container and the membrane is rupturable via force
applied proximate the membrane.
- 20. The container assembly of clause 14 wherein the second container is moveable within
the first chamber.
- 21. A container assembly comprising:
a first container is configured to hold a first flowable substance;
a second container configured to hold a second flowable substance, the second container
operably associated with the first container, one of the first container and the second
container having a weld seam and the other of the first container and the second container
being selectively openable.
- 22. The container assembly of clause 21 wherein the first container is an extruded
container.
- 23. The container assembly of clause 21 wherein the first container has a twist-off
closure.
- 24. The container assembly of clause 21 wherein the second container has a membrane
having the weld seam.
- 25. The container assembly of clause 24 wherein the membrane has a thickness and the
weld seam having a thickness less than the thickness of the membrane.
- 26. The container assembly of clause 25 wherein the membrane has a plurality of weld
seams.
- 27. The container assembly of clause 26 wherein the plurality of weld seams extend
radially from substantially a center point of the membrane.
- 28. The container assembly of clause 21 wherein the second container is positioned
within the first container.
- 29. The container assembly of clause 28 wherein the first container and the second
container are sealed together at one end wherein the second container is suspended
into the first container.
- 30. The container assembly of clause 21 wherein pressure applied to the membrane causes
the weld seam to rupture, wherein the second flowable substance is dispensed from
the second container into the first container to define a mixture.
- 31. The container assembly of clause 30 wherein the mixture of the first flowable
substance and the second flowable substance is dispensed from the first container.
- 32. A container assembly comprising:
a first container configured to hold a first flowable substance, the first container
being an extruded tube and being selectively openable;
a second container configured to hold a second flowable substance, the second container
having a membrane having a weld seam, wherein ends of the first container and the
second container are sealed together wherein the second container is positioned in
the first container,
wherein upon rupturing of the weld seam of the second container, the second flowable
substance mixes with the first flowable substance to define a mixture, wherein the
mixture is dispensable from the first container.
- 33. A container assembly comprising:
a first container configured to hold a first flowable substance,
the first container having a weld seam;
a second container configured to hold a second flowable substance, the second container
positioned in the first container, the second container being selectively openable;
wherein upon opening of the second container, the second flowable substance mixes
with the first flowable substance to define a mixture wherein the weld seam is rupturable,
wherein the mixture is dispensable from the first container.
- 34. The container assembly of clause 33 wherein the first container is a one-piece
injection molded container.
- 35. The container assembly of clause 33 wherein the first container has a membrane
wherein the weld seam is positioned in the membrane.
- 36. The container assembly of clause 35 wherein the first container has an elongated
axis, and the membrane is disposed substantially transverse to the elongated axis.
- 37. The container assembly of clause 33 wherein the first container has a first chamber
and a second chamber defined by the position of the membrane.
- 38. The container assembly of clause 33 wherein the membrane has a plurality of weld
seams.
- 39. The container assembly of clause 33 wherein the membrane has a thickness and the
weld seam has a thickness less than the thickness of the membrane.
- 40. The container assembly of clause 38 wherein the plurality of weld seams extend
radially from substantially a center point of the membrane.
- 41. The container assembly of clause 33 wherein the second container is a glass ampoule.
- 42. The container assembly of clause 41 wherein the glass ampoule is surrounded by
a non-absorbent netting.
- 43. The container assembly of clause 33 wherein pressure applied to the second container
causes fractionation, wherein the second flowable substance is dispensed from the
second container into the first chamber of the first container to define a mixture.
- 44. The container assembly of clause 33 wherein pressure applied to the membrane causes
the weld seam to rupture, wherein the mixture is dispensed from the first chamber
of the first container into the second chamber of the first container.
- 45. A container assembly comprising:
a first container configured to hold a first flowable substance; and
a second container configured to hold a second flowable substance, the second container
in the form of glass ampoule operably associated with the first container, the second
container surrounded by a netting.
- 46. The container assembly of clause 45 wherein the first container is a one-piece
injection molded container.
- 47. The container assembly of clause 45 wherein the first container has a rupturable
membrane.
- 48. The container assembly of clause 47 wherein the first container has an elongated
axis, and the membrane is disposed substantially transverse to the elongated axis.
- 49. The container assembly of clause 47 wherein the first container has a first chamber
and a second chamber defined by the position of the membrane.
- 50. The container assembly of clause 47 wherein the membrane has a plurality of weld
seams.
- 51. The container assembly of clause 47 wherein the membrane has a thickness and a
weld seam, the weld seam having a thickness less than the thickness of the membrane.
- 52. The container assembly of clause 50 wherein the plurality of weld seams extend
radially from substantially a center point of the membrane.
- 53. The container assembly of clause 45 wherein the second container is positioned
within the first container.
- 54. The container assembly of clause 45 wherein pressure applied to the glass ampoule
of the second container causes fractionation, wherein the second flowable substance
is dispensed from the second container into the first chamber of the first container
to define a mixture.
- 55. The container assembly of clause 45 wherein the netting is porous to allow the
second flowable substance flow through but trap the fractionated glass.
- 56. The container assembly of clause 51 wherein pressure applied to the membrane causes
the weld seam to rupture, wherein the mixture of the first flowable substance and
the second flowable substance is dispensed from the first chamber of the first container
into the second chamber of the first container.
- 57. The container assembly of clause 45 wherein the netting is non-absorbent.
- 58. The container assembly of clause 45 is formed of a plurality of woven fibers.
- 59. The container assembly of clause 58 wherein the woven fibers define a plurality
of openings wherein the openings are sized to trap fractionated glass from rupture
of the glass ampoule but allow passage of the second flowable substance through the
openings.
- 60. A container assembly comprising:
a first container configured to hold a first flowable substance;
a second container made from glass and configured to hold a second flowable substance,
the second container contained within a non-absorbent netting,
wherein upon rupturing of the second container, the second flowable substance mixes
with the first flowable substance to define a mixture, wherein the mixture is dispensable
from the first container.
- 61. A container assembly comprising:
a plastic ampoule defining a first chamber and having a membrane having a weld seam,
the ampoule holding a first flowable substance;
a glass ampoule holding a second flowable substance, the glass ampoule contained within
a non-absorbent netting having a plurality of openings, the glass ampoule positioned
within the first chamber,
wherein upon rupturing the glass ampoule into glass shards, the glass shards are contained
within the netting while the second flowable substance passes through the openings
and mixes with the first flowable substance to define a mixture, where upon fracturing
the weld seam, the mixture is dispensable from the first container.
- 62. A container assembly comprising:
a first container configured to hold a first flowable substance, the first container
being selectively openable; and
a second container configured to hold a second flowable substance, the second container
operably associated with the first container, the second container having a circumferential
weld seam,
wherein pressure applied to the circumferential weld seam causes the circumferential
weld seam to fractionate, wherein the second flowable substance is adapted to be dispensed
from the second container into the first container and mixed with the first flowable
substance to define a mixture, the mixture capable of being dispensed from the first
container.
- 63. The container assembly of clause 62 wherein the first container is a one-piece
plastic injection molded container.
- 64. The container assembly of clause 62 wherein the second container is a one-piece
plastic injection molded container.
- 65. The container assembly of clause 62 wherein the second container is positioned
within the first container.
- 66. The container assembly of clause 62 wherein the first container and the second
container are sealed together at distal ends of the containers.
- 67. The container assembly of clause 62 wherein the second container has a wall having
a thickness wherein the weld seam has a thickness less than the thickness of the wall
of the second container.
- 68. The container assembly of clause 62 wherein the second container as an indentation
proximate the circumferential weld seam.
- 69. The container assembly of clause 62 wherein the circumferential weld seam extends
around a full periphery of the second container.
- 70. The container assembly of clause 62 wherein the first container and the second
container are generally cylindrical.
- 71. The container assembly of clause 62 wherein the first container has a membrane
having a weld seam therein.
- 72. The container assembly of clause 71 wherein the membrane has a thickness and the
weld seam has a thickness less than the membrane thickness.
- 73. A container assembly comprising:
a first container defining a first chamber and having a membrane having a weld seam,
the first container holding a first flowable substance in the first chamber; and
a second container holding a second flowable substance, the second container having
a circumferential weld seam, the second container positioned in the first chamber,
wherein force applied to the circumferential weld seam causes the circumferential
weld seam to fractionate, wherein the second flowable substance mixes with the first
flowable substance to define a mixture, where upon another force applied to the membrane
causes fracturing of the weld seam wherein the mixture is dispensed from the first
container.
- 74. A container comprising:
a body defining a chamber portion adapted to hold a flowable substance, a portion
of the body having a circumferential weld seam.
- 75. The container clause 74 wherein the body has a wall having a thickness wherein
the weld seam has a thickness less than the thickness of the wall of the body.
- 76. The container of clause 74 wherein the body has an indentation proximate the circumferential
weld seam.
- 77. The container of clause 74 wherein the circumferential weld seam extends around
a full periphery of the body.
- 78. The container of clause 74 wherein the body is generally cylindrical.
- 79. The container of clause 74 wherein the body has a generally dome-shaped end adjacent
the circumferential weld seam.
1. A container assembly (10,210) comprising:
a first container (12,212) configured to hold a first flowable substance(16,216),
wherein the first container (12,212) has a membrane (28,228) having a weld seam (66,266)
therein, wherein
a first segment of injected molded material abuts a second segment of injected molded
material to form the weld seam (66,266), the first container (12,212) being a one-piece
injected molded container; and
a second container (14,214) configured to hold a second flowable substance (18,218),
the second container (14,214) operably associated with the first container (12,212),
wherein the second container (14,214) is contained within the first container (12,212),
wherein the second container (14,214) is rupturable and configured such that the second
flowable substance (18,218) can mix with the first flowable substance (16,216) to
form a mixture (86) to be selectively dispensed from the container assembly (10,210).
2. The container assembly (10,210) of claim 1 wherein the first container (12,212) has
an elongated axis, and the membrane (28,228) is disposed substantially transverse
to the elongated axis.
3. The container assembly (10,210) of claim 1 wherein the first container (12,212) has
a first chamber (24,224) and a second chamber (26,226) defined by the position of
the membrane (28,228).
4. The container assembly (10,210) of claim 1 wherein the membrane (28,228) has a plurality
of weld seams (66,266).
5. The container assembly (10,210) of claim 1 wherein the membrane (28,228) has a thickness
(t1) and the weld seam (66,266) has a thickness (t2) less than the thickness (t1)
of the membrane (28,228).
6. The container assembly (10,210) of claim 4 wherein the plurality of weld seams (66,266)
extend radially from substantially a center point of the membrane (28,228).
7. The container assembly (10,210) of claim 1 wherein the first container (12,212) is
cylindrical.
8. The container assembly (10,210) of claim 1 wherein the second container (14,214) is:
rupturable, and/or is a glass ampoule (250).
9. The container assembly (10,210) of claim 1 wherein the second container is a glass
ampoule (250) and wherein force applied to the glass ampoule (250) causes fractionation,
wherein the second flowable substance (18,218) is dispensed from the second container
(14,214) into the first container (12,212) to define a mixture (86,252).
10. The container assembly (10,210) of claim 9 wherein force applied to the membrane (28,228)
causes the weld seam (66,266) to rupture, wherein the mixture is dispensed from the
first container (12,212).
11. The container assembly (10,210) of claim 1 wherein force is applied to the second
container (14,214) through the first container (12,212) to fractionate the second
container (14,214) wherein the second flowable substance (18,218) can mix with the
first flowable substance (16) to form a mixture (86,252) to be selectively dispensed
from the container assembly (10).
12. The container assembly (10,210) of claim 10 wherein the glass ampoule (250) is surrounded
by a non-absorbent netting (254).
13. The container assembly (10,210) of claim 12 wherein the netting (254) is porous to
allow the second flowable substance (18,218) to flow through but trap the fractionated
glass.
14. The container assembly (10,210) of claim 9 wherein the second container (14,214) has
a fusion-molded seam (84) that is rupturable or the second container (14,214) has
a weld seam (66) that is rupturable, optionally wherein the weld seam of the second
container is a circumferential weld seam (372).
15. The container assembly (10,210) of claim 5 wherein pressure applied to the second
container (14,214) causes fractionation, wherein a second flowable substance (18,218)
is dispensed from the second container (14,214) into the first chamber (24,224) of
the first container (12,212) to define a mixture (86,252) and optionally wherein pressure
applied to the membrane (28,228) causes the weld seam (66,266) to rupture, wherein
the mixture (86,252) is dispensed from the first chamber (24,224) of the first container
(12,212) into the second chamber (26,226) of the first container (12,212) and further
dispensed from the container assembly (10,210).