Field of the Invention
[0001] The present invention relates to a slewing-type work machine adapted to sustain security
for surrounding of the slewing-type work machine, such as a hydraulic excavator or
the like.
Description of the Background Art
[0002] A hydraulic excavator is a kind of a slewing-type work machine. Generally, the hydraulic
excavator consists of a lower travelling mechanism and a upper swiveling mechanism
which are connected by a slewing apparatus, the upper swiveling mechanism being adapted
to rotate with respect to the lower travelling mechanism. A front working member is
provided on the upper swiveling mechanism, the working member being consisted of a
boom, an arm and a front attachment. The front attachment is mainly a bucket to be
connected to the arm.
[0003] Soil and sand excavated by the hydraulic excavator are loaded on a vessel of a dump
truck. For this purpose, a dump truck waits at a position which is apart a predetermined
distance from the hydraulic excavator, excavated soil and sand being loaded from the
hydraulic excavator on the vessel of the dump truck. The hydraulic excavator performs
repeatedly the excavation of soil and sand, and loading them on the vessel of the
dump truck. The slewing apparatus is mounted to carry out the repeated performance
of the hydraulic excavator.
[0004] The hydraulic excavator executes swiveling action so that it is necessary to ensure
safety of surroundings. That is, the hydraulic excavator is necessary to pay attention
not to contact with some obstacle at a time of swiveling action of the hydraulic excavator.
For example, when the hydraulic excavator makes swiveling action in such a situation
that the dump truck is extremely approached to the hydraulic excavator, a counterweight
of the hydraulic excavator being brought into contact with the dump truck. An operator
who operates the hydraulic excavator cannot find visually as to whether or not the
counterweight causes interference, due to the counterweight is positioned rearward
direction of an operator's cab.
[0005] Dead angle zone comes into existence specifically to the backward direction for an
operator who is boarded in an operator's cab, and also dead angle is produced for
left side and right side direction, further also is formed dead angle to the front
side thereof. For this purpose, a patent document 1 discloses a technology that plural
cameras are mounted on a hydraulic excavator for displaying an overhead view image
by means of signal process of the images taken from the cameras. In accordance with
this technology, virtual image of overhead view from upper position to downwardly
can be displayed by performing coordinate transformation of images taken by the cameras,
the surrounding situation can be recognized by the operator in the manner of high
visibility. Especially, under the situation that any obstacle is placed at a closed
position from the hydraulic excavator, it is extremely important technology to make
intuitively recognition for the operator as to the distance between the hydraulic
excavator and the obstacle.
Prior Art Document
Patent Document
Summary of the Invention
Problem to be solved by the Invention
[0007] The operator can understand the surrounding situation of the hydraulic excavator
intuitively by displaying overhead view image in accordance with the patent document
1. It is useful to specify marginal area to interfere with any obstacle at the time
of rotating action of the hydraulic excavator (that is an interference scope) on the
overhead view image. The operator has clear visibility for visual recognition with
respect to the forward field of view, the operator can judge by sight as to whether
or not the front working mechanism would interfere with the obstacle. Therefore, it
is toward the rearward direction, in most cases at the direction of the counterweight,
for highly necessary to show the marginal area of interference at the time of swiveling
action.
[0008] In this connection, the overhead view image is created by converting the view point
from upper to downwardly by means of a camera image which is turned the optical axis
toward obliquely downward direction. Therefore, the position coordinate becomes different
position when the ground height (the height from the ground) is different. That is
to say, in a case where there exists a height difference between the hydraulic excavator
and the obstacle, difference is caused in relative positioning between them on the
overhead view image. This is resulted by converting three-dimensional image taken
from a camera to two-dimensional plane view at the time of creating the overhead view
image processed by the coordinate conversion. The interfering scope shown becomes
indefinite if not comply with the same ground height, such as height from the ground.
In a case where the shown interfering scope with indefinite height standard, misunderstandings
may arise for the operator.
[0009] Therefore, the object of the present invention is to represent precisely an interference
scope shown on an overhead view image of surrounding situation of a slewing-type work
machine.
Means for Solving the Problem
[0010] In order to solve the foregoing problem, in accordance with the present invention
comprising; plural number of imaging devices, which are mounted on a slewing-type
work machine, for taking images respectively toward downwardly inclined and at different
directions; a view point converting section for performing coordinate conversion of
image data taken from respective imaging devices to make overhead view images to look
down from upper position; a composite overhead view image creating section to create
a composite overhead view image arranged around symbolized view image of the slewing-type
work machine; an interference scope indicating section to indicate on the overhead
view image to cause interference with a surrounding obstacle placed according to the
ground height at the time of rotating action of the slewing-type work machine; a display
image producing section to display the composite overhead view image together with
the interference scope on the display image; and a monitor to display the display
image.
[0011] Now, the interference scope is settled on the basis of the positional relation between
the rotating area of the slewing-type work machine and the position of an obstacle.
More concretely, rear end of the rotating radius of the slewing-type work machine,
in a case of a hydraulic excavator, rear end of a counterweight is determined as criterion
of the interference scope. In connection with the hydraulic excavator, although a
front working mechanism is provided on front-side thereof, the front working mechanism
is not determined as criterion of the interference scope, even if it has rotating
radius larger than that of the counterweight, because the operator can visually recognize
the front working mechanism.
[0012] Although the interference scope marking section is settled on the basis of same ground
height of the slewing-type work machine and the obstacle, same criterion of the interference
scope can be applied even if there is difference in ground height between the slewing-type
work machine and the obstacle, except that the slewing-type work machine is extremely
inclined. However, it may be shown the obstacle into or out of the criterion depending
upon the difference in height therebetween. Plural number of criterions of the interference
scope can be indicated on the display device.
[0013] In a case where the obstacle is a dump truck, and when loading earth and sand on
the dump truck, the rearmost portion of a vessel or the rear end portion of a frame
of the dump truck can be determined the positional relationship of the criterion region
at the time of swiveling action of the hydraulic excavator.
[0014] Further, in various kinds of dump trucks are used, wireless communication members
can be provided for respective dump truck in order to identify the kind of the dump
truck, thereby the interference scope marking section may indicate the interference
scope of the rearmost portion of the vessel or the rear end portion of the frame at
the ground height for respective dump trucks. In addition, the display image producing
section can be so designed as to enter a numeral of the ground height of the interference
scope.
[0015] In a case of indicating plural number of the interference scope on the display device,
it can be set that the interference scope at the time of same ground height between
the positioned height for the slewing-type work machine and located height of the
interfered object is set as a standard interference scope, and the interference scope
can be changed the interference scope in accordance with the difference in height,
further the change of the interference scope may be performed manually or may be adjusted
automatically depending upon the measured value of the difference in height. In a
case that the obstacle is the dump truck as mentioned above, the height of the vessel
is changed on the basis of the loaded earth and sand. Taking into consideration of
this aspect, variation may be provided for the interference scope.
Effects of the Invention
[0016] According to the present, by indicating interference scope on the ground height of
the composite overhead view image which allows comprehension the details for the surrounding
situation of the slewing-type work machine, the extent of interference to the obstacle
can be recognized precisely and easily.
Brief Description of the Drawings
[0017]
[Fig. 1] is a side elevation view of a hydraulic excavator.
[Fig. 2] is a block diagram of a display controller and a monitor.
[Fig. 3] is an example showing to indicating plural number of interference scopes
on a composite overhead view image.
[Fig. 4] is a illustrative view showing relationship between a hydraulic excavator
and the composite overhead view image.
[Fig. 5] shows a large-sized dump truck and a composite overhead view image being
indicated an interference scope therein corresponding to the large-sized dump truck.
[Fig. 6] shows a small-sized dump truck and a composite overhead view image being
indicated an interference scope therein corresponding to the small-sized dump truck.
[Fig. 7] shows a set of a hydraulic excavator, a large-sized dump truck and a small-sized
dump truck.
[Fig. 8] shows actual large-sized dump truck, and a composite overhead view image
being indicated two interference scopes of the large-sized dump truck and the small-sized
dump truck.
[Fig. 9] shows actual small-sized dump truck, and a composite overhead view image
being indicated two interference scopes of the small-sized dump truck and the large-sized
dump truck.
[Fig. 10] is a second embodiment of a block diagram of a display controller and a
monitor.
[Fig. 11] shows an embodiment illustrating information as to ground height added on
Fig. 5.
[Fig. 12] shows a super large-sized dump truck, and a composite overhead view image
being indicated an interference scope therein corresponding to the super large-sized
dump truck.
[Fig. 13] shows an embodiment illustrating information as to ground height added on
Fig. 11.
[Fig. 14] is a fifth embodiment of a block diagram of a display controller and a monitor.
[Fig. 15] shows a composite overhead view accompanied with an interference scope in
a case that hydraulic excavator and a dump truck are positioned at a differential
height.
[Fig. 16] shows an illustrative view in changing the interference scope between empty
state and loaded state of the dump truck.
Embodiment of the Invention
[0018] Hereafter, embodiments of the present invention will be described with reference
to the attached drawings. In the following description, a hydraulic excavator is referred
to as an example for a slewing-type work machine, but the slewing-type work machine
is not limited to the hydraulic excavator. For example, other work machines such as
a crane truck and the like may be applicable as the slewing-type work machine. In
short, any work machine to perform predetermined work with swiveling action may be
included as the slewing-type work machine.
[0019] Fig. 1 shows a hydraulic excavator 1 as a slewing-type work machine. The hydraulic
excavator 1 is consisting mainly of a lower traveling mechanism 2, upper swiveling
mechanism 3 and a slewing apparatus 4. The lower traveling mechanism 2 is a traveling
means of the hydraulic excavator 1, a crawler-type lower traveling mechanism 2 being
exemplified in the present invention. The lower traveling mechanism 2 and the upper
swiveling mechanism 3 are connected by the slewing apparatus 4, thus allowing to rotate
upper swiveling mechanism 3 in respect to the lower traveling mechanism 2 by the operation
of the slewing apparatus 4. Thus accordingly, the hydraulic excavator 1 is functioned
as a slewing-type work machine.
[0020] The upper swiveling mechanism 3 has an operator's cab 5, a front working member 6,
a machinery house 7 and a counterweight 8. Various operating members for operating
the hydraulic excavator 1 are provided in the operator's cab 5, an operator boarded
in the operator's cab 5 operates the hydraulic excavator 1. Operating member for the
slewing apparatus 4 is also provided in the operator's cab 5. The machinery house
7 is arranged at the rear position of the operator's cab 5 and the front working member
6, further rear position of the machinery house 7 being mounted the counterweight
8. In this connection, at the rear-most position of the counterweight 8, highest position
from the ground G (height) is called as the uppermost portion 8H and the lowest position
from the ground G is called as the lowermost portion 8L.
[0021] The front working member 6 is positioned side by side of the operator's cab 5 at
the front side of the upper swiveling mechanism 3 which consists of a boom 10, an
arm 11 and a bucket 12. The boom 10 is adapted to turn up and down by pivotally connected
the proximal end with a connecting pin to a frame 3a of the upper swiveling mechanism
3. The arm 11 is connected to the distal end of the boom 10 for allowing to rotate
up and down direction, further the bucket 12 being rotatably connected to the distal
end of the arm 11. The operation to turn up and down is caused by a boom cylinder
10a. The arm 11 is driven by an arm cylinder 11a, the bucket 12 being driven by an
bucket cylinder 12a. The bucket 12 is a replaceable front attachment, basically being
connected for the sake of excavating earth and sand.
[0022] Cameras 13, as imaging members, are provided on the hydraulic excavator 1 respectively
for taking images of different direction. In this embodiment, a rearward camera 13B
to take image of rearward direction, a left side camera 13L for taking image of left
side direction, a right side camera 13R for taking image of right side direction and
forward camera 13F for taking image of forward direction, respectively of the hydraulic
excavator 1. Respective cameras have the optical axis directed to the obliquely downwardly.
In other words, respective cameras have the optical axis of the lens of inclined degree
θ (0 degree <θ< 90 degree) to the ground G. Merely the rearward camera 13B is shown
in Fig. 1, but having same situation for other cameras 13L, 13R and 13F.
[0023] In Fig. 1, the rearward camera 13B is placed on the top of the counterweight 8, the
left side camera 13L being placed on the top of the operator's cab 5, the right side
camera 13R being on the top of the counterweight 8, and the forward camera 13F being
located on the top of the operator's cab 5. However, these cameras may be located
at optional positions. In addition, the visual fields of these cameras 13 are so designed
as to be overlapped at the opposite ends each other by arranging each visual field,
position and the like. For example, the visual field of the rearward camera 13B is
brought to overlap with that of the left side camera 13L, and the rearward camera
13B being brought to overlap with that of the right side camera 13R. Thereby, blind
area does not produced between the adjacent cameras 13.
[0024] Fig. 2 shows a monitor 15 and a display controller 16 for controlling the indication
contents to the monitor 15. The monitor 15 consists of a display part 17 and an operation
part 18. The display part17 is a screen for showing an image of the output from the
operation part 18. The operation part 18 is adapted to operate the display contents
such as, for example, a button for the operation part 18. The operation part 18 is
not in particular provided in a case of a touch panel structure.
[0025] The display controller 16 comprises an image correcting section 20, a view point
converting section 21, a composite overhead view image creating section 22, a ground
height information storage section 23, a rotating radius calculating section 24, an
interference scope indicating section 25 and a display image creating section 26.
The image creating section 20 is connected to the rearward camera 13B, the left side
camera 13L, the right side camera 13R and the forward camera 13F, respective cameras
13 being adapted to take image. Various image correction processes such as distortion
correcting, contrast correcting, color tone correcting are performed for the thus
taken image (image data) on the basis of camera optical parameters and the like. Such
corrections are processed to the four image data in the image correcting section independently
due to image data being taken from respective cameras 13.
[0026] The view point converting section 21 performs process to convert the view point for
image data which has been corrected the image data by the image correcting section
20. Respective cameras 13 take image directed the optical axis toward obliquely downwardly
as shown in Fig. 1. According to the view point converting section 21, the view point
conversion is performed so as to put the view point of the cameras 13 to upper position,
resulting virtually plan view to see from upper to downward direction. The cameras
13 taken image of three dimensional space is subjected coordinate transformation to
convert into a plane view from upper virtual view point 13V to downwardly (optical
axis being vertical direction). This processing is view point conversion.
The view point conversion is performed for each image data of respective cameras 13.
Therefore, four image data is performed processing of the view point conversion independently.
[0027] The image data of the rearward camera 13B which is performed the coordinate transformation
is a rearward overhead view image, the image data of the left side camera 13L performed
the coordinate transformation for taking a left side overhead view image, the image
data of the right side camera 13R performed the coordinate transformation for taking
a right side overhead view image and the image data of the forward camera 13F performed
the coordinate transformation for taking a forward overhead view image. These four
overhead view images are outputted to the composite overhead view image creating section
22.
[0028] The composite overhead view image creating section 22 composes to create a composite
overhead view image from the four overhead view images. The composite overhead view
image is composed of these four overhead view images around a plane view of a graphic
image of a hydraulic excavator 1. Specifically, there are arranged the rearward overhead
view image at the rearward position, the left side overhead view image at the left
side, the right side overhead view image at the right side and the forward overhead
view image at the forward, respectively of the graphic image. Therefore, the composite
overhead view image is comprehensively created consisting of four overhead view images
around the graphic image of the hydraulic excavator 1. The composite overhead view
image which is created by the overhead view image creating section 22 outputs to the
display image creating section 26.
[0029] The ground height information storage section 23 has a function to store as to a
predetermined height (height from ground height G). The ground height has a meaning
for determining height to indicate interference scope on the composite overhead view
image. The ground height may not only be settled one type, but also plural number
of different types of height levels can be settled. Also, the ground height can arbitrary
be settled.
[0030] The rotating radius calculating section 24 has a function to the interference scope
as a rotating radius for indicating on the composite overhead view image. The rotating
radius calculating section 24 is inputted information for converting the view point,
that is coordinate conversion information from the rotating radius calculating section
24. In a case where the upper swiveling mechanism 3 is actually swiveling at rotating
radius R, the apparent rotating radius can be calculated at a specific position of
the hydraulic excavator 1 in the ground height, at the time of converting the information
of three dimension to two dimensional plane view image (overhead view image). As explained
hereinbefore, since information as to the arbitral height from ground of the counterweight
8 is stored in the height level from ground height information storage section 23,
the apparent rotating radius is calculated in accordance with information of height
from ground.
[0031] The interference scope indicating section 25 is inputted the rotating radius R calculated
by the rotating radius calculating section 24. As described, the display image creating
section 26 is inputted the composite overhead view image data, thus indicating a circle
of calculated rotating radius R on the image of the hydraulic excavator 1 at the place
about the center of the composite overhead view image. This circle is an interference
scope of the counterweight 8 at arbitral height.
[0032] The display image creating section 26 outputs an image of the composite overhead
view image indicated the interference scope as a display image to the display part
17. The display part 17 shows the display image. Thereby, at the time of reviewing
the operator to the display part 17 of the monitor 15, the detail of situation surrounding
the hydraulic excavator 1 can be recognized by the composite overhead view image and
be recognized the scope of interference to the counterweight 8 of the hydraulic excavator
1.
[0033] In the next place, the operation will be explained. Fig. 3 shows an example of a
display image. This display image is produced in accordance with the following signal
process. The four cameras 13 provided on the hydraulic excavator 1 take image at a
predetermined cycle, but the forward camera 13F can be omitted due to securing an
excellent visibility for forward view of the operator's cab 5.
[0034] As shown in Fig. 2, images taken from four cameras 13 (13B, 13R, 13L and 13F) are
inputted to the image correction section 20. The image correction section 20 performs
various image correction processes such as distortion correcting, contrast correcting,
color tone correcting and the like for the four image data. The four image data after
correction are outputted to the view point converting section 21.
[0035] The view point converting section 21 executes to convert the view point for the four
view image data after correction. Since the respective cameras 13 take image of three
dimensional space, these four image data are subjected to convert coordinate images
into a view from upper virtual view point 13V to downwardly (optical axis being vertical
direction). The processing as explained is to convert the view point.
[0036] The composite overhead view image P as shown in Fig. 3 is an image consisting of
a rearward overhead view image 32B, a left side overhead view image 32L, a right side
overhead view image 32R and a forward overhead view image 32F arranged around a symbolized
view image 31 of the hydraulic excavator 1. Therefore, the composite overhead view
image P is a composite image consisting of respective overhead view images. The operator
boarded in the operator's cab 5 can be recognized the situation around the hydraulic
excavator 1 by reviewing the composite overhead view image P, such as for example,
when some obstacle is placed around there, the distance between the hydraulic excavator
1 and the obstacle intuitively and precisely. A pole 33 is erected near the hydraulic
excavator 1 as shown on this figure.
[0037] As shown in this figure, interference scopes 40 through 44 are indicated around the
view image 31. The interference scope 40 shown in a solid line is a circle of the
rotating radius R of the counterweight 8 at the level zero of ground height (H0).
While, shown with short dash lines are interference scopes 41 to 44 on appearance.
The view direction of cameras 13 which are directed toward obliquely downwardly are
converted the view point coordinate to vertical direction having the virtual view
point 13V, the interference scopes 41 to 44 on appearance have height from ground
height H1 to H4 (H1<H2<H3<H4) at the position of the pole 33 as the obstacle projected
on the virtual plane. In short, at a time of swiveling action of the hydraulic excavator
1, the rotating radius on ground G, that is the ground height H0, is settled as R,
the rotating radius becomes different depending upon the view angle of the visual
line. The ground heights H1 to H4 which are determined as virtual planes, data about
the ground heights H1 to H4 and the interference scopes 41 to 44 are stored in the
ground height information storage section 23. In this instance, the ground height
H4 is the highest position 8H of the rearmost position of the counterweight 8. The
ground heights H2 and H3 are the heights divided equal parts between the ground height
H1 and the ground height H4. The values of the ground heights can set manually beforehand
or automatically.
[0038] The outermost moving track at the swiveling action of the hydraulic excavator 1 is
the rearmost portion of the counterweight 8 except for the front working member 6.
Since the front working member 6 is placed at the fore direction of the operator's
cab 5, the operator can confirm certainly whether or not the front working member
6 is caused interference with some obstacle. However, it is difficult to judge by
sight whether or not bringing the rearmost portion of the counterweight 8 into contact
with some obstacle in the course of swiveling action of the hydraulic excavator 1.
[0039] Therefore, the operator can roughly judge whether or not the counterweight 8 will
bring into contact with some obstacle, by paying notice of the display part 17 which
shows the composite overview image P. However, as explained, the interference scope
in the composite overhead view image P may change depending upon the ground height,
even though at the same distance of the outermost position of the counterweight 8
from the center of the hydraulic excavator 1, because the composite overhead view
image is a two dimensional plane image which is processed coordinate conversion from
a three dimensional image.
[0040] Thus the rotating radius calculating section 24, which is inputted information as
to the four ground heights H1 to H4 from the ground height information storage section
23, calculates apparent rotating radiuses R1 to R4 respectively at the ground heights
H1 to H4 on the composite overhead view image thus processed view point conversion.
In this instance, the rotating radius calculating section 24 is inputted the calculation
method for convert the coordinate from the view point converting section 21, then
calculating the apparent rotating radiuses R1 to R4 at four ground heights H1 to H4
based upon the inputted calculating method. When R1 is regarded as an apparent rotating
radius at the ground heights H1, R2 being regarded as an apparent rotating radius
at the ground heights H2, R3 being regarded as an apparent rotating radius at the
height level H3 and R3 being regarded as an apparent rotating radius at the ground
heights H4, the relation of "R1<R2<R3<R4" is satisfied due to the relation of "H1<H2<H3<H4"
being established. Thus, the apparent rotating radius becomes smaller where it is
lower the ground height, while the apparent rotating radius being larger where it
is higher in the ground height, because that two dimensional overhead view image is
prepared by converting coordinate transformation from three dimensional space at the
view point converting section 21. In other words, when the overhead view image processed
by an image obtained by inclined a certain degree for the optical axis of a camera,
the height of a subject to take image is transformed to the distance from the center
of swivel action, thus accordingly the height of the subject has a meaning to express
the radius from the swivel center.
[0041] Therefore, the rotating radius calculating section 24 can confirm the apparent rotating
radiuses R1 top R4 corresponding to the ground height from ground H1 to H4 at the
rearmost position of the counterweight 8 of the hydraulic excavator 1. The thus calculated
four apparent rotating radiuses R1 to R4 are outputted from the rotating radius calculating
section 24 to the interference scope indicating section 25.
[0042] The display image creating section 26 is inputted data of the composite overhead
view image from the overhead view image creating section 22, and the interference
scope indicating section 25 indicates four interference scopes 42 to 44 (shown by
dash lines) on the basis of four apparent rotating radiuses R1 to R4. That is, as
shown in Fig. 1, a plotted circle having the rotating radius R1 is indicated as the
interference scope 41, a plotted circle having the rotating radius R2 is indicated
as the interference scope 42, a plotted circle having the rotating radius R3 is indicated
as the interference scope 43, and a plotted circle having the rotating radius R4 is
indicated as the interference scope 44.
[0043] In the next place, the explanation is made for the relation between the interference
scopes 41 to 44 and the actual height of the hydraulic excavator 1. Fig. 4(a) shows
a part of the composite overhead view image P, while Fig. 4(b) is shown a picture
view from the backward direction of actual hydraulic excavator 1. Further, there is
shown the relation between the interference scopes 41 to 44 of Fig. 4(a) and the actual
hydraulic excavator 1.
[0044] Although the pole 33 having a column shape as erected vertically in Fig. 4(b), the
pole 33 appears as distorted shape in Fig. 4(a). This distortion results from the
conversion in the view point converting section 21 of three dimensional image to the
two dimensional overhead view image. As shown in Fig. 4(b), because the pole 33 is
erected vertical direction in reality, the ground heights H1 to H4 are at the same
distance from the center of the hydraulic excavator 1. However, apparent rotating
radiuses (R1 to R4) are shown different circles at the height level H1 to H4 due to
the overhead view image P has been processed coordinate transformation.
[0045] As shown in Fig. 4(a), the interference scopes 41 to 44 respectively indicate the
ground heights H1 to H4, that means the rotating track of the rearmost end of the
counterweight 8. Therefore, in a case where the obstacle is contacted with or placed
within the interference scope 41 to 44, the obstacle becomes in contact with the counterweight
8. In a case shown in Fig. 4(a), the counterweight 8 comes in contact with the pole
33 at every height positions H1 to H4 at the time of swiveling action. While, counterweight
8 does not contact with the obstacle positioned at the out of the interference scopes
41 to 44.
[0046] Therefore, by showing of display image consisting of the composite overhead view
image and the interference scope at the arbitral ground height on the display part
17 of the monitor 15, the operator boarded in the operator's cab 5 can recognize the
surrounding situation of the hydraulic excavator 1 in detail. In addition, the operator
can confirm intuitively and certainly whether or not interference will occur against
any obstacle by being clearly shown the interference scope at ground height, otherwise
difficulty may be encountered to judge by the composite overhead view image coordinate
transformation.
[0047] The interference scopes 41 to 44 are shown as circular shapes in the foregoing explanation,
but may be shown as arcuate shapes. For example, in a case where the counterweight
8 is limited the extent for the rotating action, it is not necessary to indicate the
interference scopes 41 to 44 at the range out of making rotating action, thus being
shown in arcuate shapes. Although the actual interference scopes 41 to 44 are indicated
as circular shapes, in a case of unable to indicate the complete interference scopes
due to limitation of the display size in the display part 17, it may be partially
not necessarily indicating them complete circles. Thus, the interference scopes 41
to 44 are indicated as arcuate shapes.
[0048] Although interference scopes 41 to 44 corresponding to the ground heights H1 to H4
are indicated in the composite overhead view image P, one single interference scope
may be indicated therein. For example, the interference scope 44 may only be indicated
for the ground height H4. The ground height H4 means the highest position 8H at the
rearmost portion of the counterweight 8. There is not existed particular substance
at higher position over the highest position 8H on the rearmost portion of the counterweight
8, thus no obstacle being brought contact with the above the highest position 8H at
the rearmost portion of the counterweight 8.
[0049] Therefore, by indicating the interference scope 44 of the highest position 8H at
the rearmost portion of the counterweight 8, operators can recognize that there is
no possibility to contact the counterweight 8 with an obstacle. Further, since there
is not any substance in the space under the lowest position 8L at the rearmost portion
of the counterweight 8, even if an obstacle is existed at that place, the counterweight
8 does not contact with the obstacle, as far as the height of the obstacle being lower
than position H1. Therefore, by indicating the interference scopes 41 and 44, one
can recognize the possibility to contact with the obstacle within area of the interference
scopes 41 to 44, while the other area being no possibility to contact with the obstacle
at the time of swiveling operation. The interference scopes 42 and 43 can be shown
at the equal intervals between the interference scopes 41 and 44, as Figs. 3 and 4(a).
[0050] In the next place, a modified example 1 is described hereinafter. According to the
modified example 1, a dump truck 50 is illustrated as an example of the obstacle.
As stated, the hydraulic excavator 1 is a work machine to excavate earth and sand,
the dump truck 50 transports the excavated earth and sand. For this purpose, the dump
truck 50 is placed stationary at a predetermined position to the hydraulic excavator
1. Then, the hydraulic excavator 1 is operated to make rotating action to load the
earth and sand on a vessel 51 as the substance excavated by the hydraulic excavator
1. After the completion of loading the excavated substance by means of the bucket
12 on the vessel 51, the hydraulic excavator 1 is rotated again to carry out further
excavation.
[0051] When the vessel 51 of the dump truck 50 is loaded a predetermined amount, the loading
work of the excavated substance is suspended and the dump truck 50 travels to a predetermined
correction area. At the same time, another dump truck 50 which is empty of the vessel
51 moves to the predetermined position relative to the hydraulic excavator 1, and
starts the work to load the excavated substance. The foregoing operation is performed
repeatedly. Therefore, plural number of dump trucks 50 (such as four or five number)
are incorporated as a group for one hydraulic excavator 1. Normally, the dump trucks
50 in the same group are all same structure. That is, the specific works are performed
with one hydraulic excavator 1 and plural number of dump truck 50 having same structure.
[0052] The foregoing referred dump truck 50 is a large-sized dump truck 50 (of course, may
be small, middle or super large-sized dump truck). As shown in Fig. 5(b), the large-sized
dump truck 50 comes close to the hydraulic excavator 1 from backward direction. This
movement is for the purpose of loading the excavated substance on the vessel 51. The
vessel 51 is protruded rearward direction, and the rearmost position of the vessel
51 (vessel rearmost end 52) is the rearmost position of the large-sized dump truck
50. Therefore, the vessel rearmost end 52 comes into first contact with the hydraulic
excavator 1. That is to say, the vessel rearmost portion becomes the obstacle.
[0053] The large-sized dump truck 50 moves backward direction to access by driving backwardly
to the hydraulic excavator 1. The rearmost portion of the large-sized dump truck 50
is the vessel rearmost end 52. Therefore, the portion which firstly comes into contact
with the counterweight 8 during is the vessel rearmost end 52. The interference scope
during rotating action of the hydraulic excavator 1 should be determined on the basis
of the vessel rearmost end 52. Thus accordingly, the ground height of the vessel rearmost
end 52 is necessary to be recognized on the part of the hydraulic excavator 1.
[0054] In this connection, plural large-sized dump tracks 50 and one hydraulic excavator
1 are used as one set and the kind of large-sized dump truck 50 are to be in advance
known by the hydraulic excavator 1. Therefore, information as to the height from ground
height of vessel rearmost end 52 can be known beforehand. Information as to the height
from ground height (called as H5) of the vessel rearmost end 52 of the large-sized
dump truck 50 can be stored in the ground height information storage section 23 as
described in Fig. 2.
[0055] The rotating radius calculating section 24 executes operation to the apparent rotating
radius R5 on the basis of ground height H5. Further, interference scope indicating
section 25 indicates the interference scope 45 having the apparent rotating radius
R5 on the composite overhead view image P. Thereby, the composite overhead view image
P containing the interference scope 45 is displayed on the display part 17 of the
monitor 15. The interference scope 45 is a region corresponding to the ground height
H5 of the large-sized dump truck 50, the operator of the hydraulic excavator 1 can
recognize, when the counterweight 8 is performed rotating action under the circumstance
that the vessel rearmost end 52 is placed into the interference scope 45 or in contact
with the interference scope 45, the counterweight 8 is caused to contact with the
vessel rearmost end 52 due to the vessel rearmost end 52 is placed within the swivel
locus of the counterweight 8 as shown in dash line in Fig. 5.
[0056] In such a case, the operator of the hydraulic excavator 1 should stay not to swivel
operation, and should command to the operator of the large-sized dump truck 50 to
move away from the hydraulic excavator 1. Under this situation, the command is to
move the hydraulic excavator 1 away to outside of the interference scope 45. Then,
the counterweight 8 and the vessel rearmost portion 52 become not contact at the time
of performing rotating action of the counterweight 8. After then, the operator of
the hydraulic excavator 1 can operate to rotate the hydraulic excavator 1 for loading
the excavated substance on the vessel 51.
[0057] In the next place, explanation is made for using small-sized dump truck 60 with reference
to Fig. 6. As a matter of fact, the small-sized dump truck 60 of Fig. 6 is smaller
than the large-sized dump truck 50 of Fig. 5. Therefore, the ground height H6 of the
rearmost portion of a vessel 61 (vessel rearmost end 62) is also lower than the ground
height H5 of the vessel rearmost end 52 of the large-sized dump truck 50. As a result,
the radius R6 of the interference scope 46 in the dump truck 60 is smaller than the
radius R5 of the interference scope 45 in the dump truck 50. Therefore, the small-sized
dump truck 60 can approach to the hydraulic excavator 1 to the proximal position to
the interference scope 46.
[0058] As explained above, the height is different between the vessel rearmost end 52 of
the large-sized dump truck 50 and the vessel rearmost end 62 of the small-sized dump
truck 60. Namely, it is certain that H5>H6. Due to there is deference in radiuses
R5 and R6, the interference scope 45 of the large-sized dump truck 50 is wider than
the interference scope 46 of the small-sized dump truck 60. Since sizes of the interference
scopes of 45 and 46 are different by the vessel rearmost ends 52 and 62, suitable
interference scope is shown on the basis of the kind of the dump truck. The kind of
the dump truck is known beforehand, thereby optimum interference scope can be indicated
by being stored the known information in advance in the ground height information
storage section 23.
[0059] In this connection, generally one hydraulic excavator 1 is consisting a group with
the same kind dump truck in the foregoing embodiment. However, there may be a group
consisting of one hydraulic excavator 1 and different types dump trucks. For example,
in some cases, as shown in Fig. 7, there is a case that one hydraulic excavator 1
is allotted the large-sized dump truck 50 and small-sized dump truck 60.
[0060] In the case to use two types of large-sized dump truck 50 and small-sized dump truck
60, the interference scope 45 of the large-sized dump truck 50 differed to the interference
scope 46 of the small-sized dump truck 60. Therefore, as shown in Figs. 8 and 9, two
types of the interference scope 45 and the interference scope 56 are adapted to indicate
on the composite overhead view image. Fig. 8 shows the loading work of the hydraulic
excavator 1 to the vessel 51 of the large-sized dump truck 50. While, Fig. 9 shows
the loading work of the hydraulic excavator 1 to the vessel 61 of the small-sized
dump truck 60.
[0061] As shown in Figs. 8 and 9, the two types of the interference scopes 45 and 46 can
be indicated on the composite overhead view image P. The operator who boarded in the
operator's cab can recognize by sight which type of the large-sized dump truck 50
or small-sized dump truck 60 can perform the work to load the excavated substance.
The operator can recognize, at the time of loading the excavated substance, whether
or not the counterweight 8 is liable to contact with the vessel rearmost end 52 when
performing rotating action with reference to the interference scope 45. Namely, as
shown in Fig. 8, in a case where the vessel rearmost end 52 is placed in contact with
the interference scope 45 on the composite overhead view image P or placed within
the interference scope 45, the counterweight 8 is assumed to bring into contact with
the vessel rearmost end 52 at the time of rotating action.
[0062] While, in a case of loading the excavated substance on the small-sized dump truck
60, in a case of loading the excavated substance to the small-sized dump truck 60,
the operator can judge by sight of the interference scope 44 as to whether or not
the counterweight 8 and the vessel rearmost portion 62 contact with each other at
the time of rotating action. That is, as shown in Fig. 9, when the vessel rearmost
portion 62 is placed in contact with the interference scope 46 on the composite overhead
view image P or placed within the interference scope 46, the counterweight 8 is assumed
to bring into contact with the vessel rearmost portion 62 at the time of swiveling
action. As shown in Fig. 9, the vessel rearmost end 62 of the small-sized dump truck
60 is positioned within the interference scope 45 which is defined as the vessel rearmost
end 52 of the large-sized dump truck 50. However, the interference is not occurred
as far as the vessel rearmost end 62 of the small-sized dump truck 60 is positioned
out of the interference scope 46, even though within the interference scope 45.
[0063] In the next place, a modified embodiment 2 is explained. As explained, in a case
of the large-sized dump truck 50 and the small-sized dump truck 60 are mixed for grouping
with one hydraulic excavator 1, the interference scope indicating section 25 indicates
two interference scopes 45 and 46 on the composite overhead view image, and the operator
of the hydraulic excavator 1 judging by sight to perform loading work of the excavated
substance used by the large-sized dump truck 50 or the small-sized dump truck 60.
[0064] According to the modified embodiment 2, the interference scope to be indicated is
automatically selects from the different kind of the dump truck without necessitated
the sight of the operator. Fig. 10 shows a block diagram for the modified embodiment
2. A wireless communication device 27 is provided further in addition to Fig. 2. In
addition, a wireless communication device 28 is also provided for the dump truck (large-sized
dump truck 50 and small-sized dump truck 60). Communication can be performed between
the wireless communication devices 27 and 28.
[0065] The wireless communication device 28 of the dump truck performs communication with
the wireless communication device 27 to inform the kind of the own dump truck. Thereby,
the wireless communication device 27 can identify the kind of the dump truck. In this
embodiment, the identification is performed as to the large-sized dump truck 50 or
the small-sized dump truck 60. The information as to the kind of the dump truck is
outputted to the interference scope indicating section 25. The interference scope
indicating section 25 indicates on the composite overhead view image P the interference
scope 45 in a case of operating the large-sized dump truck 50 or otherwise the interference
scope 46 in a case of operating the small-sized dump truck 60.
[0066] As described, the kind of dump truck can be recognized by the hydraulic excavator
1, by means of the wireless communication between the hydraulic excavator 1 and the
dump truck, thereby being able to indicate the interference scope 45 or 46 depending
upon the thus recognition. Some communication is also able to send from the hydraulic
excavator 1 to the dump truck. Therefore, the display image created by the display
image creating section 26 may be send to the dump truck by manner of wireless communication.
[0067] By providing a monitor in the dump truck, the monitor can shows the display image
on the display part received by means of wireless communication, thereby the positional
relation between the vessel rear end and the interference scope being recognized on
the part of the dump truck. Therefore, the operator of the dump truck is adapted to
move away the dump truck from the hydraulic excavator in a case of the vessel rearmost
end being contact or entered into the interference scope. Thereby, the vessel rearmost
end is removed away from the interference scope for allowing not to interfere the
counterweight 8 of the hydraulic excavator 1 at the time of rotating action.
[0068] Further, a modified embodiment 3 is explained hereafter. Information as to the ground
height of the interference scope is additionally shown in the modified embodiment
3, when the display image creating section 26 indicates the interference scope on
the composite overhead view image P. Fig. 11 shows the interference scope 45 for the
vessel rearmost end 52 of the large-sized dump truck 50 and the interference scope
46 for the vessel rearmost end 62 of the small-sized dump truck 60 on the composite
overhead view image P. The interference scope 45 is indicated on the basis of the
ground height H5 of the vessel rearmost end 52 of the large-sized dump truck 50 which
is stored in the ground height information storage section 23, and the interference
scope 46 is indicated on the basis of the ground height H6 of the vessel rearmost
end 62 of the small-sized dump truck 60 which is also stored in the ground height
information storage section 23.
[0069] Information as to the ground height for the interference scopes 45 and 46 can be
added to indicate on the basis of the information concerning the ground heights H5
and H6 which are stored in the ground height information storage section 23. In the
case of Fig. 11, the ground height H5 is 4000cm and the ground height H6 is 3000cm.
Thereby, the operator of the hydraulic excavator can recognize more clearly the ground
height of the interference scopes 45 and 46 respectively.
[0070] In this connection, the large-sized dump truck 50 is partially shown on the composite
overhead view image P as shown in Fig. 11. The vessel 51 is not loaded any excavated
substance before starting and the outer surface of the vessel 51 is exposed. In such
a case, it may be indicated on the surface of the vessel 51 information as to the
ground height of the vessel rearmost end 52 (4000cm in Fig. 11). Thereby, at the time
that the operator pays the attention to the displayed image that is the display image
of the composite overhead view image P with the interference scopes 45 and 46 shown
on the display part 17 of the monitor 15, the operator can recognize information as
to the ground height of the vessel rearmost end 52 shown on the surface of the vessel
51. Because of the interference scope 45 being shown on the composite overhead view
image P, those have same ground height on the basis of information indicated on the
surface of the vessel 51 (4000cm) and information of the interference scope (4000cm).
Therefore, it can be recognized the interference scope 45 is liable to contact to
the counterweight 8, even though being indicated two interference scopes 45 and 46
on the composite overhead view image.
[0071] In the next place, a modified embodiment 4 is explained. The dump truck to be loaded
the excavated substance from the hydraulic excavator 1 is an super large-sized dump
truck 70 as shown in Fig. 12. The super large-sized dump truck 70 is provided a vessel
71 for loading the excavated substance from the hydraulic excavator 1. The vessel
rearmost end 72 of the super large-sized hydraulic excavator 70 stands higher than
the uppermost portion 8H (ground height H4) of the counterweight 8 of the hydraulic
excavator 1, thus accordingly the counterweight 8 being not contact with the vessel
rearmost end 72 at the time of operating the slewing apparatus 4.
[0072] The super large-sized dump truck 70 has a frame 73 as a basic framework, a vessel
71 is mounted on the frame 73. Therefore, there is a possibility that ground height
H7 of the frame rearmost end 74 of the frame 74 is brought into contact with the counterweight
8. In other words, the ground height H7 of the frame rearmost end 74 has a height
between the ground height H4 of the uppermost portion H4 and lowermost portion H1
of the counterweight 8. In such a case, the frame rearmost end 74 is the criterion
in place of the vessel rearmost end 72.
[0073] Therefore, in the case of the super large-sized dump truck 70 is combined with the
hydraulic excavator 1 as a group, the ground height information storage section 23
stores the ground height H7 of the frame rearmost end 74 in the super large-sized
dump truck 70, thereby allowing to calculate the rotating radius R7 in accordance
with the ground height H7 by the rotating radius calculating section 24. Further,
the interference scope indicating section 25 performing to indicate the interference
scope 47 on the basis of the rotating radius R7. Thereby, it can be able to judge
whether or not the counterweight 8 may be brought into contact with the frame rearmost
end 74 at the time of rotating action of the counterweight 8.
[0074] Further, the frame rearmost end 74 is painted with different color than the other
portion of the frame. The positional relation can be recognized clearly between the
frame rearmost end 74 and the interference scope 47 at the time of reviewing the displayed
image. Thereby, it can easily be judged whether or not the interference is occurred
between the frame rearmost end 74 and the interference scope 47, by clearly being
the position of the colored frame rearmost end 74.
[0075] Fig. 13 shows an embodiment to indicate plural interference scopes on the composite
overhead view image. In a case of the small-sized dump truck 60, as shown in Fig.
6, the vessel rearmost end 62 is possible to contact with the counterweight 8 at the
rotating action. Therefore, the interference scope indicating section 25 indicates
the interference scope 46 as shown in Fig. 6. While, in the case of the super large-sized
dump truck 70, the frame rearmost end 74 is possible to interfere with the counterweight
8 at the time of rotating action. Therefore, the interference scope indicating section
25 indicates the interference scope 47 as in Fig. 11.
[0076] As shown in Fig. 13, in contrast with the interference scope 46 is indicated for
the ground height H6 corresponding to the vessel rearmost end 62 in small-sized dump
truck 60, the interference scope 47 is to be indicated for ground height H7 corresponding
to the frame rearmost end 74, thus allowing to automatically indicate the interference
scope which is likely to cause contact with the counterweight 8 at the time of swiveling
action.
[0077] Hereafter, a modified embodiment 5 is explained. The forgoing modified embodiments
are indicated the interference scopes of the areas which are possibly caused interferences
between the counterweight 8 and the vessel rearmost end or frame rearmost end at the
swiveling action of the counterweight 8. In this embodiment, there is indicated the
area of best position to be loaded the excavated substance of the hydraulic excavator
1 to a dump truck (in this case, a large-sized dump truck).
[0078] Fig. 14 is added a best loading region indicating section 81 replaced of the interference
scope indicating section 25 of the display controller 16 shown in Fig. 2. The best
loading region means an optimum position to stay the hydraulic excavator 1 for performing
the loading work of excavated substance from the hydraulic excavator 1 to the large-sized
dump truck 50. When the vessel rearmost end 52 of the large-sized dump truck 50 is
positioned out of the interference scope 45, interference is not occurred between
the vessel rearmost end 52 and the counterweight 8. Therefore, the large-sized dump
truck 50 is adapted to shift the position up to substantially contact with the interference
scope 45.
[0079] However, even though the vessel rearmost end 52 is placed out of the interference
scope 45, in a case when the large-sized dump truck 53 is brought excessively close
to the hydraulic excavator, difficulty may be encountered for loading work of the
excavated substance from the hydraulic excavator 1 to the vessel 51 of the large-sized
dump truck 50. The best loading region is the region that the vessel rearmost end
52 is placed at optimum position in accordance with the ground height on performing
the loading work from the hydraulic excavator 1 to the large-sized dump truck 50.
The best loading region indicating section 81 indicates the optimum position of the
best loading region. The best loading region is expressed with a circle on the composite
overhead view image P, the radius is longer than the interference region.
[0080] While, although, in the foregoing embodiments, the hydraulic excavator 1 as the slewing-type
work machine stands at the same height (ground G) with the dump truck 50 (or dump
truck 60, 70) as the obstacle, there are some cases that the hydraulic excavator1
is positioned at a ground of different height on the ground positioned the dump truck
50. However, even differential in the high level, the interference scope between the
hydraulic excavator 1 and dump truck 50 does not vary as far as not changed the position
of a horizontal direction, but the interference scope 45 being not necessarily exact
the apparent rotating radius R5 which is indicated on the composite overhead view
image P.
[0081] That is, as shown in Fig. 15, if the hydraulic excavator 1 stands on the ground G1
and the dump truck 50 stands on the ground G2, the positional relation is same in
the horizontal direction between the hydraulic excavator 1 and the dump truck 50 as
shown in Fig. 5, even though the ground G1 being higher than or lower than the ground
G2 at a degree of height ΔH.
[0082] However, as shown in Fig. 15, the position on the image of the vessel rearmost end
52 attained by the left side camera 13L is indicated the position shifted at the distance
ΔL from the position shown in Fig. 5 toward the hydraulic excavator 1, as a result
the interference scope 45 on the composite overhead view image being indicated as
if the hydraulic excavator 1 is brought into contact with the dump truck 50 at the
time of rotating action. Such situation is caused by performing the view point transforming
process depending on the change in angle of the optical axial center to the surface
of object and in the ground height of the dump truck 50 from the height position of
the camera 13L.
[0083] For this reason, in a case of the hydraulic excavator 1 has a difference in height
to the dump truck 50 in the displayed composite overhead view image P, the interference
scope 45 at the time of the hydraulic excavator 1 and the dump truck 50 which are
positioned the same horizontal plane is modified to an interference scope 145 in accordance
with the difference of height ΔH. The modification carry out based on the measurement
or calculation.
[0084] Further, there may be difference in the height of the vessel rearmost end of the
dump truck 50 positioned the hydraulic excavator 1 and the dump truck 50 on the same
horizontal plane. The height of the vessel rearmost end 52 is changed between before
and after loading earth and sand on the vessel 51, due to the compression degree of
the tires and the suspension weight of the suspension mechanism. For the reason, the
position of the vessel rearmost end at the time of full loading state is closed positioned
on the composite overhead view image within the interference scope 45 (or 145) which
is set at the time of empty state.
[0085] To avoid confusion for the operator to operate the hydraulic excavator 1, as shown
in Fig. 16, the interference scope 245 may be set to have a width, the outer end being
interference scope of empty state and the inner end being interference scope of full
loaded state.
Description of Reference Numerals
[0086]
- 1:
- hydraulic excavator
- 4:
- slewing apparatus
- 5:
- operator's cab
- 8:
- counterweight
- 13:
- camera
- 15:
- monitor
- 16:
- display controller
- 17:
- display part
- 20:
- image correcting section
- 21:
- viewpoint converting section
- 22:
- overhead view image creating section
- 23:
- ground height information storage section
- 24:
- rotating radius calculating section
- 25:
- interference scope indicating section
- 26:
- display image creating section
- 27, 28:
- wireless communication member
- 31:
- symbolized view image
- 40∼47, 145, 245:
- interference scope
- 50:
- large-sized dump truck
- 52:
- vessel rearmost end
- 60:
- small-sized dump truck
- 62:
- vessel rearmost end
- 70:
- super large-sized dump truck
- 73:
- vessel rearmost end
- 73:
- frame
- 74:
- frame rearmost end
- H1∼H7:
- ground height
- P:
- composite overhead view image
- R1∼R7:
- rotating radius