EP 2 957 429 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

23.12.2015 Bulletin 2015/52

(21) Application number: 15172617.1

(22) Date of filing: 17.06.2015

(51) Int Cl.:

B42D 25/328 (2014.01) B42D 25/47 (2014.01)

B42D 15/00 (2006.01)

B42D 25/346 (2014.01)

B42D 25/305 (2014.01)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA

(30) Priority: 17.06.2014 SK 500832014 U

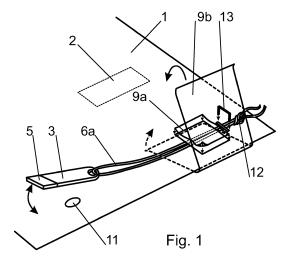
(71) Applicants:

 Hubinák, Emil 921 01 Piestany (SK) · Kvasnica, Roman 921 01 Piestany (SK)

(72) Inventors:

 Hubinák, Emil 921 01 Piestany (SK)

· Kvasnica, Roman 921 01 Piestany (SK)


(74) Representative: Porubcan, Róbert

Puskinova 19

900 28 Ivanka pri Dunaji (SK)

CARRIER OF DOCUMENTS, MAINLY LEGAL DOCUMENTS, METHOD OF HANDLING OF THE (54)**DOCUMENTS AND SET OF ELEMENTS FOR ITS REALIZATION**

(57)A carrier of documents, mainly legal documents which express the relationship between the parties and involve texts and/or images connected with the signature of the party includes a physical document (1) which is inseparably connected with the electronic memory element (3), where the bloc (4) for storage of the document in an electronic form is created. The connection is tamper-evident. The carrier is in the party's possession and he or she can view it anytime. The document (1) can be connected with the electronic memory element (3) directly or by connecting element (6) which allows for distancing of the contact interface (5) from the document (1). The contact interface (5) can have a form of an USB, microUSB, SD, microSD, and so on. The connection of the memory element (3) with the list (1) can be realized by a layer (18) of the adhesive, by a staple (13), by a rivet (15) and so on. The solution saves the paper and allows the reading of the document in the font size of choice, whereby the physical and visually obvious connection with the document (1) is preserved.

Description

Field of technology

[0001] The invention concerns the carrier of documents, mainly legal documents such as General Terms and Conditions, attachments to contracts and so on, where the documents have been hitherto printed in paper form and physically given to the other party of the contract or similar agreement. The technical solution discloses new, ecological and - at the same time - reliable way of handling the documents.

Prior state of the art

20

30

35

40

45

50

55

[0002] In developed countries the complexity of legal relationships increases both on business and on civil level, and this often increases the scope of general terms and conditions, the length of the contracts, attachments and related documents, which all are needed to document the given relationship. It is known that the font size is being decreased in order to decrease the amount of needed paper. The problem of this approach is the readability of the documents; this is why in some states there are efforts to prescribe by law the minimal font size for the letters of such documents. Even the small increase in the page number of the documents dramatically increases - in case of large number of clients - the costs of paper consumption and archiving and storage of such documents.

[0003] The systems are known where the standardized documents are made accessible through the internet and are archive on-line; the physically signed document just refers to the document made accessible on-line. However, with the passage of time, this may cause - especially in case of dispute - doubts concerning the precise content of the document - e.g. the general terms and conditions - at the time of the signing of the physical document. The party, e.g. the bank's client, is unsure which version of the document he or she has agreed to. This causes a practical problem of plausibly demonstrating before the court the precise wording of the agreed terms and conditions; and this once again proves that the most effective way is to present a physically signed document.

[0004] Such solutions are known where the paper carrier includes information which can be processed electronically - for example QR code - which includes the link to the given document in the internet network. The accessibility of this document is, however, dependent on the operator of the system and the other party does not personally hold the document; he or she does not have the electronic form of this document on his or her own carrier.

[0005] Such solution is desired and not known, which would be environment friendly, which would decrease the consumption of the paper, which would be easy to use and which would at the same time credibly preserve the document in such a way that it can be read by every party at any moment.

Subject matter of the invention

[0006] The deficiencies in the prior state of the art are significantly remedied by the carrier of the documents, mainly legal documents, which include texts and/or images, where the physical documents are designed for connection with the signature according to this invention, which essence lies in the fact that there is a place on the paper or similar physical document, which is intended for signature of at least one signatory and where this document is inseparably connected with the electronic memory element on which the bloc for creation of the document in the electronic form is created. The electronic form of the document is designed for reading and/or viewing by the signatory. The memory element is connected to the interface which is designed for connection with the display device.

[0007] The solution combines the advantages of the electronic storing of the document with the reliability of the typical paper form on which there is always a physical and visually recognizable signature. Electronic storage allows a memory element to store a large amount of pages, whereby it is then possible to comfortably view the pages and search them quickly and effectively. At the same time, it is not necessary to print the document, because the signatory or part will have the electronic memory element in his or her holding by having it directly connected with the signed document. The party, for example a bank's client, can view and read the document anytime on his own display device (PC, notebook, mobile phone, etc.), whereby he will have clear understanding that this is precisely the document concerning the particular contractual relationship according to attached paper document with particular signature or signatures.

[0008] The term "inseparable connection" means such connection of the document with the memory element which is not designed for repeated disconnection and reconnection. It is always possible to separate even an inseparable connection, but always only in such a way that the state of original connection cannot be restored. Forceful and unauthorized disconnection, that is, separation of the memory element from the signed document must be visible, so that the memory element cannot be confused with another element originating e.g. from other document. Following the same goal, the memory element can be non-rewritable - or non-rewritable after the writing of the document - or it can be separated to parts where the bloc for storing of the document will be non-rewritable and the remaining part will be common memory.

[0009] Non-rewritability of the file on the memory element can be secured by either hardware or software means. The bloc for the storing of the document can also be protected from the formatting. In order to protect the integrity and originality of the stored document, other means of protection can be used, for example the document can be signed by electronic signatures of the signatories, or the file may include a time stamp and so on.

[0010] Published patent applications disclose the possibilities of storing files on very flat chips which can be implemented in the paper layers, but such paper cannot be later printed on by the laser printers without damaging the chip by the heat from the sealing roller. Moreover, such chips cannot be read by the common contact readers. Our invention combines separated formats - classical paper form and electronic form - into one indissoluble and inseparable carrier, which allows each format (paper/electronic) to use the existing devices - printers, readers, and so on - without problems.

[0011] The paper document can be a common paper letter; it can be a common list of paper of thickness (weight) of circa 80 g/m², that is, somewhere within the range of 50 to 250 g/m². This paper can be printed on by a simple printer at the contact location of the signatory, for example in the branch of a bank, insurance company and so on. The paper document can also have a form of a refined paper or a plastic foil. In some arrangements it would be preferable that the common paper was at least partially laminated by the foil.

[0012] Such methods of inseparable connection of the memory element with the document will be well used in practice where the violation of the original connection manifests itself visibly without the need to use further optical or other tools.

[0013] The memory element can be connected with the document by a connecting element. Simple inseparable connection can be produced by a strip, a ribbon, a chain, a band, or any other similar connecting element, which is on one side connected - for example by sticking or laminating - to the paper document, and on the other side this connecting element is connected to the memory element. In a simple arrangement the memory element - for example USB memory stick or a memory element with a simple contact interface - will be equipped by a lace or a ribbon, whose other end will be stuck to the paper document by a seal. A given document will be loaded to the bloc for the storing of a document on the USB memory stick.

20

30

35

40

45

50

55

[0014] The connecting element in the form of a lace, a ribbon, a cable or a fiber offers various possibilities with regard to anchoring to the document. The lace can be attached to the document on its lower corner by an adhesive strip (sticker, adhesive label) in a similar way which is used for the sealing of the legalized documents. A seal or a stamp is pressed through the stuck strip, usually so that the seal passes through the edge of the adhesive strip onto the surface of the paper document. A hologram can be used in the function of the adhesive strip sealing the connection, or any other unique adhesive element which is more difficult to forge. The term adhesive strip means any from the above mentioned means for a flat covering and connection of the lace. A concrete material, width and shape can differ. Adhesive strip despite its name - can be also shaped as an ellipsis, circle, triangle, and so on.

[0015] In order for attaching the memory element to the document solidly for the purposes of storage, there can be, in the suitable place - for example in the lower part of the document -, located a repeatedly adhesive layer which fixes the memory element's body and allows its repeated disconnection and connection without leaving uncomfortable traces of the adhesive on the body. Such adhesive layer/material is commonly used for connection of the payment cards to the surface of the cover letter. The length of the lace will be usually shorter than the size of the document or its diagonal. The lace can be connected in multiple points. It can, for example, be connected at the end and just before the connection of the lace with the body of the memory element. At this place, the lace can also have a knot which makes the unauthorized manipulation with the lace all the more difficult. Even if the lace is located just by the body of the memory element, it allows the rotation of the memory element's body into the desired position. The lace has a knot or a seal connecting different branches of the lace. The lace can have a seal on its both ends.

[0016] This invention is based on the crucial technical idea of connection of the electronic memory element with the paper document, usually a document in the form of a letter (list) of a common paper. This technical idea essentially involves various possibilities of a direct connection of the memory element to the document or of a connection of a lace or a different connecting element to the document; these multiple realizations can differ in various details which bring different advantages and levels of protection according to the available office equipment.

[0017] Typical realization of the connection of the lace with the document and the body of the memory element with use of the common office equipment can be following. The paper document is printed on the paper and the rest of the document is loaded to the USB memory stick. After the loading of the file the ability to change, delete or supply the contents of the bloc for the storage of the document are prohibited by the command. The memory element has an opening in its body through which the lace is passed and at its end the lace is knotted. In the specified place at the lower part of the paper a repeatedly adhesive layer is stuck. The body of the memory element is placed on this layer. On the surface of the paper document the repeatedly adhesive layer serves for the fixing of the memory element in a given position. The lace is then stretched to the other edge of the paper and the knot can reach to the edge of the list. The lace is then pinned to the paper before the knot by the stapler, whereby the staple is basically driven perpendicularly onto the paper and it holds the lace in place. The lace is then covered by the first adhesive strip with high adhesiveness; the function of the first adhesive strip is to secure the highly solid connection of the lace with the document's surface. The first adhesive strip is covered by the second adhesive strip whose function is mainly to protect the connection from

unauthorized manipulation. The second adhesive strip can be folded over the edge of the paper onto the other side, where it can also cover the second part of the staple. The second adhesive strip is stamped in such a way that the stamp runs through the edge of the second adhesive strip onto the surface of the document.

[0018] In such approach the final carrier has a form of a paper document connected to the electronic memory element by the lace. The lace runs through the opening in the body of the memory element and is tied into the loop on both ends the lace. The lace is connected to the paper before the knot by the metal staple and next to the staple by the first adhesive strip. The staple and the first adhesive strip are covered by the larger second adhesive strip, which is folded and stuck through the edge to the other side of the paper.

[0019] The usage of the first and second adhesive strip allows for adequate choice of the material for the strips. A safety sealing foil (e.g. sealing foil Avery 2920) can be used as second adhesive strip, which disintegrates into small pieces after the removal and it cannot be stuck back again. Such foil can be covered by the safety elements and it can have a unique identification number. The memory element on the lace cannot be removed without this removal being visible. The cutting of the lace or substitution of the lace will be clearly visible as it will manifest itself in the damaging of the adhesive strip, new knot on the lace and so on. The original appearance of the whole connection can be - for the purpose of control - stored in the electronic form on the non-rewritable part of the memory element. The employee after the realization of connection of the lace and the paper document, and after the sticking and/or application of every element, scans the document by the scanner and this scanned appearance with the identification data is loaded into the memory element.

10

15

30

35

40

45

50

55

[0020] The knot connecting the ends of the laces does not have to be used if the lace is sufficiently attached to the paper document; for example, the lace can be pinned by the metal staple and the lace's ends can be thickened for example by a molded end or a seal. This prevents the lace from being pulled from the grasp of the staple.

[0021] The folded corner of the paper itself can be used for the attachment of the lace onto the paper. The lace is put to the corner of the paper; the paper is folded and stuck alongside the end of the paper in the form of a bookmark. Double-sided adhesive stickers can be used for sticking. The corner can also be sewed by the simple stapler. Such connection of the end of the lace can be combined with abovementioned sticking of the lace close to the body of the memory element by using a repeatedly adhesive layer. The function of the staple or of the adhesive strip is not only to prevent the removal of the connecting element (for example lace) but also to prevent the repeated insertion of the connecting element (for example lace) into its original position.

[0022] The folded corner of the paper produced in abovementioned way can be stuck by the adhesive strip, which itself can have security elements, or which can be covered by the stamp.

[0023] In order to connect the lace with the paper a hollow rivet can be used, which creates a reinforced opening in the paper document. The lace is tied to the paper through the opening in the rivet or in two neighboring rivets and the overlapping ends will be attached to the surface of the paper document and stamped through the adhesive strip. The lace can therefore pass through the opening in the paper document or through the opening the hollow rivet, which is riveted into the paper.

[0024] A rivet with the suitable size can be used also for direct attachment of the memory element's body to the paper. The rivet will run through the opening in the body of the memory element. The rivet can allow for the rotating of the body of the memory element and by rotating this body into the position overhanging the edge of the paper, so it can be inserted into the computer's USB port easier. The rivet can be a common metal one or a large scale plastic one, whereby the indissolubility of the rivet connection must be protected.

[0025] The hollow rivet can be also used in such a way that it creates an opening in the paper document through which both ends of the lace pass, and on the other end these ends are connected by a seal which is bigger than the opening in the rivet.

[0026] The solution with a rivet or multiple rivets can be in preferable arrangement supplied by laminating the paper or by other reinforcement (for example sticking) at least in the vicinity of the rivet. This reinforces the rivet in the paper. The sticker used for sticking will have mainly a reinforcing function with regard to the edge of the opening with the rivet; it does not have to have security elements. However, in solutions with rivet it will be preferable if at least one head of the rivet was covered by the adhesive strip with the security element, for example by adhesive strip with the stamp or with the holographic sticker. This prevents the eventual substitution of the rivet (which is small) from going undetected. [0027] The openings can be produced by a simple office perforator. The openings can be located in the lower part or at the side parts of the paper document. When connecting the lace with the paper an approach known from the connecting of the legalized documents can be used, even when the paper document consists only from one list of paper. The opening of the body of the memory element will be connected to the lace between the two openings. Such paper document with the openings can be inserted into the ring binder, whereby the weight of the memory element will be transferred by the laces directly into the binder and it will not cause the deformation of the paper document.

[0028] The connecting element can also have a form of the joint by which the USB memory stick is flipped over the edge of the paper. The joint allows to connect the memory element firmly in the vicinity of the document's edge in such a way that in closed position the memory element does not hang over the edge of the document, but after the flipping

the contact interface does hang over the edge and it can be simply inserted into the appropriate port. In order to achieve the overhanging, the joint can be used for ejecting of the contact interface from the body of the memory element. In this construction the body of the memory element can be attached to the document either firmly or rotably, e.g. by the rivet. [0029] The connecting element in form of a lace can have an alternative where the connecting element is firmly connected with the surface of the document and the contact interface is connected with the memory element by a thin cable. It is not necessary to secure the cable against the unauthorized manipulation since its substitution has no effect on the originality of the file.

[0030] In the preferable arrangement the memory element and the contact interface can have a casing (body) from a transparent material. Each effort to alter these elements from the inside will be more easily visible.

[0031] The flat body of the memory element can be attached by double-sided adhesive tape directly onto the surface of the paper or - eventually - on the laminated surface of the document. The flat body can be covered by the adhesive strip and stamped. The contact interface is in archival position closed into the body of the memory element. In order to load and view the document the contact interface is flipped out and then hangs over the edge of the paper document. The solution with the flat body from which the contact interface is ejected can be used as well.

10

20

30

35

45

50

[0032] If the body of the memory element is long enough, it can be stuck directly onto the surface of the paper by a double-sided adhesive tape, and when the contact interface is inserted into the slot of the display device the advantage will be taken of the flexibility of the document. In such case the orientation of the contact interface towards the corner is preferable, preferably in 45° degree. In such case it suffices to fold the corresponding corner of the document and the contact interface is freely available for inserting into the give slot or to the extender. The document can be printed in such a way that the text is printed into the form or a template which - during the editing of the text - takes into account the free space necessary for placing of the memory element, connecting element and so on. The memory elements will be shipped into the branch of the corporation with the strip of the double-sided adhesive tape already applied. The employee will remove the cover layer before the sticking of the memory element and presses the memory element onto the document.

[0033] The memory element will be attached to the document usually in such a way that the contact interface with the metal surfaces will be oriented towards the document. The paper document will therefore protect the small metal contact surfaces from touching. USB memory sticks which are thinner than 3 mm usually do not have the metal framing around the contact interface. The metal framing sets the correct orientation when inserting the USB stick into the slot and it also protects the contact field, for example against a short circuit. In cases of thin USB sticks it is therefore preferable to use a cover of the contact interface, or - as in our case - it is preferable to orient the thin body of the USB stick in such a way that contact field is heading towards the paper document.

[0034] Staples or rivets used when connecting the memory element with the document can have an identification micro-elements or unusual dimensions - such staples or rivets will be difficult to obtain in order to substitute them after the unauthorized manipulation. The staples or rivets will be, in the preferable arrangement, covered from the one side or from the both sides with the adhesive strip with the security elements.

[0035] If such memory element is used which body is large enough - larger than the dimensions required by the board with the connectors - and the body is made from the puncturing material - for example rubber - then the body of the element can be pinned directly by the stapler to the document by the staple or by the rivet. The staple or the rivet can be furthermore covered by the adhesive strip with the secure elements (holographic sticker, destructive sticker, sticker with the signature or stamp, and so on). This ensures the easy control of the integrity of the connection.

[0036] The connecting element can have an identification number visible from the outside on the surface, which is transferred to the text during the recording of the document and it is then printed on the paper document, which also allows the control of the correct assignment.

[0037] The connecting element can have a form of a flexible strip which runs in parallel with the edge of the paper document. This arrangement sets the given position of the memory element against the document, whereby it will be possible to distance it from the surface of the element by folding the strip in such a way that the memory element - for example a thin USB stick - can be inserted into the USB port. The end of the flexible strip can be attached to the document and/or riveted and/or stapled.

[0038] The memory element can be connected with the document solidly in such a way that the memory element or the printed circuit board (PCB) will be attached to the surface of the document. Then the contact interface can be produced in such a way that it is placed solidly on the edge of the paper with the fitting so it can be inserted into the given slot. In another arrangement the contact interface can be connected with the memory strip by a flexible cable or strip.

[0039] The memory element can have a PCB produced in such a way that it will be attached to or molded onto the surface of the document, or into the inter-layer laminated onto the surface of the paper document. It will be preferable if the integrity of the conductive path on the PCB will be lower than the integrity of the attachment of the PCB to the surface of the document or to the surface of the inter-layer. When trying to remove the memory element from the surface of the document the PCB will be destroyed. The document can have a stiffener on its surface, at least in part of attachment of the memory element and/or the connecting element, preferably in the form of reinforcing adhesive label or laminating.

[0040] It will also be preferable if the digital stamp of the document stored in the memory element is printed on the paper document. It can be a hash code, which - should the string be shorter - is written on the paper document and its comparison with the hash code on the memory element can prove the integrity of the stored document.

[0041] The contact interface can have various shapes. When using the classical USB memory elements, the interface can be in the USB stick's body. The contact interface can, however, also have a form of microUSB or SD or microSD. In case of a USB format the contact interface must have a standard width, which is considerably larger than the width of the paper document. In order to achieve more effective storage, logistics and later archiving of the carriers - that is, a paper document with the memory element and a contact interface - the position of the contact interface can be gradually moved on the paper documents, so the thicker place is gradually on the different place on the edge of the paper document when these paper documents are piled upon each other.

10

20

30

35

40

45

50

55

[0042] The paper document can be first printed on the given form and the list is then subsequently connected with the memory element into which the document is loaded and such produced carrier of the document is distributed to the place where the signatory signs the paper document twice or multiple times and he or she then takes one exemplar with him. The document can be equipped by electronic signature of the signatory or the signatories and then stored on the memory element.

[0043] This invention can be realized and used by the common office equipment, but it is possible to produce highly specialized sets which contain necessary elements. One set of elements can contain a USB memory stick, a lace, first adhesive strip, second adhesive strip with the corporate logo printed on it, and possibly a seal. The other set can contain a USB memory stick with the applied double-sided adhesive tape and an adhesive strip with a hologram. In case of preprepared sets of elements each element can be marked by an alphanumeric code. These codes can be combined into a common code which will denote the set as a whole. The mark of a set can be read mechanistically and optically - for example by a bar code - and transferred to the form; the codes of individual elements are then printed onto the paper document - for example the serial number of the memory element, number of the second adhesive strip, number of the seal, etc. By doing so the identity of the assigned elements is preserved and this identity is easy to check.

[0044] The carrier can be equipped by NFC antenna which allows for one-way or two-way communication with the memory element. In one-way communication the connection of the antenna can be arranged in such a way that the storage of the file in the memory element can be tied only to the signal received from an NFC antenna. After the loading of the file and before the passing of the document to the signatory the antenna is separated from the memory element for example by breaking. In another arrangement the NFC antenna can serve for the contactless reading of the file from the memory element for example by a mobile phone with the NFC communication element.

[0045] The document can be stored in common text and image file formats and it can be also supplied by a sound recording which would consist of a transcript of the stored file. This way the document will be friendly for visually impaired and blind people, who will be able to listen to them on computer, in a radio, or in any player which will have the particular slot for a given contact interface, usually a USB slot. The short information of the attached sound recording can be printed on the paper document in the Braille type. In order to transfer the text to the sound format, commonly available software for automatic reading can be used, or the document will be read by human and this recording will be distributed to the points of contact with the customers. The stored document can be presented in the sound form even in cases where the electronic filed is stored in the classical text format.

[0046] The method of handling with the document according to this invention, whose essence lies in the fact that the part of the document with the identification data of at least one signatory is printed onto the list of paper with the date and the address and the second part of the document or whole document is loaded in the electronic form into the memory element and stored there, which is then inseparably connected with the paper document, is also new. The paper document is connected with the electronic memory element only after the particular part of the document is printed on the printer. The document can be loaded into the memory element before its connection with the paper document, but also after its connection with the paper document. In this process it is important that the document with appropriate form, text or image is first printed e.g. on the paper. It is preferable if the connection of a memory element with the paper document is always protected against manipulation after the connection is made. As has been disclosed in the previous parts of the description, multiple means can be used to achieve inseparability of the connection. These usually concern the means for attachment and means for increasing the visibility of eventual violation of the attachment. For the attachment a layer of an adhesive (when the attachment of the body of the memory element is firm), staples, rivets or connecting elements such as a lace, or similar hinge elements or an elastic strap, are used. As a mean for increasing the visibility of an eventual violation of the integrity, the adhesive strips with the security elements - such as a stamp and so on - can be used, as described above.

[0047] The document is at some point after the printing signed by at least one of the signatories, but preferably by all the signatories. The document can be signed after the memory element is attached - in such case the signatory has a chance to view the document on the attached element so that he or she is sure what is being signed.

[0048] The part of the document stored in the memory element is viewed in such a way that the contact interface is connected with the display element. Before the printing of the document onto the paper a digital stamp can be made

from at least a part of the document by means of known encryption mechanisms (e.g. RSA) and the transcription of the stamp is printed onto the paper in a visible way. It can be visually checked whether the transcription of the stamp from the paper corresponds to the stamp of the document on the memory element. The memory element can be attached to the paper in advance or after the printing of the particular data concerning the signatories.

[0049] The process according to this invention can involve the step where the file with the document is signed at least by one signatory, or it is - alternatively - equipped by time stamp issued by a certificate authority. The process can also involve the step where the bloc for the storing of the document is blocked against subsequent changes, for example protected against deleting, rewriting of the document, against changes in the respective folder, against formatting, and so on. This step can be realized by either software or hardware element.

[0050] Part of the process can also consist of printing of the elements, for example serial numbers, which are placed onto the document. The memory element, the seal, the adhesive strip, the hologram, the staple and the rivet can have identification marks, for example in form of alphanumeric signs. These marks can be printed onto the paper document when the text of the document itself is printed. It is preferable from the practical point of view if, instead of signing, the pre-prepared sets of elements for the handling of the document are distributed. Such set will include e.g. the electronic memory element with the bloc for the storing of the document and the connecting element, for example a lace, preferably a lace with the knot. It can also include at least one adhesive strip, and possibly a rivet and/or a seal. If some of the elements has an identification mark, it is preferable if the identification mark is transcribed onto the cover of the file in the form which can be mechanically read, for example in form of the bar code.

[0051] All visible elements of this invention can be also advantageously used as the carrier for the propagation, advertisement or a corporate logo. When printing or stamping the sign onto the surface there can be a serial number visibly printed, which allows for precise recording of the document and for tracking of the documents issued.

[0052] The crucial advantage of this invention is saving of the large amount of paper. Readable display of the document with the required font size is also allowed. Reading of the documents by visually impaired and blind people, who can read the document in specific readers or who can listen to the document, is made simpler by this invention. The electronically stored text document can be read by an electronic reader which interprets the text sonically, or the sound recording of the document can be stored on the memory element. The document is therefore always in the possession of the signatory and it is clearly connected to the given paper document. The advantage of this invention is the safety of the document which is considerably higher than in the case of usually signed multipage documents. The invention protects the documents from page swap.

Brief description of drawings

10

20

30

35

40

45

50

55

[0053] The invention is further disclosed by drawings 1 to 34. A particular design and location of the memory element, the type of the contact interface, the text on the paper document, the text on the stamp, the location of the place for signature as well as the signature itself is for illustration purposes only and cannot be interpreted as limiting the scope of protection. The contact interface displayed on the drawings is - for the purposes of clarity - oriented differently towards the surface of the document.

Figure 1 displays an axonometric, partially explosive view of the connection of the lace with the memory element onto the surface of the document. The second adhesive strip and the staple are displayed twice - in the position heading towards attachment and in the final position. The figure 2 displays a paper document with the attached lace. Figure 3 displays an attachment of the lace with the knot by means of one adhesive strip with the hologram and metal staple of the stapler.

Figure 4 is a view of the solution with the perforated second adhesive strip, possibly with the highly adhesive self-destructive type of the strip.

Figure 5 displays an example with the laminated strip through which runs the hollow rivet, and the lace runs through the opening in the rivet and it is sealed on the both ends.

Figure 6 depicts a USB memory stick placed in the folds of the two lists of the paper stuck together. In the upper part of the figure 7 there is a cross-section at the level of location of the USB memory stick. In the lower part of this drawing there are cross-sections of the shaft produced by folds in zones A, B, C, D.

Figure 8 discloses a document which has an end of the lace attached in its lower corner and the memory element is attached by the repeatedly adhesive layer. Subsequently on the figure 9 there is a memory element in the position ready for the connection with the display device.

Figure 10 displays an attachment of the lace in the folded corner of the document where the corner is attached by the triangle-shaped double-sided sticker. Subsequently, the figure 11 displays an arrangement where the corner of the paper is folded, sewed by staple and then covered by the circle-shaped adhesive strip.

Figure 12 displays the connection of the end of the lace through the two openings made by office perforator. Figure 13 displays a lace passing through both openings, whereby the end of the lace is sewed by the staple and covered

by the adhesive strip with the hologram.

Figure 14 depicts the body of the memory element riveted to the surface of the paper document in its lower, laminated part. Dotted line denotes the rotated position of the body ready for the connection with display device. Figure 15 depicts the covering of the head of the rivet with the holographic destructive sticker from the other side of the document. This sticker ensures the integrity of the rivet and reinforces the point of riveting.

Figure 16 displays the flat body of the memory element attached directly onto the surface of the list and the contact interface - as depicted on figure 17 - is flipped out or ejected into the active position.

Figures 18 and 19 depict the solution with the firmly attached body of the memory element where the access to the contact interface is gained by folding of the list. Figure 20 depicts the connection of the list with the display element - in this case personal computer - by means of a USB extender. Figure 21 depicts the direct connection where the corner of the list is folded and the contact interface is inserted directly into the USB slot in the computer.

Figure 22 depicts a document with the list of paper on which there is an end of the lace stuck with the flat USB memory stick. It is placed on the transparent bookmark in the corner of the document. Figure 23 depicts similar USB memory stick ready for connection with the display device.

Figure 24 depicts the memory element connected with the flexible plastic strip to the lower edge of the document. Figure 25 then displays two views on the plastic strip itself with the lifted memory element. Figure 26 depicts the spatial view of the flexible strip in the position of sticking onto the edge of the list and figure 27 depicts the possible position of the memory element when it is lifted from the plane of the document.

Figure 28 is a flexible plastic or rubber strip attached to the document with two rivets which are depicted in partially explosive position.

Figure 29 depicts the flexible rubber or plastic strip sewed by two metal staples, where it is also visible how one staple is covered by the adhesive strip which is equipped by the stamp and the signature. Figure 30 is a view of the applied and stamped adhesive strip.

Figure 31 depicts an attachment of the memory strip on the lace stretched between two openings. Figure 32 the displays a view on the back side of the document where the lace is connected by the knot and the ends of the lace behind the knot are led and attached to the document by means of an adhesive strip. Figure 33 is a side view of the detail of the opening in the body of the memory element from the figures 31 and 32. Figure 34 is a detail of the passing of the lace through the opening of the memory element, where the opening runs perpendicularly to the plane of the document.

Examples of realization

Example 1

5

10

15

20

25

30

35

40

45

50

55

[0054] Introductory part of the document according to figures 1 and 2 contains the title of the document, the basic text with legal necessities - for example the subject and object of contract, the price, the identification of parties, the proclamation that the rest of the document is stored inseparably on the attached recording medium, the date and place of signing and two places 2 for the signatures of both signatories. This introductory part of the document is printed onto the paper 1 of the A4 format. The rest of the document is stored on the memory element 3 which has a form of a flat USB stick with the opening. In this example, auxiliary lines suggesting the placements of the other elements are printed in the lower part of the paper document 1 with the introduction.

[0055] The employee prints the form with the introductory part of the document and then he or she applies the repeatedly adhesive layer 11 in the marked place. Then he or she passes a lace 6a through the opening in the USB stick and then he ties the lace 6a on both ends by the knot 12. The USB stick is pressed onto the repeatedly adhesive layer 11. The ends of the lace 6a are stretched in parallel with the lower edge and both branches of the lace 6a are covered by first adhesive strip 9a before the knot 12. First adhesive strip 9a is highly adhesive and its main function is to permanently and firmly hold the lace 6a and prevent it from being pulled out or returned to the original position after pulling. The lace 6a is sewed by the employee by means of a common office stapler in the place between knot 12 and applied first adhesive strip 9a. The first adhesive strip 9a and the metal staple 13 are covered by the second adhesive strip 9b. In this example, this is produced from the safety sealing foil Avery 2920 and can be equipped by the corporate logo. The function of the second adhesive strip 9b is mainly to indicate visibly the integrity of the staple 13 and the first adhesive strip 9a. The edges of the second adhesive strip 9b are white and the employee applies a stamp through this edges or signs through these edges. The second adhesive strip 9b runs to the other side of the paper where it covers the staple 13, too.

[0056] The final appearance of the document $\underline{1}$ can be scanned by the employee and the electronically signed scan is loaded into the non-rewritable bloc $\underline{4}$ for the storing of the documents in the memory element $\underline{3}$. The employee the terminates the writing capability of the bloc 4 for the storing and by means of a software switch with password protection the employee switches this bloc $\underline{4}$ to non-rewritability mode.

Example 2

[0057] In this example according to figure 3 there is only one adhesive strip $\underline{9}$ used. This adhesive strip $\underline{9}$ is a self-destructive highly adhesive sticker with the holographic motif printed on it, which is in this example equipped by the stamped serial number. The knot $\underline{12}$ and the staple $\underline{13}$ are produced similarly as in the first example. The adhesive strip $\underline{9}$ has an adhesive with the high adhesiveness and is destructive; it disintegrates when removed and respective layers of the hologram crumble, which destroys the three-dimensional image. The serial number of the hologram as well as a number of the memory element can be a part of the printed document. These numbers or alphanumeric codes, respectively, are loaded to the form from the bar code of the set. In the set there is one USB memory stick with a lace $\underline{6a}$ already passed through it and knotted, a holographic sticker (in form of an adhesive strip $\underline{9}$) and a repeatedly adhesive layer $\underline{11}$.

Example 3

[0058] In this example according to figure 4, two adhesive strips 9a, 9b, are used. The second adhesive strip 9b is perforated, or self-destructive and perforated. The memory elements 3 are distributed with already attached lace 6a which has seals 14 on both ends. These prevent the lace 6a from being pulled out from the stapler's 13 grasp.

Example 4

15

30

35

40

45

50

55

[0059] The document $\underline{1}$ has a strip on the lower edge of the list laminated. Then the hollow rivet $\underline{15}$ is riveted in the right side of the laminated strip. The employee passes both ends of the lace $\underline{6a}$ through the opening in the rivet $\underline{15}$, and these ends are sealed by the seal $\underline{14}$. The number of the seal $\underline{14}$ can be part of the printed part of the document 1. In the lower, transparently laminated part, there is a transcription $\underline{7}$ of the digital stamp.

25 Example 5

[0060] Document 1 according to figures 6 and 7 has the paper layers 1a, 1b stuck together; between the there is placed and stuck a memory element 3. The body of the memory element 3 has a larger cross-section as the cross-section of the contact interface 5 of the USB stick. The thickness of the USB stick is circa 2 - 2,4 mm. Contact interface 5 runs through the opening 16 in one layer of the document 1 and thereby comes out onto the surface of the document 1. In order to prevent deformations and tensions in the layers 1a, 1b, these can be folded. One fold along the one line 17 is sufficient in case of first layer 1a; the second layer 1b is made from self-adhesive paper and requires two lines 17 of folding, which produces a tunnel for insertion of the memory element 3. After the printing of the necessary part of the document on one or both layers 1a, 1b, the contact interface 5 is inserted into the opening 16. A self-adhesive second layer 1b is now placed and stuck on the first layer 1a, which puts the memory element 3 inside the tunnel produced by folds 17. Free gaps or cavities are simply defined in such a way that layers 1a, 1b are pressed together and adhesive binds these layers together.

[0061] The creation according to this invention can be modified in such a way that a very thin USB memory element 3 is used and paper layers 1a, 1b are both firm and flexible enough so that do not need any folds. The memory element 3 is placed and stuck between two stuck layers 1a, 1b; the contact interface 5 protrudes from the opening 16.

Example 6

[0062] According to figures 8 and 9, a single oblong adhesive strip $\underline{9}$ and a knot $\underline{12}$ blocking the pulling out of the lace $\underline{6a}$ from under the adhesive strip $\underline{9}$ are used for the connection of the lace $\underline{6a}$ with the document $\underline{1}$. The oblong strip $\underline{9}$ also prevents the repeated insertion of the lace $\underline{6a}$ into the original position after eventual manipulation. The solution uses a stamp $\underline{10}$ in order to preserve the integrity of the connection.

Example 7

[0063] According to figure 10, the lace $\underline{6a}$ is connected with the document $\underline{1}$ in the corner, whereby the folded corner of the document $\underline{1}$ is used as an adhesive strip $\underline{9}$. In connection, two staples $\underline{13}$ can be used; one orients the direction of lace $\underline{6a}$ and should be under the folded corner. A layer of an adhesive $\underline{18}$ is applied into the folded corner is and it is sewed by the second staple $\underline{13}$ and subsequently equipped by the stamp $\underline{10}$. The layer of the adhesive $\underline{18}$ can be applied in advance on both lists of paper and equipped by the cover paper so that list can be printed in the common printer; alternatively, triangle-shaped double-sided adhesive stickers can be used and applied to the corner before folding.

Example 8

[0064] According to figure 11, the lace $\underline{6a}$ is connected with the document $\underline{1}$ at the corner similarly as in the previous example. The corner is sewed by the staple $\underline{13}$ and covered by the circle-shaped adhesive strip $\underline{9}$. The adhesive strip $\underline{9}$ is equipped by the stamp $\underline{10}$ and ensures the integrity of the staple $\underline{13}$ and the integrity of the connection of the lace $\underline{6a}$ with the document $\underline{1}$ and prevents the lace from being returned to the original position.

Example 9

[0065] According to figure 12 the lace <u>6a</u> runs through both openings produced by the office perforator. Other details concerning the attachment of the end of the lace <u>6a</u> can be similar as in previous examples. Alternatively, figure <u>13</u> discloses a lace <u>6a</u> equipped by the seals <u>14</u> which prevent the lace <u>6a</u> from being pulled out of the staple's <u>13</u> grasp. The staple 13 is covered by the adhesive strip 9 with the hologram.

15 Example 10

20

30

35

40

50

55

[0066] According to figure 14, the memory element $\underline{3}$ has a body with the opening. A rivet $\underline{15}$ is passed through the opening after the printing of the form. The rivet is clenched and riveted in such a way that the rotation of the memory element $\underline{3}$ is possible. This allows the ejection of the contact interface $\underline{5}$ outside the paper document $\underline{1}$. In order to stabilize the attachment of the rivet $\underline{15}$, the lower part of the document is laminated. Laminating $\underline{8}$ by foil is produced after the form is printed on the paper document $\underline{1}$; in another example the laminating $\underline{8}$ can be done in advance. In an alternative arrangement according to figure 15 the rivet $\underline{15}$ is covered from the other side by the adhesive strip $\underline{9}$ which protects the rivet $\underline{15}$ from unauthorized manipulation.

25 Example 11

[0067] According to figures 16 and 17 the memory element $\underline{3}$ has a tiltable or slidable contact interface $\underline{5}$. The body of the memory element $\underline{3}$ is attached by the double-sided adhesive tape with the layer $\underline{18}$ of the adhesive to the document $\underline{1}$. Then the adhesive strip $\underline{9}$ covers the memory element $\underline{3}$ and its edges are marked by stamp $\underline{10}$. Figure 16 depicts a closed - folded or inserted - contact interface $\underline{5}$ and figure 17 depicts an open - tilted or ejected - one. In the archival position the memory element $\underline{3}$ does not reach through the edge of the document $\underline{1}$. In the position for the loading of the document the contact interface $\underline{5}$ is opened - tilted or ejected - and this allows the insertion into the respective slot.

Example 12

[0068] According to figures 18 to 21, the memory element $\underline{3}$ is firmly attached to the document $\underline{1}$ which and oriented to the lower right corner of the document $\underline{1}$. It is oriented in ~45°. For the connection of the contact interface $\underline{5}$ with the respective slot it suffices to fold the corner of the document $\underline{1}$ on the line $\underline{17}$. The connection of the memory element $\underline{3}$ can be realized by the double-sided adhesive tape (layer $\underline{18}$ of the adhesive) and subsequent covering by the highly adhesive stricker. Sticking is used in this example; the layer $\underline{18}$ of the adhesive in form of double-sided adhesive sticker is applied onto the body of the memory element $\underline{3}$ before the empty carriers are distributed to the points of signing of the documents $\underline{1}$. [0069] Figures 20 and 21 depict the examples of connection of the paper document $\underline{1}$ during the viewing of the document.

45 Example 13

[0070] In this example according to figures 22 and 23, common office equipment is used. Document $\underline{1}$ is a common A4 list of paper, in this example it is 80 g/m^2 paper. The employee prints the form on the common printer; the form contains a space $\underline{2}$ for the client's signature. The form contains the auxiliary lines and spaces as tools for placing other elements of the carrier of the documents. When printing the document, the employee loads the rest of the document on the USB memory element $\underline{3}$. He or she also loads an audio file to the memory element $\underline{3}$ which is produced by the automatic reading of the saved file. The employee applies the repeatedly adhesive layer $\underline{11}$ to the marked up place on the paper document 1. The employee puts the body of the memory element $\underline{3}$ with the contact interface $\underline{5}$ of the USB format onto the document 1. The employee has passed in advance the connecting element $\underline{6}$ - in this example lace $\underline{6a}$ - through the opening in the memory element $\underline{3}$; now he stretches it in parallel with the lower edge of the document 1. The end of the lace $\underline{6a}$ is covered by the adhesive strip $\underline{9}$ and the stamp of the company is stamped both on the adhesive layer $\underline{9}$ and the surface of the document 1. Both parties sign the document $\underline{1}$.

[0071] In order to read the stored document, the memory element $\underline{3}$ with the contact interface $\underline{5}$ is removed from the

repeatedly adhesive layer 11 and attached to the USB port of the display device.

Example 14

[0072] In this example according to figures 31 to 33 the common and commonly commercially available elements are used. Document 1 is a list of A4 paper with thickness 120 g/m². The memory element 3 is a flat USB memory element with typical contact interface 5 in the thin format - that is, without the outer metal frame on its edges.

[0073] In this example, the solution is used in a bank. In the bank's branch, when the contract on current account is finalized, the common printer prints the introductory part of the contract on the list of paper; this part contains legally necessary identification data of the bank and the client and the identification of the current account. The form on the list of paper contains the information that all other conditions - such as general terms and conditions - and other data are electronically stored on the attached USB stick. The unique serial number of the USB stick can be printed on the document 1; for example in the upper right corner. After the form is printed, the openings are perforated in the paper list by the common office perforator and the lace 6a is pulled through the opening in the memory element 3. One can proceed as if multiple lists are being bound by the lace 6a. There is a memory element 3 - hanging on the lace 6a - on the front side of the paper document 1, and in archival position it is attached on the repeatedly adhesive layer 11. On the back side, the lace 6a is tied by the knot 12 and its ends are covered by the adhesive strip 9. The adhesive strip is stamped, the stamp's stamps 10 run through the edge of the adhesive strip 9 onto the document 1.

[0074] In this example the lace $\underline{6a}$ is in corporate colors of the given bank. After the USB stick is attached to the document $\underline{1}$, the client can check the contents of the document and two exemplars of the document $\underline{1}$ are then signed on the marked up place $\underline{2}$. The client takes one exemplar home.

[0075] In order to preserve the flat realization of the carrier the memory element $\underline{3}$ has an opening which runs in parallel with the plane of the stick and the plane of the document 1. In the alternative arrangement according to figure 34 we can use a more common orientation of the opening against the flat body of the memory element $\underline{3}$. In such case the stretched lace $\underline{6a}$ causes the rotation of the body of the memory element $\underline{3}$. The repeatedly adhesive layer is capable to hold the body of the memory element in the archival position in parallel with the plane of the document $\underline{1}$.

Example 15

35

40

50

55

[0076] In this example according to figures 24 to 27, the handover warehouse form is printed on the paper. The list of the warehouse content handed over is stored in the memory element 3. The memory element is placed at the end of the flat flexible strip 6b. The flexible strip 6b is made from plastic and part of it is equipped by the layer 18 of the adhesive (for example by double-sided adhesive tape with the cover foil).

[0077] The transcription $\underline{7}$ of the digital stamp of the file from the memory element is printed in the lower part of the document 1. After printing the paper, the flexible strip $\underline{6b}$ is attached to its lower part, which is flexible in one direction and allows for the memory element to distance itself from the document 1. The material for the flexible strip $\underline{6b}$ is transparent and the strip allows one to read the transcription $\underline{7}$ of the digital stamp, which is printed on the place were the transparent flexible strip $\underline{6b}$ is later attached. The files are saved in multiple formats and they are stored in the memory element $\underline{3}$ as non-writable. The erasure of the file is prevented as well. The bloc 4 for storing of the document in the memory element 3 is also protected from formatting.

Example 16

[0078] In this example according to figure 28, the document is from refined paper which is more resistant to tearing and which can be printed in the common laser or ink printer.

[0080] The memory element 3 has an oblong body from the flexible material where the circuit board with the bloc 4 for storing documents is suffused as well. The flexible material has either rubber-like characteristics, or it contains rubber. [0080] Empty memory elements 3 with two openings at the end of the flexible strip 6b and indissoluble one-off rivets 15 are distributed to the point of contact with the client - for example to the customer centre of the electricity reseller. These rivets 15 have the identification number and the logo of the reseller stamped on them. The rivets 15 and a single memory element 3, taken together, constitute a single, separately packed set. The label is attached to the packaging which contains the serial number of the memory element 3 and the identification numbers of the rivets 15. These numbers are printed in form of a bar code, too. The first page of the contract between the electricity reseller and the client is printed on the paper document 1. On this document 1, there are data concerning the client and the delivery point. The rest of the contract - complaint procedure, general terms and conditions, as well as other files such as instructions for economical use of the electric appliances, advertisement materials of the reseller, and so on - is then loaded into the memory element 1 is signed by both parties and the employee rivets the memory element 3 onto the lower part of the document 1 by the pliers. The transcription 7 of the digital stamp of the file from the memory element

 $\underline{3}$, the serial number of the memory element $\underline{3}$, and the identification number of both rivets $\underline{15}$, are printed in the lower part of the document 1.

[0081] One exemplar of the carrier is given to the customer. It is possible to read the agreed terms as well as other documents in such a way that the contact interface <u>5</u> is inserted into the USB slot in the computer or tablet. The files can be of PDF, JPG, DOC and MP3 format. Reading is free but writing is password protected.

Example 17

5

10

15

20

25

[0082] In this example according to figures 29 and 30, the document $\underline{1}$ has a similar memory element $\underline{3}$ as in the abovementioned example. The memory element $\underline{3}$ is attached by two metal staples $\underline{13}$. These are stapled through the material of the flexible strip $\underline{6b}$ by means of common office stapler. The flexible material has characteristics which are rubber-like, or it contains a rubber, which makes it possible that the flexible strip $\underline{6b}$ is stapled through by the stapler without the need to use special tools. One staple $\underline{13}$ is covered by the adhesive strip $\underline{9}$, through which runs the stamp $\underline{10}$ and the signature.

Industrial applicability

[0083] Industrial applicability according to this invention is obvious. According to this invention it is possible to repeatedly and industrially produce and use the carrier of documents, mainly legal documents, and also to handle the documents in a new way, whereby the document is connected with the physical signature. The invention significantly lowers the paper consumption, saves archiving space and simplifies the reading of the document at any font size of choice. The invention also allows the visually impaired to listen to the document.

List of symbols

[0084]

30	1-	physical document 1a - first layer of the document 1b - second layer of the document	9-	adhesive strip 9a - first adhesive strip 9b - second adhesive strip
	2-	place for signature	10-	stamp
	3-	memory element	11-	repeatedly adhesive layer
	4-	bloc for storing of the document	12-	knot
35	5-	contact interface	13-	staple
	6-	connecting element	14-	seal
		6a - lace	15-	rivet
		6b - flexible strip	16-	opening
	7-	transcription of the digital stamp	17-	line of folding
40	8-	laminating	18-	adhesive layer
45	USB - RSA - SD -	Universal Serial Bus cipher with public key named by its aut Secure Digital	hors: Rives	t, Shamir, Adleman

Claims

50

- 1. A carrier of documents, mainly legal documents concerning parties in a contractual relationship, where a document includes texts and/or images, and where the document is intended for a connection with a signature of at least one signatory, whereby a place (2) is designed on the physical document (1) for the signature of at least one signatory, is characterized by the fact, that
 - the physical document (1) is inseparably connected with an electronic memory element (3), in which a bloc (4) for storage of the document in an electronic form is created,
 - the electronic form of the document is protected against an unauthorized change in the document after the physical document (1) is connected with the electronic memory element,
 - whereby the physical document (1), preferably a list of a paper with weight ranging from 50 to 250 g/m², is connected

with the electronic memory element (3) directly or by a connecting element (6).

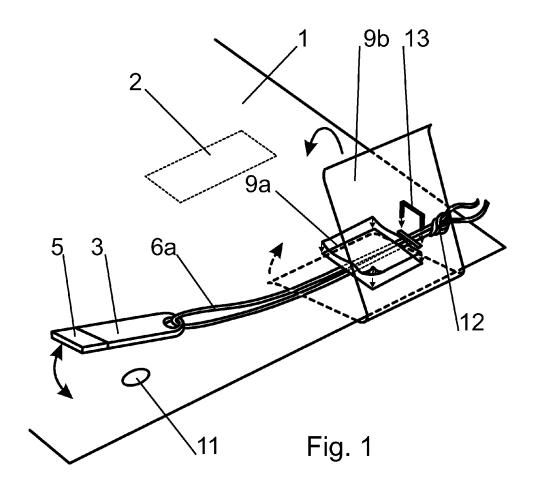
5

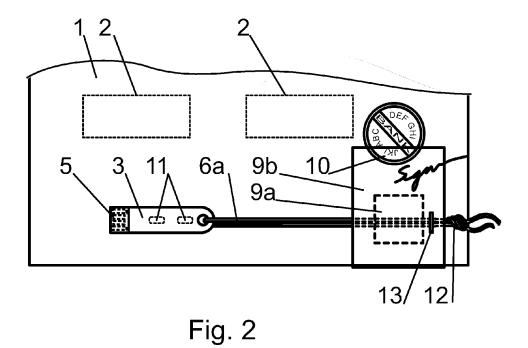
10

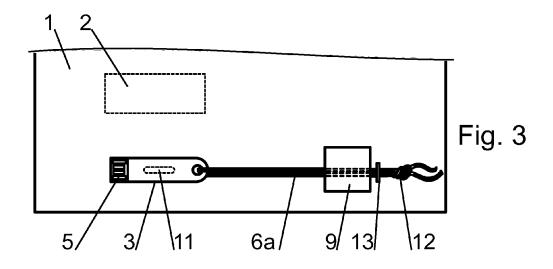
20

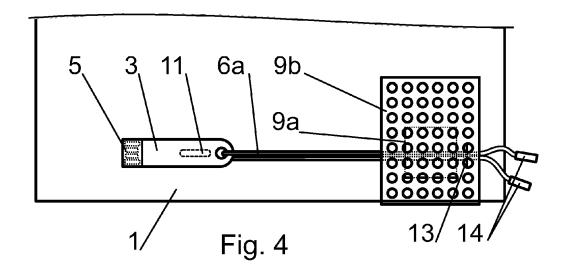
35

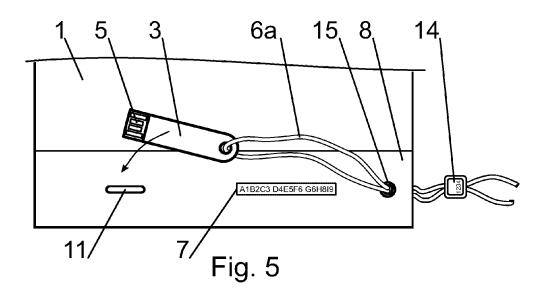
40

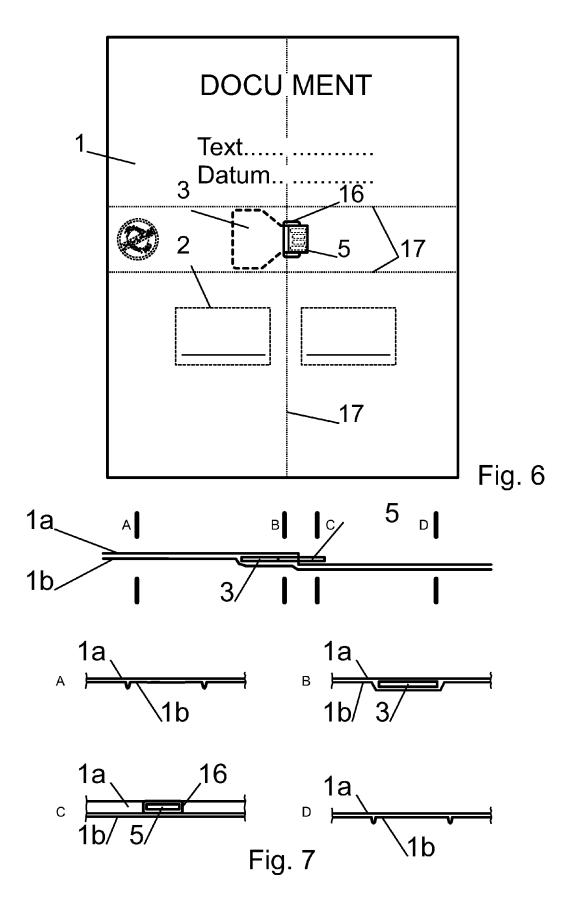

50

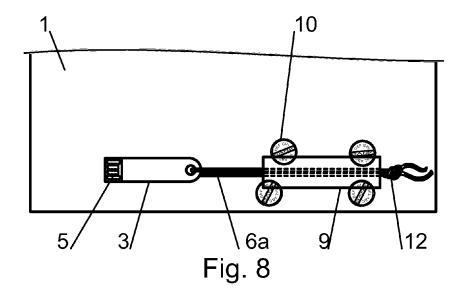

- 2. The carrier of documents, mainly legal documents, according to claim 1 is characterized by the fact, that the connecting element (6) is a lace (6a) or a flexible strip (6b), whereby the connecting element (6) is connected to the physical document (1) by a closed staple (13) and/or by a rivet (15) and/or by an adhesive.
- 3. The carrier of documents, mainly legal documents, according to claim 1 or 2 is characterized by the fact, that the physical document (1) contains a transcription (7) of a digital stamp stored on the document, preferably in form of a HASH stamp, whereby the transcription (7) is readable by a human eye.
- **4.** The carrier of documents, mainly legal documents, according to any of the claims 1 to 3 **is characterized by the fact**, that a bloc (4) includes at least one electronic signature of at least one signatory, preferably with a time stamp issued by a certificate authority.
- 5. The carrier of documents, mainly legal documents, according to any of the claims 1 to 4 is characterized by the fact, that the electronic memory element (3) or the connecting element (6) and/or the staple (13) and/or the rivet (15) used for a production of a connection is covered by an adhesive strip (9, 9a, 9b), which runs to a surface of the physical document (1); preferably the adhesive strip (9, 9a, 9b) is stamped (10) by a stamp through its edge and/or signed through its edge.
 - **6.** The carrier of documents, mainly legal documents, according to claim 5 **is characterized by the fact**, that at least one adhesive strip (9, 9a, 9b) has a security element, preferably in form of a destructive layer and/or in form of a hologram and/or in form of a perforation.
- 7. The carrier of documents, mainly legal documents, according to any of the claims 2 to 6 is characterized by the fact, that the lace (6a) runs through a folded edge of the physical document (1); the lace (6a) is held by the staple, preferably the folded edge of the physical document (1) is covered by the adhesive strip (9).
- 8. The carrier of documents, mainly legal documents, according to any of the claims 1 and 3 to 6 is characterized by
 the fact, that the memory element (3) is attached to the physical document (1) directly, preferably by a layer (18)
 of the adhesive and/or by the rivet (15) and/or by the staple (13).
 - 9. The carrier of documents, mainly legal documents, according to any of the claims 1 to 8 is characterized by the fact, that the memory element (3) is located in a corner of the physical document (1) under the angle 45°, a contact interface (5) is heading towards the corner of the physical document (1) and the corner of the physical document (1) is designed for folding through a line (17) so that the contact interface (5) becomes available for connection.
 - **10.** The carrier of documents, mainly legal documents, according to any of the claims 1, 3 to 6, 8 and 9 **is characterized by the fact**, that the memory element (3) is located between two layers (1a, 1b) of the physical document (1), whereby the contact interface (5) runs through an opening (16) to the surface of the physical document (1); preferably the layers (1a, 1b) have folds produced through the lines (17) and these folds produce a cavity for an insertion of the memory element (3).
- 11. The carrier of documents, mainly legal documents, according to any of the claims 1 to 10 is characterized by the fact, that the physical document (1) includes a transcription of an identification number of the memory element (3) and/or the connecting element (6) and/or the adhesive strip (9) and/or the rivet (15) and/or the staple (13), whereby this identification number is readable by the human eye.
 - **12.** The carrier of documents, mainly legal documents, according to any of the claims 1 to 11 **is characterized by the fact**, that the memory element (3) contains a sound file which corresponds to a reading of the document.
 - 13. A method of handling of a document, mainly a legal document, which expresses a contractual relationship between parties, where the document includes texts and/or images, and where the document is designed for a connection with a signature of a signatory, is characterized by the fact, that a part of the document with identification data of at least one signatory are printed on a physical document (1), a rest of the document, or the whole document, is stored in an electronic form in a memory element (3), where it is protected against subsequent modifications, whereby the memory element (3) is inseparably connected with the physical document (1), which is signed, or which

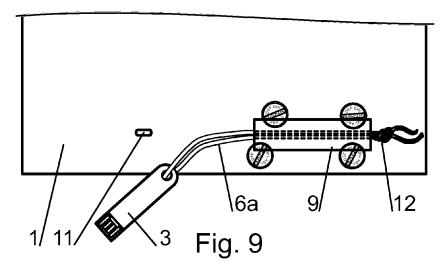

is to be signed, in such a way that a reading and/or viewing of the electronically stored document without damaging of the electronic memory element (3) with the physical document (1) is possible.

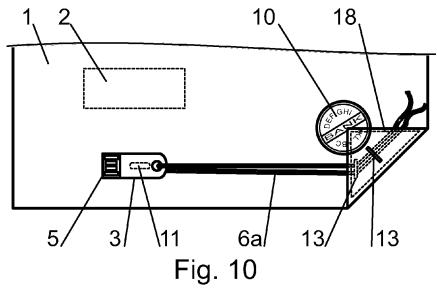

14. The method of handling of the document, mainly legal document, according to claim 13 is characterized by the fact, that the loaded document is signed by an electronic signature of at least one signatory and a transcription (7) of a digital stamp of the loaded part of the document is stated on the physical document (1) before connection of the physical document (1) with the memory element (3); preferably, identification data of attached elements, mainly the memory element (3) and/or a seal (14) and/or a rivet (15) are stated on the physical document (1) as well.


15. A set of elements for handling of the document according to the claim 13 or 14 is characterized by the fact, that it includes the electronic memory element with a bloc (4) for storing of the document, the connecting element (6) and at least one adhesive strip (9, 9a, 9b); preferably the set has the identification data of the individual elements of the set on its package in a machine-readable form.









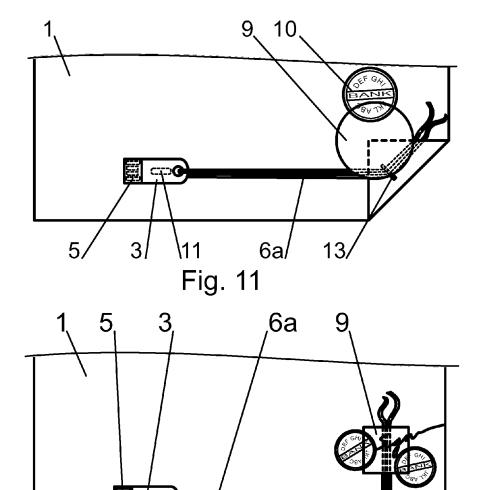
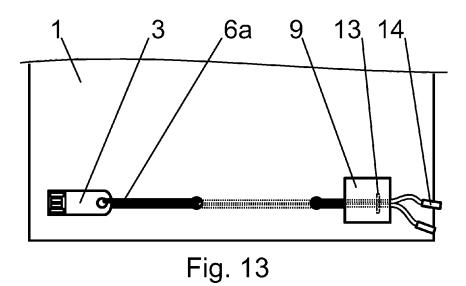



Fig. 12

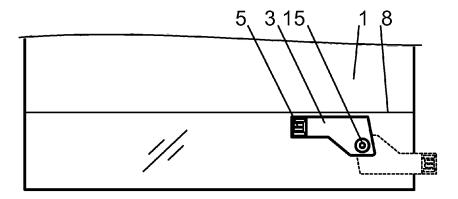


Fig. 14

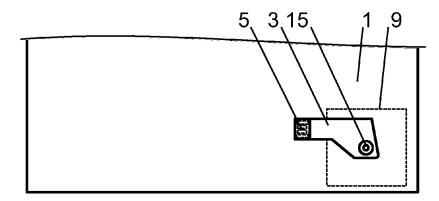
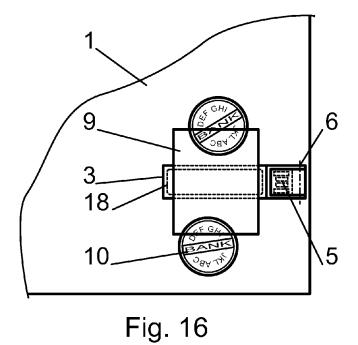



Fig. 15

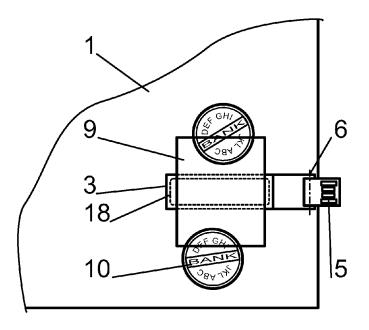
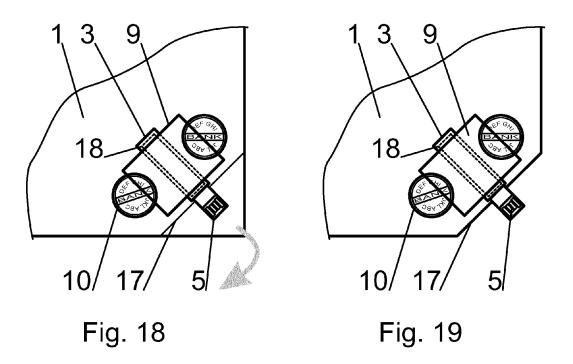
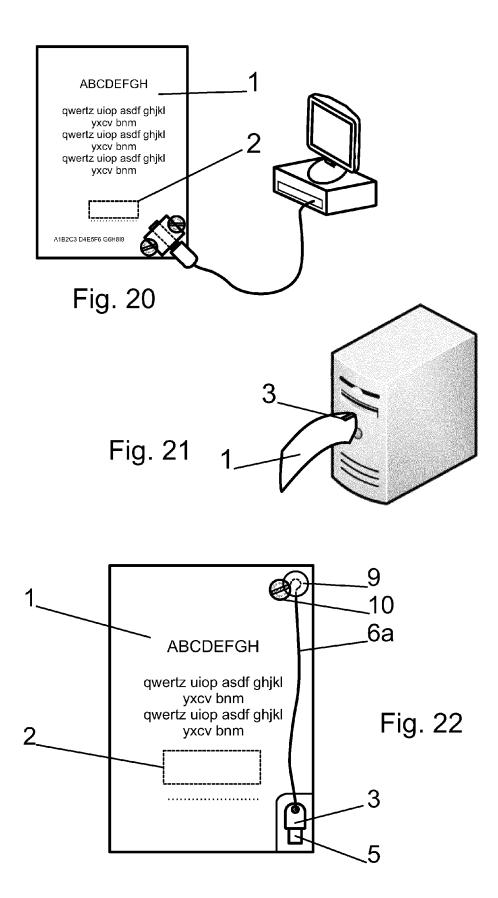




Fig. 17

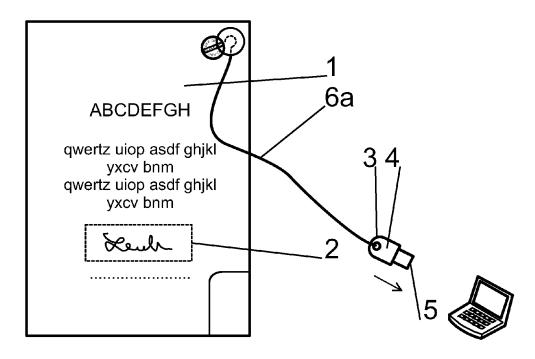
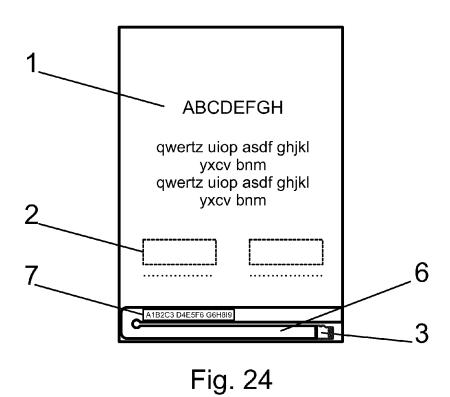
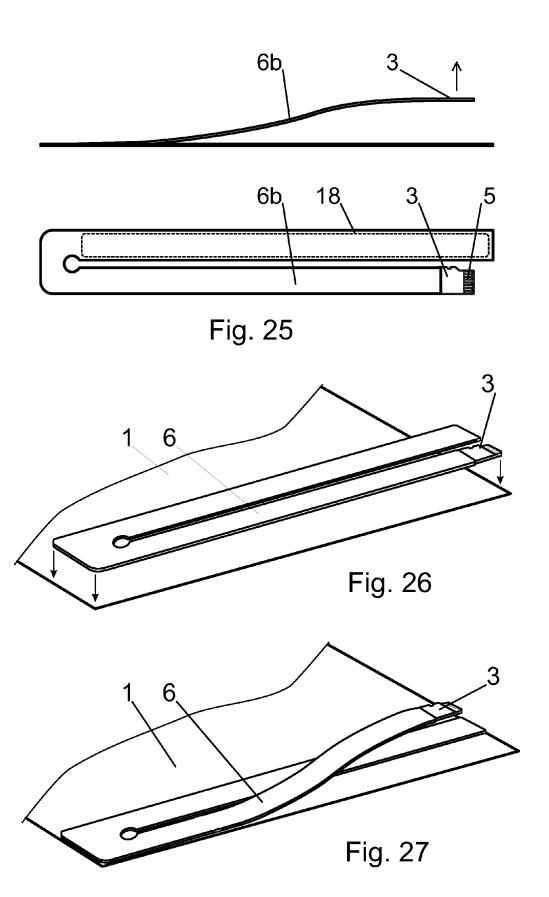
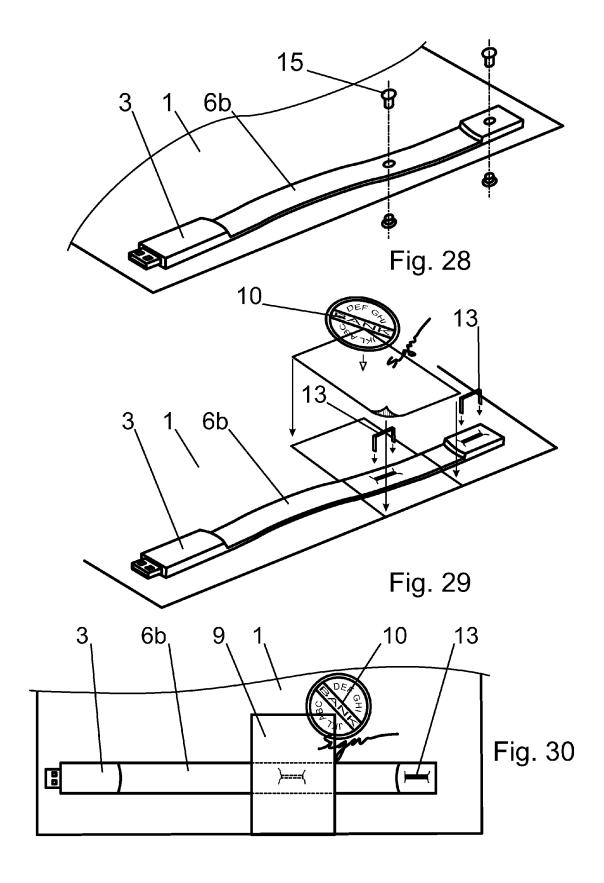
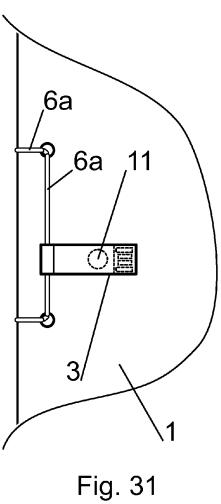






Fig. 23

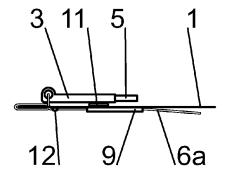


Fig. 33

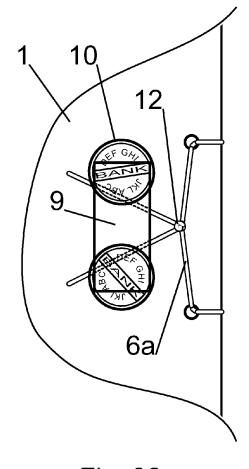


Fig. 32

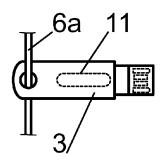


Fig. 34