
(19)	Europäisches Patentamt European Patent Office Office européen des brevets	(11) EP 2 960 351 A1
(12)	EUROPEAN PATE published in accordance	ENT APPLICATION ce with Art. 153(4) EPC
(43)	Date of publication: 30.12.2015 Bulletin 2015/53	(51) Int CI.: C22C 9/04 ^(2006.01)
(21)	Application number: 14730412.5	(86) International application number: PCT/CN2014/074938
(22)	Date of filing: 09.04.2014	(87) International publication number:WO 2015/100872 (09.07.2015 Gazette 2015/27)
(84)	Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States: BA ME	 ZheJiang IDC Fluid Control Co., Ltd Yuhuan Zhejiang 317600 (CN) (72) Inventor: LI, Jiade Yuhuan Zhejiang 317600 (CN)
(30)	Priority: 03.01.2014 CN 201410039995	(74) Representative: Berkkam, Ayfer
• •	Applicants: JiaXing IDC Plumbing & Heating Technology Ltd Economic Development Zone Haiyan Zhejiang 314304 (CN)	AZe Patent Marka Ltd. Becker-Gundahl-Strasse 49 81479 Munich (DE)

(54) LOW-LEAD BISMUTH-FREE SILICONE-FREE BRASS

Figure 1

(57) The invention relates to a low-lead bismuth-free silicon-free brass alloy with excellent cutting performance, comprising, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7 wt% alu-

minum, 0.05-0.5 wt% tin, one or more element selected from the group consisting of 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc.

EP 2 960 351 A1

Printed by Jouve, 75001 PARIS (FR)

Description

FIELD OF INVENTION

⁵ **[0001]** The invention relates to a low-lead brass alloy, and particularly to a brass alloy which is both free cutting and resistant to dezincification.

BACKGROUND OF INVENTION

- ¹⁰ **[0002]** Generally, the brass for processing is added with metallic zinc by a percentage of 38-42%. In order to make it easy to process brass, brass usually contains 2-3% lead to enhance strength and processability. Lead-containing brass has excellent moldability (making it easy to fabricate products of various shapes), cutting performance, and abrasion resistance, so that it is widely applied to mechanical part with various shapes, accounts for a large proportion in the copper industry, and is well known as one of the most important basic material in the world. However, during the production
- or use of lead-containing brass, lead tends to dissolve in the solid or gas state. Medical studies have shown that lead can bring about substantial damage to the human hematopoietic and nervous systems, especially children's kidneys and other organs. Many countries in the world take the pollution and hazard caused by lead very seriously. The National Sanitation Foundation (NSF) sets a tolerance of lead element of 0.25% or less. Organizations like the Restriction of Hazardous Substances Directive (RoHS) of European Union successively stipulate, restrict and prohibit the usage of
- ²⁰ brass with a high lead content. [0003] Furthermore, when the zinc content in brass exceeds 20 wt%, the corrosion phenomenon of dezincification is prone to occur. Especially when brass is exposed to the chloride rich environment, e.g. marine environment, the occurrence of corrosion phenomenon of dezincification may be accelerated. Dezincification may severely destroy the structure of brass alloy, so that the surface strength of brass products is reduced and the brass tube even perforates. This greatly
- ²⁵ reduces the lifetime of brass products and causes problems in application. [0004] Therefore, there is a need to provide an alloy formula for solving the above problems, which can replace the brass with a high lead content, is dezincification corrosion resistant, and further has excellent casting performance, forgeability, cutting performance, corrosion resistance and mechanical properties.

30 SU MMARY OF INVENTION

50

[0005] As known in the prior art, silicon may appear in the alloy metallographic structure as γ phase (sometimes as κ phase). In this case, silicon may replace the function of lead in the alloy to an extent, and improve cutting performance of the alloy. Cutting performance of the alloy increases with the content of silicon. However, silicon has a high melting

- ³⁵ point and a low specific gravity and is prone to be oxidized. As a result, after silicon monomer is added into the furnace in the alloy melting process, silicon floats on the surface of alloy. When the alloy is melt, silicon will be oxidized into silicon oxides or other oxides, making it difficult to produce silicon-containing copper alloy. In case silicon is added in the form of Cu-Si alloy, the economic cost is increased.
- [0006] Bismuth can be added to replace lead for forming cutting breakpoints in the alloy structure to improve cutting performance. However, thermal cracking is prone to occur during forging in case of a high bismuth content, which is not conducive for producing.

[0007] Thus, it is an object of the invention to provide a brass alloy which exhibits excellent performance like tensile strength, elongation rate, dezincification resistance and cutting performance, which is suitable for cutting processed products that require high strength and wear resistance, and which is suitable for constituent materials for forged products

and cast products. The brass alloy of the invention can securely replace the alloy copper with a high lead content, and can completely meet the demands about restrictions on lead-containing products in the development of human society.
 [0008] To achieve the above object, the inventors have proposed the following low-lead bismuth-free silicon-free brass alloys.

[0009] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 1) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, and a balance of zinc.

[0010] In the inventive product 1, the content of lead is reduced to 0.1-0.25 wt%, the content of copper is controlled at 60-65 wt%, and a small quantity of aluminum and tin is added to improve cutting performance of the alloy. The metallographic structure of the alloy mainly comprises α phase, β phase, γ phase, and soft and brittle intermetallic

⁵⁵ compounds which are distributed in grain boundaries or grains. Copper and zinc make main constituents of the brass alloy. **[0011]** Adding tin into the alloy can form γ phase, thus increasing cutting performance of the alloy. In addition, the addition of tin obviously increases strength, plasticity, and corrosion resistance of the alloy. However, since adding tin may increase cost, aluminum is added along with tin. As a result, not only cutting performance of the alloy can be

improved, but also strength, wear resistance, cast flowability, and high temperature oxidation resistance of the alloy can be increased. In order to make a better use of the above effects, the content of tin and aluminum is 0.05-0.5 wt% and 0.1-0.7 wt%, respectively.

[0012] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as

⁵ the inventive product 2) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, and further comprises 0.05-0.5 wt% manganese and/or 0.05-0.3 wt% phosphorus, and a balance of zinc.

[0013] As compared with the inventive product 1, the inventive product 2 is further added with 0.05-0.3 wt% phosphorus and/or 0.05-0.5 wt% manganese. Although phosphorus can't form γ phase, phosphorus has a function of facilitating a

- ¹⁰ good distribution of γ phase, thus increasing cutting performance of the alloy. Meanwhile, in case phosphorus is added, γ phase will disperse crystal grains of the primary α phase, thus increasing casting performance and corrosion resistance of the alloy. When the content of phosphorus is lower than 0.05 wt%, phosphorus can not play its role effectively. While when the content of phosphorus is higher than 0.3 wt%, casting performance and corrosion resistance will be affected adversely. Adding manganese helps to improve dezincification resistance and cast flowability. When the content of
- ¹⁵ manganese is lower than 0.05 wt%, manganese can not play its role effectively. While when the content of manganese is 0.5 wt%, manganese can play its role to the saturation value.
 [0014] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 3) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7
- wt% aluminum, 0.05-0.5 wt% tin, and further comprises one or more element selected from the group consisting of
 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron by the total weight of the brass alloy, and a balance of zinc.

[0015] As compared with the inventive product 2, the inventive product 3 is further added with trace boron, so as to better suppress alloy dezincification, increase the mechanical strength, and alter defect structure of cuprous oxide film on the surface of copper alloy, thus forming a cuprous oxide film which is more uniform, dense, and stain resistant. When

- ²⁵ the content of boron is lower than 0.001 wt%, boron can't play its role as mentioned above. While when the content of boron is higher than 0.01 wt%, the above performance can't be further increased. Thus, the optimum content of boron is 0.001-0.01 wt%. The content of phosphorus and manganese has the same interval as that of the inventive product 2, and this is based on the same reason as that of the inventive product 2.
- [0016] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 4) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, and further comprises 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc.

[0017] The effects of lead, aluminum, tin, phosphorus, manganese and boron elements in the brass alloy have been discussed above. By adding these elements into the brass alloy simultaneously, it is possible to further increase mechanical performance of alloy so as to meet needs for products with strict requirements.

[0018] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 5) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc, and further comprises unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.

35

55

[0019] As compared with the inventive product 4, the inventive product 5 further comprises some unavoidable impurities, i.e., mechanical impurities of nickel, chrome and/or iron.

[0020] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 6) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7 wt% aluminum, 0.05 0.5 wt% tip, 0.05 0.3 wt% phosphorus, 0.05 0.5 wt% mangapase and 0.001 0.01 wt% horon, and

⁴⁵ wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc, wherein a total content of aluminum, tin, phosphorus, manganese and boron is not larger than 2 wt% of the total weight of the brass alloy.

[0021] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 7) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7

⁵⁰ wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc, wherein a total content of aluminum, tin, phosphorus, manganese and boron is 0.2-2 wt% of the total weight of the brass alloy.

[0022] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 8) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, and two or more elements selected from the group consisting of, by the total weight of the brass alloy, 0.1-0.7 wt% aluminum,

0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc. [0023] Whether aluminum, tin, phosphorus, manganese and/or boron should be added depends on the requirement for cutting performance of various products. The content to be added has the same interval as that of the inventive

product 3, and this is based on the same reason as that of the inventive product 3.

[0024] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 9) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, and two or more elements selected from the group consisting of, by the total weight of the brass alloy, 0.1-0.7 wt% aluminum,

⁵ 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc, and further comprises unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.
 [0025] As compared with the inventive product 8 the inventive product 9 further comprises some unavoidable impur-

[0025] As compared with the inventive product 8, the inventive product 9 further comprises some unavoidable impurities, i.e., mechanical impurities of nickel, chrome and/or iron.

¹⁰ **[0026]** A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 10) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.05-0.5 wt% tin and 0.05-0.3 wt% phosphorus, and a balance of zinc.

[0027] The content of phosphorus in the inventive product 10 has the same interval and effect as that in the inventive product 2. Although phosphorus can't form γ phase, phosphorus has a function of facilitating a good distribution of γ

¹⁵ phase. Meanwhile, in case phosphorus is added, γ phase will disperse crystal grains of the primary α phase, thus increasing casting performance and corrosion resistance of the alloy. Thus, even if there is no aluminum, the needs for cutting performance can still be met in the usual production situation.

[0028] A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 11) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.05-0.5

20 wt% tin and 0.05-0.3 wt% phosphorus, and further comprises two or more elements selected from the group consisting of 0.1-0.7 wt% aluminum, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron by the total weight of the brass alloy, and a balance of zinc.

[0029] Whether aluminum, manganese and/or boron should be added depends on the requirement for cutting performance of various produc. The content to be added has the same interval as that of the inventive product 3, and this is based on the same reason as that of the inventive product 3.

- **[0030]** A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance (hereinafter referred to as the inventive product 12) comprises, by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.05-0.5 wt% tin and 0.05-0.3 wt% phosphorus, two or more elements selected from the group consisting of 0.1-0.7 wt% aluminum, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron by the total weight of the brass alloy, and further comprises
- ³⁰ unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron, and a balance of zinc.
 [0031] As compared with the inventive product 11, the inventive product 12 further comprises some unavoidable

impurities, i.e., mechanical impurities of nickel, chrome and/or iron.

- [0032] The invention further provides a method for fabricating brass alloy. By taking the inventive product 3 as an example, the method comprises the steps of:
 - 1) providing copper and manganese and heating to 1000-1050 °C to form a copper-manganese alloy melt;
 - 2) decreasing the temperature of the copper-manganese alloy melt to 950-1000 °C;
 - 3) covering the surface of copper-manganese alloy melt with a glass slagging agent;
- 4) adding zinc to the copper-manganese alloy melt to form a copper-manganese-zinc melt;
 5) deslagging the copper-manganese-zinc melt, and adding lead, aluminum, tin to the brass alloy melt to form a metal melt;

6) elevating the temperature of the metal melt to 1000-1050 °C, and adding boron copper alloy, phosphorus copper alloy to form a low-lead bismuth-free silicon-free brass alloy melt; and

⁴⁵ 7) discharging the brass alloy melt for casting to form the brass alloy.

25

50

[0033] Preferably, in the above fabricating method, a copper-manganese alloy is provided as the precursor of copper and manganese elements.

[0034] Preferably, in the above fabricating method, the melting furnace is a high-frequency melting furnace, and the high-frequency melting furnace is provided with a furnace lining of graphite crucible.

- [0035] The high-frequency melting furnace has the features of a large melting rate, a large temperature elevating rate, cleanness without pollution, and the ability of self-stirring (i.e., under the action of magnetic field lines) during melting.
 [0036] In the invention, the low-lead bismuth-free silicon-free brass alloy is formed by adding various constituents in respective ratio, and then subjecting them to a process in a high-frequency melting furnace. The resulting brass alloy
- ⁵⁵ has a mechanical processability which is comparable with that of the existing lead-containing brass, has an excellent tensile strength, elongation rate, and dezincification resistance, and has a low content of lead. As a result, the brass alloy is suitable for replacing the existing lead-containing brass alloy and for producing parts like faucet and sanitary ware.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] Fig. 1 is a flow chart illustrating a method for fabricating the inventive product 3.

5 DETAILED DESCRIPTION

35

40

45

55

[0038] The technical solutions of the invention will be described expressly by referring to embodiments thereof.[0039] It is not intended to limit the scope of the invention to the described exemplary embodiments. The modifications and alterations to features of the invention as described herein, as well as other applications of the concept of the

10 invention (which will occur to the skilled in the art, upon reading the present disclosure) still fall within the scope of the invention.

[0040] In the invention, the wording "or more", "or less" in the expression for describing values indicates that the expression comprises the relevant values.

[0041] The dezincification corrosion resistant performance measurement, as used herein, is performed according to

- AS-2345-2006 specification in the cast state, in which 12.8 g copper chloride is added into 1000C.C deionized water, and the object to be measured is placed in the resulting solution for 24 hr to measure a dezincification depth. ⊚ indicates a dezincification depth of less than 100 µm; indicates a dezincification depth between 100 µm and 200 µm; and X indicates a dezincification depth larger than 200 µm.
- [0042] The cutting performance measurement, as used herein, is performed in the cast state, in which the same cutting tool is adopted with the same cutting speed and feed amount. The cutting speed is 25 m/min (meter per minute), the feed amount is 0.2 mm/r (millimeter per number of cutting edge), the cutting depth is 0.5 mm, the measurement rod has a diameter of 20 mm, and C36000 alloyis taken as a reference. The relative cutting rate is derived by measuring the cutting resistance.

[0043] The relative cutting rate = cutting resistance of C36000 alloy/cutting resistance of the sample.

- **[0044]** (a) indicates a relative cutting rate larger than 85%; and \bigcirc indicates a relative cutting rate larger than 70%. **[0045]** Both the tensile strength measurement and the elongation rate measurement, as used herein, are performed in the cast state at room temperature as an elongation measurement. The elongation rate refers to a ratio between the total deformation of gauge section after elongation ΔL and the initial gauge length L of the sample in percentage: $\delta = \Delta L/L \times 100\%$. The reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.
- ³⁰ **[0046]** According to measurement, the proportions for constituents of C36000 alloyare listed as follow, in the unit of weight percentage (wt%):

Material	copper	zinc	bismuth	antimony	manganese	aluminum	tin	lead	iron
No.	(Cu)	(Zn)	(Bi)	(Sb)	(Mn)	(Al)	(Sn)	(Pb)	(Fe)
C36000 alloy	60.53	36.26	0	0	0	0	0.12	2.97	0.12

[0047] Fig. 1 is a flow chart illustrating a method for fabricating the inventive product 3, which comprises the steps of:

Step S100: providing copper and manganese. In this step, a copper-manganese alloy can be provided as the precursor of copper and manganese elements.

Step S102: heating the copper-manganese precursor alloy to 1000-1050 °C to form a copper-manganese alloy melt. In this step, the copper-manganese alloy can be added into the high-frequency melting furnace, and heated to melt in the melting furnace. The temperature can be elevated to 1000-1050 °C, and even up to 1100 °C, for 5-10 minutes, so that the copper-manganese alloy is melt into a copper-manganese alloy melt. With these actions, it is possible to prevent the melt copper manganese from absorbing a lot of external gases (due to a too high temperature), which

may otherwise result in cracking in the molded alloy. Step S104: decreasing the temperature of the copper-manganese alloy melt to 950-1000 °C. In this step, when the

⁵⁰ Step S104: decreasing the temperature of the copper-manganese alloy melt to 950-1000 °C. In this step, when the ⁵⁰ temperature in the melting furnace is elevated to 1000-1050 °C for a durationi of 5-10 minutes, the power supply of the high-frequency melting furnace is turned off, so that the temperature in the melting furnace is reduced to 950-1000 °C, while the copper-manganese alloy melt is maintained in the melt state.

Step S106: covering the surface of copper-manganese alloy melt with a glass slagging agent. In this step, the surface of copper-manganese alloy melt is covered with the glass slagging agent at 950-1000 °C. This step can effectively prevent the melt from contacting the air, and prevent zinc to be added in the next step from boiling and evaporating due to melting at a high temperature of 950-1000 °C.

Step S108: adding zinc to the copper-manganese alloy melt to form a copper-manganese-zinc melt. In this step,

zinc is added to the melting furnace, and is immersed into the copper-manganese alloy melt, so that zinc is sufficiently melt in the copper-manganese alloy melt to form a copper-manganese-zinc melt.

Step S110: deslagging the copper-manganese-zinc melt. In this step, the copper-manganese-zinc melt can be stirred and mixed under the action high-frequency induction, and then the slagging agent can be removed. Then, the copper-manganese-zinc melt is deslagged with a deslagging agent.

Step S112: adding lead, aluminum, and tin to the copper-manganese-zinc melt to form a metal melt. In this step, copper lead precursor alloy, copper aluminum precursor alloy, and copper tin precursor alloy can be added to the copper-manganese-zinc melt.

Step S114: elevating the temperature of the metal melt to 1000-1050 °C, and adding copper boron alloy and phosphorus copper alloy to form a low-lead bismuth-free silicon-free brass alloy melt.

Step S116: discharging the brass alloy melt for casting to form the brass alloy. In this step, the brass alloy melt is stirred evenly, the discharging temperature is controlled at 1000-1050 °C, and finally the brass alloy melt is discharged to casting a low-lead bismuth-free silicon-free brass alloy which exhibits good processability, dezincification resistance, and mechanical performance.

15

5

10

Embodiment 1

[0048]

20 respectively numbered as 1001-1005, each constituent being in the unit of weight percentage (wt%). Table 1-1

Table 1-1 lists inventive products 1 with 5 different constituents which are fabricated with the above process, which are

25

30

No.	copper (Cu)	zinc (Zn)	lead (Pb)	aluminum (Al)	tin (Sn)
1001	63.633	35.559	0.235	0.231	0.340
1002	64.365	34.183	0.250	0.700	0.500
1003	62.345	36.943	0.110	0.300	0.300
1004	65.000	34.424	0.100	0.424	0.050
1005	60.000	39.445	0.108	0.100	0.345

[0049] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0050] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

35

40	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
	1001	366	23	0	0
	1002	387	21	0	0
45	1003	325	27	0	0
	1004	387	25	0	0
	1005	295	35	0	0
50	C36000 alloy	394	9	Х	0

Embodiment 2

[0051] Table 2-1 lists inventive products 2 with 5 different constituents which are fabricated with the above process, 55 which are respectively numbered as 2001-2005, each constituent being in the unit of weight percentage (wt%).

No.	copper (Cu)	zinc (Zn)	lead (Pb)	aluminum (Al)	tin (Sn)	manganese (Mn)	phosphorus (P)
2001	60.000	39.137	0.144	0.312	0.055	0.050	0.300
2002	64.307	34.305	0.214	0.700	0.320		0.152
2003	62.221	37.467	0.250	0.521	0.089	0.500	0.050
2004	65.000	32.662	0.213	0.685	0.500	0.432	
2005	61.331	37.922	0.100	0.100	0.050	0.443	0.252

Table 2-1

10

5

[0052] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

15 [0053] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

20	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
20	2001	338	23	0	0
	2002	307	19	0	0
	2003	375	31	0	0
25	2004	381	29	0	0
	2005	308	17	0	0
00	C36000 alloy	394	9	×	0

30

Embodiment 3

35

[0054] Table 3-1 lists inventive products 3 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 3001-3008, each constituent being in the unit of weight percentage (wt%).

Table 3-1

No.	copper (Cu)	zinc (Zn)	lead (Pb)	aluminum (Al)	tin (Sn)	manganese (Mn)	phosphorus (P)	boron (B)
3001	62.400	36.395	0.220	0.542	0.152		0.288	0.001
3002	60.000	39.245	0.100	0.163	0.406	0.075		0.009
3003	64.221	34.422	0.122	0.344	0.500	0.332	0.050	0.007
3004	63.443	35.250	0.203	0.700	0.351	0.050		0.001
3005	63.766	34.967	0.200	0.698	0.081		0.286	
3006	64.250	35.061	0.152	0.100	0.130		0.300	0.005
3007	60.355	38.534	0.250	0.311	0.050	0.488		0.010
3008	65.000	34.110	0.100	0.211	0.077	0.500		
	3001 3002 3003 3004 3005 3006 3007	3001 62.400 3002 60.000 3003 64.221 3004 63.443 3005 63.766 3006 64.250 3007 60.355	3001 62.400 36.395 3002 60.000 39.245 3003 64.221 34.422 3004 63.443 35.250 3005 63.766 34.967 3006 64.250 35.061 3007 60.355 38.534	3001 62.400 36.395 0.220 3002 60.000 39.245 0.100 3003 64.221 34.422 0.122 3004 63.443 35.250 0.203 3005 63.766 34.967 0.200 3006 64.250 35.061 0.152 3007 60.355 38.534 0.250	3001 62.400 36.395 0.220 0.542 3002 60.000 39.245 0.100 0.163 3003 64.221 34.422 0.122 0.344 3004 63.443 35.250 0.203 0.700 3005 63.766 34.967 0.200 0.698 3006 64.250 35.061 0.152 0.100 3007 60.355 38.534 0.250 0.311	3001 62.400 36.395 0.220 0.542 0.152 3002 60.000 39.245 0.100 0.163 0.406 3003 64.221 34.422 0.122 0.344 0.500 3004 63.443 35.250 0.203 0.700 0.351 3005 63.766 34.967 0.200 0.698 0.081 3006 64.250 35.061 0.152 0.100 0.130 3007 60.355 38.534 0.250 0.311 0.050	3001 62.400 36.395 0.220 0.542 0.152 3002 60.000 39.245 0.100 0.163 0.406 0.075 3003 64.221 34.422 0.122 0.344 0.500 0.332 3004 63.443 35.250 0.203 0.700 0.351 0.050 3005 63.766 34.967 0.200 0.698 0.081 3006 64.250 35.061 0.152 0.100 0.130 3007 60.355 38.534 0.250 0.311 0.050 0.488	3001 62.400 36.395 0.220 0.542 0.152 0.288 3002 60.000 39.245 0.100 0.163 0.406 0.075 3003 64.221 34.422 0.122 0.344 0.500 0.332 0.050 3004 63.443 35.250 0.203 0.700 0.351 0.050 3005 63.766 34.967 0.200 0.698 0.081 0.286 3006 64.250 35.061 0.152 0.100 0.130 0.300 3007 60.355 38.534 0.250 0.311 0.050 0.488

[0055] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

55 [0056] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
5	3001	348	19	0	0
	3002	359	17	0	0
	3003	385	15	0	0
	3004	379	26	0	0
10	3005	389	18	0	0
	3006	392	27	0	0
	3007	311	39	0	0
15	3008	303	30	0	0
	C36000 alloy	394	9	X	0

Embodiment 4 20

[0057] Table 4-1 lists inventive products 4 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 4001-4008, each constituent being in the unit of weight percentage (wt%).

25	
20	

25 Table 4-1									
	No.	copper (Cu)	zinc (Zn)	lead (Pb)	aluminum (Al)	tin (Sn)	manganese (Mn)	phosphorus (P)	boron (B)
	4001	61.306	37.387	0.205	0.650	0.050	0.093	0.300	0.007
	4002	61.560	37.539	0.100	0.165	0.413	0.170	0.050	0.001
30	4003	63.750	35.015	0.193	0.371	0.500	0.057	0.107	0.005
	4004	62.105	36.704	0.211	0.502	0.333	0.050	0.083	0.010
	4005	65.000	33.232	0.202	0.700	0.085	0.487	0.286	0.006
35	4006	62.950	35.663	0.188	0.304	0.132	0.498	0.260	0.003
	4007	60.000	38.802	0.250	0.387	0.111	0.138	0.300	0.010
	4008	61.432	37.539	0.135	0.100	0.050	0.500	0.234	0.008

40 [0058] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy. [0059] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

45

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
4001	302	29	0	0
4002	319	19	0	0
4003	383	23	0	0
4004	344	26	0	0
4005	389	27	0	0
4006	332	37	0	0
4007	311	39	0	0

55

(continued)

~	
Э	

No.		TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
4008	8	303	20	0	0
C36 alloy		394	9	×	0

¹⁰ Embodiment 5

[0060] Table 5-1 lists inventive products 5 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 5001-5008, each constituent being in the unit of weight percentage (wt%).

20			
25			
30			
35			
40			
45			
50			
55			

	ĺ									
5		iron (Fe)		0.008	0.015	1	0.250	0.110	1	0.105
10		chrome (Cr)	0.065	0.150	0.097	1	0.085	0.073	0.034	0.008
10		nickel (Ni)	ł	0.010	0.007	0.104	ł	0.250	ł	0.062
15		boron (B)	0.002	0.001	0.010	0.007	0.005	0.001	0.006	0.008
20 25		phosphorus (P)	0.105	0.050	0.211	0.300	0.240	0.177	0.285	0.102
	5-1	tin (Sn)	0.050	0.063	0.172	0.500	0.433	0.408	0.383	0.217
30	Table 5-1	alumin um (Al)	0.155	0.267	0.100	0.156	0.545	0.700	0.398	0.400
35 40		manganese (Mn)	0.067	0.056	0.500	0.324	0.211	0.085	0.050	0.075
45		lead (Pb)	0.100	0.187	0.250	0.147	0.195	0.179	0.188	0.158
50		zinc (Zn)	37.673	36.864	33.638	36.191	34.003	34.939	34.926	38.865
55		copper (Cu)	61.783	62.344	65.000	62.271	64.033	63.078	63.730	60.000
		No.	5001	5002	5003	5004	5005	5006	5007	5008

[0061] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0062] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
)	5001	312	19	0	0
	5002	319	21	0	0
	5003	390	30	0	0
	5004	334	17	0	0
5	5005	389	18	0	0
	5006	337	25	0	0
	5007	321	19	0	0
)	5008	301	21	0	0
	C36000 alloy	394	9	×	0

25 Embodiment 6

5

10

15

20

[0063] Table 6-1 lists inventive products 6 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 6001-6008, each constituent being in the unit of weight percentage (wt%).

30					Table 6-	1			
	No.	copper (Cu)	zinc (Zn)	lead (Pb)	manganese (Mn)	aluminum (Al)	tin (Sn)	phosphorus (P)	boron (B)
	6001	62.311	37.687	0.103	0.105	0.100	0.050	0.211	0.009
35	6002	6002 60.000 39.824		0.117	0.057	0.322	0.121	0.300	0.010
35	6003	62.052	37.195	0.201	0.050	0.203	0.234	0.055	0.008
	6004	62.261	36.613	0.250	0.213	0.104	0.500	0.050	0.007
	6005	64.075	34.316	0.207	0.304	0.556	0.432	0.103	0.005
40	6006	63.011	35.151	0.184	0.500	0.607	0.331	0.213	0.001
	6007	65.000	33.371	0.197	0.443	0.700	0.087	0.198	0.002
	6008	60.079	39.028	0.100	0.116	0.433	0.102	0.137	0.003

⁴⁵ [0064] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy. [0065] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
6001	344	30	0	0
6002	313	31	0	0
6003	340	27	0	0

(continued)

No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICATION LAYER	RELATIVE CUTTING RATE
6004	399	17	0	0
6005	351	21	0	0
6006	339	23	0	0
6007	355	19	0	0
6008	307	21	0	0
C36000 alloy	394	9	×	0

5

10

15

Embodiment 7

[0066] Table 7-1 lists inventive products 7 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 7001-7008, each constituent being in the unit of weight percentage (wt%).

20

20									
					Table 7-	1			
	No.	copper (Cu)	zinc (Zn)	lead (Pb)	manganes e (Mn)	aluminum (Al)	tin (Sn)	phosphoru s (P)	boron (B)
	7001	60.231	38.981	0.100	0.341	0.112	0.103	0.122	0.008
25	7002	61.054	38.264	0.196	0.117	0.231	0.076	0.050	0.010
	7003	62.013	36.904	0.133	0.500	0.100	0.050	0.292	0.006
	7004	62.613	35.805	0.100	0.493	0.540	0.143	0.300	0.004
30	7005	65.000	33.525	0.211	0.050	0.631	0.500	0.076	0.005
	7006	63.011	35.287	0.250	0.210	0.700	0.410	0.123	0.007
	7007	60.000	38.747	0.201	0.077	0.487	0.377	0.100	0.009
	7008	61.123	37.779	0.197	0.192	0.391	0.218	0.097	0.001
		•	•	•	•	-		-	

35

[0067] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0068] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification 40 corrosion resistant performance are listed as follow:

	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICA TION LAYER	RELATIVE CUTTING RATE
45	7001	327	23	0	0
	7002	332	17	0	0
	7003	341	18	0	0
50	7004	354	31	0	0
50	7005	397	37	0	0
	7006	393	39	0	0
	7007	300	28	0	0
55	7008	301	27	0	0
	C36000 alloy	394	9	×	0

Embodiment 8

[0069] Table 8-1 lists inventive products 8 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 8001-8008, each constituent being in the unit of weight percentage (wt%).

Table 8-1

5

			-						
	No.	copper (Cu)	zinc (Zn)	lead (Pb)	manganes e (Mn)	aluminum (AI)	tin (Sn)	phosphoru s(P)	boron (B)
	8001	60.000	39.615	0.105	0.052	0.123		0.102	0.001
10	8002	62.031	37.395	0.197	0.121	0.100	0.102	0.050	
	8003	62.178	36.995	0.250	0.455		0.112		0.008
	8004	65.000	33.839	0.100	0.500	0.341	0.050	0.158	0.010
15	8005	64.175	35.328	0.211				0.277	0.007
	8006	64.097	34.142	0.233	0.314	0.407	0.500	0.300	0.005
	8007	63.050	35.487	0.102	0.218	0.518	0.411	0.212	
	8008	61.071	38.101	0.112	0050	0.700			0.009

20

[0070] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

²⁵ **[0071]** Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICA TION LAYER	RELATIVE CUTTING RATE
30	8001	302	23	0	0
	8002	311	27	0	0
	8003	345	32	0	0
35	8004	342	24	0	0
	8005	367	37	0	0
	8006	366	29	0	0
	8007	339	31	0	0
40	8008	307	27	0	0
	C36000 alloy	394	9	×	0

45 Embodiment 9

[0072] Table 9-1 lists inventive products 9 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 9001-9008, each constituent being in the unit of weight percentage (wt%).

50

		(Fe)	0.250	0.099	0.074		0.104	0.117	1	1
5) iron (Fe)	0.2	0.0	0.0	i	0.1	0.1	i	1
10		chrome (Cr)	!	0.113		0.150	0.078	0.043	!	0.108
		nickel (Ni)	ł	0.009	0.215	0.250	0.125	0.123	0.143	ł
15		boron (B)		0.010	0.007	0.008	-	0.001	0.004	
20 25		phosph orus (P)	0.073	0.050		0.231	0.300	0.289	0.250	-
	9-1	tin (Sn)	0.098	0.050		0.134	-	0.500		0.430
30	Table 9-1	alumin um (AI)	1	0.500		0.700	0.100	0.214	0.566	0.452
35 40		(Mn) ese (Mn)	I	0.102	0.050	0.321	0.076	0.500	I	1
45		lead (Pb)	0.112	0.109	0.100	0.207	0.198	0.222	0.250	0.234
50		zinc (Zn)	38.409	36.933	39.554	36.743	34.019	34.935	35.447	37.906
55		copper (Cu) zinc (Zn) lead (Pb)	61.058	62.025	60.000	61.256	65.000	63.056	63.340	60.870
		No.	9001	9002	9003	9004	9005	9006	9007	9008

[0073] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0074] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICA TION LAYER	RELATIVE CUTTING RATE
)	9001	317	27	0	0
	9002	324	19	0	0
	9003	303	17	0	0
	9004	378	36	0	0
5	9005	389	17	0	0
	9006	332	37	0	0
	9007	391	39	0	0
)	9008	303	21	0	0
	C36000 alloy	394	9	×	0

25 Embodiment 10

[0075] Table 10-1 lists inventive products 1 with 5 different constituents which are fabricated with the above process0, which are respectively numbered as 10001-10005, each constituent being in the unit of weight percentage (wt%).

Table 10-1							
No.	copper (Cu)	zinc (Zn)	lead (Pb)	tin (Sn)	phosphorus (P)		
10001	60.000	39.740	0.113	0.089	0.056		
10002	62.345	37.272	0.100	0.050	0.231		
10003	65.000	33.964	0.234	0.500	0.300		
10004	61.983	37.366	0.247	0.324	0.078		
10005	64.037	35.552	0.250	0.109	0.050		

40

[0076] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0077] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICA TION LAYER	RELATIVE CUTTING RATE
50	10001	300	29	0	0
	10002	337	19	0	0
	10003	389	33	0	0
	10004	364	26	0	0
55	10005	379	27	0	0
	C36000 alloy	394	9	×	0

10

15

20

5

35

Embodiment 11

[0078] Table 11-1 lists inventive products 11 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 11001-11008, each constituent being in the unit of weight percentage (wt%).

5

10

					Table 11-	1			
	No.	copper (Cu)	zinc (Zn)	lead (Pb)	manganes e (Mn)	aluminum (Al)	tin (Sn)	phosphoru s(P)	boron (B)
	11001	63.521	36.133	0.119	0.098		0.067	0.050	0.010
0	11002	62.143	37.196	0.234	0.050	0.198	0.054	0.123	
	11003	60.000	39.228	0.235	0.178	0.100	0.103	0.150	0.006
	11004	63.015	35.844	0.200		0.655	0.050	0.231	0.003
5	11005	65.000	33.061	0.250	0.500	0.543	0.343	0.300	0.001
	11006	61.197	37.214	0.179	0.377	0.433	0.500	0.098	
	11007	61.132	37.588	0.150	0.236	0.231	0.476	0.178	0.007
	11008	62.273	36.599	0.100		0.700	0.214	0.104	0.008

20

15

[0079] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

²⁵ **[0080]** Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICA TION LAYER	RELATIVE CUTTING RATE
30	11001	361	23	0	0
	11002	354	33	0	0
	11003	317	39	0	0
35	11004	336	36	0	0
	11005	401	41	0	0
	11006	321	26	0	0
	11007	300	23	0	0
40	11008	341	21	0	0
	C36000 alloy	394	9	×	0

⁴⁵ Embodiment 12

[0081] Table 12-1 lists inventive products 12 with 8 different constituents which are fabricated with the above process, which are respectively numbered as 12001-12008, each constituent being in the unit of weight percentage (wt%).

50

	1									
-		iron (Fe)	£00 [.] 0			0.103	0.250	0.113		0.001
5		chrome (Cr)			0.150	0.098	1	0.109	0.007	0.004
10		nickel (Ni)		0.122	1	0.250	0.207	0.198	0.113	1
15		boron (B)	0.005	0.001	0.010	0.007	1	0.006	0.009	1
20 25		phosph orus (P)	0.050	0.076	0.136	0.220	0.300	0.276	0.087	0.059
20	-1	tin (Sn)	0.088	0.103	0.231	0.455	0.500	0.341	0.122	0.050
30	Table 2-1	alumin um (AI)		0.102	0.234	-	0.452	0.100	0.673	0.700
35 40		mangan ese (Mn)	0.098	0.050	1	0.232	0.341	0.500		0.476
45			0.250	0.123	0.108	0.197	0.100	0.102	0.113	0.150
50		zinc (Zn)	38.358	36.989	39.131	38.272	37.850	36.129	33.876	37.130
50		copper (Cu) zinc (Zn) lead (Pb)	61.148	62.434	60.000	60.166	60.000	62.126	65.000	61.430
55		No.	12001	12002	12003	12004	12005	12006	12007	12008

[0082] Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy.

[0083] Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow:

	No.	TENSILE STRENGTH (N/ mm ²)	ELONGATION RATE (%)	DEZINCIFICA TION LAYER	RELATIVE CUTTING RATE
10	12001	312	29	0	0
	12002	317	19	0	0
	12003	303	13	0	0
	12004	314	16	0	0
15	12005	309	17	0	0
	12006	332	28	0	0
	12007	391	29	0	0
20	12008	311	21	0	0
	C36000 alloy	394	9	×	0

[0084] As can be seen, the lead-free bismuth-free silicon-free brass alloy of the invention can be formed by adding various constituents in respective ratio, and then subjecting them to a process in a high-frequency melting furnace. The resulting brass alloy has a mechanical processability which is comparable with that of the existing lead-containing brass, has an excellent tensile strength, elongation rate, and dezincification resistance, and has a low content of lead. As a result, the brass alloy is suitable for replacing the existing lead-containing brass alloy and for producing parts like faucet and sanitary ware.

[0085] Although the invention has been described with respect to embodiments thereof, these embodiments do not intend to limit the invention. The ordinary skilled in the art can made modifications and changes to the invention without departing from the spirit and scope of the invention. Thus, the protection of the invention is defined by the appended claims.

35 Claims

40

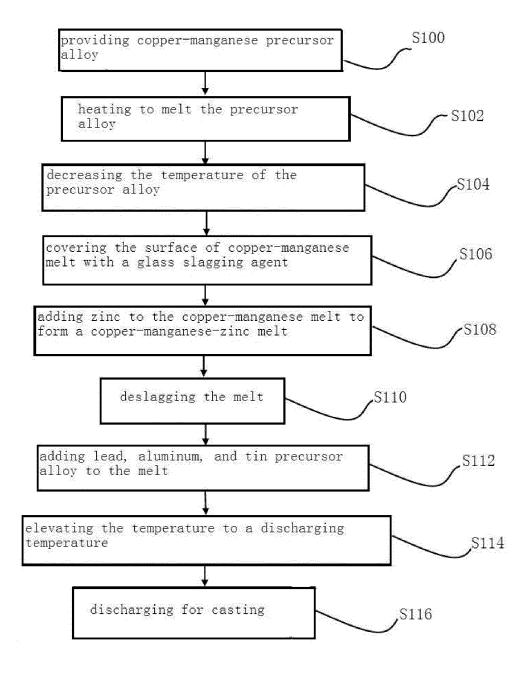
50

5

- 1. A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance, **characterized by** comprising: by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, 0.1-0.7 wt% aluminum and 0.05-0.5 wt% tin, and a balance of zinc.
- 2. The brass alloy of claim 1, characterized by further comprising 0.05-0.5 wt% manganese and/or 0.05-0.3 wt% phosphorus by the total weight of the brass alloy.
- **3.** The brass alloy of claim 1, **characterized by** further comprising one or more element selected from the group consisting of 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron by the total weight of the brass alloy.
 - 4. The brass alloy of claim 1, **characterized by** further comprising 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron by the total weight of the brass alloy.
 - 5. The brass alloy of claim 4, **characterized by** further comprising: unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.
- **6.** The brass alloy of claim 4, **characterized in that** a total content of manganese, aluminum, tin, phosphorus and boron is not larger than 2 wt% of the total weight of the brass alloy.
 - 7. The brass alloy of claim 6, characterized in that the total content of manganese, aluminum, tin, phosphorus and

boron is not less than 0.1 wt% of the total weight of the brass alloy.

- 8. A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance, **characterized by** comprising: by the total weight of the brass alloy, 60-65 wt% copper, 0.1-0.25 wt% lead, two or more elements selected from the group consisting of 0.1-0.7 wt% aluminum, 0.05-0.5 wt% tin, 0.05-0.3 wt% phosphorus, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron, and a balance of zinc.
- 9. The brass alloy of claim 8, characterized by further comprising: unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.


10

5

- **10.** A low-lead bismuth-free silicon-free brass alloy with excellent cutting performance, **characterized by** comprising: 60-65 wt% copper, 0.1-0.25 wt% lead, 0.05-0.5 wt% tin and 0.05-0.3 wt% phosphorus by the total weight of the brass alloy, and a balance of zinc.
- 15 11. The brass alloy of claim 10, characterized by further comprising two or more elements selected from the group consisting of 0.1-0.7 wt% aluminum, 0.05-0.5 wt% manganese and 0.001-0.01 wt% boron by the total weight of the brass alloy.
- 12. The brass alloy of claim 11, characterized by further comprising: unavoidable impurities which comprise, by the total weight of the brass alloy, 0.25 wt% or less nickel, 0.15 wt% or less chrome and/or 0.25 wt% or less iron.

25			
30			
35			
40			
45			
50			

Figure 1

	INTERNATIONAL SEARCH REP	ORT	International app PCT/0	lication No. C N2014/074938
A. CLAS	SIFICATION OF SUBJECT MATTER			
According t	C22C 9/04 o International Patent Classification (IPC) or to both n	4 (2006.01) i ational classification an	d IPC	
B. FIELI	DS SEARCHED			
Minimum d	ocumentation searched (classification system followed	by classification symbol	ols)	
	IPC: C	C22C 9/-		
Documenta	tion searched other than minimum documentation to th	e extent that such docur	ments are included	in the fields searched
Electronic d	lata base consulted during the international search (nan	ne of data base and, whe	ere practicable, sea	rch terms used)
CNPAT, CN	JKI WPI, EPODOC: copper alloy, copper base alloy,	Al, Sn, P, Pb, B, lead, a	aluminium, copper,	aluminum, tin, phospho
phosphorou	is, brass, boron			
C. DOCL	IMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the releva	ant passages	Relevant to claim No.
Y	CN 1461815 A (SAN-ETSU METALS CO., LTD.), 1 and 9	17 December 2003 (17	.12.2003), claims	1-12
Y	CN 1557981 A (NINGBO POWERWAY GROUP C (29.12.2004), description, page 3, paragraphs 1-3, ar	1-12		
А	CN 101440445 A (XIAMEN LOTA INTERNATIO		ay 2009	1-12
А	(27.05.2009), abstract US 5137685 A (OLIN CORP.), 11 August 1992 (11.	08.1992), abstract		1-12
А	JP 2000239765 A (JOETSU MATERIAL KK), 05 S		2000), abstract	1-12
Furth	er documents are listed in the continuation of Box C.	See patent far	mily annex.	
"A" docu	cial categories of cited documents: ment defining the general state of the art which is not dered to be of particular relevance	or priority date	and not in conflict	international filing date with the application but or theory underlying the
intern "L" docur	r application or patent but published on or after the ational filing date nent which may throw doubts on priority claim(s) or n is cited to establish the publication date of another	cannot be consid an inventive ste "Y" document of p	lered novel or cannot ep when the docum articular relevance	; the claimed invention
 Which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means 		document is co	mbined with one or h combination beir	a inventive step when th r more other such ng obvious to a person
	nent published prior to the international filing date ter than the priority date claimed		nber of the same pa	
Date of the	actual completion of the international search	Date of mailing of the		-
Name and r	10 September 2014 (10.09.2014) nailing address of the ISA/CN:		eptember 2014 (30	
	ectual Property Office of the P. R. China	Authorized officer		
No. 6, Xitu	icheng Road, Jimenqiao istrict, Beijing 100088, China	Telephone No.: (86-1	WANG, Jing	, ,

Form PCT/ISA/210 (second sheet) (July 2009)

International application No.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Patent Documents referred			
in the Report	Publication Date	Patent Family	Publication Date
CN 1461815 A	17 December 2003	None	
CN 1557981 A	29 December 2004	US 7628872 B2	08 December 200
		CN 1291051 C	20 December 200
		JP 2007517981 A	05 July 2007
		DE 112004002639 T5	23 November 20
		US 2006289094 A1	28 December 200
		WO 2005071123 A1	04 August 2005
CN 101440445 A	27 May 2009	PT 2208802 E	10 January 2012
		US 2010158748 A1	24 June 2010
		CN 101440445 B	07 July 2010
		AT 538223 T	15 January 2012
		ES 2379573 T3	27 April 2012
		PL 2208802 T3	31 July 2012
		US 7776163 B2	17 August 2010
US 5137685 A	11 August 1992	US 5137685 B1	26 September 19
		JP 3498956 B2	23 February 2004
		EP 0573588 A1	15 December 19
		MX 9200766 A	30 September 19
		BR 9205706 A	17 May 1994
		EP 0573588 A4	15 June 1994
		CA 2103897 A1	02 September 19
		AU 1560392 A	06 October 1992
		JP H06505309 A	16 June 1994
		WO 9215718 A1	17 September 19
JP 2000239765 A	05 September 2000	None	-
	·		