CROSS-REFERENCE TO RELATED APPLICATIONS
FIELD OF THE INVENTION
[0002] The present invention relates to an improved molded polyurethane screen.
BACKGROUND
[0003] Molded polyurethane screens having reinforcement therein are known in the art. However,
in the past the dividing strips between the openings were relatively large, thereby
causing the open area of the screen to be an undesirably low percentage of its surface,
thereby in turn causing the screen to be relatively inefficient.
[0004] The present invention is an improvement over
U.S. Patent Nos. 4,819,809 and
4,857,176. The present invention provides improved screens with relatively high percentage
open screening areas and high efficiencies.
[0005] US2004/211707 relates to an undulating molded plastic vibratory screen for a vibratory screening
machine, and discloses a vibratory screen as per the preamble of claim 1.
[0006] US4857176 relates to a molded polyurethane screen.
SUMMARY
[0007] In accordance with the present invention, there is provided a vibratory screen as
set out in claim 1 and a method of making a vibratory screen as set out in claim 12.
Example embodiments of the present invention are described in more detail below with
reference to the appended Figures.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008]
FIG. 1 is a fragmentary plan view of a vibratory screen according to an exemplary
embodiment of the present invention;
FIG. 1A is a top isometric view of the screen shown in FIG 1;
FIG. 1B is a bottom isometric view of the screen shown in FIG 1;
FIG. 2 is a fragmentary cross sectional view taken substantially along line 2--2 of
FIG. 1;
FIG. 3 is a fragmentary cross sectional view taken substantially along line 3--3 of
FIG. 1;
FIG. 3A is an enlarged fragmentary cross sectional view of a portion of the screen
shown in FIG. 3;
FIG. 4 is a plan view of a portion of the screen shown in FIG. 1;
FIG. 4A is an enlarged plan view of a portion of the screen shown in FIG. 4.
FIG. 5 is a fragmentary cross sectional view taken substantially along line 5--5 of
FIG. 1;
FIG. 5A is an enlarged fragmentary cross sectional view of a portion of the screen
shown in FIG. 5;
FIG. 6 is an enlarged fragmentary cross sectional view similar to the view taken substantially
along line 5--5 of FIG. 5, but showing only a cross section configuration of a modified
shape of first members having reinforcement members;
FIG. 7 is a view similar to FIG. 6 but showing first members without reinforcement
members;
FIG. 8 is a fragmentary cross sectional view showing the manner in which the improved
screen of FIG. 1 is mounted in a vibratory screening machine;
FIG. 9 is an enlarged isometric view of a portion of a vibratory screen according
to an exemplary embodiment of the present invention having reinforcement members integral
with first and second members forming screen openings;
FIG. 10A is a top isometric view of a vibratory screen according to an exemplary embodiment
of the present invention;
FIG. 10B is a bottom isometric view of the screen shown in FIG. 10A;
FIG. 11A is a top isometric view of view of a vibratory screen according to an exemplary
embodiment of the present invention;
FIG. 11B is a bottom isometric view of the screen shown in FIG. 11A;
FIG. 12 is a top isometric view of a vibratory screen with a portion of the screen
removed showing reinforcement rods according to an exemplary embodiment of the present
invention;
FIG. 12A is an enlarged top isometric view of a portion of the screen shown in FIG.
12.
FIG. 13 is an isometric view of a portion of a vibratory screening machine having
a vibratory screen installed thereon according to an exemplary embodiment of the present
invention; and
FIG. 14 is an isometric view of a portion of a vibratory screening machine having
a vibratory screen installed thereon according to an exemplary embodiment of the present
invention.
DETAILED DESCRIPTION
[0009] Like reference characters denote like parts in the several Figures.
[0010] According to an exemplary embodiment of the present invention, a vibratory screen
10 includes a body 12 of molded polyurethane having unperforated side edge portions
14, 16. Side edge portions 14, 16 may each have an upward U-shape and may each include
a cast-in structural member, such as angle 15 shown in FIG. 2. Side edge portions
14, 16 may also be formed without cast-in structural members and/or may include other
structural members. Side edge portions 14, 16 may be formed in a U-shape or any other
suitable shape for attachment to a vibratory screening machine. In an exemplary embodiment,
side edge portions 14, 16 may include a formed member, e.g., a metal member that is
bent to a desired shape, e.g., a U-shape. The formed member may be attached to the
polyurethane body by heating, pressing, mechanical, chemical, molding and/or any other
suitable method/arrangement. Referring back to the figures, as shown in FIGS. 11A
to 11B, angle 15 may form an upward U-shape. Angle 15 may extend the entire length
of side edge portions 14, 16. Side edge portions 14, 16 may be configured for mounting
vibratory screen 10 in a vibratory screening machine, as is well known. Body 12 also
includes a lower edge portion 18 and an upper edge portion 20 which, in combination
with side edge portions 14, 16, define an outer border of the screen 10. In certain
embodiments, angle 15 may be included in upper edge portion 20 and lower edge portion
18. See, e.g., FIGS. 10A to 10B. In such embodiments, angle 15 may extend the entire
length of upper edge portion 20 and lower edge portion 18. In example embodiments,
upper edge portion 20 and lower edge portion 18 may be configured for mounting on
a vibratory screen 1010 designed for mounting screens front to back. See, e.g., FIG.
13. Body 12 further includes an upper surface 22 and a lower surface 24 and includes
first members 101 and second members 102 forming screen openings 26. Body 12 further
includes third members 203 and fourth members 204 and may further include fifth members
305 and sixth members 306. Body 12 may include various configurations of third members
203, fourth members 204, fifth members 305 and/or sixth members 306. The third members
203, fourth members 204, fifth members 305 and/or sixth members 306 may or may not
include reinforcement members 50 and are generally configured to provide support to
screen openings 26 formed by first and second members 101, 102. Body 12 may include
first members 101, second members 102,third members 203 and fourth members 204 without
fifth members 305 and/or sixth members 306. The first and/or second members 101, 102
are configured to include reinforcement members 50. Reinforcement rods 1050 are incorporated
into at least fourth member 204 and may be incorporated into other members running
parallel to the edge portions of the screen having the vibratory machine attachment
arrangements (e.g., the edges having the U-shaped structural members discussed herein).
See, e.g., FIGS. 12 and 12A. Reinforcement rods 1050 provide stability to screen 10
by preventing the side edge portions, e.g., side edge portions 14, 16 shown in FIGS.
10A, 10B, 11A, 11B, 12 and 12A, from deforming and/or hourglassing. Reinforcement
rods do not run perpendicular to the edge portions of the screen having the vibratory
machine attachment arrangements as they are substantially rigid, provided for structural
support and would generally restrict significant movement or deflection of the screen
assembly when a force is applied to the edge portions that interface the vibratory
screening machine tensioning members. Reinforcement rods 1050 are integrated (including
by molding integrally) with fourth members 204 and may also be integrated into sixth
members 306. Reinforcement rods 1050 may be made of plastic, metal, polymer or any
other suitable material with the necessary structural properties.
[0011] First and second members 101, 102 form a first integrally molded grid structure 100
that defines screen openings 26. Third and fourth members 203, 204 form a second integrally
molded grid structure 200. Reinforcement rods 1050 are integrally molded into fourth
members 204. Fifth and sixth members may form a third integrally molded grid structure
300. Reinforcement rods 1050 may be integrally molded into sixth members 306. As shown
in the exemplary embodiment depicted in FIGS. 1, 2, 3, 4 and 5, grid structures 200
and 300 include bi-directional integrally molded reinforcement members forming support
grids within the members. Because of the properties of the reinforcement members 50,
further discussed herein, and their configuration into a bi-directional grid structure,
the members in which the reinforcement members 50 are embedded have a relatively small
size and provide for increased open screening area. The grid structures provide screen
strength, support for openings 26 during vibratory loading and significantly increase
open screening area. Although third grid structures are discussed herein, fewer or
additional grid structures may be provided.
[0012] First members 101 may be substantially parallel to each other and extend transversely
between side edge portions 14, 16. The second members 102 may be substantially parallel
to each other and extend transversely between the lower edge portion 18 and the upper
edge portion 20. Second members 102 may have a thickness greater than the first members
to provide additional structural support to screen openings 26.
[0013] First members 101 and/or second members 102 include reinforcement members 50 and
may or may not be supported by additional support members or support grid structures.
See, e.g., FIGS. 6 and 9. As shown in FIG. 9, body 12 has first and second members
101, 102 with bi-directional reinforcement members 50 molded integrally therewith.
Such configurations may be beneficial for screening applications requiring screens
with larger screen openings.
[0014] Reinforcement rods 1050 are incorporated into at least the fourth member 204 and
may also be incorporated into the sixth member 306 respectively. The reinforcement
rods 1050 may run from edges 14 to 16. See., e.g. FIGS. 12 and 12A. Reinforcement
rods 1050 provide stability and prevent hourglassing or other deformation of the screen
along the edges of the screen without the U-shape channels, i.e., edges 14 and 16.
These embodiments incorporate reinforcement members 50 in fourth members 204, and
in at least one of the first or second members (101, 102) and may incorporate reinforcement
members 50 in third, fifth and/or sixth members 203, 305, 306. Reinforcement members
50 may be incorporated into all or a portion of first, second, third, fourth, fifth
and/or sixth members 101, 102, 203, 204, 305, 306. Reinforcement members 50 provide
screen properties as discussed herein.
[0015] As shown in FIG. 4, the screen openings 26 are elongated with a greater length dimension
along sides and between ends thereof than width dimensions between the sides and their
length dimensions extending in a direction transverse to the side edge portions 14,
16. Screen openings 26 may be about .044 mm to about 4 mm in width (i.e., between
the inner surfaces of adjacent first members 101) and about .088 mm to about 60 mm
in length (i.e., between inner surfaces of adjacent second members 102). Screen openings
26 may have different shapes including a generally square shape. The overall dimensions
of screen 10 may be about 1.2 meters times 1.6 meters, or any other desired size.
All of the dimensions set forth herein are by way of example and not of limitation.
[0016] Screen openings 26 may diverge downwardly between the upper surface 22 and the lower
surface 24 and the first members 101 may be substantially in the shape of inverted
trapezoids. See, e.g., Figures 6 and 7. This general shape of the first members 101
prevents blinding in screens 10. As shown in Figure 6, first members 101 include reinforcement
members 50. As shown in Figure 7, first members 101 do not include reinforcement members
50.
[0017] Screens with the various screen opening sizes and support configurations described
herein have a relatively large open screening areas. Open screening areas may range,
for example, from between about 40 percent to about 46 percent. As further discussed
herein, the relatively large open screening areas may be obtained through the placement
of bi-directional reinforcement members 50 in cross members (e.g., members 203, 204)
as described in the various embodiments herein. The reinforcement members significantly
decrease the size of both of the bi-directional support cross members and allow for
a thinner screen members, 101, 102 forming the screen openings 26. The grid work of
support members and reinforcement members provide for a structurally sound screen
that maintains the necessary screen openings during vibratory operation.
[0018] Third and fourth members 203, 204 may have a thickness greater than the first and
second members 101, 102 and may have a portion 210 extending downwardly below the
lower surface 24 of body 12. The greater thickness and portion extending downwardly
may provide additional structural support to first and second members 101, 102. As
shown in FIG. 1B, portion 210 may be substantially triangular in cross-section with
apexes projecting away from the lower surface 24 of body 12. The third members 203
may be substantially parallel and extend transversely between the side edge portions
14, 16 and may have multiple first members 101 therebetween. The fourth members 204
may be substantially parallel and extend transversely between the lower edge portion
18 and the upper edge portion 20 and having multiple second members 102 therebetween.
Fourth members 204 have reinforcement rods 1050 integrally molded therein. Reinforcement
members 50 are molded integrally with the fourth members 204, and may be molded integrally
with the third members 203. See, e.g., FIGS. 3A, 5A. Third and fourth members 203,
204 may be configured to have a minimal thickness through inclusion of reinforcement
members 50, while providing the necessary structural support to maintain the screen
openings 26 formed by first and second members 101, 102 during vibratory screening
applications. The bi-direction support system provided by reinforced third and fourth
members 203, 204 greatly reduces the thickness of the support members and provides
for increased open screening area and overall screen efficiencies. Incorporation of
reinforcement rods 1050 into fourth members 204 adds stability to screen 10 and prevents
hourglassing, i.e., deflection inwardly of side edges 14, 16 to give the screen a
general hourglass type shape.
[0019] Fifth members 305 and sixth members 306 may be included in body 12. Fifth and sixth
members may have a thickness greater than the third and fourth members and may have
a portion 310 extending downwardly away from the lower surface of the body. The greater
thickness and portion extending downwardly may to provide additional structural support
to first and second members 101, 102. The sixth members 306 may include a portion
320 extending upwardly away from the upper surface of the body. Portion 320 may be
substantially triangular in cross-section with apexes projecting away from the upper
surface 22 of body 12. Sixth members 306 are shown in FIG. 2 with portion 320 extending
upwardly away from the upper surface of body 12 and acting as flow guides. Sixth members
306 may have reinforcement rods 1050 integrally molded therein. The fifth members
305 may be substantially parallel and extending transversely between the side edge
portions 14, 16 and have multiple third members 203 therebetween. The sixth members
306 may be substantially parallel and extending transversely between the lower edge
portion 18 and the upper edge portion 20 and have multiple fourth members 204 therebetween.
Reinforcement members 50 may be molded integrally with fifth and sixth members 305,
306. Fifth and sixth members 305, 306 may be provided for additional support to screen
openings 26 and may be configured to have a minimal thickness through inclusion of
reinforcement members 50, while providing the necessary structural support to maintain
screen openings 26 during vibratory screening applications. The bi-direction support
system provided by reinforced fifth and sixth members 305, 306 greatly reduces the
thickness of the support members and provides for increased open screening area and
overall screen efficiencies. Incorporation of reinforcement rods 1050 into sixth members
306 adds stability to screen 10 and prevents hourglassing.
[0020] FIG. 1A shows an exemplary embodiment of the present inventions having first and
second members 101, 102 forming screen openings 26 and members 203, 204 forming a
support grid structure for openings 26. As shown in FIG. 1A, screen 10 does not include
fifth and sixth members 305, 306. FIGS. 12 and 12A show another exemplary embodiment
of the present invention having reinforcement rods 1050 integrally molded therein.
As shown in FIGS. 12 and 12A, reinforcement rods 1050 are integrally molded into fourth
members 204. Reinforcement rods 1050 may also be integrally molded into sixth members
306 or other members running parallel to members 204 and 306.
[0021] In use, the vibratory screen 10 is mounted on a vibratory screening machine 30 (FIG.
8) in the well known manner. More specifically, it is mounted on the screen deck bed
31 which is mounted on the frame (not shown) of the machine. The screen deck bed 31
includes spaced substantially parallel frame members 32 secured to each other by spaced
substantially parallel cross frame members (not shown). Extending transversely between
the cross frame members are a plurality of substantially parallel stringers 33 which
mount channel rubbers 34. Mounted on parallel frame members 32 are channel-shaped
draw bars 35 having lower portions 36 which are received within side edge portions
14, 16. Draw bolts 37 draw bars 35 apart to thereby tension vibratory screen 10 with
the required force. The foregoing type of screen deck bed is well known in the art.
Screen 10 may be mounted to other vibratory screening machines and side edge portions
14, 16 may be configured in other shapes to accommodate different vibratory screening
machines.
[0022] The embodiment shown in FIG. 13 is mounted front to back on vibratory screening machine
1010. In this embodiment, angle 15 is included in upper edge 20 and lower edge 18
and is below top surface 22. This embodiment has tension applied from underneath the
screen rather than above and the tension is applied from front to back.
[0023] FIG. 14 shows an embodiment having angle 15 included in side edges 18, 20 . This
embodiment also has tension applied from above the screen and from side to side.
[0024] Reinforcement members 50 as described herein may be an aramid fiber (or individual
filaments thereof), a naturally occurring fiber or others material having relatively
large tensile strengths with relatively small cross sectional areas. When an aramid
fiber is used as reinforcement fiber 50 it may be aramid fibers that are commercially
obtainable under the trademark KEVLAR of the DuPont Company and further identified
by the designation KEVLAR 29. The reinforcement members 50 may also be at least one
of aramid fibers that are commercially obtainable under the trademarks TWARON, SULFRON,
TEIJINCONEX, and TECHNORA of the Teijin Company. In addition, the aramid fibers may
be twisted or woven multistrand so that they act as nature of wicks to absorb the
polyurethane which is molded around them to thereby provide an extremely good bond
therewith. The twisted or a woven multistrand fibers may be about 55 denier to about
2840 denier, preferably approximately 1500 denier. The flexibility of the aramid fibers
provides a flexible reinforcement system for the molded polyurethane which is able
to return to its original molded shape after the necessary bending and flexing that
occurs during handling and installation into the vibratory frame member 32. Furthermore,
flexible aramid fibers permit the flexible polyurethane screen to be flexed without
harm into an arcuate condition and tensioned as shown in FIGS. 8, 13 and 14. Reinforcement
members 50 may be tensioned before polyurethane is molded around them. Various configurations
of reinforcement members 50 may be provided in any one of the first, second, third,
fourth, fifth and sixth members 101, 102, 203, 204, 305, 306. Each member may include
zero, one or more reinforcement members 50 and the reinforcement members 50 may be
of different sizes and materials. Reinforcement members 50 may be located in the bottom
halves of the members so as not to be exposed relatively early as the upper surface
of the screen wears.
[0025] During operation, first members 101 will vibrate to enhance the screening action.
In this regard, it is to be noted that because first members 101 are flexible and
relatively thin they will provide a relatively high amplitude of desirable vibration.
The reason the first members 101 can be made relatively thin, creating screen openings
described herein, is because of a support framework of bi-directional support members
and reinforcement members, as described herein, having relatively large tensile strengths
with relatively small cross sectional areas. The making of the support members and
the first members 101 relatively thin results in the screen having a greater percentage
of open area, which, in turn, increases its capacity.
[0026] According to an exemplary embodiment of the present invention a vibratory screen
10 includes a flexible molded polyurethane body 12 having substantially parallel side
edge portions 14, 16 at opposite ends of body 12, a lower edge portion 18 substantially
perpendicular to the side edge portions 14, 16, an upper edge portion 20 substantially
perpendicular to the side edge portions 14, 16 and opposite the lower edge portion
18, an upper surface 22, a lower surface 24, first and second members 101, 102 forming
screening openings 26, the first members 101 extending between the side edge portions
14, 16 and the second members 102 extending between the lower edge portion 18 and
the upper edge portion 20. The body also includes third and fourth members 203, 204.
Third and fourth members 203 and 204 may have a thickness greater than the first and
second members 101, 102. Third members 203 are substantially parallel and extend transversely
between the side edge portions 14, 16 and have multiple first members 101 therebetween.
Fourth members 204 are substantially parallel and extend transversely between the
lower edge portion 18 and the upper edge portion 20 and have multiple second members
102 therebetween. Reinforcement members 50 may be molded integrally with the third
members 203 and are molded integrally with the fourth members 204.
[0027] Reinforcement rods 1050 are molded integrally with fourth members 204. The body also
includes fifth and sixth members 305, 306. Fifth members 305 are substantially parallel
and extending transversely between the side edge portions 14, 16. Sixth members 306
are substantially parallel and extending transversely between the lower edge portion
18 and the upper edge portion 20. The fifth and sixth members have a thickness greater
than the third and fourth members and include reinforcement members 50 molded integrally
therewith. Reinforcement rods 1050 may be molded integrally with the sixth members
306. Vibratory screens according to this configuration may have open screening areas
greater than forty percent and mesh sizes ranging from approximate .375 mesh to approximately
400 mesh. By way of example, screens tested having the aforementioned configuration
include a 43 mesh size screen, a 140 mesh size screen and a 210 mesh size screen.
Each of these screens had open screening areas of approximately 40 percent to approximately
46 percent. Such large screening areas for such fine mesh sizes are achieve through
the relatively strong and thin grid framework created by the third, fourth, fifth
and sixth members, 203, 204, 305, 306 and reinforcement members molded integrally
therewith. In the aforementioned exemplary embodiment and examples, the size of each
grid unit formed by the intersection of the third and fourth members, 203 and 204
is approximately 2.54cm by 2.54cm (1" by 1").
[0028] Generally, grid units may be larger for screens with larger screen openings and grid
units are smaller for screens with smaller screen openings. This principle may be
generally applicable for each example embodiment discussed herein. Grid units may
also have a generally rectangular shape or any other suitable shape for supporting
the screen openings.
[0029] According to an exemplary embodiment of the present invention, a method of making
a vibratory screen according to the wording of claim 12 is disclosed.
[0030] While preferred embodiments of the present invention have been disclosed, it will
be appreciated that it is not limited thereto but may be otherwise embodied within
the scope of the following claims.
1. A vibratory screen (10), comprising: a flexible molded polyurethane body (12) having
substantially parallel side edge portions (14, 16) at opposite ends of the body (12),
a lower edge portion (18) substantially perpendicular to the side edge portions (14,
16), an upper edge portion (20) substantially perpendicular to the side edge portions
(14, 16) and opposite the lower edge portion (18), an upper surface (22), a lower
surface (24), first and second members (101, 102) forming screening openings (26),
the first members (101) extending between the side edge portions (14, 16) and the
second members (102) extending between the lower edge portion (18) and the upper edge
portion (20), third and fourth members (203, 204), the third members (203) substantially
parallel and extending transversely between the side edge portions (14, 16) and having
multiple first members (101) therebetween, the fourth members (204) substantially
parallel and extending transversely between the lower edge portion and the upper edge
portion and having multiple second members (102) therebetween, reinforcement members
(50) molded integrally with at least one of the first and second members (101, 102)
and optionally with the third member (103), and molded integrally with the fourth
member (204), and characterized by reinforcement rods (1050) molded integrally with the fourth members (204).
2. The vibratory screen (10) of claim 1, wherein the openings are about .044 mm to about
4 mm between inner surfaces of the first members (101) and about .088 mm to about
60 mm between inner surfaces of the second members (102).
3. The vibratory screen (10) of claim 1, wherein the side edge portions (14, 16) are
formed into U-shaped configurations.
4. The vibratory screen of claim 1, wherein the upper edge portion (20) and the lower
edge portion (18) are formed into U-shaped configurations.
5. The vibratory screen of claim 1, wherein the reinforcement members (50) are at least
one of an aramid fiber and a natural fiber.
6. The vibratory screen of claim 5, wherein the first reinforcement member (50) is an
aramid fiber that is at least one of a twisted multistrand and a woven multistrand
and wherein the polyurethane impregnates the multistrand forming a bond between the
first member and the fiber therein and a bond between the second member and the fiber
therein.
7. The vibratory screen of claim 5, wherein the reinforcement member (50) is an aramid
fiber that is at least one of a twisted and a woven multistrand, wherein the fibers
are about 55 denier to about 2840 denier.
8. The vibratory screen of claim 1, wherein the side edge portions (14, 16) include a
cast-in member.
9. The vibratory screen of claim 1, wherein the upper edge portion (20) and lower edge
portion (18) include a cast-in member.
10. The vibratory screen of claim 1, wherein the vibratory screen (10) has an open screening
area greater than forty percent.
11. The vibratory screen (10) of claim 1, wherein the reinforcement rods (1050) are at
least one of a plastic, a metal and a polymer.
12. A method of making a vibratory screen (10), comprising:
creating a mold configured to fabricate the vibratory screen (10), the vibratory screening
having a flexible molded polyurethane body;
installing reinforcement members (50) in the mold, the reinforcement members (50)
configured to be molded integrally with the body (12);
installing reinforcement rods (1050) in the mold, the reinforcement rods (1050) configured
to be molded integrally with the body (12)
filling the mold with polyurethane; and
forming the vibratory screen (10), the vibratory screen (10) having substantially
parallel side edge portions (14, 16) at opposite ends of the body (12), a lower edge
portion (18) substantially perpendicular to the side edge portions (14, 16), an upper
edge portion (20) substantially perpendicular to the side edge portions (14, 16) and
opposite the lower edge portion (18), an upper surface (22), a lower surface (24),
first and second members (101, 102) forming screening openings, the first members
(101) extending between the side edge portions (14, 16) and the second members (102)
extending between the lower edge portion (18) and the upper edge portion (20), third
members (203) substantially parallel and having multiple first members (101) therebetween,
fourth members (204) substantially parallel and having multiple second members (102)
therebetween, reinforcement members molded integrally with at least one of the first
and second members (101, 102) and optionally with the third member (103), and molded
integrally with the fourth member (204), and characterized by reinforcement rods (1050) molded integrally with the fourth members (204).
1. Rüttelsieb (10), umfassend: einen flexiblen Polyurethan-Formkörper (12) mit im wesentlichen
parallelen Seitenkantenabschnitten (14, 16) an gegenüberliegenden Enden des Körpers
(12), einem unteren Kantenabschnitt (18), der im Wesentlichen senkrecht zu den Seitenkantenabschnitten
(14, 16) verläuft, einem oberen Kantenabschnitt (20), der im Wesentlichen senkrecht
zu den Seitenkantenabschnitten (14, 16) und gegenüber dem unteren Kantenabschnitt
(18) verläuft, einer Oberseite (22), einer Unterseite (24), ersten und zweiten Elementen
(101, 102), die Sieböffnungen (26) bilden, wobei sich die ersten Elemente (101) zwischen
den Seitenkantenabschnitten (14, 16) und die zweiten Elemente (102) zwischen dem unteren
Kantenabschnitt (18) und dem oberen Kantenabschnitt (20) erstrecken, dritten und vierten
Elementen (203, 204), wobei die dritten Elemente (203) im Wesentlichen parallel sind
und sich quer zwischen den Seitenkantenabschnitten (14, 16) erstrecken und mehrere
erste Elemente (101) dazwischen aufweisen, die vierten Elemente (204) im Wesentlichen
parallel sind und sich quer zwischen dem unteren Kantenabschnitt und dem oberen Kantenabschnitt
erstrecken und mehrere zweite Elemente (102) dazwischen aufweisen, Verstärkungselementen
(50), die einstückig mit den ersten und/oder den zweiten Elementen (101, 102) und
optional mit dem dritten Element (103) geformt sind, und einstückig mit dem vierten
Element (204) geformt sind,
gekennzeichnet durch Verstärkungsstangen (1050), die einstückig mit den vierten Elementen (204) geformt
sind.
2. Rüttelsieb (10) nach Anspruch 1, bei dem die Öffnungen etwa 0,044 mm bis etwa 4 mm
zwischen Innenflächen der ersten Elemente (101) und etwa 0,088 mm bis etwa 60 mm zwischen
Innenflächen der zweiten Elemente (102) messen.
3. Rüttelsieb (10) nach Anspruch 1, bei dem die
Seitenkantenabschnitte (14, 16) in U-förmigen Konfigurationen ausgebildet sind.
4. Rüttelsieb nach Anspruch 1, bei dem der obere Kantenabschnitt (20) und der untere
Kantenabschnitt (18) in U-förmigen Konfigurationen ausgebildet sind.
5. Rüttelsieb nach Anspruch 1, bei dem die Verstärkungselemente (50) aus einer Aramidfaser
und/oder einer Naturfaser bestehen.
6. Rüttelsieb nach Anspruch 5, bei dem das erste Verstärkungselement (50) eine Aramidfaser
ist, bei der es sich um einen verdrillten Mehrfachstrang und/oder einen gewebten Mehrfachstrang
handelt, und bei dem das Polyurethan den Mehrfachstrang imprägniert, wodurch eine
Bindung zwischen dem ersten Element und der darin enthaltenen Faser sowie eine Bindung
zwischen dem zweiten Element und der darin enthaltenen Faser entsteht.
7. Rüttelsieb nach Anspruch 5, bei dem das Verstärkungselement (50) eine Aramidfaser
ist, bei der es sich um einen verdrillten und/oder gewebten Mehrfachstrang handelt,
wobei die Fasern etwa 55 Denier bis etwa 2840 Denier aufweisen.
8. Rüttelsieb nach Anspruch 1, bei dem die Seitenkantenabschnitte (14, 16) ein eingegossenes
Element umfassen.
9. Rüttelsieb nach Anspruch 1, bei dem der obere Kantenabschnitt (20) und der untere
Kantenabschnitt (18) ein eingegossenes Element umfassen.
10. Rüttelsieb nach Anspruch 1, wobei das Rüttelsieb (10) eine offene Siebfläche von mehr
als vierzig Prozent aufweist.
11. Rüttelsieb (10) nach Anspruch 1, bei dem die Verstärkungsstäbe (1050) aus einem Kunststoff,
einem Metall und/oder einem Polymer bestehen.
12. Verfahren zur Herstellung eines Rüttelsiebs (10), umfassend:
Erzeugen einer zur Herstellung des Rüttelsiebs (10) konfigurierten Form, wobei das
Rüttelsieb einen flexiblen Polyurethan-Formkörper aufweist;
Installieren von Verstärkungselementen (50) in der Form, wobei die Verstärkungselemente
(50) konfiguriert sind, um einstückig mit dem Körper (12) geformt zu werden;
Installieren von Verstärkungsstäben (1050) in der Form, wobei die Verstärkungsstäbe
(1050) konfiguriert sind, um einstückig mit dem Körper (12) geformt zu werden;
Füllen der Form mit Polyurethan; und
Formen des Rüttelsiebes (10), wobei das Rüttelsieb (10) im Wesentlichen parallele
Seitenkantenabschnitte (14, 16) an gegenüberliegenden Enden des Körpers (12), einen
unteren Kantenabschnitt (18), der im Wesentlichen senkrecht zu den Seitenkantenabschnitten
(14, 16) verläuft, einen oberen Kanten (20), der im Wesentlichen senkrecht zu den
Seitenkantenabschnitten (14, 16) und gegenüber dem unteren Kantenabschnitt (18) verläuft,
eine Oberseite (22), eine Unterseite (24), erste und zweite Elemente (101, 102), die
Sieböffnungen bilden, wobei sich die ersten Elemente (101) zwischen den Seitenkantenabschnitten
(14, 16) erstrecken und die zweiten Elemente (102) sich zwischen dem unteren Kantenabschnitt
(18) und dem oberen Kantenabschnitt (20) erstrecken, im Wesentlichen parallele dritte
Elemente (203) mit mehreren ersten Elementen (101) dazwischen, vierte Elemente (204)
mit mehreren zweiten Elementen (102) dazwischen, Verstärkungselemente, die einstückig
mit mindestens einem der ersten und zweiten Elemente (101, 102) und optional mit dem
dritten Element (103) geformt sind, und einstückig mit dem vierten Element (204) geformt
sind, gekennzeichnet durch Verstärkungsstäbe (1050), die einstückig mit den vierten Elementen (204) geformt
sind.
1. Tamis vibratoire (10), comprenant : un corps en polyuréthane moulé flexible (12) présentant
des parties de bord latéral sensiblement parallèles (14, 16) à des extrémités opposées
du corps (12), une partie de bord inférieur (18) sensiblement perpendiculaire aux
parties de bord latéral (14, 16), une partie de bord supérieur (20) sensiblement perpendiculaire
aux parties de bord latéral (14, 16) et opposée à la partie de bord inférieur (18),
une surface supérieure (22), une surface inférieure (24), des premiers et deuxièmes
éléments (101, 102) formant des ouvertures de tamisage (26), les premiers éléments
(101) s'étendant entre les parties de bord latéral (14, 16) et les deuxièmes éléments
(102) s'étendant entre la partie de bord inférieur (18) et la partie de bord supérieur
(20), des troisième et quatrième éléments (203, 204), les troisièmes éléments (203)
étant sensiblement parallèles à et s'étendant transversalement entre les parties de
bord latéral (14, 16) et présentant entre eux de multiples premiers éléments (101),
les quatrièmes éléments (204) étant sensiblement parallèles à et s'étendant transversalement
entre la partie de bord inférieur et la partie de bord supérieur et présentant entre
eux de multiples deuxièmes éléments (102), des éléments de renforcement (50) moulés
d'un seul tenant avec au moins certains des premiers et deuxièmes éléments (101, 102)
et facultativement avec le troisième élément (103), et moulés d'un seul tenant avec
le quatrième élément (204), et caractérisé par des tiges de renforcement (1050) moulées d'un seul tenant avec les quatrièmes éléments
(204).
2. Tamis vibratoire (10) selon la revendication 1, dans lequel les ouvertures sont d'environ
0,044 mm à environ 4 mm entre des surfaces intérieures des premiers éléments (101)
et d'environ 0,088 mm à environ 60 mm entre des surfaces intérieures des deuxièmes
éléments (102).
3. Tamis vibratoire (10) selon la revendication 1, dans lequel les parties de bord latéral
(14, 16) sont formées selon des configurations en forme de U.
4. Tamis vibratoire selon la revendication 1, dans lequel la partie de bord supérieure
(20) et la partie de bord inférieure (18) sont formées selon des configurations en
forme de U.
5. Tamis vibratoire selon la revendication 1, dans lequel les éléments de renforcement
(50) sont au moins une fibre parmi une fibre d'aramide et une fibre naturelle.
6. Tamis vibratoire selon la revendication 5, dans lequel le premier élément de renforcement
(50) est une fibre d'aramide qui est au moins l'un d'un multibrin torsadé et d'un
multibrin tissé et dans lequel le polyuréthane imprègne le multibrin en formant une
liaison entre le premier élément et la fibre en son sein et une liaison entre le deuxième
élément et la fibre en son sein.
7. Tamis vibratoire selon la revendication 5, dans lequel l'élément de renforcement (50)
est une fibre d'aramide qui est au moins un parmi un multibrin torsadé et un multibrin
tissé, dans lequel les fibres sont d'environ 55 deniers à environ 2 840 deniers.
8. Tamis vibratoire selon la revendication 1, dans lequel les parties de bord latéral
(14, 16) incluent un élément coulé.
9. Tamis vibratoire selon la revendication 1, dans lequel la partie de bord supérieure
(20) et la partie de bord inférieure (18) incluent un élément coulé.
10. Tamis vibratoire selon la revendication 1, dans lequel le tamis vibratoire (10) présente
une surface de tamisage ouverte supérieure à quarante pour cent.
11. Tamis vibratoire (10) selon la revendication 1, dans lequel les tiges de renforcement
(1050) sont au moins l'un d'un plastique, d'un métal et d'un polymère.
12. Procédé de fabrication d'un tamis vibratoire (10), comprenant les étapes consistant
à :
créer un moule configuré pour fabriquer le tamis vibratoire (10), le tamis vibratoire
présentant un corps en polyuréthane moulé flexible ;
installer des éléments de renforcement (50) dans le moule, les éléments de renforcement
(50) étant configurés pour être moulés d'un seul tenant avec le corps (12) ;
installer des tiges de renforcement (1050) dans le moule, les tiges de renforcement
(1050) étant configurées pour être moulées d'un seul tenant avec le corps (12) remplissant
le moule de polyuréthane ; et
former le tamis vibratoire (10), le tamis vibratoire (10) présentant des parties de
bord latéral sensiblement parallèles (14, 16) à des extrémités opposées du corps (12),
une partie de bord inférieur (18) sensiblement perpendiculaire aux parties de bord
latéral (14, 16), une partie de bord supérieur (20) sensiblement perpendiculaire aux
parties de bord latéral (14, 16) et opposée à la partie de bord inférieur (18), une
surface supérieure (22), une surface inférieure (24), des premiers et deuxième éléments
(101, 102) formant des ouvertures de tamisage, les premiers éléments (101) s'étendant
entre les parties de bord latéral (14, 16) et les deuxièmes éléments (102) s'étendant
entre la partie de bord inférieur (18) et la partie de bord supérieur (20), des troisièmes
éléments (203) sensiblement parallèles et présentant entre eux de multiples premiers
éléments (101), des quatrièmes éléments (204) sensiblement parallèles et présentant
entre eux de multiples deuxièmes éléments (102), des éléments de renforcement moulés
d'un seul tenant avec au moins certains des premiers et deuxièmes éléments (101, 102)
et facultativement avec le troisième élément (103), et moulés d'un seul tenant avec
le quatrième élément (204), et caractérisé par des tiges de renforcement (1050) moulées d'un seul tenant avec les quatrièmes éléments
(204).