BACKGROUND OF THE INVENTION
Field of the Invention
Description of Related Art
[0001] Mine roof bolts are used to reinforce unsupported rock formations adjacent to a mine
opening. In particular, the roof of a mine is conventionally supported by tensioning
the roof with steel bolts inserted into bore holes drilled in the mine roof that reinforce
the unsupported rock formation above the mine roof. The mine roof bolt may be anchored
mechanically to the rock formation by engagement of an expansion assembly on the distal
end of the mine roof bolt with the rock formation. Alternatively, the mine roof bolt
may be adhesively bonded to the rock formation with a resin bonding material inserted
into the bore hole. A combination of mechanical anchoring and resin bonding may also
be employed by using both an expansion assembly and resin bonding material.
[0002] A mechanically anchored mine roof bolt typically includes an expansion assembly threaded
onto a distal threaded end of the bolt shaft and a drive head for rotating the bolt.
A mine roof plate is positioned between the drive head and the mine roof surface.
The expansion assembly generally includes a multi-prong shell supported by a threaded
ring and a plug threaded onto the end of the bolt. When the prongs of the shell engage
with rock surrounding a bore hole, and the bolt is rotated about its longitudinal
axis, the plug threads downwardly on the shaft to expand the shell into tight engagement
with the rock thereby placing the bolt in tension between the expansion assembly and
the mine roof surface.
[0003] When resin bonding material is utilized, the bonding material penetrates the surrounding
rock formation to adhesively join the rock strata and to firmly hold the roof bolt
within the bore hole. Resin is typically inserted into the mine roof bore hole in
the form of a two component plastic cartridge having one component containing a curable
resin composition and another component containing a curing agent (catalyst). The
two component resin cartridge is inserted into the blind end of the bore hole and
the mine roof bolt is inserted into the bore hole such that the end of the mine roof
bolt ruptures the two component resin cartridge. Upon rotation of the mine roof bolt
about its longitudinal axis, the compartments within the resin cartridge are shredded
and the components are mixed. The resin mixture fills the annular area between the
bore hole wall and the shaft of the mine roof bolt. The mixed resin cures and binds
the mine roof bolt to the surrounding rock. The mine roof bolt is typically rotated
via a drive head. With bolts that are point anchored and tensioned, a breakaway nut
may be used to rotate the bolt and subsequently tension the bolt upon curing of the
resin bonding material.
[0004] A system and a method for producing mine roof bolts is e.g. known from
KR10-0303490, upon which the preamble of the independent claims 1 and 8 is based.
SUMMARY OF THE INVENTION
[0005] A system and a method for producing a mine roof bolt according to the present invention
are defined in the independent claims 1 and 8.
[0006] According to the disclosure, a method of producing a mine roof bolt includes providing
a plurality of bars of a predetermined length, moving the plurality of bars along
a conveyor and indexing the position of the plurality of bars, and passing a portion
of each of the plurality of bars through a processing station, where the processing
station comprises at least one of a header assembly, an extruder assembly, and a threading
assembly. The method further includes processing a portion of each of the plurality
of bars with the processing station.
[0007] The method may further include where both a longitudinal and lateral position of
the plurality of bars is indexed. The processing station may include a header assembly,
and processing the portion of each of the plurality of bars may include: heating a
portion of a first bar of the plurality of bars; passing the portion of the first
bar through the header assembly; and forging a head at an end of the first bar. The
method may further include actuating clamping assemblies to fix the position of the
first bar during forging. The processing station may include an extruder assembly,
and processing the portion of each of the plurality of bars may include: passing a
portion of a first bar of the plurality of bars through the extruder assembly; actuating
a die cylinder to move a die holder assembly toward the first bar; and extruding a
portion of the first bar. The method may include, after extruding the portion of the
first bar, moving the first bar along the conveyor toward a second extruder assembly,
passing the portion of the first bar of the plurality of bars through the second extruder
assembly, actuating a die cylinder to move a die holder assembly toward the first
bar, and further extruding the portion of the first bar. The method may include moving
each of the plurality of bars from a feed rack to the conveyor using a feed delivery
device. The movement of the conveyor and the feed delivery device may be synchronized.
The method may include, after processing the portion of the bar, continuing to move
the bar along the conveyor and depositing each of the plurality of bars into a receptacle.
[0008] According to the disclosure, a system for producing a mine roof bolt includes a conveyor
configured to index and transport a bar, a feed arrangement configured to continuously
deliver bars to the conveyor, a processing station comprising at least one of a header
assembly, an extruding assembly, and a threading assembly. The processing station
is positioned along the conveyor and configured to receive and process a portion of
the bars.
[0009] The feed arrangement includes a feed rack and a feed wheel positioned adjacent to
the feed rack with the feed wheel configured to receive bars from the feed rack and
to deliver the bars to the conveyor. The conveyor includes a drive member and at least
two drive sprockets with the drive member forming a continuous loop and extending
circumferentially around the at least two drive sprockets. The drive member includes
a plurality of indexing clamps with the plurality of indexing clamps configured to
receive the bars and index a lateral position of the bars relative to adjacent bars.
The system may further include a heating source configured to heat a portion of the
bar and the processing station may be a header assembly. The header assembly may include
a frame assembly, upper and lower clamp assemblies, and at least one header die assembly
with the upper and lower clamp assemblies configured to engage a portion of the bar.
The at least one header die assembly may include a die cylinder, a die holder, and
a tool received by the die holder with the die holder moveable between a retracted
and extended position via the die cylinder. The header assembly is configured to form
a head at an end of the bar. The processing station may be an extruder assembly with
the extruder assembly including a frame assembly, upper and lower clamp assemblies,
and at least one extruder die assembly. The upper and lower clamp assemblies are configured
to engage a portion of the bar. The at least one extruder die assembly may include
a die cylinder, a die holder, and a tool received by the die holder with the die holder
moveable between a retracted and extended position via the die cylinder. The extruder
assembly is configured to extrude a portion of the bar.
[0010] The processing station may be a threading assembly that includes a frame assembly,
a moving die assembly, and a stationary die assembly with the moving die assembly
movable relative to the frame assembly and the stationary die assembly via a threading
die cylinder. The moving die assembly and the stationary die assembly are configured
to form threads on a portion of the rod. The threading assembly may further include
a support stand having first and second paddles with the first and second paddles
each configured to initially support the rod prior to forming threads on a portion
of the rod. The first and second paddles are movable in a downward direction. The
system may further include an index cylinder and a stop plate that are configured
to index the longitudinal position of a bar positioned on the conveyor with the index
cylinder moveable between first and second positions and configured to move a bar
until the bar contacts the stop plate. The system may further include a receptacle
positioned adjacent to an end of the conveyor with the plurality of indexing clamps
configured to release the bars and deposit the bars into the receptacle.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011]
Fig. 1 is a top schematic view of a system and method of producing a mine roof bolt
according to one embodiment of the present invention.
Fig. 2A is a front view of a conventional mine roof bolt.
Fig. 2B is a bottom view of the mine roof bolt shown in Fig. 2A.
Fig. 3 is a front perspective view of an extruder assembly according to one embodiment
of the present invention.
Fig. 4 is a rear perspective view of the extruder assembly shown in Fig. 3.
Fig. 5 is a front view of the extruder assembly shown in Fig. 3.
Fig. 6 is a top view of the extruder assembly shown in Fig. 3.
Fig. 7 is a partial rear perspective view of the extruder assembly shown in Fig. 3.
Fig. 8 is a partial right side view of the extruder assembly shown in Fig. 3.
Fig. 9 is a cross-sectional view of the extruder assembly shown in Fig. 3.
Fig. 10 is an exploded perspective view of an extruder die holder assembly according
to one embodiment of the present application.
Fig. 11 is cross-sectional view of the extruder die holder assembly shown in Fig.
10.
Fig. 12 is a perspective view of a header assembly according to one embodiment of
the present invention.
Fig. 13 is a rear perspective view of the header assembly shown in Fig. 12.
Fig. 14 is an exploded perspective view of a header die assembly according to one
embodiment of the present invention.
Fig. 15 is a right perspective view of a threading assembly according to one embodiment
of present invention.
Fig. 16 is a left perspective view of the threading assembly shown in Fig. 15.
Fig. 17 is a top view of the threading assembly shown in Fig. 15.
Fig. 18 is a right rear perspective view of the threading assembly according to one
embodiment of the present invention.
Fig. 19 is a front schematic view of a feed and indexing assembly according to one
embodiment of the present invention.
Fig. 20 is a top schematic view of the feed and indexing assembly shown in Fig. 19.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0012] For purposes of the description hereinafter, the terms "upper", "lower", "right",
"left", "vertical", "horizontal", "top", "bottom", and derivatives thereof, shall
relate to the invention as it is oriented in the drawing figures. However, it is to
be understood that the invention may assume various alternative variations and step
sequences, except where expressly specified to the contrary. It is also to be understood
that the specific devices and processes illustrated in the attached drawings, and
described in the following specification, are simply exemplary embodiments of the
invention. Hence, specific dimensions and other physical characteristics related to
the embodiments disclosed herein are not to be considered as limiting.
[0013] Referring to Fig. 1, one embodiment of a system 10 for producing a mine roof bolt
includes a conveyor 12, a heating source 14, a processing station 16, and a cradle
or receptacle 18 for receiving finishing product. Raw bars 20, such as rebar, are
fed to a first end of the conveyor 12. The bars 20 may be placed in a holding rack
and picked up through a bar separator that will index and position the bars 20 on
the conveyor 12. The bars 20 are fed into the heating source 14, such as an induction
heating coil, and a predetermined portion of each bar 20 is heated to an appropriate
forging temperature. The bars 20 are then indexed along the conveyor 12 and moved
to the processing station 16 for further processing. One embodiment of the feed and
indexing assembly, which provides bars 20 from a holding rack and indexes the position
of the bars 20, is discussed in more detail below and shown in Figs. 19 and 20. The
processing station 16 may be a hydraulic forging assembly that forms a head on an
end of the bar 20, which is discussed in more detail below. After being processed
at the processing station 16, the bars 20 are moved to a discharge position that will
deposit the finished bars in the cradle 18 for collection and movement to further
processing. Such further processing may include extrusion and/or threading processes,
which are also discussed in more detail below. Further, although Fig. 1 only shows
a single processing station 16, the system 10 may include one or more processing stations
16 that are automated to allow raw bar material to be fed and indexed on the conveyer
12 and processed by the one or more processing stations 16 to provide a finished mine
roof bolt.
[0014] Referring to Figs. 2A and 2B, the system 10 shown in Fig. 1 may be utilized to produce
a mine roof bolt 26 having a head 28 formed on a first end 30 that is positioned opposite
from a second end 32. The head 28 includes a flange 34 and a four-sided square-shaped
protrusion 36 that is configured to engage a drive tool, although the system may be
used to form other types of head configurations. The mine roof bolt 26 may also be
further processed by extruding the second end 32 and/or threading the second end 32
of the mine roof bolt 26. The threaded second end (not shown) may be used to receive
an expansion assembly (not shown) as noted in the background section above. Rather
than providing an integral head on the first end 30 of the mine roof bolt 26, the
first end 30 of the mine roof bolt 26 may be extruded and threaded so that the first
end 30 can receive a nut (not shown) or other suitable tensioning arrangement.
[0015] Referring to Figs. 3-11, one embodiment of the processing station 16 includes an
extruder assembly 40. The extruder assembly 40 performs a cold extrusion process and
does not require the heating source 14 shown in Fig. 1, although the extruder assembly
40 may also be utilized in hot extrusion process where the heating source 14 is needed.
The extruder assembly 40 is used to extrude the first and/or second ends 30, 32 of
the mine roof bolt 26 to form a smooth surface. The extruder assembly 40 includes
a frame assembly 42 and first, second, and third extruder die assemblies 44, 46, 48.
The frame assembly 42 includes four spaced apart frame plates 52 that are secured
together. Each frame plate 52 is generally square-shaped and defines first and second
openings 54, 56. The frame plates 52 are secured to each other with a frame support
plate 58 that is received by the first opening 54 of each frame plate 52 with the
frame support plate 58 extending perpendicularly between the frame plates 52. The
frame support plate 58 is secured to the frame plates 52 with angle brackets 60. The
frame plates 52 are also secured to each other via first and second grip plates 62,
64. The second opening 56 of each frame plate 52 is configured to allow mine roof
bolts 26 to be received by the extruder assembly 40. Further, as shown more clearly
in Fig. 7, a plurality of spacer plates 66 is positioned between adjacent frame plates
52.
[0016] Referring still to Figs. 3-11, the extruder die assemblies 44, 46, 48 each include
a die cylinder 68, a die holder assembly 70, and upper and lower clamping assemblies
72, 74. The die cylinders 68 and die holder assemblies 70 are each supported by respective
die support plates 76 that are received by the frame support plates 58 and generally
extend parallel to the frame plates 52. Each die cylinder 68 includes a die cylinder
rod 78 that is secured to the respective die holder assemblies 70. The die cylinder
rod 78 can be actuated between a retracted and fully extended position with corresponding
movement of the respective die holder assembly 70. The die cylinder 68 is a hydraulic
cylinder, although other suitable arrangements for displacing the die holder assembly
70 may be utilized. Each of the upper clamping assemblies 72 includes an upper cylinder
80 and an upper grip 82 secured to the upper cylinder 80 via an upper cylinder rod
84. Each of the lower clamping assemblies 74 includes a lower cylinder 86 and a lower
grip 88 secured to the lower cylinder 86 via a lower cylinder rod 90. The upper and
lower cylinders 80, 86 can be actuated to move the upper and lower grips 82, 88 between
a spaced position and a clamping position. In particular, the upper and lower cylinders
80, 86 are configured to be actuated to apply a clamping force to the mine roof bolt
26 to securely hold the mine roof bolt 26 while being processed.
[0017] Referring to Figs. 8-11, each of the die holder assemblies 70 includes a body 92,
an insert holder 94 and insert 96 received within the body 92, and a cover plate 98.
The body 92 defines an internal passageway 100 having a first end 102 for receiving
an end of the die cylinder rod 78 and a second end 104 for receiving the insert holder
94 and insert 96. Each of the die holder assemblies 70 further includes a pair of
side rollers 106 and an upper roller 108. The pair of side rollers 106 is received
by respective spaced apart lower tracks 110 positioned on the die support plates 76.
The upper roller 108 of each die holder assembly 70 is received by a respective upper
track 112 positioned on a track support plate 114 that extends perpendicularly to
the frame plates 52. The pair of side rollers 106 and the upper roller 108 allows
each die holder assembly 70 to be supported and to be freely moveable between a retracted
and extended position while extruding or processing the mine roof bolt 26.
[0018] Referring again to Figs. 1-11, when the bar 20 or mine roof bolt 26 reaches the extruder
assembly 40 and is in a proper position, the upper and lower clamping assemblies 72,
74 are automatically actuated to hold the bar 20 securely during the extrusion process.
The lower cylinder 86 is actuated to extend the lower cylinder rod 90 to full stroke
to maintain constant a constant vertical or centerline of the bar 20 being extruded.
The upper cylinder 80 provides a clamping force which is regulated via a pressure
reduction to the upper cylinder 80. Once clamping is completed, the die cylinder 68
is actuated to move one of the die holder assemblies 70 towards the bar 20. The insert
96 of the die holder assembly 70 engages the bar 20 and completes a first step of
the extrusion process. The die cylinder 68 will then retract and the upper and lower
clamping cylinders 80, 86 will retract to remove the clamping force applied by the
upper and lower grips 82, 88. The bar 20 is then moved to the next extruder die assembly
44, 46, 48 for further processing. The extruder assembly 40 includes three extruder
die assemblies 44, 46, 48 to progressively provide the final dimensioning and processing
of the bar 20. The extruder assembly 40, however, may include one or more extruder
die assemblies. After finishing the extrusion process, the bars 20 or mine roof bolts
26 are moved to the discharge position and deposited into the cradle 18 for collection
and/or further processing.
[0019] Referring to Figs. 12-14, a further embodiment of the processing station 16 includes
a header assembly 120. The header assembly 120 is configured to form the head 28,
as described above, on the bar 20 or mine roof bolt 26. The header assembly 120 is
embodied as a forging mechanism, although other suitable arrangements may be provided
to form the head 28. As discussed above, the mine roof bolt 26 is heated by the heating
source 14 shown in Fig. 1 before reaching the header assembly 120. The header assembly
120 may be similar to the extruder assembly 40 discussed above and shown Figs. 3-11.
Although not shown, the header assembly 120 would also include the die cylinder 68
and upper and lower clamping assemblies 72, 74. The header assembly 120 also includes
frame plates 122 that are different from the frame plates 52 of the extruder assembly
40, although the header assembly 120 may also utilize the same components of the extruder
assembly 40 with different tooling being utilized. In particular, the frame plates
122 of the header assembly 120 are each formed with separate upper and lower portions
124, 126 that are secured to each other and to adjacent frame plates 122. Further,
the frame plates 122 define a single opening 128 and are each configured to receive
bars 20 or mine roof bolts 26 for the forging process. As shown more clearly in Fig.
14, the header assembly 120 includes first and second cone assemblies 130, 132 and
an insert assembly 134 rather than the extruder die assemblies 44, 46, 48 of the extruder
assembly 40. Each cone assembly 130, 132 includes a body 136 that receives a cone
tool 138. Although shown in front of the cone tool 138, a tool spacer 140 and washer
142 are positioned behind the cone tool 138 with a cover plate 144 secured to the
body 136 to fix the cone tool 138 within the body 136. Each cone assembly 130, 132
is actuated between an extended position and a retracted position in the same manner
as discussed above in connection with the extrude die assemblies 44, 46, 48 of the
extruder assembly 40.
[0020] Referring again to Figs. 12-14, the insert assembly 134 includes a body 146 that
receives an insert back plate 148, an insert holder 150, and an insert 152. The insert
152 is configured to form the final dimensions of the square-shaped protrusion 36
of the head 28 shown in Figs. 2A and 2B, although other inserts 152 may be utilized
to form a variety of head shapes and sizes. The body 146 further receives a stencil
holder 154, a stencil back plate 156, and a stencil 158. The stencil 158 is configured
to provide product identification or other information on the head 28 of the mine
roof bolt 26. A pair of clamps 160 is used to secure the insert 152, stencil 158,
and other components within the body 146 of the insert assembly 134. The bars 20 or
mine roof bolts 26 may be fed through the header assembly 120 in the same manner as
discussed above in connection with the extruder assembly 40. The head 28 of the mine
roof bolt 26 may be formed by first and second forging processes performed by the
first and second cone assemblies 130, 132 to progressively form a cone shape on an
end of the bar 20 and a third forging process performed by the insert assembly 134
to provide the final shape and dimension of the head 28 shown in Figs. 2A and 2B.
The header assembly 120, however, may include one or more forging processes to provide
the final head shape and size.
[0021] Referring to Figs. 15-18, another embodiment of the processing station 16 includes
a threading assembly 162. The threading assembly 162 is configured to thread a portion
of the mine roof bolt 26, such as an end of the mine roof bolt 26. The threading machine
162 generally includes a frame assembly 164, a moving die assembly 166, and a stationary
die assembly 168. The frame assembly 164 includes three frame plates 170 secured to
a base plate 172, a back plate 174, and a front plate 176. The front plate 176 defines
an opening 178 that is configured to receive a portion of the mine roof bolt 26. The
frame assembly 164 also includes removable gusset plates 180 and a gusset base plate
182. The moving die assembly 166 is movable relative to the frame assembly 164 and
the stationary die assembly 168 via a die cylinder 184. The die cylinder 184 may be
a hydraulic cylinder, although other suitable arrangements for moving the moving die
assembly 166 may be utilized. The moving die assembly 166 includes a moving die block
186 and a moving die 188 that is received by the moving die block 186. The moving
die block 186 and moving die 188 are moved vertically between a retracted position
and an extended position along a track formed by a frame track 190 secured to the
back plate 174 and a die track 192 secured to the moving die block 186. The stationary
die assembly 168 is fixed relative to the frame assembly 164 and includes a stationary
die block 194 and a stationary die 196 received by the stationary die block 194.
[0022] Referring again to Figs. 15-18, the threading assembly 162 also includes a support
stand 198 having first and second paddles 202, 204 that are each configured to receive
the mine roof bolt 26 for positioning the mine roof bolt 26 between the moving and
stationary dies 188, 196. The first and second paddles 202, 204 are also configured
to pivot downwardly when engaged and return to their original position. The first
and second paddles 202, 204 may include a spring mechanism (not shown) to return the
paddles 202, 204 to their original position after pivoting downward. The threading
assembly 162 includes a pusher member 206 that is moveable between a retracted and
extended position by a pusher cylinder 208. The pusher member 206 is moved to the
extended position and is configured to engage a mine roof bolt 26 positioned on the
first and second paddles 202, 204. The pusher member 206 further causes the paddles
202, 204 to pivot downward and ensures that the mine roof bolt 26 is positioned between
the moving and stationary dies 188, 196 once the threading operation is commenced.
The threading assembly 162 is configured to receive the mine roof bolt 26 between
the stationary die 196 and the moving die 188 and moving the moving die 188 to roll
the mine roof bolt 26 and form threads on a portion of the mine roof bolt 26. The
end of the mine roof bolt 26 to be threaded may be fed through the opening 178 in
the front plate 176 and supported by the paddles 202, 204 of the support stand 198.
[0023] Referring still to Figs. 15-18, the mine roof bolt 26 is rolled between the moving
die 188 and the stationary die 196 to form threads on a portion of the mine roof bolt
26 and is deposited onto the base plate 172 at the bottom of the threading assembly
162. The gusset plates 180 are configured to support the threading assembly 162 as
a stand alone unit. However, the gusset plates 180 may be removed and the threading
assembly 162 can be secured attached to one of the other processing stations 40, 120.
In particular, the front plate 176 of the threading assembly 162 can be secured attached
to one of the frame plates 52 of the extruder assembly 40 to provide continuous throughput
of the mine roof bolts 26. After being threaded, the mine roof bolts 26 may be carried
by a conveyor arrangement (not shown) from the threading machine to a packaging area
or further processing area.
[0024] Referring to Figs. 19 and 20, the feed and indexing assembly 212 includes a feed
rack 214, a feed wheel 216, a drive member 218, drive sprockets 220, and indexing
clamps 222. The feed rack 214 is configured to provide a continuous feed of bars 20
to the feed wheel 216. The feed wheel 216 is generally disc-shaped and includes a
plurality of notches 224 that are configured to receive the bars 20. The feed wheel
216 continuously rotates and receives bars 20 in the notches 224, which are fed from
the feed rack 214. The feed wheel 216 feeds the bars 20 to the conveyor 12 shown in
Fig. 1. The conveyor 12 is embodied as the drive member 218 mounted on the drive sprockets
220. The drive member 218 may be a drive chain, although other suitable arrangements
may be utilized for the drive member 218. A plurality of drive members 218 and a plurality
of drive sprockets 220 may be utilized to support the bars 20 or mine roof bolts 26
at each end. The drive sprockets 220 are driven and rotated to move the bars 20 or
mine roof bolts 26 along the conveyer 12 and through the various processing stations
16. The drive sprockets 220 may be driven via an electric motor, although other suitable
arrangements may be utilized to drive the drive sprockets 220. The drive member 218
may include a plurality of sets of indexing clamps 222 that receive the bars 20 from
the feed wheel 216 and position the bars 20 a predetermined lateral distance apart
from each other. The indexing clamps 222 are secured to the drive member 218 and are
configured to be spaced apart as they rotate about the drive sprockets 220. In particular,
as shown in Fig. 19, the indexing clamps 222 separate as they rotate around the drive
sprocket 220 and receive the bar 20 from the feed wheel 216. As the indexing clamps
222 move beyond the drive sprocket 220, the indexing clamps 222 are moved back together
to receive and index the bars 20.
[0025] Referring to Fig. 20, the feed and indexing assembly 212 further includes an index
cylinder 226 and a stop plate 228 that are configured to index the longitudinal position
of the bars 20 or mine roof bolts 26. The index cylinder 226 includes an engagement
230 that is moveable between first and second positions and is configured to engage
the bars 20 and move them in a longitudinal direction. In particular, the bars 20
are engaged by the engagement 230 of the index cylinder 226 until the bars 20 abut
the stop plate 228 to ensure that the bars 20 have a proper longitudinal orientation
before entering the processing stations 16.
[0026] Although the invention has been described in detail for the purpose of illustration
based on what is currently considered to be the most practical and preferred embodiments,
it is to be understood that such detail is solely for that purpose and that the invention
is not limited to the disclosed embodiments but, on the contrary, is intended to cover
modifications and equivalent arrangements that are within the scope of the appended
claims.
1. A system (10) for producing a mine roof bolt comprising:
a feed arrangement configured to continuously deliver bars to a conveyor (12);
said conveyor (12) configured to index and transport said bars;
a processing station (16) comprising at least one of a header assembly (120), an extruding
assembly (40), and a threading assembly (162),
wherein the processing station (16) is positioned along the conveyor (12) and configured
to receive and process a portion of the bars to form a mine roof bolt, characterized in that the feed arrangement comprises a feed rack (214) and a feed wheel (216) positioned
adjacent to the feed rack (214), the feed wheel (216) configured to receive bars from
the feed rack (214) and to deliver the bars to the conveyor (12), that the conveyor
(12) further comprises at least two drive sprockets (220), and a drive member (218)
forming a continuous loop and extending circumferentially around the at least two
drive sprockets (220) and that the drive member (218) includes a plurality of indexing
clamps (222), the plurality of indexing clamps (222) being configured to receive the
bars and index a lateral position of the bars relative to adjacent bars.
2. The system (10) of claim 1, further comprising a heating source (14) configured to
heat a portion of the bar, wherein the processing station (16) comprises a header
assembly (120), the header assembly (120) comprising:
a frame assembly (42, 164), upper and lower clamp assemblies, and at least one header
die assembly, the upper and lower clamp assemblies configured to engage a portion
of the bar, the at least one header die assembly comprising a die cylinder (68, 184),
a die holder, and a tool received by the die holder, the die holder moveable between
a retracted and extended position via the die cylinder (68,184), wherein the header
assembly (120) is configured to form a head (28) at an end of the bar.
3. The system (10) of claim 1, wherein the processing station (16) comprises an extruder
assembly (40), the extruder assembly (40) comprising:
a frame assembly (42, 164), upper and lower clamp assemblies, and at least one extruder
die assembly, the upper and lower clamp assemblies configured to engage a portion
of the bar, the at least one extruder die assembly comprising a die cylinder (68,
184), a die holder, and a tool received by the die holder, the die holder moveable
between a retracted and extended position via the die cylinder (68, 184), wherein
the extruder assembly (40) is configured to extrude a portion of the bar.
4. The system (10) of claim 3, wherein the processing station (16) further comprises
a threading assembly (162), the threading assembly (162) comprising:
a frame assembly (42,164), a moving die assembly (166), and a stationary die assembly
(168), the moving die assembly (166) is movable relative to the frame assembly (42,164)
and the stationary die assembly (168) via a threading die cylinder, the moving die
assembly (166) and the stationary die assembly (168) are configured to form threads
on a portion of the rod.
5. The system (10) of claim 4, wherein the threading assembly (162) further comprises
a support stand (198) having first and second paddles (202, 204), the first and second
paddles (202, 204) are each configured to initially support the rod prior to forming
threads on a portion of the rod, the first and second paddles (202, 204) are movable
in a downward direction.
6. The system (10) of claim 1, further comprising an index cylinder (226) and a stop
plate (228) that are configured to index the longitudinal position of a bar positioned
on the conveyor (12), the index cylinder (226) moveable between first and second positions
and configured to move a bar until the bar contacts the stop plate (228).
7. The system (10) of claim 1, further comprising a receptacle positioned adjacent to
an end of the conveyor (12), the plurality of indexing clamps (222) is configured
to release the bars and deposit the bars into the receptacle.
8. A method of producing a mine roof bolt utilizing the system (10) of any of claims
1 to 7, the method comprising:
providing a plurality of bars of a predetermined length;
moving the plurality of bars along the conveyor (12) and indexing the position of
the plurality of bars;
passing a portion of each of the plurality of bars through the processing station
(16);
and
processing a portion of each of the plurality of bars with the processing station
(16).
9. The method of claim 8, wherein a longitudinal and lateral position of the plurality
of bars is indexed.
10. The method of claim 9, wherein the processing station (16) comprises a header assembly
(120), and wherein processing the portion of each of the plurality of bars comprises:
heating a portion of a first bar of the plurality of bars;
passing the portion of the first bar through the header assembly (120); and
forging a head (28) at an end of the first bar.
11. The method of claim 9, wherein the processing station (16) comprises an extruder assembly
(40), and wherein processing the portion of each of the plurality of bars comprises:
passing a portion of a first bar of the plurality of bars through the extruder assembly
(40);
actuating a die cylinder (68, 184) to move a die holder assembly (70) toward the first
bar; and
extruding a portion of the first bar.
12. The method of claim 11, further comprising:
after extruding the portion of the first bar, moving the first bar along the conveyor
(12) toward a second extruder assembly (40);
passing the portion of the first bar of the plurality of bars through the second extruder
assembly (40);
actuating a die cylinder (68, 184) to move a die holder assembly (70) toward the first
bar; and
further extruding the portion of the first bar.
13. The method of claim 8, wherein providing the plurality of bars comprises:
moving each of the plurality of bars from a feed rack (214) to the conveyor (12) using
a feed delivery device.
1. System (10) zum Herstellen eines Firstankers für den Bergbau, umfassend:
eine Zufuhranordnung, die so konfiguriert ist, dass sie kontinuierlich Stangen an
einen Förderer (12) liefert;
der Förderer (12) ist so konfiguriert, dass er die Stangen indexiert und transportiert;
eine Verarbeitungsstation (16), die mindestens eine von einer Kopfanordnung (120),
einer Extrudieranordnung (40) und einer Gewindeanordnung (162) umfasst, wobei die
Verarbeitungsstation (16) entlang dem Förderer (12) positioniert und so konfiguriert
ist, dass sie einen Abschnitt der Stangen aufnimmt und verarbeitet, um einen Firstanker
für den Bergbau zu bilden, dadurch gekennzeichnet, dass die Zuführanordnung einen Zuführständer (214) und ein Zuführrad (216) umfasst, das
neben dem Zuführständer (214) positioniert ist, wobei das Zuführrad (216) so konfiguriert
ist, dass es Stangen von dem Zuführständer (214) aufnimmt und die Stangen an den Förderer
(12) abgibt, dass der Förderer (12) ferner mindestens zwei Antriebskettenräder (220)
und ein Antriebselement (218) umfasst, das eine Endlosschleife bildet und sich in
Umfangsrichtung um die mindestens zwei Antriebskettenräder (220) erstreckt, und dass
das Antriebselement (218) eine Vielzahl von Indexierklammern (222) umfasst, wobei
die Vielzahl von Indexierklammern (222) so konfiguriert ist, dass sie die Stangen
aufnehmen und eine seitliche Position der Stangen relativ zu benachbarten Stangen
indexieren.
2. System (10) nach Anspruch 1, ferner umfassend eine Heizquelle (14), die so konfiguriert
ist, dass sie einen Abschnitt der Stange erwärmt, wobei die Verarbeitungsstation (16)
eine Kopfanordnung (120) aufweist, die Kopfanordnung (120) umfassend:
eine Rahmenanordnung (42, 164), eine obere und eine untere Klemmanordnung und mindestens
eine Kopfmatrizen-Anordnung, wobei die obere und die untere Klemmanordnung so konfiguriert
sind, dass sie mit einem Abschnitt der Stange in Eingriff kommen, wobei die mindestens
eine Kopfmatrizen-Anordnung einen Matrizenzylinder (68, 184), einen Matrizenhalter
und ein von dem Matrizenhalter aufgenommenes Werkzeug umfasst, wobei der Matrizenhalter
über den Matrizenzylinder (68, 184) zwischen einer eingefahrenen und einer ausgefahrenen
Position bewegt werden kann, wobei die Kopfanordnung (120) so konfiguriert ist, dass
sie an einem Ende der Stange einen Kopf (28) bildet.
3. System (10) nach Anspruch 1, wobei die Verarbeitungsstation (16) eine Extrudieranordnung
(40) umfasst, die Extrudieranordnung (40) umfassend:
eine Rahmenanordnung (42, 164), eine obere und eine untere Klemmanordnung und mindestens
eine Extrudermatrizen-Anordnung, wobei die obere und die untere Klemmanordnung so
konfiguriert sind, dass sie mit einem Abschnitt der Stange in Eingriff kommen, wobei
die mindestens eine Extrudermatrizen-Anordnung einen Matrizenzylinder (68, 184), einen
Matrizenhalter und ein von dem Matrizenhalter aufgenommenes Werkzeug umfasst, wobei
der Matrizenhalter über den Matrizenzylinder (68, 184) zwischen einer eingefahrenen
und einer ausgefahrenen Position bewegt werden kann, wobei die Extrudieranordnung
(40) so konfiguriert ist, dass sie einen Abschnitt der Stange extrudiert.
4. System (10) nach Anspruch 3, wobei die Verarbeitungsstation (16) ferner eine Gewindeanordnung
(162) umfasst, die Gewindeanordnung (162) umfassend: eine Rahmenanordnung (42,164),
eine bewegliche Matrizenanordnung (166) und eine stationäre Matrizenanordnung (168),
wobei die bewegliche Matrizenanordnung (166) relativ zur Rahmenanordnung (42, 164)
und zur stationären Matrizenanordnung (168) über einen Gewinde-Matrizenzylinder beweglich
ist, wobei die bewegliche Matrizenanordnung (166) und die stationäre Matrizenanordnung
(168) so konfiguriert sind, dass sie Gewinde auf einem Abschnitt der Stange bilden.
5. System (10) nach Anspruch 4, wobei die Gewindeanordnung (162) ferner einen Stützständer
(198) mit einer ersten und einer zweiten Schaufel (202, 204) umfasst, wobei die erste
und die zweite Schaufel (202, 204) jeweils so konfiguriert sind, dass sie zunächst
die Stange stützen, bevor sie Gewinde an einem Abschnitt der Stange bilden, wobei
die erste und die zweite Schaufel (202, 204) in einer Abwärtsrichtung beweglich sind.
6. System (10) nach Anspruch 1, ferner umfassend einen Indexzylinder (226) und eine Anschlagplatte
(228), die so konfiguriert sind, dass sie die Längsposition einer auf dem Förderer
(12) positionierten Stange indexieren, wobei der Indexzylinder (226) zwischen einer
ersten und einer zweiten Position beweglich ist und so konfiguriert ist, dass er eine
Stange bewegt, bis die Stange die Anschlagplatte (228) berührt.
7. System (10) nach Anspruch 1, ferner umfassend einen Behälter, der benachbart zu einem
Ende des Förderers (12) angeordnet ist, wobei die Vielzahl von Indexierklammern (222)
so konfiguriert ist, dass sie die Stangen freigibt und die Stangen in dem Behälter
ablegt.
8. Verfahren zum Herstellen eines Firstankers für den Bergbau unter Verwendung des Systems
(10) nach einem der Ansprüche 1 bis 7, das Verfahren umfassend:
Bereitstellen einer Vielzahl von Stangen mit einer vorgegebenen Länge;
Bewegen der Vielzahl von Stangen entlang des Förderers (12) und Indexieren der Position
der Vielzahl von Stangen;
Durchleiten eines Abschnitts von jeder der Vielzahl von Stangen durch die Verarbeitungsstation
(16); und
Verarbeiten eines Abschnitts von jeder der Vielzahl von Stangen mit der Verarbeitungsstation
(16).
9. Verfahren nach Anspruch 8, wobei eine Längs- und Querposition der Vielzahl von Stangen
indiziert wird.
10. Verfahren nach Anspruch 9, wobei die Verarbeitungsstation (16) eine Kopfanordnung
(120) umfasst und wobei das Verarbeiten des Abschnitts jeder der Vielzahl von Stangen
umfasst:
Erwärmen eines Abschnitts einer ersten Stange der Vielzahl von Stangen;
Durchleiten des Abschnitts der ersten Stange durch die Kopfanordnung (120); und
Schmieden eines Kopfes (28) am Ende der ersten Stange.
11. Verfahren nach Anspruch 9, wobei die Verarbeitungsstation (16) eine Extrudieranordnung
(40) umfasst und wobei das Verarbeiten des Abschnitts jeder der Vielzahl von Stangen
umfasst:
Durchleiten eines Abschnitts einer ersten Stange der Vielzahl von Stangen durch die
Extrudieranordnung (40);
Betätigen eines Matrizenzylinders (68, 184), um eine Matrizenhalteranordnung (70)
in Richtung der ersten Stange zu bewegen; und
Extrudieren eines Abschnitts der ersten Stange.
12. Verfahren von Anspruch 11, ferner umfassend:
nach dem Extrudieren des Abschnitts der ersten Stange, Bewegen der ersten Stange entlang
des Förderers (12) zu einer zweiten Extrudieranordnung (40);
Durchleiten des Abschnitts der ersten Stange der Vielzahl von Stangen durch die zweite
Extrudieranordnung (40);
Betätigen eines Matrizenzylinders (68, 184), um eine Matrizenhalteranordnung (70)
in Richtung der ersten Stange zu bewegen; und
ferner Extrudieren des Abschnitts der ersten Stange.
13. Verfahren nach Anspruch 8, wobei das Bereitstellen der Vielzahl von Stangen umfasst:
Bewegen jeder der mehreren Stangen von einem Zuführständer (214) auf den Förderer
(12) unter Verwendung einer Zuführabgabevorrichtung.
1. Système (10) pour produire un boulon de toit de mine, ledit système comprenant :
un agencement d'alimentation conçu pour fournir, en continu, des barres au convoyeur
(12) ;
ledit convoyeur (12) étant conçu pour indexer et transporter lesdites barres ;
un poste de traitement (16) comprenant au moins un ensemble collecteur (120), un ensemble
(40) servant à extruder et un ensemble (162) servant à fileter, système dans lequel
le poste de traitement (16) est positionné le long du convoyeur (12) et conçu pour
recevoir et pour traiter une partie des barres, afin de former un boulon de toit de
mine, ledit système étant caractérisé en ce que l'agencement d'alimentation comprend un support d'alimentation (214) et une roue
d'alimentation (216) positionnée en étant adjacente audit support d'alimentation (214),
la roue d'alimentation (216) étant conçue pour recevoir des barres provenant du support
d'alimentation (214) et conçue pour fournir les barres au convoyeur (12), ledit système
étant caractérisé en ce que le convoyeur (12) comprend en outre au moins deux pignons d'entraînement (220) et
un élément d'entraînement (218) formant une boucle continue et s'étendant circonférentiellement
autour desdits pignons d'entraînement (220) au moins au nombre de deux, et caractérisé en ce que ledit élément d'entraînement (218) comprend une pluralité de pinces d'indexation
(222), la pluralité de pinces d'indexation (222) étant conçue pour recevoir les barres
et pour indexer une position latérale des barres, par rapport à des barres adjacentes.
2. Système (10) selon la revendication 1, comprenant en outre une source de chauffage
(14) conçue pour chauffer une partie de la barre, système dans lequel le poste de
traitement (16) comprend un ensemble collecteur (120), l'ensemble collecteur (120)
comprenant :
un ensemble cadre (42, 164), des ensembles de serrage supérieur et inférieur, et au
moins un ensemble filière du collecteur, les ensembles de serrage supérieur et inférieur
étant conçus pour engager une partie de la barre, l'ensemble filière - au moins au
nombre de un - du collecteur comprenant un cylindre de filière (68, 184), un porte-filière
et un outil reçu par le porte-filière, le porte-filière pouvant être mobile entre
une position rentrée et une position déployée via le cylindre de filière (68, 184),
où l'ensemble collecteur (120) est conçu pour former une tête (28) au niveau d'une
extrémité de la barre.
3. Système (10) selon la revendication 1, dans lequel le poste de traitement (16) comprend
un ensemble formant une extrudeuse (40), ledit ensemble formant une extrudeuse (40)
comprenant :
un ensemble cadre (42, 164), des ensembles de serrage supérieur et inférieur, et au
moins un ensemble filière de l'extrudeuse, les ensembles de serrage supérieur et inférieur
étant conçus pour engager une partie de la barre, l'ensemble filière - au moins au
nombre de un - de l'extrudeuse comprenant un cylindre de filière (68, 184), un porte-filière
et un outil reçu par le porte-filière, le porte-filière pouvant être mobile entre
une position rentrée et une position déployée via le cylindre de filière (68, 184),
où l'ensemble formant une extrudeuse (40) est conçu pour extruder une partie de la
barre.
4. Système (10) selon la revendication 3, dans lequel le poste de traitement (16) comprend
en outre un ensemble (162) servant à fileter, l'ensemble (162) servant à fileter comprenant
:
un ensemble cadre (42, 164), un ensemble filière mobile (166) et un ensemble filière
fixe (168), l'ensemble filière mobile (166) peut être déplacé par rapport à l'ensemble
cadre (42, 164) et par rapport à l'ensemble filière fixe (168) via un cylindre de
filière de filetage, l'ensemble filière mobile (166) et l'ensemble filière fixe (168)
étant conçus pour former des filetages sur une partie de la tige.
5. Système (10) selon la revendication 4, dans lequel l'ensemble (162) servant à fileter
comprend en outre un pied support (198) ayant des première et seconde ailettes (202,
204), lesdites première et seconde ailettes (202, 204) sont chacune conçues pour supporter
initialement la tige, avant de former des filetages sur une partie de la tige, lesdites
première et seconde ailettes (202, 204) sont mobiles vers le bas.
6. Système (10) selon la revendication 1, comprenant en outre un cylindre d'index (226)
et une plaque de butée (228) qui sont conçus pour indexer la position longitudinale
d'une barre positionnée sur le convoyeur (12), ledit cylindre d'index (226) peut être
mobile entre une première position et une seconde position et est conçu pour déplacer
une barre jusqu'à ce que la barre vienne au contact de la plaque de butée (228).
7. Système (10) selon la revendication 1, comprenant en outre un récipient positionné
en étant adjacent à une extrémité du convoyeur (12), la pluralité de pinces d'indexation
(222) étant conçue pour libérer les barres et pour déposer les barres dans le récipient.
8. Procédé de production d'un boulon de toit de mine en utilisant le système (10) selon
l'une quelconque des revendications 1 à 7, ledit procédé consistant :
à fournir une pluralité de barres d'une longueur prédéterminée ;
à déplacer la pluralité de barres le long du convoyeur (12) et à indexer la position
de la pluralité de barres ;
à faire passer une partie de chacune des barres formant la pluralité de barres à travers
le poste de traitement (16) ;
et
à traiter, avec le poste de traitement (16), une partie de chacune des barres formant
la pluralité de barres.
9. Procédé selon la revendication 8, dans lequel une position longitudinale et latérale
de la pluralité de barres est indexée.
10. Procédé selon la revendication 9, dans lequel le poste de traitement (16) comprend
un ensemble collecteur (120), et procédé dans lequel le traitement de la partie de
chacune des barres formant la pluralité de barres consiste :
à chauffer une partie d'une première barre de la pluralité de barres ;
à faire passer la partie de la première barre à travers l'ensemble collecteur (120)
; et
à forger une tête (28) au niveau d'une extrémité de la première barre.
11. Procédé selon la revendication 9, dans lequel le poste de traitement (16) comprend
un ensemble formant une extrudeuse (40), et procédé dans lequel le traitement de la
partie de chacune des barres formant la pluralité de barres consiste :
à faire passer une partie d'une première barre de la pluralité de barres à travers
l'ensemble formant une extrudeuse (40) ;
à actionner un cylindre de filière (68, 184), afin de déplacer un ensemble porte-filière
(70) vers la première barre ; et
à extruder une partie de la première barre.
12. Procédé selon la revendication 11, consistant en outre :
après extrusion de la partie de la première barre, à déplacer la première barre le
long du convoyeur (12) vers un deuxième ensemble formant une extrudeuse (40) ;
à faire passer la partie de la première barre de la pluralité de barres à travers
le deuxième ensemble formant une extrudeuse (40) ;
à actionner un cylindre de filière (68, 184), afin de déplacer un ensemble porte-filière
(70) vers la première barre ; et
à procéder à une extrusion supplémentaire de la partie de la première barre.
13. Procédé selon la revendication 8, dans lequel le fait de fournir la pluralité de barres
consiste :
à déplacer chacune des barres formant la pluralité de barres, à partir d'un support
d'alimentation (214) jusqu'au convoyeur (12), en utilisant un dispositif fournissant
l'alimentation.