

EP 2 977 479 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 27.01.2016 Bulletin 2016/04

(21) Application number: 14767775.1

(22) Date of filing: 17.03.2014

(51) Int Cl.: C22C 38/00 (2006.01) C22C 38/58 (2006.01)

C22C 38/14 (2006.01)

(86) International application number: PCT/JP2014/057205

(87) International publication number: WO 2014/148447 (25.09.2014 Gazette 2014/39)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

(30) Priority: 22.03.2013 JP 2013060452

(71) Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Kobe-shi, Hyogo 651-8585 (JP)

(72) Inventors:

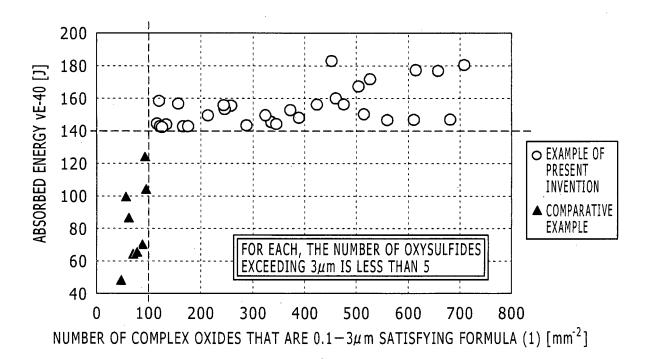
· SUGITANI, Takashi Hyogo 651-2271 (JP) · SHIMAMOTO, Masaki Hyogo 651-2271 (JP)

 NAKO, Hidenori Hyogo 651-2271 (JP)

 KIMURA, Sei Hyogo 675-0137 (JP)

· SATO, Shinsuke Hyogo 675-0137 (JP)

(74) Representative: Müller-Boré & Partner Patentanwälte PartG mbB Friedenheimer Brücke 21 80639 München (DE)


(54)STEEL MATERIAL HAVING SUPERIOR TOUGHNESS AT WELDING HEAT AFFECTED ZONE

In this steel material satisfying a predetermined chemical composition and having a remainder comprising iron and unavoidable impurities, a complex oxide is contained containing REM, Zr, Ti, Al, Ca, and S, the complex oxide has no greater than 5.0/mm² of oxides having a circular-equivalent diameter of greater than 3 μm, and with respect to complex oxides having a circular-equivalent diameter of 0.1-3 µm, there are at least 100/mm² of complex oxides satisfying formula (1), and furthermore the average composition of the complex oxides that are 0.1-3 µm satisfying formula (1) is such that there is no greater than 20% of Al₂O₃, 3-20% of TiO₂, 5-50% of ZrO₂, 5-50 of REM oxide, 5-50% of CaO, and 1-15% of S.

$$0.008 \le (1/d) \times \{mass\% \ S/(mass\% \ CaO + mass\% \ REM_2O_3)\} \le 0.289...(1)$$

(where d is the circular-equivalent diameter of each complex oxide, and is 0.1-3 μm).

FIG.1

Description

Technical Field

[0001] The present invention relates to a thick steel plates suitable to be used in welded structures such as ships, constructions, and bridges, and in particular, to a steel material that achieves superior HAZ toughness even for high heat input welding.

Background Art

10

30

35

40

45

50

55

[0002] In recent years, there is the tendency that structures using steel materials, such as bridges, high-rise buildings, and large ships, grow in size, and there is a need for steel materials with high strength and large thicknesses in order to achieve these large structures. In addition to that, there is a need for improving welding efficiencies in welding steel materials with high strength and large thicknesses in order to improve construction efficiencies of large structures and to reduce construction cost. In order to improve a welding efficiency of a steel material, it is effective to reduce the number of welding times for the same portion, and high heat input welding with a high efficiency is selected, in which welding is completed at one time by performing high heat input welding in which a large amount of heat (welding heat) is applied to a steel material, rather than the welding in which small amounts of heat (welding heat) are applied multiple times to a steel material.

[0003] However, the temperature of a welding heat affected zone (hereinafter, also referred to as a HAZ) exposed to welding heat generally becomes high while welding is being performed, regardless of whether the amount of heat of the welding is large or small, and hence the crystal grain of the steel material is likely to coarsen. In addition, as the amount of heat put into a steel material is larger, the temperature of a HAZ becomes higher, thereby causing a cooling time to be longer. It is already known that, because a long cooling time in a high temperature causes the formation of a brittle upper bainite structure or the formation of an embrittlement structure, such as island martensite, in a HAZ to be promoted, the HAZ toughness of a steel material may be decreased.

[0004] In order to deal with the aforementioned decrease in HAZ toughness occurring due to welding heat, the techniques disclosed in Patent Documents 1-5 are presented. Patent Document 1 is intended to provide a steel material having superior HAZ toughness and a production method thereof. Specifically, the production method disclosed in Patent Document 1 is said that, fine sulfides are dispersed and the particles in a HAZ structure heated to no lower than 1400°C are made fine by adding Mg and/or REM in addition to Ca having a strong sulfide formation ability in molten steel, so that fine oxides are formed, thereby allowing the HAZ toughness good even for high heat input welding of no less than 200 kJ/cm to be achieved.

[0005] Patent Document 2 is intended to provide steel for high strength welded structure, the steel having superior base plate toughness and superior welded zone HAZ toughness, and a production method thereof. Specifically, the production method disclosed in Patent Document 2 is intended to cause heated γ particles in a base plate to be fine and further to cause heated γ particles in a HAZ to be fine regardless of welding heat input, by adding one or more of Mg, Ca, and REM after Ti is added or simultaneously when Ti is added such that oxides and sulfides are finely dispersed. The production method of Patent Document 2 is said that steel for high strength welded structure, the steel having good base plate toughness and good welded zone HAZ toughness, can be produced as an effect created by these two particle refinements.

[0006] Patent Document 3 is intended to provide a thick steel plate having superior HAZ toughness for super-high heat input welding and a production method thereof. Specifically, in the production method of Patent Document 3, the form of the dendrite formed in a solidification process is further controlled in addition to an adjustment in which the particle compositions of oxides and sulfides, etc., in molten steel are adjusted. Thereby, the production method of Patent Document 3 is said that, austenite particles can be made fine even in a HAZ for super-high heat input welding of no less than 300 kJ/cm by dispersing the dispersed particles in a steel plate more uniformly and finely than related art, thereby allowing HAZ toughness to be remarkably improved.

[0007] Patent Document 4 is intended to provide a high-strength steel plate having a strength of X100 or more in the API standards, the steel plate having good HAZ toughness. Specifically, the high-strength steel plate of Patent Document 4 contains (1) TiN-based fine precipitates containing Mg-based oxides having a size of no greater than 0.1 μ m by limiting the amounts of Ti, Mg, REM, AI, S, and N, thereby suppressing the coarsening of γ particles even in the vicinity of a fusion line. Further, this high-strength steel plate is said to allow the structure to be made fine across a HAZ and HAZ toughness to be improved by containing (2) complexes between oxides mainly formed by Ti, Mg, and REM, the oxides having a size of no less than 0.1 μ m, and MnS, so that IGF is produced from the insides of relatively small γ particles. [0008] Patent Document 5 is intended to present a non-heat treated high-tensile steel material having good base plate toughness and having good HAZ toughness. Specifically, the non-heat treated high-tensile steel material of Patent Document 5 is controlled to contain, in units of weight%, 20-90% of Ti oxides, 5-50% of the total of CaO and REM oxides,

and no greater than 70% of Al_2O_3 as optimal composition ranges of optimal oxide-based inclusions. It is said that, thereby, the non-heat treated high-tensile steel material can effectively utilize an ability of suppressing the crystal grain coarsening of the inclusions (pinning effect) without causing nozzle clogging or production of a harmful inclusion cluster, and hence HAZ toughness can be improved, and further the toughness and strength of a base plate can be improved by optimally dispersing TiN or further VN.

Prior Art Document

Patent Document

[0009]

10

15

20

30

35

50

55

[Patent Document 1] Japanese Patent Publication No. 4261968

[Patent Document 2] Japanese Patent Publication No. 4762450

[Patent Document 3] Japanese Patent Publication No. 4039223

[Patent Document 4] Japanese Patent Application Publication No. Hei 11-264048

[Patent Document 5] Japanese Patent Publication No. 4144121

Disclosure of the Invention

Problem to be Solved by the Invention

[0010] As described above, each of Patent Documents 1-5 discloses that a decrease in HAZ toughness, occurring due to welding heat, can be dealt with; however, it is difficult to improve HAZ toughness for further high heat input welding, even when any technique is used. The technique disclosed in each of Patent Documents 1-3 is intended to make a HAZ structure fine by the pinning effect of an oxysulfide, but each of the Patent Documents never refers to an effect of making a structure fine by intra-granular transformation resulting from the oxysulfide, and hence the technique cannot be said as being a technique for dealing with further high heat input welding.

[0011] Patent Document 4 refers to structure transformation originating at an oxide, but a means for a coarse oxide, etc., is not described; and accordingly the possibility that HAZ toughness may be decreased due to the production of a coarse oxide cannot be excluded, and hence the technique thereof cannot be said as being a technique for dealing with further high heat input welding. Additionally, the technique disclosed in Patent Document 5 is one in which a HAZ structure is made fine by the pinning effect of an oxysulfide, but is not one in which the control of the structure transformation originating at an oxysulfide is taken into consideration, and accordingly the technique cannot be said as being a technique for dealing with further high heat input welding.

[0012] The present invention has been made in view of the aforementioned problems, and an object of the invention is to provide a steel material having superior toughness at welding heat affected zone (HAZ toughness) for high heat input welding.

40 Means for Solving the Problem

[0013] In the present invention, the following means is adopted in order to achieve the above object. That is, a technical means for solving the problems in the invention is a steel material containing, in units of mass%, 0.02-0.13% of C, 0.05-0.5% of Si, 1.0-2.5% of Mn, no greater than 0.03% of P (exclusive of 0%), no greater than 0.01% of S (exclusive of 0%), 0.002-0.040% of Al, 0.005-0.040% of Ti, 0.0003-0.020% of Zr, 0.0003-0.020% of REM, 0.0003-0.0080% of Ca, 0.0030-0.010% of N, and 0.0003-0.0050% of O, the steel material having a remainder comprising iron and unavoidable impurities and having superior toughness at welding heat affected zone, in which: the steel material contains a complex oxide containing REM, Zr, Ti, Al, Ca, and S; the complex oxide in the steel material has no greater than 5.0/mm² of oxides having a circular-equivalent diameter of greater than 3 μ m; with respect to complex oxides having a circular-equivalent diameter of 0.1-3 μ m, there are at least 100/mm² of complex oxides satisfying formula (1); and furthermore the average composition of the complex oxides that are 0.1-3 μ m satisfying formula (1) contains 20% or less of Al₂O₃, 3-20% of TiO₂, 5-50% of ZrO₂, 5-50% of REM oxide, 5-50% of CaO, and 1-15% of S.

 $0.008 \le (1/d) \times \{\text{mass\% S/(mass\% CaO} + \text{mass\%}\}$ $\text{REM}_2\text{O}_3)\} \le 0.289...(1)$

(where d is the circular equivalent

diameter of each complex oxide, and is $0.1-3 \mu m$).

[0014] Herein, it is better to contain at least one of 0.05-1.50% of Ni, 0.05-1.50% of Cu, 0.05-1.50% of Cr, and 0.05-1.50% of Mo.

[0015] It is also better to contain at least one of 0.002-0.10% of Nb and 0.002-0.10% of V. It is further better to contain 0.0005-0.0050% of B.

Advantage of the Invention

[0016] According to the present invention, a steel material, having superior toughness at welding heat affected zone (HAZ toughness) for high heat input welding, can be obtained.

Brief Description of the Drawings

15 **[0017]**

20

30

35

40

45

50

55

Fig. 1 is a graph showing measurement results of the HAZ toughness of steel materials according to an embodiment of the present invention;

Fig. 2 is a graph showing measurement results of the HAZ toughness of steel materials according to the present embodiment; and

Fig. 3 is a graph showing measurement results of the HAZ toughness of steel materials according to the embodiment.

Modes for Carrying Out the Invention

[0018] Hereinafter, a steel material having superior toughness at welding heat affected zone according to an embodiment of the invention of the present application (hereinafter, simply referred to as a steel material) will be described in detail with reference to the drawings. The steel material according to the present embodiment is a steel material exerting superior toughness of a welding heat affected zone (HAZ, Heat Affected Zone) that has been affected by very large welding energy in which welding heat input exceeds, for example, 60 kJ/mm. In the following description, a welding heat affected zone in the steel material according to the embodiment will be represented by a HAZ, and the toughness of a HAZ will be represented by HAZ toughness.

[0019] The steel material according to the present embodiment can stably achieve good HAZ toughness even for high heat input welding by producing a predetermined amount of complex oxides (oxysulfides containing AI, Ti, Zr, REM, Ca, and S), the complex oxide serving as a nucleus for intra-granular transformation, with the size and S concentration thereof being properly controlled. Specifically, the steel material is characterized as follows: the number of coarse complex oxides having a circular-equivalent diameter of greater than 3 μ m, which adversely affect an improvement in HAZ toughness, is significantly controlled; and complex oxides having a circular-equivalent diameter of 0.1-3 μ m, which is useful for an improvement in HAZ toughness, and having the composition and particle size thereof properly controlled are contained such that the number of the complex oxides is no less than a predetermined value. By this characteristic, the steel material according to the embodiment can exert stably superior HAZ toughness even for welding with large heat input.

[0020] The steel material according to the present embodiment, having the aforementioned characteristic, can be obtained by adding, for example, in the secondary refining of molten steel, each element so as to have the chemical component composition described below. The steel material according to the embodiment (hereinafter, simply referred to as the present steel material) contains: 0.02-0.13% of Carbon (C), 0.05-0.5% of Silicon (Si), 1.0-2.5% of manganese (Mn), no greater than 0.03% of phosphorus (P) (exclusive of 0%), no greater than 0.01% of sulfur (S) (exclusive of 0%), 0.002-0.040% of aluminum (Al), 0.005-0.040% of titanium (Ti), 0.0003-0.020% of zirconium (Zr), 0.0003-0.020% of rare earth metal (REM), 0.0003-0.0080% of calcium (Ca), 0.0030-0.010% of nitrogen (N), and 0.0003-0.0050% of oxygen (O), with a remainder comprising iron and unavoidable impurities. Furthermore, the present steel material contains complex oxides containing REM, Zr, Ti, Al, Ca, and S, and the complex oxide in the steel material has no greater than $5.0/\text{mm}^2$ of oxides having a circular-equivalent diameter of greater than $3\,\mu\text{m}$, and with respect to complex oxides having a circular-equivalent diameter of complex oxides satisfying formula (1).

$$0.008 \le (1/d) \times \{mass\% \ S/(mass\% \ CaO + mass\% \ REM_2O_3)\} \le 0.289...(1)$$

(where d is the circular equivalent

diameter of each complex oxide, and is 0.1-·3 μm).

[0021] Further, the average composition of the complex oxides that are 0.1-3 μ m satisfying formula (1) contains 20% or less of Al₂O₃, 3-20% of TiO₂, 5-50% of ZrO₂, 5-50% of REM, 5-50% of Cao, and 1-15% of S.

[0022] In the present embodiment, the contents of elements and components are represented by simply using "%", but it is be noted that the "%" is represented by simplifying "mass%". Subsequently, the structure of the aforementioned present steel material will be described in detail.

[Carbon (C): 0.02-0.13%]

10

15

40

[0023] C is an element indispensable for securing the strength of a steel material (base plate). Accordingly, C is added in an amount of no less than 0.02%, and preferably no less than 0.04%. However, if the content of C exceeds 0.13%, many island martensites (MA) are produced in a HAZ, which leads to a decrease in HAZ toughness, and also adversely affects weldability due to the generation of CO gas, etc. Accordingly, the content of C is made no greater than 0.13%, and preferably no greater than 0.1%.

[Silicon (Si): 0.05-0.5%]

[0024] Si is an element having a deacidification action and also contributing to an improvement in the strength of a base plate by solute strengthening. Accordingly, Si is added in an amount of no less than 0.05%, preferably no less than 0.07%, and more preferably no less than 0.1%. However, if the content of Si exceeds 0.5%, the weldability and the toughness of a steel material are decreased, and hence the upper limit of the content thereof is made 0.5%. In order to particularly improve HAZ toughness, it is recommended that the content of Si is made no greater than 0.3%. HAZ toughness is further improved as the content of Si is smaller; however, the strength of a steel material may be conversely decreased. Accordingly, the content of Si is made no greater than 0.5%, preferably no greater than 0.35%, and more preferably no greater than 0.25%.

[Manganese (Mn): 1.0-2.5%]

- [0025] Mn is an element contributing to an improvement in the strength of a base plate. However, if the content of Mn is less than 1.0%, the strength is decreased. Accordingly, Mn is added in an amount of no less than 1.0%, and preferably no less than 1.3%. However, if the content of Mn exceeds 2.5%, the weldability of a base plate is decreased. Accordingly, the content of Mn is made no greater than 2.5%, and preferably no greater than 2.0%.
- [Phosphorus (P): no greater than 0.03%]

[0026] P is an element likely to segregate, and is an element that segregates particularly in crystal grain boundaries in a steel material such that HAZ toughness is decreased. Because P is normally and unavoidably contained in a base plate in an amount of approximately 0.001%, the content of P is specified to be no greater than 0.03%. The content of P is made preferably no greater than 0.02%, and more preferably 0.01%. In the present embodiment, however, the content of P is not inclusive of 0%.

[Sulfur (S): no greater than 0.01%]

[0027] S is an element that produces a sulfide (MnS) by bonding with Mn, thereby decreasing the toughness or the ductility in the through-thickness of a base plate. For example, if S produces a sulfide of REM (e.g., LaS or CeS) by bonding with REM such as lanthanum La, cerium Ce, or the like, the production of REM oxides is hampered, and hence HAZ toughness is decreased. However, S is normally and unavoidably contained in a base plate in an amount of approximately 0.0005%, and hence the content of S is specified to be no greater than 0.01%. The content of S is preferably no greater than 0.008%, and more preferably no greater than 0.006%. In the present embodiment, however, the content of S is not inclusive of 0%.

[Aluminum (AI): 0.002-0.040%]

[0028] Al is an element acting as a deoxidizing agent. If the content of Al is small, molten steel is likely to be contaminated with oxygen. Accordingly, Al is added in an amount of no less than 0.002%, preferably no less than 0.004%, and more preferably no less than 0.005%. However, if Al is added to a base plate in an excessive amount, the added Al produces coarse Al oxides by reducing the oxides in the base plate, thereby decreasing HAZ toughness. Accordingly, the content

of AI is made no greater than 0.040%, preferably no greater than 0.025%, and more preferably no greater than 0.015%.

[Titanium (Ti): 0.005-0.040%]

[0029] Ti is an element contributing to an improvement in HAZ toughness by producing, in a base plate, nitrides, such as TiN, and oxides containing Ti. Accordingly, Al is added in an amount of no less than 0.005%, preferably no less than 0.010%, and more preferably no less than 0.014%. However, if Ti is added to a base plate in an excessive amount, the base plate itself is hardened by the solute strengthening of Ti, which leads to a decrease in HAZ toughness. Accordingly, the content of Ti is made no greater than 0.040%, preferably no greater than 0.030%, and more preferably no greater than 0.025%.

[Zirconium (Zr): 0.0003-0.020%]

15

20

30

35

40

55

[0030] Zr is an element contributing to an improvement in HAZ toughness by producing complex oxides containing Zr. Accordingly, Zr is added in an amount of no less than 0.0003%, preferably no less than 0.0005%, and more preferably no less than 0.0009%. However, if Zr is added to a base plate in an excessive amount, coarse Zr oxides (ZrO₂) are produced, thereby decreasing HAZ toughness. Further, the toughness of the base plate itself is decreased with coarse Zr carbides (ZrC) being produced. Accordingly, the content of Zr is made no greater than 0.020%, preferably no greater than 0.015%, and more preferably no greater than 0.010%.

[Rare Earth Metal (REM): 0.0003-0.020%]

[0031] REM is an element necessary for producing oxides. Oxides including the oxides produced by REM are likely to be finely dispersed in a steel material. These finely dispersed oxides serve as product nuclei of intergranular α in a HAZ, which contributes to an improvement in HAZ toughness. Accordingly, REM is added in an amount of no less than 0.0003%, preferably no less than 0.0005%, and more preferably no less than 0.0009%. However, if REM is added in an excessive amount, solid solution REM is produced and segregate in a base plate, thereby deteriorating the toughness of the base plate itself. Accordingly, the content of REM is made no greater than 0.020%, preferably no greater than 0.015%, and more preferably no greater than 0.010%.

[0032] Specifically, the REM means elements including lanthanoid elements (15 elements ranging from La to Ln), Sc (scandium), and Y (yttrium). In the present embodiment, it is preferable to contain, of these elements, at least one element selected from the group consisting of La, Ce, and Y, and more preferable to contain La and/or Ce.

[Calcium (Ca): 0.0003-0.0080%]

[0033] Ca is an element necessary for producing an oxide. Because Ca also serves as a product nucleus of intergranular α in a HAZ and contributes to an improvement in HAZ toughness, it is better to contain Ca in an amount of no less than 0.0003%, preferably no less than 0.0005%, and more preferably no less than 0.0007%. However, if Ca is added in an excessive amount, coarse Ca sulfides are produced, thereby deteriorating the toughness of a base plate. Accordingly, the content of Ca is made no greater than 0.0080%, preferably no greater than 0.0060%, and more preferably no greater than 0.0030%.

[Nitrogen (N): 0.0030-0.010%]

[0034] N is an element that precipitates nitrides (e.g., ZrN, TiN, etc.). A nitride contributes to an improvement in HAZ toughness by suppressing the coarsening of an austenite particle, which may occur while welding is being performed, by a pinning effect. Because N further promotes an austenite particle to be made fine by forming nitrides as the content of N is larger, N effectively acts to improve HAZ toughness. Accordingly, Al is added in an amount of no less than 0.0030%, preferably no less than 0.0040%, and more preferably no less than 0.0050%. However, if the content of N exceeds 0.010%, the amount of solid solution N is increased, thereby deteriorating the toughness of a base plate itself and also HAZ toughness. Accordingly, the content of N is made no greater than 0.010%, preferably no greater than 0.0090%, and more preferably no greater than 0.0080%.

[Oxygen (O): 0.0003-0.0050%]

[0035] O is an element indispensable for producing an oxide, and if the content thereof is less than 0.0003%, a sufficient amount of oxides cannot be obtained in a base plate. The content thereof is preferably no less than 0.0010%, and more preferably no less than 0.0015%. However, if the content thereof is greater than 0.0050%, HAZ toughness is decreased

due to the coarsening of oxides. Accordingly, the content of O is made no greater than 0.0050%, preferably no greater than 0.0040%, and more preferably no greater than 0.0035%.

[0036] Herein, the content of O refers to the amount of total oxygen, which means the total amount of O that forms oxides in a base plate and free O in the form of a solid solution in the base plate. The present steel material contains the aforementioned each element, and a remainder comprises iron and unavoidable impurities. The components of the remainder other than the aforementioned each element are iron and unavoidable impurities (e.g., Mg, As, Se, etc.).

[0037] The present steel material containing the aforementioned elements contains complex oxides (oxides and/or oxysulfides) containing REM, Zr, Ti, Al, Ca, and S. The complex oxide included in the present steel material is an Al-Ti-Zr-REM-Ca-S-based complex oxide containing both oxides of Al, Ti, Zr, REM, and Ca and sulfides; however, the complex oxide may contain, other than these, elements such as, for example, Mn and Si, and other component elements. An Al-Ti-Zr-REM-Ca-based oxide has a good lattice matching performance with a steel material and promotes inter-granular structure transformation (intra-granular transformation) in a HAZ, and hence the oxide is effective in causing the structure of a HAZ to be made fine.

[0038] With respect to the aforementioned complex oxides in the present steel material, the number of oxides having a circular-equivalent diameter of greater than 3 μ m is no greater than 5.0/mm² in the cross section of the steel material. Because a complex oxide having a circular-equivalent diameter of greater than 3 μ m is coarse, the complex oxide conversely decreases HAZ toughness for high heat input welding whose heat input almost reaches 60 kJ/mm. Accordingly, the number of complex oxides having a size of greater than 3 μ m should be made no greater than 5.0/mm².

[0039] On the other hand, the present steel material contains the aforementioned complex oxides such that, with respect to complex oxides having a circular-equivalent diameter of no less than 0.1 μ m and no greater than 3 μ m (hereinafter, expressed by 0.1-3 μ m) and satisfying formula (1), there are at least 100/mm² in the cross section of the steel material.

$$0.008 \le (1/d) \times \{mass\% \ S/(mass\% \ CaO + mass\% \ REM_2O_3)\} \le 0.289...(1)$$

(where d is the circular equivalent

10

20

25

30

35

40

45

50

55

diameter of each complex oxide, and is 0.1-3 μm).

[0040] This complex oxide having a circular-equivalent diameter of 0.1-3 μ m promotes intra-granular structure transformation (intra-granular transformation) in a HAZ and improves HAZ toughness, and hence a complex oxide having a circular-equivalent diameter of 0.1-3 μ m will be examined below. A complex oxide having a circular-equivalent diameter of less than 0.1 μ m hardly contributes to an improvement in HAZ toughness, and hence it is not included in the number of the aforementioned complex oxides.

[0041] Hereinafter, the reason why a complex oxide having a circular-equivalent diameter of 0.1-3 μ m should satisfy formula (1) will be described. First, REM and Ca are oxysulfide forming elements that can form both an oxide and a sulfide. So, if an S concentration (mass% S) to the concentrations of oxysulfide forming elements (REM $_2$ O $_3$ and CaO) is too high, excessively produced sulfides hamper the matching between oxides and the matrix, and hence an ability (intra-granular transformation ability), in which a complex oxide contributes to structure control, is decreased. On the other hand, if an S concentration (mass% S) to the concentrations of oxysulfide forming elements (REM $_2$ O $_3$ and CaO) is too low, the strain energy associated with the production of sulfides cannot be obtained, which becomes disadvantageous for intra-granular transformation and the intra-granular transformation ability is decreased. Furthermore, the strain energy resulting from the size of a complex oxide itself (circular-equivalent diameter d of a complex oxide) affects intragranular transformation.

[0042] In formula (1), the second term is shown, in which these conditions under which intra-granular transformation is believed to be affected are taken into consideration. In the second term of formula (1), there are optimal ranges both in an S concentration (mass% S) to the concentrations of oxysulfide forming elements (REM₂O₃ and CaO) and in the size of a complex oxide (circular-equivalent diameter d of a complex oxide), for generating the strain energy contributing to intra-granular transformation; and it is inferred that an upper limit and a lower limit may exist in the second term of formula (1). So, the upper limit and the lower limit of the second term of formula (1) were experimentally determined.

[0043] A method for determining the upper limit and the lower limit of the second term of formula (1) will be described. A heat input test, which simulated a HAZ in welding whose heat input was 60 kJ/mm, was first performed on a test material. Thereafter, the test material having subjected to the heat input test was subjected to mirror polishing such that corrosion progressed, and the presence/absence of intra-granular transformation resulting from a complex oxide was examined by revealing the structure with the corrosion. Subsequently, the composition and the size of a complex oxide in the test material were measured by an EPMA (Electron Probe MicroAnalyzer), so that the value of the second term of formula (1) was calculated with respect to a complex oxide having a size of 0.1-3 μ m.

[0044] The presence/absence of intra-granular transformation and the calculated values of the second term were summarized as the results shown in Table 1, and the range of the second term was set to be no less than 0.008 and no greater than 0.289 based on the values of the second terms of the steel materials in each of which the presence/absence of intra-granular transformation was shown with O mark (intra-granular transformation occurred).

[Table 1]

Circular- equivalent diameter d	Col	mposition of con	nplex oxide	Second term of formula (1)	Presence/ absence of intra granular transformation
[µm]	mass%S	mass%CaO	mass%REM ₂ O ₃		
1.9	1.1	39.5	42.3	0.007	×
2.0	1.4	34.7	48.5	0.008	0
1.8	2.1	31.1	40.5	0.016	0
1.6	3.4	10.7	36.3	0.045	0
1.7	4.8	19.6	22.7	0.067	0
0.8	3.2	19.5	24	0.092	0
0.6	4.3	15.4	34.2	0.145	0
0.7	8.2	27.5	38.1	0.179	0
0.1	1.4	26.6	42.3	0.203	0
1.2	13.4	30.2	13.5	0.256	0
1.5	7.2	7.4	9.2	0.289	0
1.4	9.7	10.8	12	0.304	×
0.5	4.5	8.1	19.6	0.337	×

[0045] With respect to complex oxides having a circular-equivalent diameter of 0.1-3 μ m and satisfying formula (1), there are at least 100/mm² contained, and furthermore the average composition thereof should contain no greater than 20% of Al₂O₃, no less than 3% and no greater than 20% (3-20%) of TiO₂, no less than 5% and no greater than 50% (5-50%) of ZrO₂, no less than 5% and no greater than 50% (5-50%) of REM oxide, no less than 5% and no greater than 50% (5-50%) of CaO, and no less than 1% and no greater than 15% (1-15%) of S.

[0046] This is because oxide compositions affect the lattice matching performance between an oxide and a steel material in a HAZ, and hence if the oxide compositions are not controlled such that the contents thereof fall within the aforementioned ranges, a complex oxide having a circular-equivalent diameter of 0.1-3 µm cannot contribute to the intra-granular transformation in a HAZ, that is, cannot contribute to making a HAZ structure fine. The present steel material having the aforementioned chemical component composition targets a thick steel plate having a thickness of approximately no less than 3.0 mm, and a decrease in HAZ toughness can be prevented for small to middle heat input welding and even for high heat input welding whose heat input is no less than 50 kJ/mm; and accordingly the steel material can be used as a material for large structures such as, for example, brides, high-rise buildings, and ships.

[Nickel (Ni), Copper (Cu), Chromium (Cr), Molybdenum (Mo): 0.05-1.50%]

[0047] In addition to the aforementioned component elements, the steel material according to the present embodiment may contain at least one of Ni, Cu, Cr, and Mo in an amount of no less than 0.05% and no greater than 1.50% (0.05-1.50%). Each of Cu, Ni, Cr, and Mo is an element contributing to increases in the toughness and strength of the present steel material, and each of them can be added alone or in combination thereof. In order to effectively improve the toughness and strength by adding, for example, Cu, it is preferable to contain Cu in an amount of no less than 0.05%. However, if the content of Cu exceeds 1.50%, the strength of a base plate becomes too large and the toughness of the base plate is conversely decreased, and hence HAZ toughness is also decreased. Accordingly, the content of Cu is specified to be no less than 0.05% and no greater than 1.50%.

[0048] It is preferable to contain Ni, Cr, or Mo in an amount of no less than 0.05%, similarly to Cu; however, if the content thereof exceeds 1.50%, the strength of a base plate becomes too large and the toughness of the base plate is conversely decreased, and hence HAZ toughness is also decreased. Accordingly, the content of Ni, Cr, or Mo is also specified to be no less than 0.05% and no greater than 1.50%.

[Niobium (Nb), Vanadium (V): 0.002-0.10%]

5

10

20

35

45

50

[0049] The steel material according to the present embodiment may further contain at least one of Nb and V in an amount of no less than 0.002% and no greater than 0.10% (0.002-0.10%). Each of Nb and V precipitates as a carbonitride. Because this carbonitride exerts a pinning effect, the coarsening of an austenite particle is suppressed while welding is being performed, thereby contributing to an improvement in HAZ toughness. So, in order to effectively improve HAZ toughness by adding Nb, it is preferable to contain Nb in an amount of no less than 0.002%. However, if the content of Nb exceeds 0.10%, the precipitating carbonitride is coarsened, which conversely decreases HAZ toughness. Accordingly, the content of Nb is specified to be no less than 0.002% and no greater than 0.10%.

[0050] It is also preferable to contain V in an amount of no less than 0.002%, similarly to Nb. However, if the content of V exceeds 0.10%, the precipitating carbonitride is coarsened, which conversely decreases HAZ toughness. Accordingly, the content of V is specified to be no less than 0.002% and no greater than 0.10%.

[Boron (B): 0.0005-0.0050%]

[0051] The steel material according to the present embodiment may additionally contain B in an amount of no less than 0.0005% and no greater than 0.0050% (0.0005-0.0050%). B is an element that improves toughness by suppressing the production of grain boundary ferrite. So, in order to improve the toughness of the present steel material by adding B, it is preferable to contain B in an amount of no less than 0.0015%. It is more preferable to contain B in an amount of no less than 0.0010%, and still more preferable to contain B in an amount of no less than 0.0015%. However, if the content of B exceeds 0.0050%, B precipitates as BN in an austenite grain boundary, which leads to a decrease in toughness. Accordingly, the content of B is made no greater than 0.0050%, preferably no greater than 0.0040%, and more preferably no less than 0.0015% and no greater than 0.0030%.

30 [Production of Steel Material according to the Present Embodiment]

[0052] The steel material according to the present embodiment can be obtained by adding, for example, in the second refining of molten steel, each element so as to have the aforementioned chemical component composition, and a production method (production conditions) of the steel shown in the later-described examples, namely, a method of adding each element will be described as one example of a production method of the present steel material. In the following description, the steel shown in the later-described Examples and Comparative Examples were obtained by melting steel with the use of a vacuum melting furnace (capacity: 150 kg) and then by casting into a 150-kg ingot that is then cooled.

40 [Adjustment of Dissolved Oxygen Amount]

[0053] Before the elements to form complex oxides (complex oxide forming elements) are added, a dissolved oxygen amount and an S concentration in molten steel melted in the vacuum melting furnace were first adjusted. The dissolved oxygen amount (mass% Of) before the addition of complex oxide forming elements was first adjusted to be no greater than 0.005%. Thereafter, the S concentration (mass% S) in the molten steel was adjusted such that the ratio (mass% Of/mass% S) of the dissolved oxygen concentration (mass% Of) to the S concentration (mass% S) was $0.2 \le mass\%$ Of/mass% S ≤ 9.6 .

[0054] Herein, a desulfurization method for adjusting the S concentration (mass% S) is not particularly limited, but molten steel having a low S concentration in advance may be used. The bases of the aforementioned dissolved oxygen amount and S concentration are as follows. If a dissolved oxygen amount exceeds 0.005%, the oxide produced in molten steel is first coarsened. Furthermore, if the value of (mass% Of/mass% S) is large, sulfides that are necessary for oxides are not fully produced. Alternatively, if the value of (mass% Of/mass% S) is small, not only desired oxides cannot be obtained, but also sulfides are produced to a level at which intra-granular transformation is hampered because the S concentration is too high.

[0055] Accordingly, a proper balance exists between the mass% Of and the mass% S, and a proper range exists for the value of (mass% Of/mass% S). The range was experimentally determined such that 0.2 ≤ mass% Of/mass% S ≤ 9.6 was created. [Addition of Al]

[0056] Subsequently, in order to secure Ti oxides, Al, which is one of oxysulfide forming elements, was added to the molten steel ahead of Ti.

[Addition of Ti]

5

10

15

20

30

35

40

45

50

55

[0057] Following the addition of AI, Ti was added to the molten steel ahead of REM and Zr. If Ti is added ahead of AI, all of the Ti oxides are reduced by AI in the subsequent steps, and hence Ti should be added after the addition of AI. After the addition of Ti, the molten steel was retained for no shorter than 2 minutes and no longer than 15 minutes without the addition of other elements.

[0058] This is because: if the holding time of the molten steel, after the addition of Ti, is shorter than 2 minutes, complex oxides of Al and Ti are not fully formed even when Al and Ti are added in this order; and if the holding time is conversely longer than 15 minutes, the reduction by Al progresses too much. That is, the order of the addition of Al and Ti affects the aforementioned formula (1).

[Addition of REM and Zr]

[0059] After the molten steel was retained for 2-15 minutes, REM and Zr were added. The order of the addition of REM and Zr is not particularly limited. That is, they may be added in the order of REM and Zr, or Zr and REM, or may be added at the same time.

[0060] With respect to the addition amount of Zr and that of REM, under the present conditions in which the dissolved oxygen amount (mass% Of) is no greater than 0.005% and the value of (mass% Of/mass% S) is $0.2 \le mass$ % Of/mass% S ≤ 9.6 , it is necessary to make the addition amount of Zr no less than 10 ppm and no greater than 120 ppm and the addition amount of REM no less than 30 ppm and no greater than 150 ppm. This is because: if even either one of Zr and REM is added excessively, a coarse complex oxide having a circular-equivalent diameter of greater than 3 μ m may be formed; or if even either one of them is added in a too small amount, the amount of fine complex oxides having a circular-equivalent diameter of 0.1-3 μ m may be insufficient. That is, the addition amounts of Zr and REM affect the particle size distribution of complex oxides.

[0061] In addition to these, REM has the characteristic of easily forming both oxides and sulfides, while Zr has the characteristic of forming oxides but not forming sulfides. Accordingly, in order to make the balance between oxides and sulfides proper, it is necessary to add Zr and REM in accordance with the mass% Of and mass% S. So, the ratio of the addition amount of Zr and that of REM (add [Zr]/add [REM]) is determined to satisfy the following formula (2).

 $0.27 \times (mass\% \ Of/mass\% \ S) + 0.21 \le add \ [Zr]/add$ [REM] $\le 0.41 \times (mass\% \ Of/mass\% \ S) + 0.77...(2)$

When the value of (mass% Of/mass% S) is large, namely, when an oxide is likely to be produced and a sulfide is not likely, Zr is added in an amount larger than that of REM (the value of (add [Zr]/add [REM]) is made large) based on formula (2). Alternatively, when the value of (mass% Of/mass% S) is small, namely, when a sulfide is more likely to be produced than an oxide, REM is added in an amount larger than that of Zr (the value of (add [Zr]/add [REM]) is made small). Based on this way of thinking, the upper limit and the lower limit of the value of add [Zr]/add [REM] were experimentally determined, so that formula (2) was obtained.

[Addition of Ca and Forging]

[0062] After the addition of REM and Zr, Ca was added and the molten steel was cast. Ca also forms an oxide and a sulfide, but the forms of the oxide and the sulfide are basically dependent on the forms of the inclusions already present in molten steel, and hence the forms of the inclusions, before the addition of Ca, should be particularly noted. Herein, it is desirable to supply, into the molten steel, each of Al, REM, Zr, and Ca, which are deoxidizing elements, dividedly in two or more times or continuously in small amounts, not to supply all of each of them at one time.

[0063] The forms of REM, Ca, Zr, and Ti, which are to be added to the molten steel, are not particularly limited, and, for example, pure La, pure Ce, or pure Y, as REM; pure Ca, pure Zr, or pure Ti; or further an Fe-Si-La alloy, Fe-Si-Ce alloy, Fe-Si-Ca alloy, Fe-Si-La-Ce alloy, Fe-Ca alloy, or Ni-Ca alloy; or the like, may be added. Alternatively, a misch metal may be added to the molten steel. The misch metal is a mixture of rare earth elements, and specifically it contains approximately 40-50% of Ce and approximately 20-40% of La. However, a misch metal often contains Ca as an impurity, and hence when a misch metal contains Ca, the range of Ca content specified in the present embodiment should be

satisfied.

5

10

15

20

25

30

35

40

45

55

[0064] The compositions (contents) of the component elements, the relational expressions between the contents of the component elements, and the production conditions, etc., which have been described above, are referred to as "conditions specified in the present embodiment".

[Casting and Rolling]

[0065] The molten steel whose components were adjusted as described above was cast into an ingot. The cast ingot was hot-rolled and processed such that a thick steel plate having a thickness of 30-80 mm was produced. In the actual operation, it is sufficient that the molten steel obtained with its components being adjusted is processed into a slab by continuous casting according to a normal method and then hot-rolled according to a normal method.

[Measurement of HAZ Toughness]

[0066] In order to evaluate the toughness of a HAZ in the obtained thick steel plate, the HAZ being affected by welding heat, a test piece for a welded joint was taken from the thick steel plate and was subjected to V-beveling processing, and electrogas arc welding whose heat input was 60 kJ/mm, equivalent to high heat input welding, was then performed. Three test pieces for Charpy impact test (V-notched test pieces according to JIS Z 2202) were taken, in which a HAZ, located near to a weld line (bond) positioned at a depth of t/4 (t: thickness of the test piece) from the surface of the welded test piece, was processed to have a notch. A Charpy impact test was performed at -40°C on each of the three V-notched test pieces to measure absorbed energy (vE-40), so that the average value and the minimum of the measurement results of the three V-notched test pieces were determined.

[0067] In these measurement results, a test piece (thick steel plate) having an average value of vE-40 of greater than 140 J was evaluated as a steel plate having superior HAZ toughness.

[Measuring Method of Composition of Complex Oxide Having Size of 0.1-3 μ m]

[0068] A test piece was cut out from a position at a depth of t/4 (t: thickness of the thick steel plate) from the surface of the thick steel plate (the test piece was taken such that the shaft center thereof passed through the position at a depth of t/4), and a cross section parallel to the rolling direction and the thickness direction was subjected to mirror polishing; and with respect to this test piece, the composition of a complex oxide having a size of 0.1-3 μ m was measured by using an EPMA (Electron Probe X-ray Microanalyzer made by JEOL Datum (product name: JXA-8500F)). Observation conditions in this case were set such that an acceleration voltage was 20 kV, a sample current was 0.01 μ A, a magnification was 5000 times, and an observation area was no less than 0.4 mm², and the component composition at the center of the complex oxide was quantitatively analyzed by wavelength dispersive spectroscopy of characteristic X-rays.

[0069] That is, the elements to be the targets of the quantitative determination were set to be Si, Mn, S, Al, Ti, Zr, La, Ce, Ca, and O (oxygen), and the relationship between the X-ray intensity of each element and the concentration of the each element was determined, in advance, as a calibration curve by using a known substance, so that the amount of an element contained in a complex oxide that was an analysis target was quantitatively determined based on the X-ray intensity and the calibration curve obtained from the complex oxide. Each of the aforementioned elements other than S was converted into a simple oxide, so that the composition of the oxide was calculated from the ratio of the X-ray intensity that showed the existence of the each element. The concentration of S was calculated as being present alone. In the present embodiment, the composition of a complex oxide was determined with mass conversion assuming that there were simple oxides and S present alone, as described above, and an average composition of a plurality of complex oxides was determined as the composition of the complex oxide.

[0070] Herein, when REM is represented by the symbol M, the oxides of REM exist in the forms of M_2O_3 , M_3O_5 , and MO_2 , etc., in the steel material; however, all of the oxides thereof were converted into M_2O_3 . Similarly, all of the oxides of Ti were converted into TiO_2 .

[Measuring Method of Circular-Equivalent Diameter of Complex Oxide and the Number of Complex Oxides]

[0071] In the aforementioned measurement of the composition of a complex oxide using an EPMA, the area of the complex oxide was measured, and the diameter of a circle corresponding to the measured area was calculated as a circular-equivalent diameter, assuming that the shape of the complex oxide was a circle. When the number of complex oxides having a circular-equivalent diameter of greater than 5 μ m was measured, observation conditions were set such that a magnification was 200 times, an observation area was no less than 50 mm², and the conditions other than these were the same as those under which the number of complex oxides having a circular-equivalent diameter of no greater than 5 μ m was measured.

Examples

[0072] Subsequently, examples of the steel material according to the present embodiment will be specifically described. The following Table 2 shows the chemical component compositions of steel materials Nos. 1-31 that are examples of the steel material according to the embodiment. All of the component compositions of the steel materials Nos. 1-31 satisfy the conditions specified in the embodiment.

			B	0.0005	0.0021	0.005	0.0008	1	,	0.0016	1	1 1	ı	0.0005	0.0012	T	6100.0	l	0.0036	1000	0.0013	1	ı	0.0045		0.0022	į
5			۸	0.002	0.045	0.087	0.002	'	,	,	1	' '	0.055	0.081		0.061	'	1	0.003	0.016		1000	707	0.027	0.039	' '	0.042
			₽	0.002	890'0	, 1	0.031	, ,	,	0.049	0.002	, ,	0.07	,	0.064	100	1	0.028	1	1	0.025	1	7000	, ,	0,062	0.024	_
10			Mo	0.05- 1.50%	0.88	000	0.25	1 1	0.87	0.55	1	,	1.23	1	-	1.46		1	8	1 1	1	,	3 1	1		0.56	0.3
			Ö	0.05-	0.47	0.00	1.02		1	1	1	6 0	0.24	0.86	1	1 1	1		0.75	10.3/	٦	290	136		0.67	1.38	0.78
15			Cu	0.05~ 1.50%	1.14	0.58	99'0	1 1	0.37	1		1 1	1 5	1	0.58	0.49	1	1.4	0.55	0.42	ì	0.78	- 13	0.85	0.07	0.45	1
			Ž	1.50%	0.54	ı	0.69	1 1	l	1.38	900	100	1 0	0.44	,	0.75	1.02	0.35	1 6	0.0/	77.0	0.48	,	1.1	1	0.26	0.87
20			0	0.0003-	0.0023	0.00018	0,0035	0.0021	0.0045	0.0028	0.000	0.0027	0.0029	0.0024	0.0025	0.0014	0.0025	0.0026	0.0035	0.0039	0.0018	00026	0001	0.0018	0.0027	0.0024	0.0047
		Component composition of steel material (mass%)	బి	0.0003-		0.0065	0.0017	0.0003	0.0013	0.0019	0.0025	0.0018	0.0013	0.0022	81000	0.0064	0,0017	0.0015	0.0013	0.00	0.0024	7,000	0.000	0,0021	0.0014	0.0013	0.0022
25		el materia	_Total _	0.0003	0.0022	0.0017	0.0019	0000	0.0031	0.0036	0.002	0.0026	0.0036	0.002	0.0017	0000	0.0022	0000	0.0194	0.011	0000	0.0024	2000	0.0013	0.012	0.0038	0.0024
		tion of ste	REM	1	0.0014	000	90000	00003	0.0015	0.0018	1000	0.0014	0.0026	0000	0,001	00012	0.0009	0.0005	0.0125	0.0072	0.0014	0.0016	0.0019	0.0005	0.0065	0.0028	0.00(8
30		t composi	La	1—	0.0008	70000	0.0013	0 5	0.0016	0,0018	0.000	0.0012	0000	0.0011	90000	00003	0.0013	0.000	00000	0.0038	90000	8000	000	0.0008	0.0055	0.0019	0.0008
		отропел	Zr	0.0003	0.0024	0.0045	0,0025	000	0.0023	000	0.0022	0.0055	0.002	0.0008	0.0014	0.0016	0.004	0.017	0.0023	0.0192	0.0003	000	2000	0.0015	0.0018	0.0023	0.0018
35			Ľ	0.005	2100	000	0.02	0017	0.024	0.021	0.021	000	0.019	0.016	0.015	000	0.039	0.005	0.022	0.021	0.02	0024	800	0.025	8100	0.017	0.018
			Z	0.0030	0,0065	0.0062	0.0085	00061	0.0047	0.0068	0000	0.0074	0.0059	0.0058	0.0055	00035	0.0079	0.0078	0.0055	0.0047	0.0065	0.0045	3000	0.0095	0.0068	0.0066	0.0057
40			₹	0.002	0000	000	100	000	100	0000	8000	+-	Н	Н	H	0000	0.012	8000	6000	0.039	0.015	9100	0.006	\vdash	0.012	0.021	0.015
			v	0.0005 -0.01%	0.003	0.0023	0,0033	00024	00025	0.0019	0000	0.0024	0.00	0.0095	0.0005	0 0028	0.0018	0.002	0,0022	0.0015	0.0021	9000	0.0024	0.0075	0.0022	0.0081	0.0007
45	er 3%		۵		000	800	0.005	000	1000	9000	9000	000	900	0.007	6000	0.015	0.003	0000	0.00	9000	0.011	200	2000	0.00	0.008	0.007	0.011
	No greater than 0.03%		M	1.0	1.49	1.45	1.89	175	153	1.54	1.37	1.78	29.5	1.22	1.87	9 %	1.52	1.46	1.56	36.	1.27	2.46	2	6	1.55	1.75	1.23
50	2]		iJT	0.05	0.18	900	0.07	600	0.16	0.05	0 11	600	800	90.0	0.24	0013	90.0	800	200	031	0.08	603	2 2	0.09	0.11	900	0.11
	Table 2		υ	0.02	000	500	90.0	20 20	500	0.05	000	1	-	\perp	90'0	+	Ļ	Ц	+	000	igwdap	-	+	\perp	\vdash	- -	Ц
55	Ta		ż			7 0	4	so u	-	∞	a	=	12	1	2	2 2	_	≘	2	22	23	2	2 %	27	78	8 8	=

[0073] The following Table 3 shows the production conditions of the steel materials Nos. 1-31 that are examples of

the present steel material. All of the production conditions of the steel materials Nos. 1-31 also satisfy the conditions

	specified in the present embodiment. When there are multiple orders or methods, etc., of adding component elements, the selected addition order or addition method is shown in the remarks column.
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

5				Remarks	Each of REM, Zr, and Ca was dividedly added.							0.0027 1.44 0 0 0.60 1.38 1.17 0 8.4 0.0022 1.14 0 35 0 0 0.52 1.24 0.70 0 7 0.0028 0.62 0 0 0 0 0 0 0 7	Each of	
	•	g time er	n of Ti ute]	2-15 minutes	0	0	0	0	0	0	0	0	0	0
10		Holding time after	addition of Ti [minute]	2-15 minute	5.7	3.1	9.9	2	3.9	12	8.4	2	3	4.8
15		:	Addition order of complex	oxide forming elements	0	0	0	0	0	0	0	0	0	0
		at of		value	0	0	0	0	0	0	0	0	0	0
20		Zr to th		Actual value	0.50	69'0	0.42	1.00	22.0	0.92	1.17	02.0	0.50	0.44
25		Ratio of addition amount of Zr to that of REM	Upper limit	0.41 × (mass%Of/ mass%S) +0.77	1.04	0.99	0.86	1.07	1.06	1.16	1.38	1.24	1.02	1.08
30	[Table 3]	Ratio of addi	Lower limit	0.27× (mass%Of/ mass%S) +0.21	0.39	0.35	0.27	0.41	0.40	0.47	09.0	0.52	0.38	0.41
		d REM	EM] n]	mdd	0	0	0	0		0	0	0	0	0
35		Addition amounts of Zr and REM	add[REM] [ppm]	30-150ppm	80	85	80	20	130	65	09	06	80	45
40		n amount	add[Zr] [ppm]	mdd(0	0	0	0	0	0	0	0	0	0
		Addition	add[Zr]	10-20ppm	45	20	25	20	100	09	20	35	40	20
45		oxide	% Of/	8.6	0	0	0	0	0	0	0	0	0	0
		omplex	mass % Of/ mass % S	0.2-9.8	0.67	0.54	0.22	0.74	0.70	0.95	1.44	1.14	0.62	0.75
50		Before addition of complex oxide forming elements	mass % S	1	0.0033	0.0028	0.0018	0.0038	0.0027	0.0019	0.0027	0.0022	0.0028	0.004
55		Before ac fc	mass% Of	No greater than 0.005 mass%	0.0022	0.0015	0.0004	0.0028	0.0019	0.0018	0.0039	0.0025	0.0013	0.003
			:	N	7-	2	3	4	2	9	2	8	6	10

Each of Ti, REM, Zr, and Ti, REM, Zr, and Ca was Remarks Zr, Ca was Each REM dividedly dividedly dividedly Ca was added. added. added. of and 5 Holding time addition of Ti 0 0 0 0 0 0 0 0 0 0 0 [minute] minutes 2-15 7.8 5.9 8.3 4.3 5.9 2.4 3.1 10 9 4. 7 7 forming order of complex ements oxide 0 0 \circ 0 0 0 0 0 0 0 0 15 Actual value \circ 0 0 \circ 0 0 0 0 0 0 \circ Ratio of addition amount of Zr to that of 1.1 0.73 0.64 0.83 1.80 0.69 0.72 0.87 0.54 99.0 1.17 20 (mass%Of/ **Upper limit** mass%S) $0.41\,\times$ +0.77 1.12 1.48 2.25 0.95 1.18 96.0 0.86 1.32 1.24 1.28 1.53 25 (mass%Of/ mass%S) Lower limit $0.27 \times$ +0.21 1.18 0.44 0.68 0.33 0.52 0.48 0.54 (continued) 0.34 0.27 0.57 0.71 30 Addition amounts of Zr and REM 0 0 0 0 0 0 0 add[REM] [ppm] 30-150ppm 0 \circ \bigcirc \circ 35 110 145 45 75 45 65 30 90 50 80 90 add[Zr] [ppm] 0 0 0 0 0 0 0 0 0 0 0 10-20ppm 40 20 55 20 75 90 55 65 35 92 35 30 mass % Of/ mass % S Before addition of complex oxide 0 0 0 0 0 0 0 0 \circ 0 0 45 0.2-9.8 1.33 0.66 1.73 0.47 0.21 3.60 0.43 1.00 1.24 1.84 forming elements 0.0023 0.0025 0.0019 0.0019 0.0028 0.0015 0.0058 0.0005 0.003 0.0012 0.0101 mass % S 50 mass % Of 0.0018 0.0035 greater than 0.005 mass% 0.0024 0.0026 0.0013 0.0016 0.0022 0.0023 0.0031 0.0027 0.0021 ဍ 55 20 ģ 7 12 13 15 16 9 19 2 4 17

REM, Zr, and REM, Zr, and Each of and and Ca was Ti, REM, Zr, of REM, Zr, Remarks Each of Ti, Each of Ti, Ca added. dividedly dividedly dividedly dividedly Ca was Ca was added. added. added. Each was 5 Holding time addition of Ti 0 0 0 0 0 0 0 0 0 [minute] minutes 2-15 2.6 4.5 4.9 5.6 3.3 9.9 7.5 10 4.4 0 forming order of elements complex oxide 0 0 0 0 0 0 0 0 \circ 15 Actual value 0 0 0 0 0 \bigcirc 0 0 Ratio of addition amount of Zr to that of 1.16 0.43 0.40 1.07 0.38 0.84 0.65 0.88 0.52 20 (mass%Of/ Upper limit mass%S) $0.41\,\times$ +0.77 1.73 0.99 1.00 1.27 0.88 0.85 1.23 0.92 0.86 25 Lower limit (mass%Of/ mass%S) $0.27 \times$ +0.21 0.36 (continued) 0.84 0.36 0.28 0.26 0.54 0.27 0.51 0.31 30 Addition amounts of Zr and REM 0 0 0 0 0 0 30-150ppm 0 0 add[REM] [ppm] 35 150 145 125 95 35 70 85 85 80 add[Zr] [ppm] 10-20ppm 0 0 0 0 0 0 0 0 0 40 110 15 9 75 52 2 65 80 55 mass % Of/ mass % S Before addition of complex oxide 0 0 0 0 0 0 0 0 0 45 0.2-9.8 2.33 0.56 1.13 0.22 0.54 1.21 0.27 0.20 0.35 forming elements 0.0024 0.0039 0.0095 0.0015 0.0024 0,003 0.0078 0.0024 0.0124 mass % S 50 mass % Of greater than 0.005 mass% 0.0035 0.0013 0.0022 0.0029 0.0008 0.0015 0.0044 0.0027 0.0021 ž 55 25 ģ 30 22 23 24 28 28 29 27

5		,	Remarks	
	ding time after	n of Ti ute]	2-15 minutes	0
10	Holding time after	addition of Ti [minute]	2-`	3.6
15		Addition order of complex	oxide forming elements	0
	at of		Actual value	0
20	Zr to th		Actual	3.00
25	Ratio of addition amount of Zr to that of REM	Upper limit	0.41 × (mass%Of/ mass%S) +0.77	4.71
% (continued)	Ratio of add	Lower limit	0.27× (mass%Of/ mass%S) +0.21	2.80
9	nd REM	add[REM] [ppm]	30-150ppm	0
35	Addition amounts of Zr and REM	add[[pg	30-15	32
40	on amour	add[Zr] [ppm]	10-20ppm	0
	Additic	add[Z	10-2	105
45	oxide	mass % Of/ mass % S	0.2-9.8	0
	complex	mass	0.2	9.60
50	Before addition of complex oxide forming elements	mass % S	ı	09.6 5000.0
55	Before a	mass% Of	No greater than 0.005 mass%	0.0048
		:	ó Z	31

[0074] The following Table 4 shows test results for the particle sizes, the piece-number distributions, and the average compositions of complex oxides, and for the HAZ toughness of the steel materials Nos. 1-31 that are examples of the present steel material. In each of the steel materials Nos. 1-31 that are examples of the present steel material, the number of complex oxides having a circular-equivalent diameter of greater than 3 μ m is no greater than 5.0/mm², and the number of complex oxides having a circular-equivalent diameter of 0.1-3 μ m is at least 100 /mm². Furthermore, in each of the steel materials Nos. 1-31, the average composition of complex oxides having a circular-equivalent diameter of 1-3 μ m satisfies the conditions specified in the present embodiment. As a result, each of the steel materials Nos. 1-31 has HAZ toughness of no less than 140 J, and hence it can be evaluated as exerting superior HAZ toughness.

5			-	HAZ toughness vE-40 [J]		Average value of no less than 140 J	182	156	144	158	142	146	143	177	171	145	176	142	180	160	152	149	142	167	156
10					Others		15.4	12.2	29.2	10.2	18.5	24.2	15.4	35.9	26	9.5	21.1	22	24.6	7.8	8.1	23.1	4.4	25.9	23.7
15					S	1-15%	3.2	8.6	5.1	4.5	2.8	8	12.4	2.7	2.5	2.4	9.3	9	10.2	14.5	1.2	4.5	9	2.3	8.5
20				[mass%]	CaO	%05-5	18.6	8.2	14.3	24.5	38.3	18	20.5	8.2	19.8	12.8	15.2	19	7.4	19.9	7.7	8.1	15.1	6.3	15.3
			3 km	mposition	ZrO2	2-50%	19.2	32.2	9.4	7.2	8.4	16.2	18.6	21	26.9	14.4	21.8	20.7	17.2	28.6	31.4	21.6	32.2	18.9	13.5
25			Complex oxides that are 0.1-3 μm	Average composition [mass%]	REM203	2-50%	25.5	28.7	29.1	37.1	19.4	22.5	27.7	21.4	12.7	34	22.1	21.4	22.2	19	39.2	17.6	31.4	21.5	32
30	[Table 4]		lex oxides		Ti02	3-20%	9.5	7.1	12.5	11.4	5.2	6.3	3.3	5.5	6.7	17.5	11.9	5.4	12.8	2.9	5.4	5.8	11.7	19.6	3.2
35			Comp		AI2O3	No greater than	8.6	က	0.4	5.1	7.4	4.8	2.1	5.3	5.4	9.4	2.3	6.5	5.6	3.5	2	19.3	0.2	2.1	3.8
40 45				Piece-number distribution	[pieces/mm ²]	At least 100	452	476	118	121	124	611	135	615	528	334	859	289	710	460	372	326	167	202	158
<i>50</i>		Complex oxides exceeding 3 μm		Piece-number distribution	[pieces/mm²]	No greater than 5.0	0.8	4.6	0.7	3.2	1.6	4.5	2.2	1.4	2.3	4.2	1.5	4.2	2.7	0.4	1.8	2.2	1.3	3.9	2.5
		Compl			2		-	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19

EP 2 977 479 A1

5				HAZ toughness vE-40 [J]	Σ	Average value of no less than 140 J	155	153	156	147	146	150	149	142	146	155	143	142
10					Others		2	26.2	7.2	24.8	4.7	22.1	9.2	22.9	12.4	25.1	18.6	12.7
15					တ	1-15%	2.5	10.4	3.5	10.5	3.5	9.6	6.2	5.7	2.5	7.7	8	3.5
20				[mass%]	CaO	2-50%	23.7	36.9	9.5	33.5	47.8	5.7	10.1	22.3	31	9.5	8.2	22.8
			3 mm	nposition	ZrO2	2-50%	13.2	11.5	47.9	5.3	9.1	22.5	38.8	12.3	9.7	12.9	59	20.2
25			Complex oxides that are 0.1-3 μm	Average composition [mass%]	REM203	2-50%	48.2	5.4	13.9	20	18.6	24.6	25.7	14.5	28.7	24.6	23.7	19.6
30	(continued)		lex oxides		TiO2	3-20%	6.7	8.2	9.5	3.6	6.8	11.7	3.9	9.8	14.5	9	6.7	6.8
35			Comp		AI203	No greater than 20%	3.7	4.1	8.5	2.3	10.5	3.8	6.1	12.5	1.2	14.2	5.8	14.4
40 45				Piece-number distribution	[pieces/mm²]	At least 100	260	248	424	389	682	516	215	176	581	245	346	127
50 55		Complex oxides exceeding 3 μm		Piece-number distribution	[pieces/mm²]	No greater than 5.0	1.7	2.6	0.3	1.2	4	2.8	2.4	1.9	1.5	0.8	3.6	1.7
		Comp			-	2	20	21	22	23	24	25	26	27	28	59	30	31

[0075] Herein, the following Table 5 shows the component compositions of steel materials Nos. 32-67 that are examples in which the conditions specified in the present embodiment are not satisfied. In the steel material Nos. 32, the content of Al does not satisfy the condition specified in the embodiment. In the steel materials Nos. 34 and 35, the contents of Ti do not satisfy the condition specified in the embodiment. In the steel materials Nos. 40 and 41, the contents of REM do not satisfy the condition specified in the embodiment. In the steel materials Nos. 44 and 45, the contents of Zr do not satisfy the condition specified in the embodiment. In the steel materials Nos. 48 and 49, the contents of Ca do not satisfy the condition specified in the embodiment. In the steel materials Nos. 52 and 53, the contents of S do not satisfy the condition specified in the embodiment. The other steel materials satisfy the aforementioned component compositions.

		6		0.0005 -0.0050%	0.0024	1 80	9 1	0.0028	ļ	1 000	0000	ı		2000	1	-	1	1	0.0032	0.0028	0.0015	ı	1		0.0025	0.0043	1 8	1	ı	0.0017	1 8	0.0025
		>		0.002 -0.10%	,		6,000	,	0.032	0.024	3 1	ı	1 8	250	ı	0.024	8100	ı	1	2500	П	0.012	1	T		H	,	0.046	1	0.074	1 60	0330
		2		0.002	0.072	0025	ı	90.0	9000		0.011	,	1	25 1		1	0.058		1	0.044		0.037		800	1		1 0	E I	0.025	-	1 000	0.077
		ž		1.50%	'	1 2	3	,	1	1 8	2 1	1	1.25	2,10		0.45	777	-	1	2 I	95.0		0.25	3	•	ı	1 0	2		14	1	1
		ζ		0.05- 1.50%	0.75		1		_			0.77	1		ļ	1 3	0.08	0.38	-	25.	1	0.77	100	0/.0	ı	70	1	0.34	1	-	0.39	
		ઝે		1.50%	,	100	3	0.5	1	190	ı	0.56	0.73	A I	0,58		*	1	0.36	920	0.5	1	0.17	7	0.48	1	1	7,1	0.35		,	
		ž		0.05- 1.50%	1	1.35	1	9.0	0.66		0.89	ı	0.42	' '	1.07	1 6	24.5	'		0.57	ı	0.98	,	0.35		1	1 6	0.0	0.25	99'0	1	
		0		0.0050%	0,0045	0.0024	0.0026	0,0022	0.0017	0003	0000	0.0028	0000	0.000	0.0039	0.0017	0003	0.0027	0.0042	0.0025	0.0018	0.0021	91000	0.0034	0.0018	0.0033	00013	0003	0.0025	0.0041	0.0029	
	(5)	්	2000	0.0000%	0.0039	0.0034	0.0018	0.0052	0.0019	0.0015	0 0035	0.0042	0.0028	0.000	0.000	0.0017	0.0084	0,0002	0.0065	0.0025	0.0056	0.0024	0.0023	0.0015	0.0024	0.0048	0.0019	0000	0.0018	0.0037	99000	
	Component composition of steel material (mass%)		Total	. E	0.0035	_	0.0085	10017	2002	0.0035	F	-		00155		†	60000		+	1		1	+	0.0105		0.0062	0.0047	0.0018	2000		9000	
	eel mater	E.	ತ	-	0.0023 0	+-	┿		+	0.0022	┿	١.,	⊢⊹	0000	₩	+	╀	H	+	┿	0.0018 0	-		0.0075	Н	\rightarrow	00018	╁╴	⊢	+	0.0033	
	ition of st		9	\dashv	0.0012	+	60000	Н	+	0.0013	╁	├-	+	2000	╀┩	+	0000	Н	-	╄	Н	+	70000	+	Н	\dashv		00005	╁╌	+	0.0027	-
	nt composi	72		, ž		0.0036	<u> </u>	H	0.0052	\dagger	1_	<u> </u>		‡		-	0.0052	Ц	_	+		0.0026	+	00000		0.0055 0	+	0.0043	ļ		. ,	
	ompone		-		0.0	000	8	00	00	500	-	8	0.0		00	818	1		+	0.0		1	+	000	1 0.007	00	0 2	200	0.0	0.0	0.0	
	Ĭ	= 		-0.040%		800	1	l I	0.007		1	ı	!!		i	0015		0.018	- [002	ΙI	0.018	- 1	0007	11	H		000		1	0.02	ı
		z	7	-0.010%	9900	000	0.0062	0.0046	0.008	0.0076	0.0057	0.0059	0.0054	0.000	0.0082	0.0045	0,0099	0.0073	0.0052	0.000	0.006	0.0084	0.0076	0.000	0.0045	0.0064	0.0055	0.000	0.007	0.0065	0.0054	
		₹		0.040	0.042	003	800	0.008	500	0.018	0014	0.034	9000	500	0.011	6100	0.01	0.018	0.005	0.025	970.0	1100	000	8000	0.017	0.00	0013	0025	2100	2000	0.024	
		s		-0.00%	0 0055	0.0034	0.0053	0.0015	0.000	5,000	0.0037	0.0022	0.0031	0.000	0.0029	0.0055	8000	0.0012	0.0041	0.0105	0.0004	0.0079	0.0010	98000	0.0053	0.0021	0.0047	00025	81000	0.0032	0.0028	
,		٥	1	\dashv	0.011	╅	╁	Н	+	+	┿	╁	9000	+	╁	╅	+	Н	+	+	Н	-+	-+	╅	∺	Н	1	╅	┢	0.01		f
No greater than 0.03%	1	5€	-	-	1.45	╁	╀	Н	+	+	╁	H	1.29	+	Н	+	2.46	Н	+	+	Н	1	+	124	Н	H	+	+	╁	1.37	-	ŀ
z≨		is		200 700 700 700 700 700 700 700 700 700	60.0	96	0.26	0.09	0.18	100	0.78	0.02	03	0.10	0.05	0.25	100	0.67	270	100	80.0	017	97.0	0.25	0.12	120	623	220	210	0.12	0.15	
		U	_	0.02 -0.13%	Ц	\perp	1	Ш	4	_		L	Ц	Ţ	Ц	4	966	Н	+	800	Н	+	+	+	┝	Н	80.0	+	t	H		l
	-	L	<u> </u>			Т.			\perp	_L	1	_	42	1.	ш			Ш	_1	25	Ш	_}		1_	L			Т.	_	3		1

[0076] The following Table 6 shows the production conditions of the steel materials Nos. 32-67 that do not satisfy the conditions specified in the present embodiment. In each of the steel materials Nos. 33, 36, 37, 42, 43, 46, 47, 50, and 51, an "x" mark is provided in the "addition order of complex oxide forming elements", which indicates that the complex oxide forming elements (Al and Ti) were added in an order different from the aforementioned one. In each of the steel materials No. 38 and 39, it is shown that a holding time after the addition of Ti does not satisfy the condition specified in the embodiment. In the steel material No. 52, it is shown that the value of (mass% Of/mass% S) does not satisfy the condition specified in the embodiment. In the steel material No. 53, it is shown that the value of mass% Of, the value of (mass% Of/mass% S), and the actual value of (add [Zr]/add [REM]) do not satisfy the conditions specified in the embodiment. In each of the steel materials No. 54 and 55, it is shown that the actual value of (add [Zr]/add [REM]) does not satisfy the condition specified in the embodiment. In each of the steel materials Nos. 56 and 57, it is shown that the value of mass% Of does not satisfy the condition specified in the embodiment. In each of the steel materials Nos. 58 and 59, it is shown that the addition amount of add [Zr] and the actual value of (add [Zr]/add [REM]) do not satisfy the conditions specified in the embodiment. In each of the steel materials Nos. 60 and 61, it is shown that the addition amount of add [REM] and the actual value of (add [Zr]/add [REM]) do not satisfy the conditions specified in the embodiment. In each of the steel materials Nos. 62-67, it is shown that the actual value of (add [Zr]/add [REM]) does not satisfy the condition specified in the embodiment.

5

10

15

20

25

30

35

40

45

50

55

[0077] Thus, in each the steel materials Nos. 32-67, either the component composition shown in Table 5 or the production condition shown in Table 6 does not, or both do not satisfy the conditions specified in the embodiment.

F			Remarks										Each of Ti, REM, Zr, and Ca was dividedly added.				Each of REM, Zr, and Ca was dividedly added.
5		g time	ninute]	ninutes	0	0	0	0	0	0	×	×	0	0	0	0	0
10		Holding time	of Ti [minute]	2 - 15 minutes	5.8	1.2	4.2	8.8	4	6.7	15.8	1.8	13	3.2	10	7.8	12
,,			Addition order of complex oxide	forming ele- ments	0	×	0	0	×	×	0	0	0	0	×	×	0
15		fREM:		Actual value	0	0	0	0	0	0	0	0	0	0	0	0	0
		o that of M]		Actual	0.58	0.78	0.48	0.76	0.54	1.05	0.47	0.88	0.78	0.57	0.32	0.53	69.0
20		ition amount of Zr to tl add [Zr] / add [REM]	Upper limit	0.41 × (mass50%/ mas%S) +0.77	1.06	0.98	0.89	0.84	1.18	1.28	1.43	1.10	0.93	1.24	99.0	1.18	1.10
25	6]	Ratio of addition amount of Zr to that of REM: add [Zr] / add [REM]	Lower limit	0.27 × (mass50%/ mass%S) +0.21	0.40	0.35	0.29	0.32	0.48	0.55	0.65	0.43	0.32	0.52	0.27	0.48	0.43
30	[Table 6]	d REM	/] [ppm]	mdd(0	0	0	0	0	0	0	0	0	0	0	0	0
35		amounts of Zr and REM	acid[REM] [ppm]	30-150ppm	130	06	105	85	130	92	85	85	70	35	92	85	130
		ı amounts	[mdd]	шддо	0	0	0	0	0	0	0	0	0	0	0	0	0
40		Addition	add[2r]	10-120ppm	75	20	20	65	20	100	40	22	55	20	30	45	06
		rming el-	nass%Of/ mass%S	0.2-9.5	0	0	0	0	0	0	0	0	0	0	0	0	0
45		oxide fo	mass%Of mass%S	0.2	0.70	0.52	0:30	0.41	1.00	1.27	1.61	0.81	0.39	1.14	0.23	1.00	0.80
50		on of complex ements	mass%Of /		900.0	0.0042	0.007	0.0056	0.0018	0.0011	0.0018	0.0031	0.0038	0.0022	0.0035	0.0035	0.003
55		Before addition of complex oxide forming el- ements	mass%Of	No greater than 0.005 mass%	0.0042	0.0022	0.0021	0.0023	0.0018	0.0014	0.0029	0.0025	0.0015	0.0025	0.0008	0.0035	0.0024
			o Z		32	33	34	35	36	28	38	39	40	41	42	43	44

Each of Ti, Each of Ti, Each of Ti, Remarks REM, Zr, REM, Zr, REM, Zr, dividedly dividedly dividedly and Ca and Ca and Ca added. added. added. was was was 5 2 - 15 minutes Holding time after addition of Ti [minute] 0 0 0 0 0 0 0 0 0 3.2 4.9 9.2 6.4 S 7 7 10 7 o. 10 Addition order of comforming eleplex oxide ments 0 × 0 0 0 0 X \times X Actual value 15 Ratio of addition amount of Zr to that of REM: 0 0 \circ \bigcirc 0 0 \bigcirc 0 0.88 0.60 0.82 0.65 0.40 0.70 1.00 0.47 0.77 add [Zr] / add [REM] 20 (mass50%/ **Upper limit** mas%S) +0.77 $0.41\,\times$ 1.14 0.88 1.09 0.90 1.56 1.04 0.82 5.20 1.01 (mass50%/ mass%S) +0.21 25 Lower limit $0.27\,\times$ 0.45 3.13 0.28 0.42 0.30 0.73 0.39 0.24 0.37 (continued) acid[REM] [ppm] 30 Addition amounts of Zr and REM 30-150ppm 0 0 0 0 0 0 0 0 0 100 100 120 85 65 85 85 75 50 35 add[2r] [ppm] 10-120ppm \bigcirc \circ \circ \circ 0 0 \circ \circ \circ 105 85 9 20 85 40 30 35 20 40 Before addition of complex oxide forming elmass%Of/ mass%S 0 0 0 0 0 0 0 0.2-9.5 45 0.79 0.13 10.80 0.23 0.590.90 0.32 1.92 0.67 ements mass%Of/ 0.0085 0.0045 0.0155 0.0005 0.0013 0.0022 0.0042 0.0031 900.0 50 No greater than 0.005 mass%Of 0.0016 0.0028 0.0033 0.0025 0.0013 mass% 0.0054 0.0027 0.003 0.002 55 46 ₽. 53 45 47 48 49 50 52 51

Remarks Each of REM, Zr, dividedly and Ca added. was 5 2 - 15 minutes Holding time of Ti [minute] after addition 0 0 0 0 0 0 0 0 0 \circ 0 0 0 0 2.9 4.5 6.5 2.2 5.9 3.4 4.4 9.1 7 10 4 7 10 9 10 Addition order of comforming eleplex oxide ments 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 Actual value Ratio of addition amount of Zr to that of REM: 0 0 0.25 0.45 1.71 0.50 0.69 0.42 0.08 1.00 0.50 0.41 0.54 0.89 1.22 2.27 add [Zr] / add [REM] 20 (mass50%/ **Upper limit** mas%S) +0.77 $0.41\,\times$ 1.19 99.0 1.24 1.02 0.89 1.25 0.86 0.95 1.12 1.08 0.88 1.94 1.27 1.67 (mass50%/ mass%S) +0.21 25 Lower limit $0.27\,\times$ 0.52 0.98 0.29 0.530.33 0.44 0.54 0.49 0.42 0.28 0.80 0.27 0.37 0.27 (continued) acid[REM] [ppm] 30 Addition amounts of Zr and REM 30-150ppm 0 0 0 0 0 0 0 0 0 0 0 140 130 160 120 45 45 35 95 65 55 22 65 9 35 add[2r] [ppm] 10-120ppm \bigcirc 0 \circ \circ 0 \circ 0 \circ \bigcirc 0 \circ \circ 125 85 65 45 25 40 45 55 70 55 20 35 80 2 40 Before addition of complex oxide forming elmass%Of/ mass%S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2-9.5 45 0.76 2.19 0.29 1.18 0.22 0.43 0.23 2.84 0.60 0.48 1.03 0.27 1.21 ements mass%Of/ 0.0068 0.0013 0.0019 0.0095 0.0016 0.0019 0.0058 0.0022 0.0028 0.0051 0.0037 0.0034 0.009 0.004 50 No greater than 0.005 mass%Of 0.0015 0.0028 0.0016 0.0023 0.0026 0.0035 mass% 0.0017 0.0011 0.0024 0.0054 0.0057 0.0041 0.0024 0.002 55 Š 55 99 58 59 9 61 62 63 64 65 99 54 57 67

[0078] Table 7 shows test results for the particle sizes, the piece-number distributions, and the average compositions of complex oxides, and for the HAZ toughness of the steel materials Nos. 32-67 as comparative examples in which the conditions specified in the present embodiment are not satisfied. In each of the steel materials Nos. 32-55, the average composition of a complex product does not satisfy the condition specified in the embodiment. In each of the steel materials Nos. 56 and 57, the number of complex oxides having a circular-equivalent diameter of greater than 3 μ m exceeds 5.0/mm². In the steel materials Nos. 58-67, either the number of complex oxides having of a circular-equivalent diameter of greater than 3 μ m or the number of complex oxides having a circular-equivalent diameter of 0.1-3 μ m does not, or both do not satisfy the conditions specified in the embodiment. In each of the steel materials Nos. 32-55, a condition that does not satisfy the conditions specified in the embodiment is shown in the "remarks column".

[0079] As a result, in each of the steel materials Nos. 32-67, the test result for HAZ toughness was less than 140 J, namely, in a comparative example in which one or more of the conditions specified in the embodiment were not satisfied, a steel material having superior HAZ toughness was not able to be obtained.

[0080] The HAZ toughness of the steel materials according to

[Table 7]

10	·		Remarks		A concentration of steel material and AI2O3 concentration are out of the ranges	e range.	Ti concentration of steet material and TiO2 concentration are out of the ranges.	Ti concentration of steel material and TiO2 concentration are out of the ranges.	ange	dige	2000	REM concentration of steel material and REM203 concentration are out of the ranges.	REM concentration of steel material and REM203 concentration are out of the ranges.	of the range.	of the range.	Zr concentration of steet material and ZrO2 concentration are out of the ranges.	and ZrO2 concentration are out of the ranges.	range	ZrOZ concentration is out at the range. Ca concentration of steel traterial and CaO concentration are out of the ranges.	Ca concentration of steet material and CaO concentration are out of the ranges.	ange	ange	S concentration of steel material and S concentration of complex oxide are out of the ranges.	S concentration of steel material and S concentration of complex oxide are out of the ranges.	e is out of the range.	a is out of the range	exceeding 5 µm is rarge	The number of complex oxides exceeding 3 units large and that of complex oxides that are 0.1-3 units small	hat are 0.1-3 µm is small.	3 µm is large and that of complex oxides that are 0.1-3 µm is small	hat are 0.1-3 µm is small.	hat are 0.1-3 µm is small	hat are 0.1-3 µm is small.	hat are 0.1-3 µm is small.	hat are U 1-5 µm is small	hat are 0.1-3 µm is small.
20				:	Al concentration of steel material	Al2O3 Concentration is out of the range	Troncentration of steel material	Ti concentration of steel material	TOZ concentration is out of the range	TO concentration is out of the range	TO concentation is out of the range	REM concentration of steel materi	REM concentration of steel materi	Concentration of REM203 is out of the range	Concentration of REM2O3 is out of the range	Zr concentration of steel material	Zr concentration of steel material and ZrO2	ZrOZ concentration is out of the range	Ca concentration of steel material and	Ca concentration of steel materia	CaO concentration is out of the range	CaO concentration is out of the range	S concentration of steel material and	S concentration of steel material and	S concentration of complex oxide is out of the range	o concernation of complex oxide is out or the range	The purpher of complex exceeding 3 µm is large.	The number of complex oxides exceeding	The number of complex oxides that are 0.1-3 µm is small	The number of complex oxides exceeding 3 µm is large and that of complex	The number of complex oxides that are 0.1-3 µm is small	The number of complex oxides that are 0.1-3 µm is small	The number of complex oxides that are 0.1-3 µm is small	The number of complex oxides that are 0.1-3 µm is small	The number of complex oxides that are U.1-3 µm is small	The number of complex oxides that are 0.1-3 µm is small.
25	HAZ	toughness	vE-40 [J]	Others of no less than	6.5 112	-		17.8	11 561	1	200	1	46 34		8.6 95	5.2 119	1	_	6.9		L		-	12.6 5.9	+		102	L	18.1 125				-	80	1	93 68
30		[%]	S	*SI-1	9				2.8	-	0.50	-	ļ			8.6			1	9.2			_	-	-		194						12.9			62
35	Complex oxides that are 0.1-3 μm	Average composition [mass%]	2.02 0.0	5-50% 5-50%	26.9				18.3	†	19.2	F.C. 0.07	T	134 15.5		-		-	43 1 204							15.6	19.8 5255							28.4 15.6		14.8
40	Complex oxides	Average co	OZ TREMZOS I	203 S-508	17.5 3	25.8	32.5	32.9	9.5	253	21.8	20.0	4.0.4	528	4.5	10.2	23.8	5'61	23.	1679	56	6 52	15.6	16.8	22.1	35.1	38	10.0	28.7	19.2	21.6	10.2	24.8	16.2	142	32.5
			AIZO3	er 3	714 1 65	78.7	8.5	4.1	10.4 (23			89			7.8			200	T		I						_			6.9						29 8.4
£ 6 bupeexxe		Piece-number	distribution [pieces/mm ²]	At least	G - 60%	183	521	7.	125	333	245	187	656	008	213	8 4	314	376	152	256	204	633	229	271	584	153	515	243	7.0	258		1 59	12	25	**	17.
50 sápixo oxides	$\left\{ \right.$		distribution [pieces/mm ²]		1 tal 3.0	2.5	28	3.6	1.5	36	2.4	1.8	2.8	3.0	7.6	80	1.3	2.2	9,	0.0	75	100	19	4.1	2.2	1.1	5.2	59	000	24.	-	£.	0.	60	4.2	35 .

the present embodiment shown in Table 4 will be compared with those of the comparative examples shown in Table 7, with reference to Figs. 1-3. Fig. 1 is a graph showing the HAZ toughness of the steel materials according to the embodiment shown in Table 4 and those of the steel materials Nos. 59 and 61-67 of the comparative examples shown in Table 7. In each of the examples and comparative examples shown in Fig. 1, the number of complex oxides having a circular-

equivalent diameter of greater than 3 μ m is less than 5.0/mm²; however, each of the steel materials Nos. 59 and 61-67 of the comparative examples represents an example in which the number of complex oxides having a circular-equivalent diameter of 0.1-3 μ m was less than 100, and the test result for the HAZ toughness of each of them was greatly less than 140.1

[0081] Fig. 2 is a graph showing the HAZ toughness of the steel materials according to the present embodiment shown in Table 4 and those of the steel materials Nos. 32-55 of the comparative examples shown in Table 7. In each of the examples and comparative examples shown in Fig. 1, the number of complex oxides having a circular-equivalent diameter of greater than 3 μ m is less than 5.0/mm² and the number of complex oxides having a circular-equivalent diameter of 0.1-3 μ m is at least 100; however, each of the steel materials Nos. 32-55 of the comparative examples represents an example in which the average composition of a complex oxide does not satisfy the conditions specified in the embodiment, and the test result for HAZ toughness of each of them was greatly less than 140 J.

[0082] Fig. 3 is a graph showing the HAZ toughness of the steel materials according to the present embodiment shown in Table 4 and those of the steel materials Nos. 56 and 57 of the comparative examples shown in Table 7. In each of the examples and comparative examples shown in Fig. 3, the number of complex oxides having a circular-equivalent diameter of 0.1-3 μ m is at least 100; however, each of the steel materials Nos. 56 and 57 of the comparative examples represents an example in which the number of complex oxides having a circular-equivalent diameter of greater than 3 μ m is no less than 5.0/mm², and the test result for the HAZ toughness of each of them was greatly less than 140 J.

[0083] As described above, a steel material, having a structure that satisfies the conditions specified in the present embodiment, can exert superior HAZ toughness even for high heat input welding. The embodiments disclosed herein are to be construed as being exemplary in all respects and not to be construed as being limitative. In the embodiments disclosed herein, in particular, the matters explicitly disclosed herein, such as, for example, running conditions, operating conditions, various parameters, and the size, weight, or volume of a structure, are not deviated from the ranges within which a person skilled in the art usually performs, and the values that a usual person skilled in the art can easily conceive of are adopted.

[0084] It has been described that the present steel material is produced in secondary refining; however, a steel material having similar HAZ toughness can be produced by using, for example, a converter furnace or an electric furnace. Accordingly, a production method of the present steel material using a converter furnace or an electric furnace is also encompassed by the technical scope of the present invention.

[0085] The present application is based on Japanese Patent Application (Patent Application No. 2013-060452), filed March 22, 2013, and the contents are incorporated herein by reference.

Industrial Applicability

[0086] A steel plate according to the present invention achieves superior HAZ toughness even for high heat input welding, and hence is suitable to be used in welded structures, such as ships, constructions, and bridges.

Claims

10

15

20

30

35

40

45

50

55

1. A steel material having superior toughness at welding heat affected zone, the steel material containing, in units of mass%:

0.02-0.13% of C,

0.05-0.5% of Si,

1.0-2.5% of Mn,

no greater than 0.03% of P (exclusive of 0%),

no greater than 0.01% of S (exclusive of 0%),

0.002-0.040% of AI,

0.005-0.040% of Ti,

0.0003-0.020% of Zr,

0.0003-0.020% of REM,

0.0003-0.0080% of Ca,

0.0030-0.010% of N, and

0.0003-0.0050% of O, with a remainder comprising iron and unavoidable impurities, wherein

the steel material contains a complex oxide containing REM, Zr, Ti, Al, Ca, and S, and wherein with respect to the complex oxide in the steel material,

the number of complex oxides having a circular-equivalent diameter of greater than 3 μ m is no greater than 5.0/mm², and

the number of complex oxides having a circular-equivalent diameter of 0.1-3 μm and satisfying formula (1) is at least 100/mm²,

and furthermore the average composition of the complex oxides that are 0.1-3 μ m satisfying formula (1) contains 20% or less of Al₂O₃, 3-20% of TiO₂, 5-50% of ZrO₂, 5-50% of REM oxide, 5-50% of CaO, and 1-15% of S.

 $0.008 \le (1/d) \times \{mass\% \ S/(mass\% \ CaO + mass\% \ REM_2O_3)\} \le 0.289 \dots (1)$

(where d is the circular equivalent diameter of each complex oxide, and is 0.1- \cdot 3 μ m).

2. The steel material having superior toughness at welding heat affected zone according to claim 1 containing at least one of

0.05-1.50% of Ni, 0.05-1.50% of Cu, 0.05-1.50% of Cr, 0.05-1.50% of Mo, 0.002-0.10% of Nb, 0.002-0.10% of V, and 0.0005-0.0050% of B.

5

10

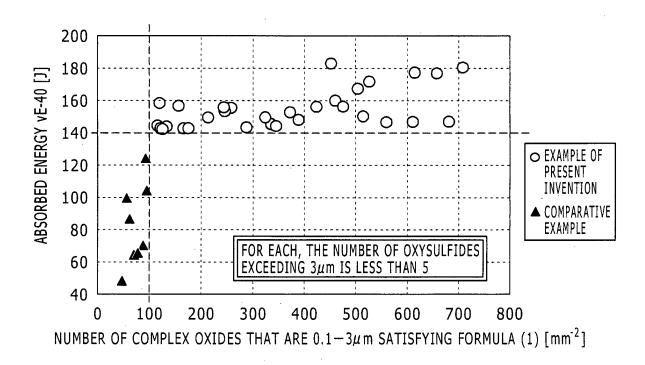
15

20

25

30

35


40

45

50

55

FIG.1

F I G . 2

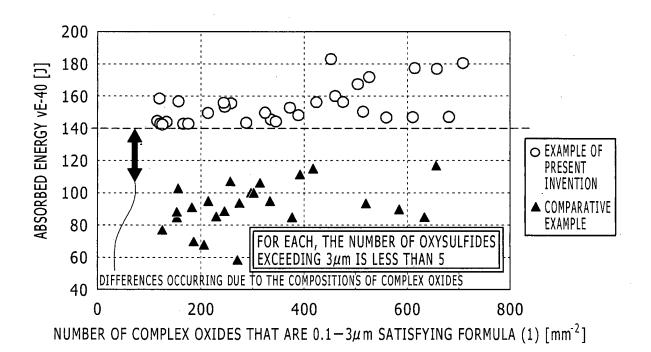
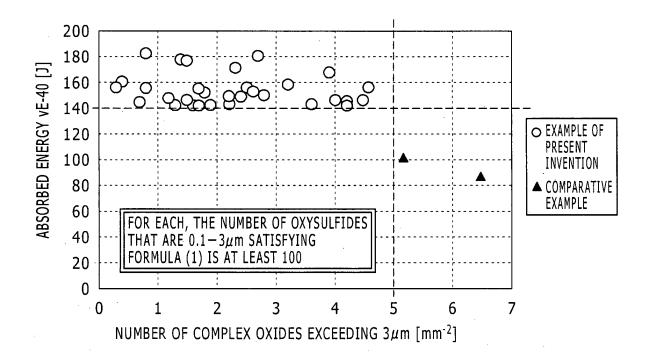



FIG.3

International application No. INTERNATIONAL SEARCH REPORT PCT/JP2014/057205 A. CLASSIFICATION OF SUBJECT MATTER 5 C22C38/00(2006.01)i, C22C38/14(2006.01)i, C22C38/58(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) 10 C22C38/00, C22C38/14, C22C38/58 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2014 15 Kokai Jitsuyo Shinan Koho 1971-2014 Toroku Jitsuyo Shinan Koho 1994-2014 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) 20 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 2012-162797 A (Kobe Steel, Ltd.), Α 1,2 30 August 2012 (30.08.2012), claims; paragraphs [0031] to [0129]; examples 25 & WO 2012/014998 A1 1,2 Α JP 2009-138255 A (Kobe Steel, Ltd.), 25 June 2009 (25.06.2009), claims; paragraphs [0015] to [0047]; examples & KR 10-2009-0049530 A & CN 101435051 A 30 JP 2011-219797 A (Kobe Steel, Ltd.), Α 1,2 04 November 2011 (04.11.2011), entire text (Family: none) 35 \times See patent family annex. Further documents are listed in the continuation of Box C. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "L' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is 45 "O" combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the document member of the same patent family priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 50 28 April, 2014 (28.04.14) 22 April, 2014 (22.04.14) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No. Facsimile No 55

Form PCT/ISA/210 (second sheet) (July 2009)

International application No. INTERNATIONAL SEARCH REPORT PCT/JP2014/057205 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT 5 Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 2011-127220 A (Kobe Steel, Ltd.), Α 1,2 30 June 2011 (30.06.2011), entire text 10 & KR 10-2011-0055428 A & CN 102061428 A JP 2011-38180 A (Kobe Steel, Ltd.), 1,2 Α 24 February 2011 (24.02.2011), entire text & KR 10-2011-0007050 A & CN 101956132 A 15 JP 2010-209433 A (Kobe Steel, Ltd.), Α 1,2 24 September 2010 (24.09.2010), entire text & KR 10-2010-0102557 A & CN 101831588 A 20 Α JP 2009-197267 A (Kobe Steel, Ltd.), 1,2 03 September 2009 (03.09.2009), entire text & KR 10-2009-0090254 A & CN 101514428 A JP 2009-179844 A (Kobe Steel, Ltd.), Α 1,2 25 13 August 2009 (13.08.2009), entire text & KR 10-2009-0083844 A & CN 101497962 A JP 2012-197506 A (Nippon Steel Corp.), Α 1,2 18 October 2012 (18.10.2012), 30 entire text & KR 10-2013-0036769 A & CN 103080358 A & US 2013/0142688 A1 & WO 2012/115181 A1 & CA 2808458 A & EP 2592167 A1 35 40 45 50

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 4261968 B **[0009]**
- JP 4762450 B **[0009]**
- JP 4039223 B **[0009]**

- JP 11264048 A **[0009]**
- JP 4144121 B **[0009]**
- JP 2013060452 A **[0085]**