

(11) EP 2 982 811 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

10.02.2016 Bulletin 2016/06

(51) Int Cl.:

E04D 13/03 (2006.01)

E04D 13/035 (2006.01)

(21) Application number: 15180453.1

(22) Date of filing: 10.08.2015

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA

(30) Priority: 08.08.2014 GB 201414143

(71) Applicant: Keylite Roof Windows Limited Cookstown, Tyrone BT80 9LU (GB)

(72) Inventors:

 COYLE, Sean Cookstown, Tyrone BT80 9DG (GB)

 LAMONT, Philip Cookstown, Tyrone BT80 9LU (GB)

(74) Representative: Hanna, John Philip

Hanna IP 4th Floor 58 Howard Street

Belfast BT1 6PJ (GB)

(54) VAPOUR BARRIER FOR A ROOF WINDOW

(57) A roof window (1) having a roof window frame (2, 7) and sash frame (8) and a covering member (3) for weather proofing the roof window. The covering member (3), the frame (2, 7) and sash frame (8) defining a channel

(4) there between capable of communicating fluid. A vapour barrier (5) is disposed in the fluid communicating channel (4) for preventing the flow of vapour along at least part of the fluid communicating channel (4).

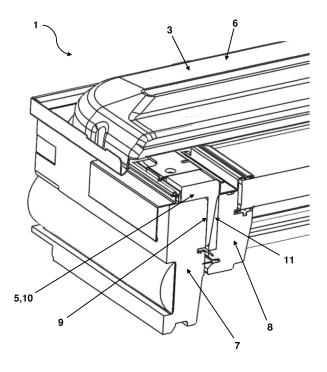


Figure 1

EP 2 982 811 A1

Description

[0001] The present invention relates to a vapour barrier for a roof window and in particular to a vapour barrier for a roof window which prevents the ingress of moisture into a window covering member.

1

[0002] The accumulation of condensation in and around windows of all varieties is a common problem obscuring the view and causing the buildup of moisture which can ultimately lead to the growth of mould in and around the window. To alleviate this problem it is a common practice for windows and in particular roof windows, to have ventilation flaps which can be opened to allow the warm air from the interior to dissipate into the exterior air, thus preventing the buildup of condensation on the window surface. However in cold weather with the vent flap open, the warm air flowing from the interior through this vent flap flows into the hood and some warm air flows underneath the frame c-channels which are generally aluminium roll formed members. Condensation forms on the underside of these c-channels of the window frame. Over time the presence of this moisture can lead to the collection of the moisture at undesirable locations within the roof window. The moisture ultimately makes its way into the decorative surfaces surrounding the window frame on the inside of the building. Furthermore, build up of mould readily occurs as the location of the condensation is in a hard to reach area. To access these areas requires an operator to remove the c-channels in order to effectively remove the moisture. Thus there exists a need for a solution which will prevent the accumulation of condensation on the interior surface of the c-channels covering the frame of windows, in particular roof win-

[0003] It is an object of the present invention to obviate the problem of the accumulation of condensation on interior surfaces of covering members of frames of windows.

[0004] Accordingly, the present invention provides a roof window having a roof window frame, a sash frame and a covering member for weather proofing the roof window, the covering member, the roof window frame and sash frame defining a channel there between capable of communicating fluid, a vapour barrier means being disposed in the fluid communicating channel for preventing the flow of vapour along at least part of the fluid communicating channel.

[0005] Advantageously, the vapour barrier prevents the vapour in warm air passing into at least part of the fluid communicating channel and condensing on the underside of the covering member.

[0006] Ideally, the roof window having a vent flap operable between a closed position for preventing the flow of air into or out of the building and a venting positon allowing air to flow into or out of the building and into or out of the fluid communicating channel below the covering member.

[0007] Ideally, the covering member comprises a hood

and at least one side frame cover member for covering the top member and one side member of the roof window frame and sash frame.

[0008] Preferably, the covering member comprises a hood and two side frame cover members for covering the top member and both side members of the frame and sash frame.

[0009] Ideally, the covering member comprises an inverted u-shaped cross sectional profile covering member for covering the top member and both side members of the frame and sash frame.

[0010] Preferably, the vapour barrier means is disposed proximal to the joint between the hood and one or two side frame cover members.

[0011] Ideally, the covering member straddles the gap between the roof window external frame and the sash frame.

[0012] Preferably, the fluid communicating channel comprises the fluid communicating conduit between the covering member and the frame and the fluid communicating gap between the external window frame and the sash frame.

[0013] Ideally, the vapour barrier is disposed within the fluid communicating channel.

[0014] Preferably, the vapour barrier seals the fluid communicating channel.

[0015] Ideally, the vapour barrier compressibly seals the fluid communicating channel.

[0016] Ideally, the vapour barrier comprises a two part component.

[0017] Preferably, the two part component has two separable component parts.

[0018] Ideally, the two separable component parts are formed for cooperating when the sash is in a closed position for sealing the fluid communicating channel.

[0019] Preferably, the two parts of the vapour barrier are mounted on mutually opposing locations of the external window frame and the sash frame.

[0020] Preferably, a first part of the vapour barrier is mounted on the external window frame and the second part is mounted on the sash frame.

[0021] Ideally, the first part and the second part of the vapour barrier are provided by wedges. It will of course be appreciated that although wedges are defined as the two part component, any configuration of two part component is envisaged within the scope of the invention where the two component parts may have stepped or convex/concave mating surfaces.

[0022] Preferably, the wedges are mounted on mutually opposing locations of the external window frame and the sash frame in the fluid communicating gap between the external window frame and the sash frame.

[0023] Ideally, the wedges are mounted so as to overlap and form a seal in the fluid communicating gap when the sash frame is in the closed position.

[0024] Preferably, the first part and the second part of the vapour barrier are provided by wedges, the wedges being mounted on mutually opposing locations of the ex-

40

45

ternal window frame and the sash frame between the external roof window frame and the sash frame, the wedges being mounted so as to overlap and form a seal when the sash frame is in the closed position.

[0025] Preferably, the first part of the vapour barrier also comprises a head for sealing the fluid communicating conduit between the cover member and frame.

[0026] Ideally, the head of the first part of the vapour barrier extends from the wedge.

[0027] Preferably, the vapour barrier means comprises coupling means for attaching the vapour barrier means to the external frame.

[0028] Ideally, the vapour barrier means comprises coupling means for attaching the vapour barrier means to the covering member.

[0029] Ideally, the vapour barrier means comprises coupling means for attaching the vapour barrier means to the c-channel covering member.

[0030] Preferably, the vapour barrier means comprises coupling means for attaching the vapour barrier means to the sash frame.

[0031] It should be appreciated that the vapour barrier means may comprise multiple coupling members as described above; in any possible combination.

[0032] Preferably, the coupling members are existing components of the roof window, adapted for engaging the vapour barrier.

[0033] Ideally, the vapour barrier means is formed of but not limited to a plastic/composite/polymer/metallic material or any combination thereof.

[0034] Preferably, the vapour barrier means is formed of extruded or expanded polystyrene.

[0035] Ideally, the vapour barrier means is formed of rubber, such as but not limited to clayton rite.

[0036] Preferably, the vapour barrier means is formed of a foam.

[0037] Most preferably, the vapour barrier means is formed of a closed cell foam such as but not limited to polyurethane, ethylene propylene diene monomer rubber, polyethylene, polyvinyl chloride or any combination of these.

[0038] Ideally, the vapour barrier means comprises a single barrier member.

[0039] In an alternative embodiment, the vapour barrier means is mounted on only one of the external frame or the sash frame.

[0040] Ideally, the vapour barrier means is mounted on the external frame.

[0041] In the alternative embodiment, the vapour barrier means comprising a compressible foam or flexible seal. Advantageously, the compressible foam or flexible seal allows the vapour barrier means to form a compressible seal when the sash frame is moved into a closed position against the vapour barrier means.

[0042] Ideally, the vapour barrier means comprising a non-permeable material.

[0043] Preferably, the vapour barrier means comprises a width of between 1 mm and 50mm. By width we mean

the distance between opposite facing external surfaces of the vapour barrier means traversing the fluid communicating channel and fluid communicating gap.

[0044] Preferably, the vapour barrier means being insertable at a single location along the fluid communicating conduit and fluid communicating gap. This means that it is not necessary to insert the barrier along all or a substantial part of the length of the fluid communication conduit between the covering member and the frame and along the fluid communicating gap.

[0045] Ideally, an alternative embodiment of vapour barrier is integrally formed with a component of a roof window.

[0046] Preferably, the component is a guide member for locating and securing part of the covering member.

[0047] Ideally, the vapour barrier is a sheet of flexible material formed to fill the gap defined by the fluid communicating channel.

[0048] Ideally, the guide member is a handed member formed for mounting on the side member of the frame.

[0049] Preferably, the guide member has a body having means for fixing the guide member onto the upwards facing surface of the frame of the roof window.

[0050] Ideally, the guide member has a downwardly depending skirt extending substantially orthogonally from the body with a plug protruding from the skirt for insertion into a bore formed in a lateral surface of the frame member for locating and securing the guide member in position.

[0051] Preferably, the skirt has an arrangement in the form of an elongate channel for retaining an elongate peripheral portion of the vapour barrier thereon and for locating the vapour barrier in a positon to seal the fluid communicating conduit and fluid communicating gap.

[0052] In an alternative embodiment, the vapour barrier is integrally formed with an existing component of the roof window.

[0053] In this embodiment, the existing component has a channel formed for locating and supporting a vapour barrier for sealing the fluid communicating conduit and fluid communicating gap.

[0054] Ideally, the component is a guide member for locating and securing part of the covering member namely the c-channel which covers the upper portion of the side members of the frame and sash.

[0055] A further embodiment of vapour barrier is integrally formed with a component of the roof window in an assembled configuration.

[0056] Ideally, the vapour barrier is mounted on the sash of a roof window.

[0057] In this embodiment the, the component comprises a body with a plug for engaging a bore on the outside lateral surface of the sash.

[0058] Ideally, the body has an arrangement in the form of an elongate channel for retaining an elongate peripheral portion of the vapour barrier thereon and for locating the vapour barrier in a positon to seal the fluid communicating conduit and fluid communicating gap.

40

30

35

[0059] Ideally, the vapour barrier comprises one or more sheets of flexible material extending from the elongate peripheral portion formed to fill the gap defined by the fluid communicating conduit and fluid communicating gap. The one or more sheets are deformable when they engage the corresponding surface of the frame as the sash is pivoted into a closed position.

[0060] In a further alternative embodiment, the vapour barrier means being a continuous component designed to extend along the entire fluid communicating channel. [0061] Ideally, the vapour barrier means is located in the fluid communicating channel so as to prevent vapour in warm air flowing via a ventilation passage under the covering means and along the entire length of the covering member. The ventilation passage is from the inside to the outside of a building that the roof window is mounted in via an open ventilation flap.

[0062] The invention will now be described with reference to the accompanying drawings which show by way of example three embodiments of a vapour barrier for a roof window in accordance with the invention.

Figure 1 is a perspective sectional view of the vapour barrier inserted in situ in the window frame;

Figure 2 is a cross section elevation view of the vapour barrier inserted in situ in the window frame;

Figure 3 is a schematic view of the first part of the vapour barrier;

Figure 4 is a schematic view of the second part of the vapour barrier;

Figure 5 is a perspective view of the covering member;

Figure 6 is a perspective sectional view of the vapour barrier inserted in situ in the window frame connectable to the c-channel;

Figure 7 is a cross section elevation view of the vapour barrier inserted in situ in the window frame connectable to the c-channel, frame and sash;

Figure 8 is an exploded perspective view of an alternative embodiment of vapour barrier integrally formed with an existing component of the roof window:

Figure 9 is a perspective view of the embodiment of Figure 8 in an assembled configuration;

Figure 10 is an exploded perspective view of an alternative embodiment of vapour barrier integrally formed with an existing component of the roof window;

Figure 11 is a perspective view of the embodiment of Figure 10 in an assembled configuration;

Figure 12 is a perspective view of a further embodiment of vapour barrier integrally formed with an existing component of the roof window in an assembled configuration;

Figure 13 is a perspective view of the vapour barrier of Figure 12 mounted on the sash of a roof window.

[0063] Referring to the drawings generally, there is

shown a roof window indicated generally by the reference numeral 1 having a roof window frame 2 and a covering member 3 for weather proofing the frame 2 from inclement weather. The covering member 3 and the frame 2 define a channel 4 there between capable of communicating fluids. The roof window 1 having a vent flap, see Figure 13 operable between a closed position for preventing the flow of air into or out of the building and a venting positon allowing air to flow into or out of the building and into or out of the fluid communicating channel 4 below the covering member 3. A vapour barrier 5 is disposed in the fluid communicating channel 4 for preventing the flow of vapour along at least part of the fluid communicating channel 4.

[0064] Advantageously, the vapour barrier 5 prevents the vapour in warm air passing into the fluid communicating channel 4 and condensing on the underside of the covering member 3. The covering member 3 comprises a hood 6 and two side frame cover members 38 for covering the top frame member and the side members of the frame 2; as shown in figures 5 and 6. The covering member 3 is a generally U-shaped covering member for covering the top frame member and both side members of the frame 2. The vapour barrier is disposed proximal to the joint between the hood 6 and one or two side frame cover members 38. The covering member 3 straddles the gap between the roof window external frame 7 and the sash frame 8. The fluid communicating channel 4 comprises the fluid communicating conduit 4 between the covering member 3 and the frame 2 and a fluid communicating gap 9 between the external window frame 7 and the sash frame 8. The vapour barrier 5 is disposed within the fluid communicating channel 4, 9. The vapour barrier 5 is designed to seal the fluid communicating channel 4, 9. The vapour barrier 5 compressibly seals the fluid communicating channel 4, 9.

[0065] The vapour barrier 5 comprises a two part component 10, 11. The two parts 10, 11 of the vapour barrier 5 are mounted on mutually opposing locations of the external window frame 7 and the sash frame 8. A first part 10 of the vapour barrier 5 is mounted on the external window frame 7 and the second part 11 is mounted on the sash frame 8. The first part 10 and the second part 11 of the vapour barrier 5 are provided by wedges. It will of course be appreciated that although wedges are defined as the two part component, any configuration of two part component is envisaged within the scope of the invention. The two component parts may have stepped or convex/concave mating surfaces for example.

[0066] The wedges 10, 11 are mounted on mutually opposing locations of the external window frame 7 and the sash frame 8 in the fluid communicating gap 9 between the external window frame 7 and the sash frame 8. The wedges 10, 11 are mounted so as to overlap and form a seal in the fluid communicating gap 9 when the sash frame 8 is in the closed position. The first part 10 of the vapour barrier 5 also comprises a head 14 for sealing the fluid communicating conduit 4. The head 14 of

50

20

25

30

40

45

50

the first part 10 of the vapour barrier 5 extends from the wedge section 10. The vapour barrier 5 comprising but not limited to a plastic/composite/polymer/metallic material. The vapour barrier 5 is manufactured from extruded/expanded polystyrene. Other materials may include rubber, such as claytonrite or closed cell foam such as polyurethane, ethylene propylene diene monomer rubber, polyethylene, polyvinyl chloride or any combination of such.

[0067] In an alternative embodiment not illustrated in the drawings, the vapour barrier comprising a one piece component. In this alternative embodiment, the vapour barrier comprising a compressible foam. Advantageously, the compressible foam allows the vapour barrier to form a compressible seal against the sash frame when the sash frame is moved into a closed position against the vapour barrier.

[0068] In any embodiment, the vapour barrier comprising a non-permeable material. The vapour barrier has a width of between 1 mm and 50mm. By width we mean the distance between opposite facing external surfaces of the vapour barrier traversing the fluid communicating channel and fluid communicating gap. In use, the vapour barrier 5 is insertable at a single location along the fluid communicating channel and fluid communicating gap.

[0069] In a further alternative embodiment, the vapour barrier is a continuous component insertable along the entire length the fluid communicating channel and fluid communicating gap.

[0070] In a further alternative embodiments, the vapour barrier 5 may comprise a frame coupling member 15 to attach the vapour barrier 5 to the window frame 2, a sash coupling member 16 to attach the vapour barrier 5 to sash frame 8 or a c-channel coupling member (not shown) to attach the vapour barrier 5 to the c-channel covering member 38. It should also be appreciated that the vapour barrier 5 may maintain multiple coupling members as described above; in any combination.

[0071] Referring to the drawings and now to Figure 8 and Figure 9, there is shown an exploded perspective view and an assembled view of an alternative embodiment of vapour barrier 25 integrally formed with a component 26 of a roof window. The component 26 is a guide member 26 for locating and securing part of the covering member 3 namely the c-channel which covers the upper portion of the side members of the frame and sash. The guide member 26 is a right handed member formed for mounting on the right hand side member of the frame. The guide member 26 has a box member 29 having a screw hole 30 defined there through for fixing the guide member 26 onto the upwards facing surface of the frame of the roof window. The guide member 26 has a downwardly depending skirt 31 extending substantially orthogonally from the box member 29 with a plug 32 protruding from the skirt 31 for insertion into a bore formed in a lateral surface of the frame member for locating and securing the guide member 26 in position. The skirt 31 has an arrangement 33 in the form of an elongate channel

for retaining an elongate peripheral portion 34 of the vapour barrier 25 thereon and for locating the vapour barrier 25 in a positon to seal the fluid communicating channel and fluid communicating gap. The vapour barrier 25 is a sheet of flexible material formed to fill the gap defined by the fluid communicating channel.

[0072] Figure 10 and Figure 11 is an exploded perspective view and an assembled view of an alternative embodiment of vapour barrier 35 integrally formed with an existing component 36 of the roof window. In this embodiment, the existing component 36 has an L-shaped channel 37 formed for locating and supporting an L-shaped vapour barrier 35 for sealing the fluid communicating channel and fluid communicating gap. The component 36 is a guide member 36 of the same type as the guide member 26 of Figures 8 and 9 for locating and securing part of the covering member 3 namely the c-channel which covers the upper portion of the side members of the frame and sash.

[0073] Figure 12 and 13 are perspective views of a further embodiment of vapour barrier 45 integrally formed with a component 46 of the roof window 48 in an assembled configuration. Figure 13 illustrates the vapour barrier 45 mounted on the sash 49 of a roof window 48 with the sash 49 in an open configuration. In this embodiment the component 46 comprises a body 51 with a plug 52 for engaging a bore on the outside lateral surface 53 of the sash 49. The body 51 has an arrangement 54 in the form of an elongate channel for retaining an elongate peripheral portion 55 of the vapour barrier 45 thereon and for locating the vapour barrier 45 in a positon to seal the fluid communicating channel and fluid communicating gap. The vapour barrier 45 comprises two sheets 56 of flexible material extending from the elongate peripheral portion 55 formed to fill the gap defined by the fluid communicating channel and fluid communicating gap. The two sheets 56 are deformable when they engage the corresponding surface of the frame as the sash 49 is pivoted into a closed position.

[0074] In the preceding discussion of the invention, unless stated to the contrary, the disclosure of alternative values for the upper or lower limit of the permitted range of a parameter, coupled with an indication that one of the said values is more highly preferred than the other, is to be construed as an implied statement that each intermediate value of said parameter, lying between the more preferred and the less preferred of said alternatives, is itself preferred to said less preferred value and also to each value lying between said less preferred value and said intermediate value.

[0075] The features disclosed in the foregoing description or the following drawings, expressed in their specific forms or in terms of a means for performing a disclosed function, or a method or a process of attaining the disclosed result, as appropriate, may separately, or in any combination of such features be utilised for realising the invention in diverse forms thereof as defined in the appended claims.

15

20

25

30

35

40

45

1. A roof window (1) having a roof window frame (2, 7) and sash frame (8) and a covering member (3) for weather proofing the roof window, the covering member (3), the frame (2, 7) and sash frame (8) defining a channel (4) there between capable of communicating fluid, a vapour barrier means (5) being disposed in the fluid communicating channel (4) for preventing the flow of vapour along at least part of the fluid communicating channel (4).

9

- 2. A roof window (1) as claimed in claim 1, wherein the covering member comprises a hood (6) and at least one side frame cover member (38) for covering the top member and at least one side member of the roof window frame (7) and sash frame (8).
- 3. A roof window (1) as claimed in claim 1 or claim 2, wherein the covering member (3) comprises a generally inverted u-shaped cross sectional profile covering member for covering the top member and at least one side member of the roof window frame (7) and sash frame (8).
- 4. A roof window (1) as claimed in claim 2 or claim 3 when dependent on claim 2, wherein the vapour barrier means (5) is disposed proximal to the joint between the hood (6) and one or two side frame cover members (38).
- 5. A roof window (1) as claimed in any one of the preceding claims, wherein the vapour barrier means (5) seals the fluid communicating channel (4), and most preferably compressibly seals the fluid communicating channel (4).
- **6.** A roof window (1) as claimed in any one of the preceding claims, wherein the vapour barrier means (5) comprises a two part component (10, 11).
- 7. A roof window (1) as claimed in claim 6, wherein the two parts (10, 11) of the vapour barrier means (5) being mounted on mutually opposing locations of the external window frame (7) and the sash frame (8).
- 8. A roof window (1) as claimed in any one of the preceding claims, wherein the vapour barrier means (5) comprises coupling means (15, 16) for attaching the vapour barrier means (5) to the external frame and/or the sash frame and/or the covering member.
- 9. A roof window (1) as claimed in any one of the preceding claims, wherein the covering member straddles the gap between the roof window external frame (7) and the sash frame (8) and the fluid communicating channel (4) comprises a fluid communicating conduit (4) between the covering member and the

frame and the fluid communicating gap (9) between the roof window external frame and the sash frame.

- 10. A roof window (1) as claimed in claim 6 or claims 7 to 9 when dependent on claim 6, wherein the first part and the second part of the vapour barrier are provided by wedges (10, 11), the wedges being mounted on mutually opposing locations of the external window frame and the sash frame between the external roof window frame and the sash frame, the wedges being mounted so as to overlap and form a seal when the sash frame is in the closed position.
- **11.** A roof window (1) as claimed in any one of claims 1 to 5, 8 or 9, wherein the vapour barrier means comprises a single barrier member.
- **12.** A roof window (1) as claimed in claim 11, wherein the vapour barrier means is mounted on only one of the external roof window frame or the sash frame.
- 13. A roof window (1) as claimed in any one of the preceding claims, wherein the vapour barrier means is integrally formed with a component of a roof window, the component being a guide member for locating and securing part of the covering member.
- **14.** A roof window (1) as claimed in any one of the preceding claims, wherein the vapour barrier means comprises a width of between 1 mm and 50mm.
- 15. A roof window (1) as claimed in any one of the preceding claims, wherein the vapour barrier means is located in the fluid communicating channel so as to prevent vapour in warm air flowing via a ventilation passage under the covering means and along the entire length of the covering member.

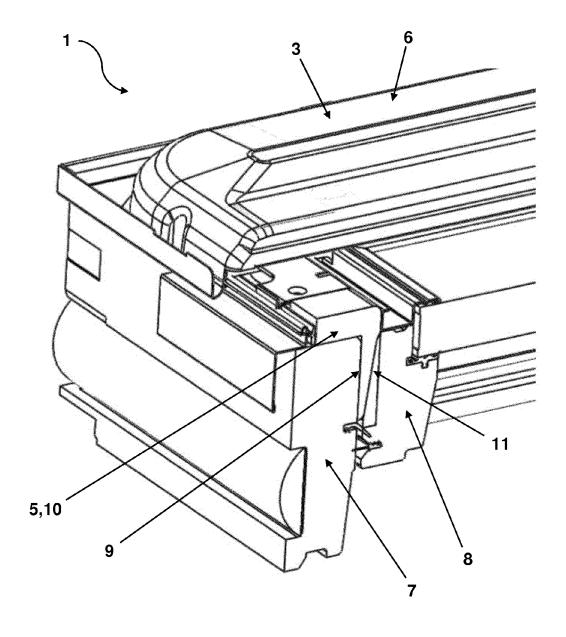


Figure 1

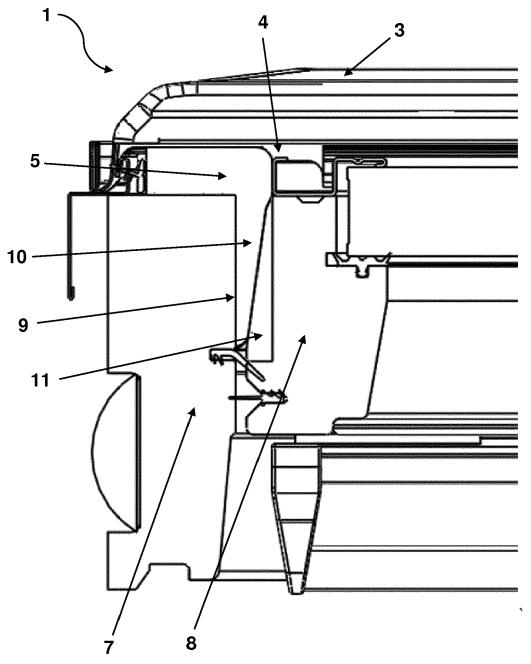


Figure 2

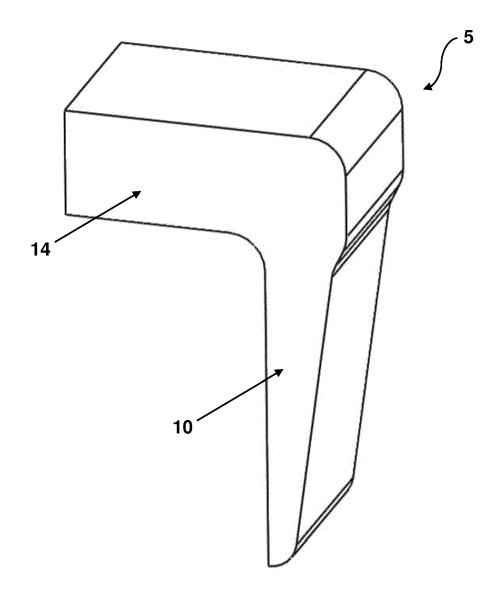


Figure 3

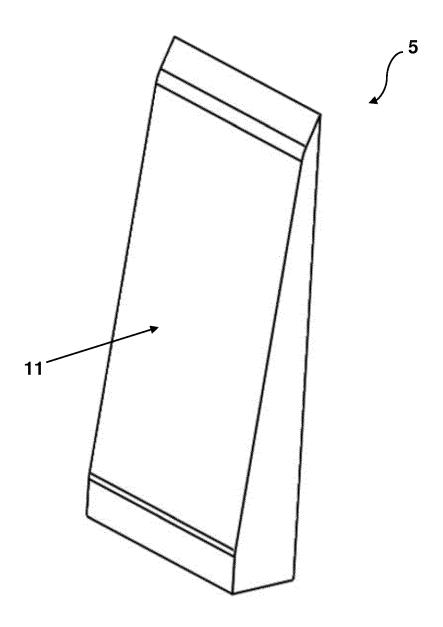


Figure 4

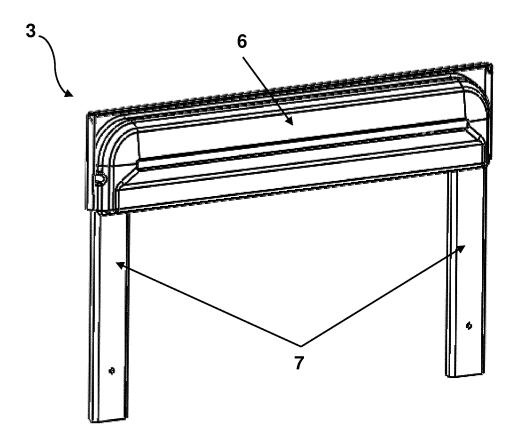


Figure 5

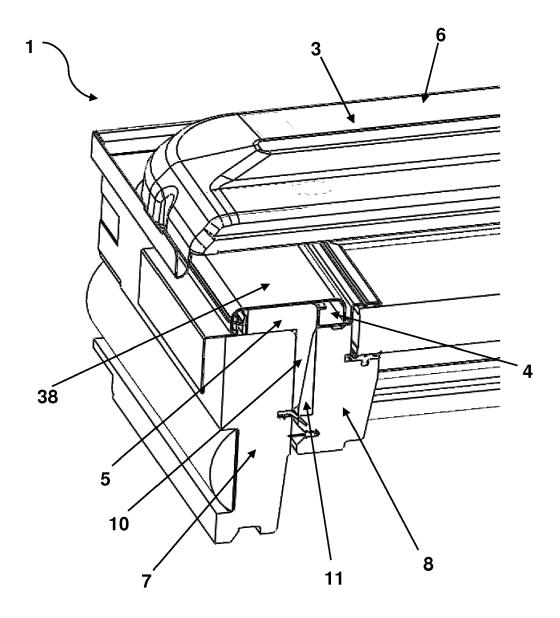


Figure 6

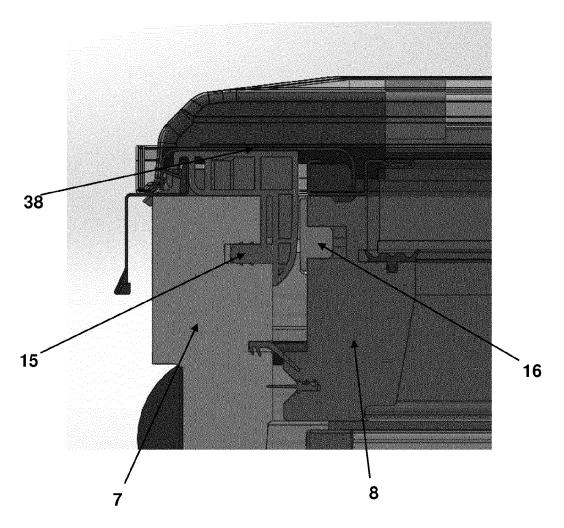


Figure 7

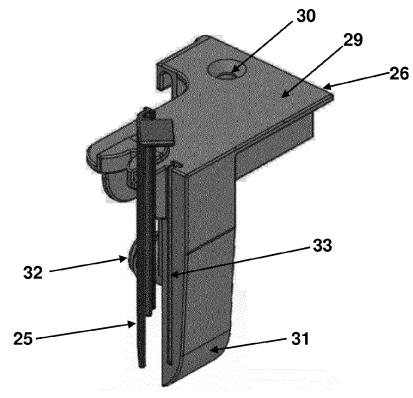


Figure 8

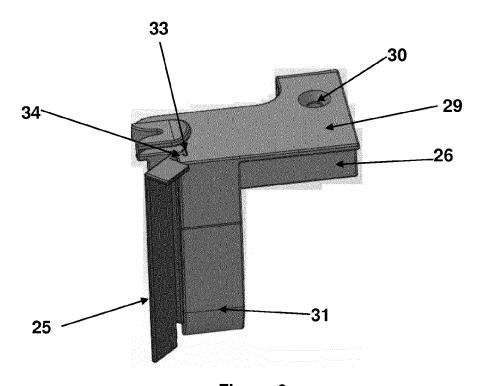


Figure 9

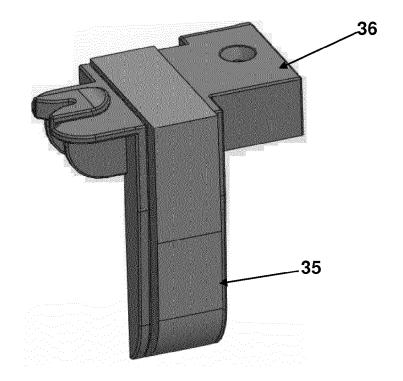


Figure 10

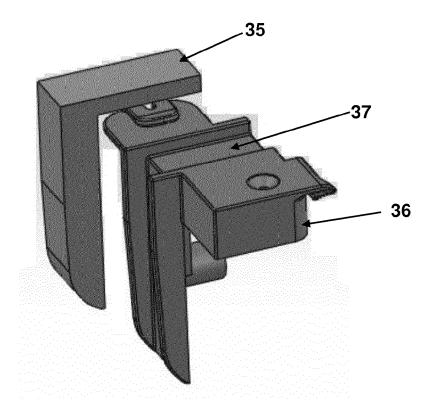


Figure 11

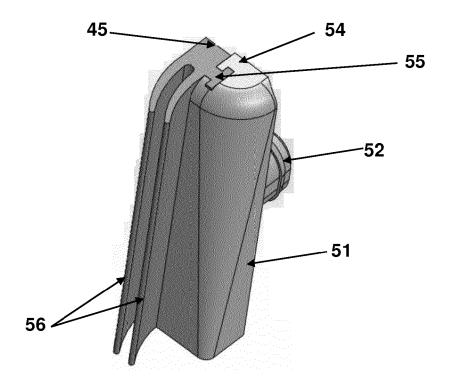
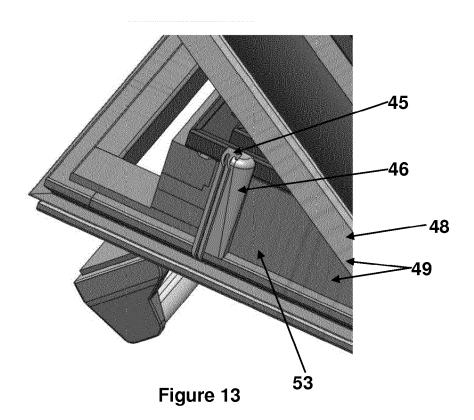



Figure 12

Category

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate,

of relevant passages

Application Number EP 15 18 0453

CLASSIFICATION OF THE APPLICATION (IPC)

Relevant

to claim

5

10

15

20

25

30

35

40

45

50

55

P : intermediate document

document

	Oi Televarit passa	.ges	to Gaiiii	ATTENDATION (II 0)		
X A	WO 99/51832 A1 (VEL FRANSSON JAN [DK]; LARSEN NIEL) 14 Oct * figures 2, 3 * * page 5, line 21 -	HEIDTMAN NĪELŠ [DK]; ober 1999 (1999-10-14)	1-4,8-15	INV. E04D13/03 E04D13/035		
		<u></u> ′				
				TECHNICAL FIELDS SEARCHED (IPC)		
				E04D		
	The present search report has b	een drawn up for all claims				
	Place of search	Date of completion of the search		Examiner		
	The Hague	12 November 2015	Cob	usneanu, D		
X : par Y : par doc	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anoth ument of the same category	L : document cited f	cument, but publis te in the application or other reasons	shed on, or		
O : nor	hnological background n-written disclosure		&: member of the same patent family, corresponding			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 15 18 0453

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-11-2015

•	1	0	

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9951832	A1	14-10-1999	AT AU DE DE EP HU PL WO	241063 T 2827699 A 69908116 D1 69908116 T2 1070181 A1 0100984 A2 343362 A1 9951832 A1	15-06-2003 25-10-1999 26-06-2003 18-03-2004 24-01-2001 28-08-2001 13-08-2001 14-10-1999

20

15

25

30

35

40

45

50

55

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82