(11) **EP 2 984 959 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 17.02.2016 Bulletin 2016/07

(21) Application number: 13881684.8

(22) Date of filing: 12.04.2013

(51) Int Cl.: **A43B 13/14** (2006.01)

(86) International application number: **PCT/JP2013/061074**

(87) International publication number: WO 2014/167713 (16.10.2014 Gazette 2014/42)

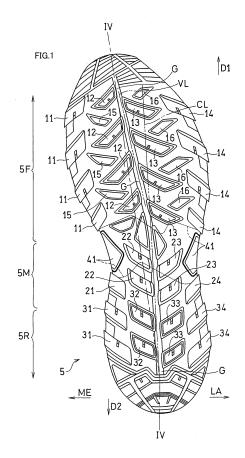
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States:

BA ME

(71) Applicant: ASICS Corporation Kobe-shi, Hyogo 650-8555 (JP)

(72) Inventors:


 ICHIKAWA, Masaru Kobe-shi Hyogo 650-8555 (JP) KANADA, Akihiro Kobe-shi Hyogo 650-8555 (JP)

 KOIZUMI, Masashi Kobe-shi Hyogo 650-8555 (JP)

(74) Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB Siebertstrasse 3 81675 München (DE)

(54) SHOE SOLE SUITABLE FOR UNEVEN TERRAIN ROAD

(57)A shoe sole including a large number of first, second and third cleats projecting from a base surface of an outsole made of rubber, wherein: a medial first cleat arranged on a medial side ME of a foot in a forefoot portion has an engaging surface facing toward a posterior-lateral diagonal direction; a lateral first cleat arranged on a lateral side of the foot in the forefoot portion has an engaging surface facing toward a posterior-medial diagonal direction; a medial second cleat arranged on the medial side of the foot in a middle foot portion has an engaging surface facing toward an anterior-lateral diagonal direction; a lateral second cleat arranged on the lateral side of the foot in the middle foot portion has an engaging surface facing toward an anterior-medial diagonal direction; a medial third cleat arranged on the medial side of the foot in a rearfoot portion has an engaging surface facing toward an anterior-lateral diagonal direction; and a lateral third cleat arranged on the lateral side of the foot in the rearfoot portion has an engaging surface facing toward an anterior-medial diagonal direction.

TECHNICAL FIELD

[0001] The present invention relates to shoe soles for walking shoes, rain shoes and shoes for daily use, as well as shoe soles suitable for uneven (uneven terrain) road surfaces such as for trail running, mountain climbing and cross country. In the present invention, uneven road surfaces include muddy road surfaces, sloped road surfaces, rugged road surfaces, and the like.

1

BACKGROUND ART

[0002] Generally, in order to improve the grip on uneven road surfaces, it is effective to increase the amount of soil to be scraped off when cleats bite into and grip the road surface. Therefore, it is important to take into consideration the direction, and the projected area, of the load applied on the cleats from the road surface when gripping the road surface. However, conventional techniques do not sufficiently take into consideration the direction of the load within the sole surface when walking on a sloped road surface. Particularly, in the middle foot portion, an arch that does not contact the ground is often provided, and cleats have not been designed while sufficiently taking the grip into consideration.

CITATION LIST

PATENT LITERATURE

[0003]

First Patent Document: JP2011-382A (Abstract) Second Patent Document: JP2009-233163A (Abstract)

Third Patent Document: JP2007-307377A (Abstract)

Fourth Patent Document: JP2002-034609A (Abstract)

Fifth Patent Document: JP09-075106A (Abstract) Sixth Patent Document: JP07-136003A (Abstract)

SUMMARY OF INVENTION

[0004] It is therefore an object of the present invention to provide a shoe sole having a desirable grip on sloped road surfaces, particularly on uneven road surfaces.
[0005] Before describing the configuration of the present invention, the direction of the load within the sole surface on a sloped road surface will be described.
[0006] The present inventors first calculated the directions of the primary loads acting within the sole surface when walking (4 km/h) on a sloped road surface. FIG. 11A shows the directions of the loads. In FIG. 11A, one-dot chain lines and solid lines denote the directions of the primary loads acting when walking downhill and when

walking uphill, respectively.

[0007] As indicated by one-dot chain lines, when walking downhill, the loads are acting toward posterior-medial ME diagonal directions and posterior-lateral LA diagonal directions over an area from the rearfoot portion 5R to the middle foot portion 5M and the rear end of the forefoot portion 5F. On the other hand, as indicated by solid lines, it can be seen that when walking uphill, the loads are acting toward anterior-medial ME diagonal directions, anterior-lateral LA diagonal directions and forward directions over an area that is anterior D1 to the line MP, which connects together the MP (metatarsal phalangeal) joints, of the forefoot portion 5F.

[0008] The cause for such a load will now be discussed.
[0009] When walking uphill, after the shoe sole contacts the ground and before the shoe sole takes off the ground, the foot is dorsiflexed along the line MP connecting together the MP joints, and in this dorsiflexed position, a portion of the foot that is anterior to the line MP scrapes off the soil of the road surface rearward. Thus, there occurs a load having a vector in the anterior direction D1. Moreover, it is speculated that as the forefoot portion rotates about the ball of the big toe in such a direction that the toe moves in the lateral direction, a load toward the anterior D1-lateral LA diagonal direction is produced on the lateral side LA of the foot, and a load toward the anterior D1-media ME diagonal direction is produced on the medial side ME of the foot.

[0010] On the other hand, when walking, generally, a portion of shoe sole that is anterior D1 to the line MP connecting together the MP joints is slightly bent upward off the ground. Therefore, when walking downhill, the area that is posterior D2 to the line MP entirely contacts the ground before the area that is anterior D1 to the line MP contacts the ground.

[0011] Now, the load applied onto the road surface from an outsole 5 in the area that is posterior D2 to the line MP is large along the longitudinal axis CL of the foot and in the vicinity of the ball O1 of the big toe, and is small along the medial and lateral edges of the outsole 5. That is, regarding the force applied onto the road surface from the outsole when walking downhill, since no force is acting upon the peripheral portion of the sole, the force is a resultant force obtained by adding the force gathering toward the central portion of the sole to the force acting in the foot-slipping direction toward the toe. On the other hand, the direction of the force applied onto the outsole from the road surface when walking downhill is of the opposite direction from that of the resultant force. [0012] For these reasons, as indicated by one-dot chain lines of FIG. 11A, it is speculated that the load applied onto the outsole 5 from the road surface acts in the posterior D2-lateral LA diagonal direction on the lateral side LA of the foot with respect to the longitudinal axis CL and the ball O1 of the big toe and in the posterior D2-medial ME diagonal direction on the medial side ME

[0013] In one aspect of the present invention, a shoe

sole includes an outsole 5 made of rubber and a midsole 4 made of resin, wherein a plurality of first cleats 11 to 14, second cleats 22 and 23 and third cleats 31 to 34 made of rubber and projecting from a base surface 5S of the outsole 5 are arranged in a forefoot portion 5F, a middle foot portion 5M and a rear foot portion 5R, respectively, wherein:

of the first cleats 11 to 14, medial first cleats 11, 12 arranged on a medial side ME of a foot have engaging surfaces 11E, 12E facing toward a posterior D2-lateral LA diagonal direction;

of the first cleats 11 to 14, lateral first cleats 13, 14 arranged on a lateral side LA of the foot have engaging surfaces 13E, 14E facing toward a posterior D2-medial ME diagonal direction;

of the second cleats 22, 23, a medial second cleat 22 arranged on the medial side ME of the foot has an engaging surface 22E facing toward an anterior D1-lateral LA diagonal direction;

of the second cleats 22, 23, a lateral second cleat 23 arranged on the lateral side LA of the foot has an engaging surface 23E facing toward an anterior D1-media ME diagonal direction;

of the third cleats **31** to **34**, medial third cleats **31**, **32** arranged on the medial side **ME** of the foot have engaging surfaces **31E**, **32E** facing toward an anterior **D1**-lateral **LA** diagonal direction; and

of the third cleats **31** to **34**, lateral third cleats **33**, **34** arranged on the lateral side **LA** of the foot have engaging surfaces **33E**, **34E** facing toward an anterior **D1**-media **ME** diagonal direction.

[0014] Note that "an engaging surface facing toward ..." as used in the present invention refers to "an engaging surface generally perpendicular to ...". Note however that the engaging surface does not need to be perpendicular to the base surface **5S**, as long as it is 70° to 110° with respect to the base surface **5S**.

[0015] In the present invention, the engaging surfaces 11E and 12E of the medial first cleats 11 and 12 of the forefoot portion 5F are facing toward the posterior-lateral LA diagonal direction, whereas the engaging surfaces 13E and 14E of the lateral first cleats 13 and 14 of the forefoot portion 5F are facing toward the posterior-medial ME diagonal direction. Therefore, the engaging surfaces 11E to 14E easily engage facing perpendicular to the directions of the loads described above. Thus, the grip is good and slippage is unlikely when walking uphill.

[0016] Such a grip capacity will also be realized similarly when walking on a flat ground.

[0017] On the other hand, in the middle foot portion 5M and the rearfoot portion 5R, the engaging surfaces 22E, 31E and 32E of the medial second and third cleats 22, 31 and 32 are facing toward the anterior-lateral LA diagonal direction. In the middle foot portion 5M and the rearfoot portion 5R, the engaging surfaces 23E, 33E and 34E of the lateral second and third cleats 23, 33 and 34 are

facing the anterior-medial **ME** diagonal direction. Therefore, the engaging surfaces **22E** and **23E** and **31E** to **34E** easily engage facing perpendicular to the directions of the loads described above. Thus, the grip is good and slippage is unlikely when walking downhill.

[0018] Such a grip capacity will also be realized similarly when walking on a flat ground.

BRIEF DESCRIPTION OF DRAWINGS

[0019]

15

20

30

40

45

FIG. 1 is a schematic bottom view showing a shoe sole according to Embodiment 1 of the present invention.

FIG. 2 is a schematic bottom view showing, on an enlarged scale, a forefoot portion of the same shoe sole.

FIG. 3 is a schematic bottom view showing, on an enlarged scale, a middle foot portion and a rearfoot portion of the same shoe sole.

FIG. **4A** is a cross-sectional view taken along line **IV-IV** of FIG. **1**, and FIG. **4B** is an enlarged cross-sectional view showing a part thereof.

FIG. **5A**, FIG. **5B**, FIG. **5C**, FIG. **5D**, FIG. **5E** and FIG. **5F** are cross-sectional views showing the outsole taken along lines A-A, B-B, C-C, D-D, E-E and F-F, respectively, of FIG. **2** or FIG. **3**.

FIG. 6 is a perspective view showing the forefoot portion of the outsole as seen from the medial side. FIG. 7 is a perspective view showing the forefoot portion of the outsole as seen from the lateral side. FIG. 8 is a perspective view showing the rearfoot portion of the outsole as seen from the medial side. FIG. 9 is a perspective view showing the rearfoot portion of the outsole as seen from the lateral side. FIG. 10A is a bottom view of the shoe sole showing only those of cleats of which the height is 2.8 mm or more, and FIG. 10B is a plan view showing the foot bone structure.

FIG. 11A is a plan view showing, in the form of vectors, forces occurring within the sole surface when walking uphill and waking downhill, and FIG. 11B, FIG. 11C and FIG. 11D are schematic bottom views of the shoe sole each showing an alternative cleat arrangement, etc.

DESCRIPTION OF EMBODIMENTS

[0020] Preferably, an angle $\alpha 2$ formed between at least one of the engaging surfaces 22E and 23E of the second cleats 22 and 23 and the base surface 5S is equal to an angle $\Omega 2$ formed between a back surface BS of the second cleats 22 and 23 and the base surface 5S, or is closer to a right angle than the angle $\Omega 2$.

[0021] If the angle α 2 is closer to the right angle than the angle β 2, the engaging surfaces 22E and 23E easily engage with the soil, thereby enhancing the grip capacity,

in the middle foot portion **5M**, whereas if the back surface **BS** is inclined with respect to the base surface **5S**, the area of the base surface **5S** over which the second cleats **22** and **23** project becomes larger as compared with the area of the top surface **T** of the second cleats **22** and **23**, which distributes the load acting on the sole of the foot so that one can expect that the upthrust on the sole of the foot will be eased.

[0022] Note that in order to realize a sufficient engaging function, an engaging surface is preferably set to be at 80° to 100° with respect to the base surface **5S**.

[0023] Preferably, an angle $\alpha 3$ formed between at least one of the engaging surfaces 31E to 34E of the third cleats 31 to 34 and the base surface 5S is equal to an angle $\beta 3$ formed between a back surface BS of the third cleats 31 to 34 and the base surface 5S, or is closer to a right angle than the angle $\beta 3$.

[0024] Preferably, an angle α 1 formed between at least one of the engaging surfaces 11E to 14E of the first cleats 11 to 14 and the base surface 5S is equal to an angle β 1 formed between a front surface FS of the first cleats 11 to 14 and the base surface 5S, or is closer to a right angle than the angle β 1.

[0025] If the angle α 3 is closer to the right angle than the angle β 3 and if the angle α 1 is closer to the right angle than the angle β 1, one can similarly expect that the grip capacity will improve and the upthrust will be eased in the rearfoot portion 5R and the forefoot portion 5F.

[0026] Preferably, the first, second and third cleats 11 to 14, 22, 23 and 31 to 34 are projecting from the base surface 5S generally by 2 to 10 mm. Note that for cleats other than the first to third cleats, there may be cleats whose height is less than 2 mm.

[0027] In this case, the projection height H from the base surface **5S** being 2 mm (millimeters) or more ensures a certain degree of engaging force. The projection height H being 10 mm or less ensures that the stability and the lightweight property are not hindered.

[0028] For such reasons, the projection height H is preferably about 2.5 to 8 mm, more preferably about 2.8 to 7 mm, and most preferably about 3 to 6 mm.

[0029] Preferably, an area of a top surface T of each of the first, second and third cleats 11 to 14, 22, 23 and 31 to 34 contacting the ground is 50 to 500 square millimeters, and is more preferably 50 to 300 square millimeters.

[0030] If the area of the top surface **T** is less than 50 square millimeters, there will unlikely be engaging surfaces of a sufficient length. On the other hand, if the area of the top surface **T** exceeds 300 square millimeters, the cleats will unlikely bite into the ground.

[0031] Preferably, an angle θ 22, θ 23 formed between a normal NL perpendicular to the engaging surface 22E, 23E of at least one of the second cleats 22 and 23 and a longitudinal axis CL of the foot is set to 15° to 45°, and an area of the engaging surface 22E, 23E is set to 20 to 500 square millimeters, and is more preferably set to 40

to 200 square millimeters.

[0032] Herein, "an angle formed between a normal perpendicular to an engaging surface and a longitudinal axis of the foot" means the angle between the normal and the longitudinal axis as these lines are projected onto the base surface 5S, taking into consideration cases where the engaging surface is inclined with respect to the base surface 5S.

[0033] In this case, in the middle foot portion 5M, the engaging surfaces 22E and 23E will exert the engaging force toward the intended engaging direction.

[0034] If the angles θ 22 and θ 23 are smaller than 15° or larger than 45°, the engaging directions will deviate, thus failing to exert a sufficient engaging force.

[0035] If the area of engagement is less than 40 square millimeters, they will unlikely to sufficiently engage with the ground, whereas if it exceeds 200 square millimeters, the engaging force of one cleat may increase locally, thereby destroying balance in walking.

[0036] For such reasons, it is more preferred that at least one or more of engaging surfaces 22E and 23E whose angles θ 22 and θ 23 are set to 15° to 45° are formed for each of the medial and lateral second cleats 22 and 23. More preferably, the angle θ 22, θ 23 formed between the normal NL perpendicular to the engaging surface 22E, 23E and the longitudinal axis CL of the foot is set to 20° to 40°, and most preferably, the area of the engaging surface 22E, 23E is set to 50 to 160 square millimeters.

[0037] Preferably, an angle θ 31- θ 34 formed between a normal NL perpendicular to the engaging surface 31E-34E of at least one of the third cleats 31 to 34 and a longitudinal axis CL of the foot is set to 15° to 45°, and an area of the engaging surface 31E-34E is set to 20 to 500 square millimeters, and is more preferably set to 40 to 200 square millimeters.

[0038] In this case, in the rearfoot portion **5R**, as in the middle foot portion **5M** as described above, the engaging surfaces **31E** to **34E** will exert the engaging force toward the intended engaging direction.

[0039] For reasons similar to those described above, it is more preferred that at least one or more of engaging surfaces 31E to 34E whose angles θ 31 to θ 34 are set to 15° to 45° are formed for each of the medial and lateral third cleats 31 to 34. More preferably, the angle θ 31- θ 34 formed between the normal NL perpendicular to the engaging surface 31E-34E and the longitudinal axis CL of the foot is set to 20° to 40°, and most preferably, the area of the engaging surface 31E-34E is set to 50 to 160 square millimeters.

[0040] Preferably, an angle θ 11- θ 14 formed between a normal NL perpendicular to an engaging surface 11E-14E of at least one of the first cleats 11 to 14 and a longitudinal axis CL of the foot is set to 20° to 60°, and an area of the engaging surface 11E-14E is set to 20 to 500 square millimeters, and is more preferably set to 40 to 200 square millimeters.

[0041] In this case, in the forefoot portion 5F, as in the

45

40

45

50

middle foot portion **5M** as described above, the engaging surfaces **11E** to **14E** will exert the engaging force toward the intended engaging direction.

[0042] For reasons similar to those described above, it is preferred that at least one or more of engaging surfaces 11E to 14E whose angles θ 11 to θ 14 are set to 20° to 60° are formed for each of the medial and lateral first cleats 11 to 14. More preferably, the angle θ 11- θ 14 formed between the normal NL perpendicular to the engaging surface 11E-14E and the longitudinal axis CL of the foot is set to 25° to 55°, and most preferably, the area of the engaging surface 11E-14E is set to 60 to 200 square millimeters.

[0043] Preferably, the midsole 4 includes a midsole body 40 and a reinforcement device 41 having a larger Young's modulus than the midsole body 40, with at least some of the second cleats 22 and 23 arranged directly under the reinforcement device 41.

[0044] When the second cleats 22 and 23 of the middle foot portion 5M contact the ground, the reaction force acts upon a middle foot section 1M between the Lisfranc joint and the Chopart's joint, and an upthrust is likely to be felt on the sole of the foot. In contrast, in this example, the second cleats 22 and 23 are arranged in a part of the area directly under the reinforcement device 41, and the upthrust will unlikely be felt.

[0045] Particularly, if the reinforcement device **41** is formed by a foamed resin, it will give the arch of the foot an adequate amount of cushion while suppressing the collapse of the arch of the foot.

[0046] More preferably, there are a plurality of medial second cleats 22 spaced apart from one another in a front-rear direction of the foot, and under no load, a top surface T of an anterior medial second cleat 22 has a greater distance from a road surface than a top surface T of a posterior D2 medial second cleat 22; and

there are a plurality of lateral second cleats 23 spaced apart from one another in the front-rear direction of the foot, and under no load, a top surface T of an anterior lateral second cleat 23 has a greater distance from the road surface than a top surface T of a posterior D2 lateral second cleat 23.

[0047] In the middle foot portion 5M, the top surface T of the anterior second cleats 22 and 23 has a greater distance from a road surface 100 than the top surface T of the second cleats 22 and 23. Therefore, an anterior D1 portion of the upper surface of the midsole 4 on the outsole 5 is likely to sink in the middle foot portion 5M at foot flat after landing. Thus, the stagnation of the load, which is likely to occur in the middle foot portion 5M at foot flat, is less likely to occur, making it easier to walk forward.

[0048] More preferably, the top surfaces **T** of the anterior **D1** second cleats **22** and **23** do not contact the ground under no load, and contact the ground when a load on one foot (a load on one shoe) divided by a size of the foot is 8 kg/cm, more preferably 4 kg/cm, and even more preferably 3 kg/cm.

[0049] The load on one foot acting upon the middle foot portion when walking fast is about 60% of the body weight (about 80% of the body weight when walking slow), meaning a load of 60 kg \times 0.6 / 27 cm = 1.33 kg/cm where the body weight is 60 kg and the size of the foot is 27 cm. Therefore, it contacts the ground preferably when this value is at least 2 kg/cm, and most preferably when it is at least 1.3 kg/cm. Note that the load on one foot acting upon the middle foot portion when running fast is about 300% of the body weight, meaning a load of $70 \text{kg} \times 3.0/27 \text{ cm} = 7.78 \text{kg/cm}$ where the body weight is 70 kg and the size of the foot is 27 cm. The load on one foot acting upon the middle foot portion when running slow is about 150% of the body weight, meaning a load of 70 kg \times 1.5 / 27 cm = 3.89 kg/cm where the body weight is 70 kg and the size of the foot is 27 cm. The load on one foot acting upon the middle foot portion when walking slow is about 80% of the body weight, meaning a load of 70 kg \times 0.8 / 27 cm = 2.07 kg/cm where the body weight is 70 kg and the size of the foot is 27 cm.

[0050] In this case, the anterior D1 second cleats 22 and 23 can contact the ground when walking, thereby suppressing the collapse of the arch of the foot, and they bite into the ground after contacting the ground, thereby exerting the engaging force.

[0051] In view of suppressing the collapse of the arch, the distance from the top surface T of the anterior D1 second cleats 22 and 23 to the road surface 100 is preferably about 0.5 mm to 2.0 mm. For similar reasons, it is more preferred that the anterior D1 second cleats 22 and 23 do not contact the ground when the load on one foot divided by the size of the foot is less than or equal to 0.5 kg/cm, and it is particularly preferred that the anterior D1 second cleats 22 and 23 do not contact the ground when the load on one foot divided by the size of the foot is less than or equal to 1 kg/cm.

[0052] Preferably, the medial third cleats 31 and 32 include a plurality of central cleats 32 spaced apart from one another in a front-rear direction of the foot and arranged closer to a longitudinal axis CL of the foot than a medial edge of the outsole 5, and a plurality of medial-edge-side cleats 31 spaced apart from one another in the front-rear direction of the foot and arranged closer to the medial edge than the longitudinal axis CL; and

the lateral third cleats **33** and **34** include a plurality of central cleats **33** spaced apart from one another in the front-rear direction of the foot and arranged closer to the longitudinal axis **CL** of the foot than a lateral edge of the outsole **5**, and a plurality of lateral-edge-side cleats **34** spaced apart from one another in the front-rear direction of the foot and arranged closer to the lateral edge than the longitudinal axis **CL**.

[0053] In this case, at least four cleats 31 and 32 are spaced apart from one another in the front-rear direction and the left-right direction on the medial side ME of the rearfoot portion 5R, whereas they are arranged similarly also on the lateral side LA of the rearfoot portion 5R. Therefore, for the entire rearfoot portion 5R, the engaging

force and the supporting force are easily exerted, and the support of the rearfoot portion **5R** is likely stable.

[0054] More preferably, the central cleats 32 and the medial-edge-side cleats 31, of the medial third cleats 31 and 32, are offset from, and alternate with, one another in a normal NL direction, which is perpendicular to the engaging surfaces 31E and 32E of these cleats 31 and 32: and

the central cleats 33 and the lateral-edge-side cleats 34, of the lateral third cleats 33 and 34, are offset from, and alternate with, one another in the normal NL direction, which is perpendicular to the engaging surfaces 33E and 34E of these cleats 33 and 34.

[0055] In this case, at least four cleats are offset from, and alternate with, one another in the normal NL direction on each of the medial side and the lateral side of the rearfoot portion 5R. Therefore, one of the cleats is likely to be arranged on any line extended across the rearfoot portion 5R so that for the entire rearfoot portion 5R, the engaging force and the supporting force are more easily exerted, and the support of the rearfoot portion 5R is more likely stable.

[0056] More preferably, the central cleats 32 of the medial third cleats 31 and 32 and the central cleats 33 of the lateral third cleats 33 and 34 are offset from each other in a longitudinal axis CL direction.

[0057] In this case, at least eight cleats 31 to 34 of the rearfoot portion 5R are offset from one another. Therefore, for the entire rearfoot portion 5R, the engaging force and the supporting force are more easily exerted, and the support of the rearfoot portion **5R** is more likely stable. [0058] Preferably, the medial first cleats 11 and 12 include a plurality of central cleats 12 spaced apart from one another in a front-rear direction of the foot and arranged closer to a longitudinal axis CL of the foot than a medial edge of the outsole 5, and a plurality of medialedge-side cleats 11 spaced apart from one another in the front-rear direction of the foot and arranged closer to the medial edge than the longitudinal axis CL; and the lateral first cleats 13 and 14 include a plurality of central cleats 13 spaced apart from one another in the frontrear direction of the foot and arranged closer to the longitudinal axis CL of the foot than a lateral edge of the outsole 5, and a plurality of lateral-edge-side cleats 14 spaced apart from one another in the front-rear direction of the foot and arranged closer to the lateral edge than the longitudinal axis CL.

[0059] In this case, at least four cleats 11 and 12 are spaced apart from one another in the front-rear direction and the left-right direction on the medial side ME of the forefoot portion 5F, whereas they are arranged similarly also on the lateral side LA of the forefoot portion 5F. Therefore, for the entire forefoot portion 5F, the engaging force and the supporting force are more easily exerted, and the support of the forefoot portion 5F is more likely stable.

[0060] More preferably, the central cleats 12 and the medial-edge-side cleats 11, of the medial first cleats 11

and 12, are offset from one another, and alternate with one another, in a normal NL direction, which is perpendicular to the engaging surfaces 11E and 12E of these cleats 11 and 12; and

the central cleats 13 and the lateral-edge-side cleats 14, of the lateral first cleats 13 and 14, are offset from one another, and alternate with one another, in the normal NL direction, which is perpendicular to the engaging surfaces 13E and 14E of these cleats 13 and 14.

10 [0061] In this case, at least four cleats are offset from, and alternate with, one another in the normal NL direction on each of the medial side and the lateral side of the forefoot portion 5F. Therefore, one of the cleats is likely to be arranged on any line extended across the forefoot portion 5F so that for the entire forefoot portion 5F, the engaging force and the supporting force are more easily exerted, and the support of the forefoot portion 5F is more likely stable.

[0062] More preferably, the central cleats 12 of the medial first cleats 11 and 12 and the central cleats 13 of the lateral first cleats 13 and 14 are offset from one another in a longitudinal axis CL direction.

[0063] In this case, at least eight cleats 11 to 14 of the forefoot portion 5F are further offset from one another. Therefore, for the entire forefoot portion 5F, the engaging force and the supporting force are more easily exerted, and the support of the forefoot portion 5F is more likely stable

[0064] Preferably, for the central cleats 12 and 13 of the first cleats 11 to 14, the engaging surface 13E of the lateral first cleat 13 arranged on the lateral side LA of the foot has a larger area than the engaging surface 12E of the medial first cleat 12 arranged on the medial side Me of the foot.

[0065] When walking, the load distribution across the sole surface is such that the direction of the load varies in a pattern that is centered about the ball of the big toe. Therefore, the boundary line across which the direction of the engaging surface of the cleat varies with respect to the foot width direction is slightly off the longitudinal axis of the foot toward the ball of the big toe on the medial side. Therefore, the area on the lateral side of this line is larger than the area on the medial side of this line. Thus, the engaging force is more easily exerted when the area of the engaging surface 13E of the lateral first cleat 13 is made larger than that of the medial first cleat 12.

[0066] Preferably, a medial auxiliary cleat 15 arranged in an area surrounded by two medial-edge-side cleats 11 and 11 and two central cleats 12 and 12 of the medial first cleats 11 and 12, and having an engaging surface 15E on a plane crossing the engaging surfaces 11E and 12E of the medial first cleats 11 and 12; and

a lateral auxiliary cleat **16** arranged in an area surrounded by two lateral-edge-side cleats **14** and **14** and two central cleats **13** and **13** of the lateral first cleats **13** and **14**, and having an engaging surface **16E** on a plane crossing the engaging surfaces **13E** and **14E** of the lateral first cleats **13** and **14**,

wherein the auxiliary cleats 15 and 16 are spaced apart from the first cleats 11 to 14.

[0067] A forefoot section 1F includes toes arranged therein, and is required to perform various complicated actions, as compared with a rearfoot section 1R. For example, when changing directions by propelling toward a medial-anterior or lateral-anterior diagonal direction, or when stopping abruptly, engaging forces of various directions will be needed in the forefoot section 1F.

[0068] In view of this, the auxiliary cleats 15 and 16, which have the engaging surfaces 15E and 16E on planes crossing the engaging surfaces 11E to 14E of the first cleats 11 to 14, will exert the engaging force when changing directions, etc.

[0069] Particularly, because the primary first cleats **11** to **14** and the auxiliary cleats **15** and **16** are spaced apart from one another, it may be less likely that clay-like soil gets stuck between cleats in the forefoot portion **5F**.

[0070] Preferably, a virtual line VL is defined extending smoothly in a front-rear direction along a longitudinal axis CL of the foot, wherein the medial cleats 11, 12, 22, 31 and 32 are arranged on the medial side Me of the virtual line VL and the lateral cleats 13, 14, 23, 33 and 34 are arranged on the lateral side LA of the virtual line VL.

[0071] In this case, along the virtual line VL, which is between the medial cleats and the lateral cleats, the midsole 4 is not supported by the cleats but is supported by a thin plate-shaped portion of the outsole 5. Therefore, the upper surface of the midsole 4 easily sinks downward along the virtual line VL, and the foot is guided along the longitudinal axis CL, thereby making it unlikely that the foot supinates or pronates. This will increase the efficiency in walking and running.

[0072] More preferably, the cleats 12, 13, 32 and 33, of the first and third cleats 11 to 14 and 31 to 34, that are arranged in the vicinity of the virtual line VL, each have a first groove G1 on a side thereof extending along its first side S1, which is closest to the virtual line VL.

[0073] With the provision of the first groove G1, the upper surface of the midsole 4 easily sinks downward in the vicinity of the first side S1. This will make it even easier for the upper surface of the midsole 4 to sink downward along the virtual line VL.

[0074] More preferably, the cleats 12, 13, 32 and 33, arranged in the vicinity of the virtual line VL, each have second grooves G2 which are continuous with the first groove G1 and extending along a pair of second sides S2 and S2 adjacent to the first side S1.

[0075] In this case, the midsole 4 more easily sinks downward in the vicinity of the first side S1.

[0076] Note that the second groove G2 does not need to be provided along the entire length of the second side S2, as long as the second groove G2 is provided so as to be continuous with the first groove G1.

[0077] More preferably, a long groove **G** extending along the virtual line **VL** from a forefoot portion **5F** to a rearfoot portion **5R** is formed on the base surface **5S**.

[0078] In this case, the long groove G is depressed

with respect to the base surface **5S**, and the outsole **5** along the long groove **G** is thinner than the base portion (the portion defined by the base surface **5S**). This makes it easier for the upper surface of the midsole **4** to sink downward along the long groove **G**.

[0079] Preferably, the central cleats 12 and 13 of the first cleats 11 to 14, the second cleats 22 and 23, and the central cleats 32 and 33 of the third cleats 31 to 34 are each formed in a quadrilateral thick-plate shape.

[0080] As opposed to a cleat of a V-letter shape or a U-letter shape, a cleat of a quadrilateral shape has a linear engaging surface. Therefore, as compared with those of a V-letter shape, it is less likely that clay-like soil gets stuck on the cleat.

[0081] Preferably, a total area of top surfaces **T** of the second cleats **22** and **23** having heights of 2 mm to 10 mm is 20% to 60% of a project area of a middle foot portion **5M** of the shoe sole as projected onto a plane.

[0082] If the total area of the top surfaces T is less than 20% in the middle foot portion 5M, the ground-contact area in the middle foot portion 5M is small. Therefore, the wearer is likely to feel an upthrust, and the number and size of the second cleats will likely be insufficient, thereby failing to obtain a sufficient engaging force.

[0083] If the total area of the top surfaces T exceeds 60% in the middle foot portion 5M, the ground-contact area in the middle foot portion 5M will be large. Therefore, the second cleats will unlikely bite into the soil, and the amount of soil to be engaged with the second cleats will be small, thereby failing to obtain a sufficient engaging force.

[0084] In view of this, the total area is more preferably set to 30% to 50% of the project area in the middle foot portion **5M**.

[0085] For similar reasons, preferably, a total area of top surfaces **T** of the cleats 11 to 16 having heights of 2 mm to 10 mm in a region 5FR of a forefoot portion 5F that is posterior **D2** to a first metatarsal phalangeal joint **MP1** is 25% to 65% of a project area of the posterior **D2** region 5FR of the shoe sole as projected onto a plane.

[0086] Such an area proportion in the forefoot portion **5F** is more preferably 35% to 55%.

[0087] Preferably, fourth cleats 42 and 43 are provided in a region 5F2 of a forefoot portion 5F that is posterior D2 to a line MP connecting together metatarsal phalangeal joints;

the medial fourth cleat **42** arranged on the medial side **Me** of the foot, of the fourth cleats **42** and **43**, has an engaging surface **42E** facing toward an anterior **D1**-lateral **LA** diagonal direction; and

the lateral fourth cleat **43** arranged on the lateral side **LA** of the foot, of the fourth cleats **42** and **43**, has an engaging surface **43E** facing toward an anterior **D1**-media **ME** diagonal direction.

[0088] In the posterior region 5F2 of the forefoot portion 5F of the outsole 5, loads are applied toward diagonally posterior directions as indicated by one-dot chain lines of FIG. 11A when walking downhill. Therefore, as the

40

fourth cleats 42 and 43 having the engaging surfaces 42E and 43E facing toward diagonally anterior D1 directions are provided in the posterior region 5F2, the grip when walking downhill will further improve.

13

[0089] Preferably, in an area of a forefoot portion 5F that is anterior D1 to a ball O1 of a big toe, the angle $\theta 11$ is larger for a more posterior D2 one of the medial first cleats 11.

[0090] In this case, the angle θ 11 is larger for those medial first cleats 11 that are closer to the ball O1 of the big toe, and engaging forces are therefore exerted against the loads indicated by solid lines of FIG. 11A.

[0091] Preferably, the shoe sole further includes a plurality of first to fourth cleats 10, 11, 42 and 43 provided around a ball O1 of a big toe in a forefoot portion 5F, the first to fourth cleats 10, 11, 42 and 43 having engaging surfaces 10E, 11E, 42E and 43E facing toward the ball O1 of the big toe.

[0092] In this case, when walking uphill and walking downhill, the cleats efficiently engage with the soil against the loads acting in radial directions centered about the ball O1 of the big toe.

[0093] Preferably, the shoe sole further includes, in the middle foot portion 5M:

a medial-edge-side second cleat 21 having an engaging surface 21E facing toward an anterior D1-lateral diagonal direction, and arranged closer to a medial edge than the medial second cleat 22; and a lateral-edge-side second cleat 24 having an engaging surface 24E facing toward an anterior D1-media diagonal direction, and arranged closer to a lateral edge than the lateral second cleat 23.

[0094] In this case, the medial- and lateral-edge-side second cleats 21 and 24 increase the engaging force. [0095] More preferably, the medial-edge-side second

cleat 21 is arranged more posterior to the most posterior one of the medial second cleats 22; and

the lateral-edge-side second cleat 24 is arranged more posterior to the most posterior one of the lateral second cleats 23.

[0096] In this case, as the medial- and lateral-edgeside second cleats 21 and 24 are arranged posterior to the medial second cleat 22 and the lateral second cleat 23, the engaging force and the supporting force can be more easily exerted across the area from the rearfoot portion 5R to the middle foot portion 5M, and the support of the area from the rearfoot portion 5R to the middle foot portion 5M is more likely stable.

[0097] More preferably, the medial-edge-side second cleat 21 is arranged between the most posterior one of the medial second cleats 22 and the most anterior one of the medial third cleats 32, while being offset in a normal NL direction, which is perpendicular to the engaging surface 21E, from these cleats 22 and 32; and

the lateral-edge-side second cleat 24 is arranged between the most posterior one of the lateral second cleats 23 and the most anterior one of the lateral third cleats 33, while being offset in a normal NL direction, which is perpendicular to the engaging surface 24E, from these cleats 23 and 33.

[0098] In this case, at least four cleats 21 to 24 are offset from one another in the middle foot portion 5M. Therefore, for the area from the rearfoot portion **5R** to the middle foot portion 5M, the engaging force and the supporting force are more easily exerted, thereby making it even more likely that the support of the area from the rearfoot portion **5R** to the middle foot portion **5M** is stable. [0099] The present invention will be understood more clearly from the following description of preferred embodiments taken in conjunction with the accompanying drawings. Note however that the embodiments and the drawings are merely illustrative and should not be taken to define the scope of the present invention. The scope of the present invention shall be defined only by the appended claims. In the accompanying drawings, like reference numerals denote like components throughout the plurality of figures.

[Embodiment]

20

40

45

[0100] An embodiment of the present invention will now be described with reference to the drawings.

[0101] The present embodiment is, for example, a shoe sole of a shoe for trail running and walking.

[0102] As shown in FIG. 4, the shoe sole includes the outsole 5 made of rubber and the midsole 4 made of resin. Note that an upper (not shown) covering the instep is provided on the shoe sole.

[0103] The midsole 4 includes the midsole body 40 made of a foamed material of EVA, and the reinforcement device 41 made of a foamed material or a non-foamed material of EVA. Note that "made of resin" means that a resin component such as a thermoplastic component is contained, and may include any other suitable component. The midsole 4 may be provided with a low-resilience material, a high-resilience material, a groove, etc.

[0104] The outsole 5 is a tread sole having a higher abrasion resistance than the midsole body 40, and typically has a higher hardness than the foamed material of the midsole body 40. Note that "made of rubber" means that it contains a natural rubber component or a synthetic rubber component, and it may contain any other compo-

[0105] As shown in FIG. 1, the outsole 5 includes a plurality of first cleats 11 to 14, second cleats 21 to 24 and third cleats 31 to 34, which are made of rubber and which are arranged in the forefoot portion **5F**, the middle foot portion **5M** and the rearfoot portion **5R**, respectively. [0106] The forefoot portion 5F, the middle foot portion 5M and the rearfoot portion 5R refer to areas that cover the forefoot section 1F, the middle foot section 1M and the rearfoot section 1R, respectively, of the foot of FIG. 10B. The forefoot section 1F includes five metatarsal bones and fourteen phalanges. The middle foot section

40

1M includes a navicular bone, a cuboid bone and three cuneiform bones.

[0107] As shown in FIG. 4 to FIG. 9, the cleats are projecting downward from the base surface 5S of the outsole 5 of FIG. 4, and are formed integral with the outsole 5. Note that the base surface 5S refers to the bottom surface of a portion that has a generally constant thickness along the bottom surface of the midsole 4, and typically includes shallow grooves and small projections/depressions.

[0108] In the forefoot portion 5F shown on an enlarged scale in FIG. 2, the medial first cleats 11 and 12 arranged on the medial side ME of the foot, of the first cleats 11 to 14, have the engaging surfaces 11E and 12E facing toward the posterior D2-lateral LA diagonal direction. On the other hand, the lateral first cleats 13 and 14 arranged on the lateral side LA of the foot, of the first cleats 11 to 14, have the engaging surfaces 13E and 14E facing toward the posterior D2-medial ME diagonal direction.

[0109] Note that in the forefoot portion 5F, the medial auxiliary cleat 15 and the lateral auxiliary cleat 16, which are made of rubber, are formed integral with the outsole 5. [0110] In the middle foot portion 5M shown on an enlarged scale in FIG. 3, the medial second cleat 22 arranged on the medial side ME of the foot, of the second cleats 22 and 23, has the engaging surface 22E facing toward the anterior D1-lateral LA diagonal direction. On the other hand, the lateral second cleat 23 arranged on the lateral side LA of the foot, of the second cleats 22 and 23, has the engaging surface 23E facing toward the anterior D1-media ME diagonal direction.

[0111] At the rear end of the middle foot portion 5M of FIG. 3, the medial-edge-side second cleat 21 and the lateral-edge-side second cleat 24 are provided on the medial side and on the lateral side of the second cleats 22 and 23. The medial-edge-side second cleat 21 has the engaging surface 21E facing toward the lateral LA-anterior D1 direction. On the other hand, the lateral-edge-side second cleat 24 has the engaging surface 24E facing toward the medial ME-anterior D1 direction.

[0112] The medial-edge-side second cleat 21 is offset from, and alternates with, the posterior D2 one of the medial second cleats 22 and the medial third cleat 32, in the normal NL direction.

[0113] The lateral-edge-side second cleat **24** is offset from, and alternates with, the posterior **D2** one of the lateral second cleats 23 and the lateral third cleat **33**, in the normal **NL** direction.

[0114] That is, the medial-edge-side second cleat **21** is arranged more posterior to the most posterior one of the medial second cleats **22**. On the other hand, the lateral-edge-side second cleat **24** is arranged more posterior to the most posterior one of the lateral second cleats **23**.

[0115] The medial-edge-side second cleat 21 is arranged between the most posterior one of the medial second cleats 22 and the most anterior one of the medial third cleats 32, while being offset in the normal NL direc-

tion, which is perpendicular to the engaging surface 21E, from these cleats 22 and 32.

[0116] The lateral-edge-side second cleat 24 is arranged between the most posterior one of the lateral second cleats 23 and the most anterior one of the lateral third cleats 33, while being offset in the normal NL direction, which is perpendicular to the engaging surface 24E, from these cleats 23 and 33.

[0117] The medial second cleats 22 and the lateral second cleats 23 are offset from one another in the long-axis direction CL of the foot.

[0118] At least some of, more preferably a majority of, the second cleats **21** to **24** are arranged in the middle foot portion **5M**. At least some of, more preferably a majority of, the third cleats **31** to **34** are arranged in the rearfoot portion **5R**.

[0119] Note that a majority means equal to or more than a half.

[0120] The medial- and lateral-edge-side second cleats 21 and 24 may contact the ground with no load thereon, or may contact the ground under a load, rather than contacting the ground with no load thereon, as are the medial and lateral second cleats 22 and 23.

[0121] In the rearfoot portion 5R of FIG. 3, the medial third cleats 31 and 32, which are arranged on the medial side ME of the foot, of the third cleats 31 to 34 have the engaging surfaces 31E and 32E facing toward the anterior D1-lateral LA diagonal direction. On the other hand, the lateral third cleats 33 and 34, which are arranged on the lateral side LA of the foot, of the third cleats 31 to 34 have the engaging surfaces 33E and 34E facing toward the anterior D1-media ME diagonal direction.

[0122] In FIG. 3, the medial third cleats 31 and 32 include a plurality of medial-edge-side cleats 31 and a plurality of central cleats 32. The plurality of central cleats 32 are spaced apart from one another in the front-rear direction of the foot, and are arranged closer to the longitudinal axis CL of the foot than to the medial edge of the outsole 5. The plurality of medial-edge-side cleats 31 are spaced apart from one another in the front-rear direction of the foot, and are arranged closer to the medial edge than to the longitudinal axis CL.

[0123] The lateral third cleats 33 and 34 include a plurality of central cleats 33 and a plurality of lateral-edge-side cleats 34. The plurality of central cleats 33 are spaced apart from one another in the front-rear direction of the foot, and are arranged closer to the longitudinal axis CL of the foot than to the lateral edge of the outsole 5. The plurality of lateral-edge-side cleats 34 are spaced apart from one another in the front-rear direction of the foot, and are arranged closer to the lateral edge than to the longitudinal axis CL.

[0124] One central cleat 32 and one medial-edge-side cleat 31 adjacent to each other, of the medial third cleats 31 and 32, are offset from, and alternate with, one another in the normal NL direction, which is perpendicular to the engaging surfaces 31E and 32E of these cleats 31 and 32.

40

[0125] One central cleat 33 and one lateral-edge-side cleat 34 adjacent to each other, of the lateral third cleats 33 and 34, are offset from, and alternate with, one another in the normal NL direction, which is perpendicular to the engaging surfaces 33E and 34E of these cleats 33 and 34

[0126] In the present invention, "to be offset from, and alternate with, one another in the normal NL direction" means that not only are they offset from one another, but also the lateral-edge-side cleat 34 (31) is arranged at a position between one central cleat 33 (32) and another central cleat 33 (32) in the normal NL direction, while the central cleat 33 (32) is arranged at a position between one lateral-edge-side cleat 34 (31) and another lateral-edge-side cleat 34 (31) in the normal NL direction.

[0127] The central cleat 32 of the medial third cleats 31 and 32 and the central cleat 33 of the lateral third cleats 33 and 34 are slightly offset from one another in the longitudinal axis CL.

[0128] In FIG. 2, the medial first cleats 11 and 12 include a plurality of medial-edge-side cleats 11 and a plurality of central cleats 12. The plurality of central cleats 12 are spaced apart from one another in the front-rear direction of the foot, and are arranged closer to the longitudinal axis CL of the foot than to the medial edge of the outsole 5. The plurality of medial-edge-side cleats 11 are spaced apart from one another in the front-rear direction of the foot, and are arranged closer to the medial edge than to the longitudinal axis CL.

[0129] The lateral first cleats 13 and 14 include a plurality of central cleats 13 and a plurality of lateral-edge-side cleats 14. The plurality of central cleats 13 are spaced apart from one another in the front-rear direction of the foot, and are arranged closer to the longitudinal axis CL of the foot than to the lateral edge of the outsole 5. The plurality of lateral-edge-side cleats 14 are spaced apart from one another in the front-rear direction of the foot, and are arranged closer to the lateral edge than to the longitudinal axis CL.

[0130] Of the medial first cleats 11 and 12, the central cleats 12 and the medial-edge-side cleats 11 are offset from, and alternate with, one another in the normal NL direction, which is perpendicular to the engaging surfaces 11E and 12E of these cleats 11 and 12.

[0131] Of the lateral first cleats 13 and 14, the central cleats 13 and the lateral-edge-side cleats 14 are offset from, and alternate with, one another in the normal NL direction, which is perpendicular to the engaging surfaces 13E and 14E of these cleats 13 and 14.

[0132] Note that the meaning of "to be offset from, and alternate with, one another in the normal **NL** direction" is as set forth above.

[0133] The central cleats 12, of the medial first cleats 11 and 12, and the central cleats 13, of the lateral first cleats 13 and 14, are offset from one another in the longitudinal axis CL direction. Note that at least some of, more preferably a majority of, the first cleats 11 to 14 are arranged in the forefoot portion 5F.

[0134] The forefoot portion 5F further includes the medial auxiliary cleats 15 and the lateral auxiliary cleats 16. The auxiliary cleats 15 and 16 are spaced apart from the first cleats 11 to 14.

[0135] Each medial auxiliary cleat 15 is arranged in an area surrounded by two adjacent medial-edge-side cleats 11 and 11 and two adjacent central cleats 12 and 12 of the medial first cleats 11 and 12, and has the engaging surface 15E on a plane crossing the engaging surfaces 11E and 12E of the medial first cleats 11 and 12. [0136] Each lateral auxiliary cleat 16 is arranged in an area surrounded by two adjacent lateral-edge-side cleats 14 and 14 and two adjacent central cleats 13 and 13 of the lateral first cleats 13 and 14, and has the engaging surfaces 13E and 14E of the lateral first cleats 13 and 14.

[0137] As shown in FIG. 5A and FIG. 5B, the angle $\alpha 1$ formed between the engaging surfaces 11E to 14E of the first cleats 11 to 14 and the base surface 5S is equal to the angle $\beta 1$ formed between the front surfaces FS of the first cleats 11 to 14 and the base surface 5S, or is closer to the right angle than the angle $\beta 1$.

[0138] More specifically, the engaging surfaces 12E and 13E of the central cleats 12 and 13 have the angle $\alpha 1$ which is closer to the right angle than the front surface FS but which is not the right angle. On the other hand, the engaging surfaces 11E and 14E of the medial- and lateral-edge-side cleats 11 and 14 have the angle $\alpha 1$, which is the right angle.

[0139] Note that the angle α 1 of the engaging surfaces 11E to 14E and the angle β 1 of the front surface FS may be equal to each other.

[0140] As shown in FIG. 5C, the engaging surfaces 15E and 16E of the auxiliary cleats 15 and 16 are formed by a sloped surface.

[0141] The angle $\alpha 2$ formed between the engaging surfaces 22E and 23E of four second cleats 22 and 23 of FIG. 3 and the base surface 5S of FIG. 5D is closer to the right angle than the angle $\beta 2$ formed between the back surface BS of the second cleats 22 and 23 and the base surface 5S. In the present embodiment, the angle $\alpha 2$ is the right angle, and the angle $\beta 2$ is inclined with respect to the base surface 5S. Note that the angles $\alpha 2$ and $\beta 2$ may both be the right angle, or may both be inclined with respect to the base surface 5S.

[0142] As shown in FIG. 5E and FIG. 5F, the angle $\alpha 3$ formed between the engaging surfaces 31E to 34E of the third cleats 31 to 34 and the base surface 5S is equal to the angle $\Omega 3$ formed between the back surface BS of the third cleats 31 to 34 and the base surface 5S, or is closer to the right angle than the angle $\Omega 3$.

[0143] More specifically, the angle $\alpha 3$ of the engaging surfaces 32E and 33E of the central cleats 32 and 33 is equal to the angle $\beta 3$ of the back surface BS and is not the right angle. On the other hand, the engaging surfaces 31E and 34E of the medial-and lateral-edge-side cleats 31 and 34 have the angle $\alpha 3$, which is the right angle. Note that the angle $\alpha 3$ of the engaging surfaces 31E and

34E may be equal to the angle $\[mathebox{\@scalebase}\]$ of the back surface **BS. [0144]** In FIG. 3, the angles $\[mathebox{\@scalebase}\]$ and $\[mathebox{\@scalebase}\]$ normals **NL** perpendicular to the engaging surfaces **22E** and **23E** of the second cleats **22** and **23** and the longitudinal axis **CL** of the foot are each set to 15° to 45°. The areas of the engaging surfaces **22E** and **23E** are each set to 40 to 200 square millimeters.

[0145] The angles θ 31 to θ 34 formed between the normals NL perpendicular to the engaging surfaces 31E to 34E of the third cleats 31 to 34 and the longitudinal axis CL of the foot are each set to 15° to 45°. The areas of the engaging surfaces 31E to 34E are each set to 40 to 200 square millimeters.

[0146] In FIG. 2, the angles θ 11 to θ 14 formed between the normals **NL** perpendicular to the engaging surfaces 11E to 14E of the first cleats 11 to 14 and the longitudinal axis **CL** of the foot are each set to 20° to 60°. The areas of the engaging surfaces 11E to 14E are each set to 40 to 200 square millimeters.

[0147] Of the central cleats 12 and 13 of the first cleats 11 to 14, the area of the engaging surface 13E of the lateral first cleat 13 arranged on the lateral side LA is larger than the area of the engaging surface 12E of the medial first cleat 12 arranged on the medial side ME of the foot.

[0148] In FIG. 5A to FIG. 5F, the projection heights H, from the base surface 5S, of the first, medial auxiliary, lateral auxiliary, second and third cleats 11 to 16, 22, 23 and 31 to 34 are each set to 2.8 mm to 4.2 mm, for example.

[0149] In FIG. 4B, the Young's modulus of the reinforcement device 41 is greater than that of the midsole body 40, and is preferably greater than those of the midsole body 40 and the outsole 5. At least a part of the most anterior D1 ones of the second cleats 22 and 23 is arranged directly under the reinforcement device 41 indicated by a dotted line in FIG. 1.

[0150] There are a plurality of medial second cleats 22 spaced apart from one another in the front-rear direction of the foot, and under no load, the top surface T of the anterior medial second cleat 22 has a greater distance from the road surface 100 than a distance between the road surface and the top surface T of the posterior D2 medial second cleat 22, as shown in FIG. 4A and FIG. 4B.

[0151] There are a plurality of lateral second cleats 23 of FIG. 3 spaced apart from one another in the front-rear direction of the foot, and under no load as shown in FIG. 4A and FIG. 4B, the top surface T of the anterior lateral second cleat 23 has a greater distance from the road surface than a distance between the road surface and the top surface T of the posterior D2 lateral second cleat

[0152] That is, the top surfaces T of the anterior D1 second cleats 22 and 23 do not contact the road surface 100 under no load as described above, but contact the ground when the load on one foot divided by the size of the foot is 1.3 kg/cm or more, for example. Note that such a load occurs when a wearer of an ordinary body size

walks or runs.

[0153] As shown in FIG. 2 and FIG. 3, a long groove G extending along the virtual line VL from the rearfoot portion 5R to the forefoot portion 5F of FIG. 2 is formed on the base surface 5S. Note that the long groove G extends smoothly in the front-rear direction along the longitudinal axis **CL** of the foot. More specifically, in the middle foot portion 5M and the rearfoot portion 5R of FIG. 3, the virtual line VL is set at generally the same position as the longitudinal axis CL of the foot (the long groove G is aligned with the longitudinal axis CL), while extending forward inclined toward the medial side ME off the longitudinal axis CL in the forefoot portion 5F of FIG. 2. [0154] In FIG. 1, the medial cleats 11, 12, 22, 31 and 32 are arranged on the medial side ME of the virtual line VL. The lateral cleats 13, 14, 23, 33 and 34 are arranged on the lateral side LA of the virtual line VL.

[0155] The cleats 12, 13, 32 and 33, of the first and third cleats 11 to 14 and 31 to 34 of FIG. 1, that are arranged in the vicinity of the long groove G, each have a first groove G1 on the side thereof extending along its first side S1 of FIG. 2 and FIG. 3, which is closest to the virtual line VL.

[0156] As shown in FIG. 6 to FIG. 9, these cleats 12, 13, 32 and 33 each have second grooves G2 which are continuous with the first groove G1 and extending along a pair of second sides S2 and S2 adjacent to the first side S1.

[0157] Moreover, these cleats 12, 13, 32 and 33 each have a third groove G3 which is continuous with the second grooves G2 and extending along a third side S3 on the opposite side from the first side S1.

[0158] As shown in FIG. 6 to FIG. 9, the central cleats 12 and 13 of the first cleats 11 to 14, the second cleats 22 and 23, and the central cleats 32 and 33 of the third cleats 31 to 34 are each formed in a quadrilateral thick-plate shape.

[0159] In the present embodiment, the quadrilateral first cleats 12 and 13 of FIG. 1 are each formed in a trapezoidal thick-plate shape. The quadrilateral second and third cleats 22, 23, 32 and 33 are each formed in a parallelogram thick-plate shape.

[0160] As can be seen from FIG. 6 to FIG. 9 and FIG. 4A, the outsole 5 is rolled up along the midsole 4 above the outsole 5 at the medial and lateral edges and the front and rear ends, i.e., along the periphery of the outsole 5. The base surface 5S of the outsole 5 being rounded makes it easier to run or walk.

[0161] Note that the cleats **51** and **52** at the front and rear ends are projecting from the base surface **5S** by about 2.8 mm to 4.5 mm.

[0162] In FIG. 1, the area of the top surface T of each of the first, second and third cleats 11 to 14, 22, 23 and 31 to 34 is set to 50 to 300 square millimeters.

[0163] In FIG. 10A, the area of the top surface T of each of the cleats 11 to 16, 21 to 24 and 31 to 34 of which the projection height H is 2.8 mm to 4.2 mm is shaded with dots.

40

[0164] The total area of the top surfaces **T** of the second cleats **22** and **23** having heights of 2.8 mm to 4.2 mm in the middle foot portion **5M** of FIG. **10A** is 30% to 50% of the project area of the middle foot portion **5M** of the shoe sole as projected onto a plane.

[0165] On the other hand, the total area of the top surfaces T of the cleats 11 to 16 having heights of 2.8 mm to 4.2 mm in the region 5FR of the forefoot portion 5F that is posterior D2 to the first metatarsal phalangeal joint MP1 is 35% to 55% of the project area of the posterior D2 region 5FR of the shoe sole as projected onto a plane, and it is preferably greater than that of the middle foot portion 5M. That is because in the middle foot portion 5, clay is likely to stay between cleats, and it is therefore preferred to have a smaller cleat ratio.

[0166] Next, examples of FIG. 11B to FIG. 11D will be described.

[0167] In these figures, the top surface T of each cleat is shaded with dots. Surfaces that are at the right angle or nearly at the right angle with respect to the base surface 5S, i.e., the engaging surfaces 11E, 14E, 22E, 23E, 32E, 33E, 42E and 43E, are drawn with thicker lines than lines representing other surfaces.

[0168] In the example of FIG. 11B, the fourth cleats 42 and 43 are provided in the region 5F2 of the forefoot portion 5F that is posterior D2 to the line MP connecting together the MP joints. The medial fourth cleat 42 arranged on the medial side ME of the foot, of the fourth cleats 42 and 43, has the engaging surface 42E facing toward the anterior D1-lateral LA diagonal direction. The lateral fourth cleat 43 arranged closer to the lateral side LA of the foot than the medial fourth cleat 42, of the fourth cleats 42 and 43, has the engaging surface 43E facing toward the anterior D1-media ME diagonal direction.

[0169] In an area of the forefoot portion 5F that is anterior D1 to the line MP connecting together the MP joints, the central first cleats 10 and 10 are arranged in the middle between the medial side and the lateral side. The engaging surface 10E of the central first cleat 10 extends generally in the width direction. The engaging surface 10E is facing toward the posterior D2 direction.

[0170] In an area of the forefoot portion 5F that is anterior D1 to the ball O1 of the big toe, the angle θ 11 is larger for a more posterior D2 one of the medial first cleats 11 (see FIG. 2). Some of the first cleats 10 and 11 and the fourth cleats 42 and 43 of FIG. 11B are arranged around the ball O1 of the big toe in the forefoot portion 5F, and have the engaging surfaces 10E, 11E, 42E and 43E facing toward the ball O1 of the big toe or the line MP connecting together the MP joints.

[0171] In the example of FIG. 11C, cleats are formed in a V-letter shape. In the example of FIG. 11D, cleats are formed in a shape other than the quadrilateral shape and the V-letter shape. There may be cleats of two or more different shapes.

[0172] While preferred embodiments have been described above with reference to the drawings, various obvious changes and modifications will readily occur to

those skilled in the art upon reading the present specification

[0173] For example, the grooves **G**, **G1** to **G3** may be absent. Grooves may be provided around the second cleats **22** and **23**.

[0174] Thus, such changes and modifications are deemed to fall within the scope of the present invention, which is defined by the appended claims.

10 INDUSTRIAL APPLICABILITY

[0175] The present invention is applicable to shoe soles for walking shoes, rain shoes, and shoes for daily use, as well as shoes for trail running, mountain climbing, and cross country.

REFERENCE SIGNS LIST

[0176]

15

20

25

30

35

40

50

1F: Forefoot 1M: Middle foot 1R: Rearfoot

4: Midsole 40: Midsole body 41: Reinforcement device

5: Outsole

5F: Forefoot portion 5FR: Region posterior to MP1 5F2: Region posterior to MP 5M: Middle foot portion 5R: Rearfoot portion 5S: Base surface

10: Central first cleat 11,12: Medial first cleat 13,14: Lateral first cleat 10E-14E: Engaging surface

15: Medial auxiliary cleat 16: Lateral auxiliary cleat 15E,16E: Engaging surface

21: Medial-edge-side second cleat 22: Medial second cleat 23: Lateral second cleat 24: Lateral-edge-side second cleat 21E-24E: Engaging surface

31, 32: Medial third cleat 33, 34: Lateral third cleat 31E-34E: Engaging surface

42: Medial fourth cleat 43: Lateral fourth cleat 42E,

43E: Engaging surface

100: Road surface

BS: Back surface FS: Front surface T: Top surface CL: Longitudinal axis NL: Normal VL: Virtual line

D1: Anterior D2: Posterior

G: Groove G1: First groove G2: Second groove G3: Third groove

45 H: Projection height

S1: First side S2: Second side S3: Third side

ME: Medial side LA: Lateral side

MP: Line connecting together metatarsal phalangeal joints MP1: First metatarsal phalangeal joint O1: Ball of big toe

 α 1- α 3, β 1- β 3: Angle θ 11- θ 14, θ 22, θ 23, θ 31- θ 34: Angle

55 Claims

 A shoe sole comprising an outsole 5 made of rubber and a midsole 4 made of resin, wherein a plurality

20

25

35

40

45

50

55

of first cleats 11 to 14, second cleats 22 and 23 and third cleats 31 to 34 made of rubber and projecting from a base surface 5S of the outsole 5 are arranged in a forefoot portion 5F, a middle foot portion 5M and a rear foot portion 5R, respectively, wherein:

of the first cleats 11 to 14, medial first cleats 11, 12 arranged on a medial side ME of a foot have engaging surfaces 11E, 12E facing toward a posterior D2-lateral LA diagonal direction; of the first cleats 11 to 14, lateral first cleats 13, 14 arranged on a lateral side LA of the foot have engaging surfaces 13E, 14E facing toward a posterior **D2**-medial **ME** diagonal direction; of the second cleats 22, 23, a medial second cleat 22 arranged on the medial side ME of the foot has an engaging surface 22E facing toward an anterior D1-lateral LA diagonal direction; of the second cleats 22, 23, a lateral second cleat 23 arranged on the lateral side LA of the foot has an engaging surface 23E facing toward an anterior **D1**-medial **ME** diagonal direction; of the third cleats 31 to 34, medial third cleats 31, 32 arranged on the medial side ME of the foot have engaging surfaces 31E, 32E facing toward an anterior D1-lateral LA diagonal direction; and

- of the third cleats **31** to **34**, lateral third cleats **33**, **34** arranged on the lateral side **LA** of the foot have engaging surfaces **33E**, **34E** facing toward an anterior **D1**-medial **ME** diagonal direction.
- 2. The shoe sole according to claim 1, wherein an angle $\alpha 2$ formed between at least one of the engaging surfaces 22E and 23E of the second cleats 22 and 23 and the base surface 5S is equal to an angle $\beta 2$ formed between a back surface BS of the second cleats 22 and 23 and the base surface 5S, or is closer to a right angle than the angle $\beta 2$.
- 3. The shoe sole according to claim 1 or 2, wherein an angle α 3 formed between at least one of the engaging surfaces 31E to 34E of the third cleats 31 to 34 and the base surface 5S is equal to an angle ß3 formed between a back surface BS of the third cleats 31 to 34 and the base surface 5S, or is closer to a right angle than the angle ß3.
- 4. The shoe sole according to any one of claims 1 to 3, wherein an angle α1 formed between at least one of the engaging surfaces 11E to 14E of the first cleats 11 to 14 and the base surface 5S is equal to an angle ß1 formed between a front surface FS of the first cleats 11 to 14 and the base surface 5S, or is closer to a right angle than the angle ß1.
- 5. The shoe sole according to any one of claims 1 to 4, wherein the first, second and third cleats 11 to 14,

22, **23** and **31** to **34** are projecting from the base surface **5S** by 2 to 10 mm.

24

- 6. The shoe sole according to any one of claims 1 to 5, wherein an area of a top surface T of each of the first, second and third cleats 11 to 14, 22, 23 and 31 to 34 contacting the ground is 50 to 500 square millimeters.
- The shoe sole according to any one of claims 1 to 6, wherein an angle θ22, θ23 formed between a normal NL perpendicular to the engaging surface 22E, 23E of at least one of the second cleats 22 and 23 and a longitudinal axis CL of the foot is set to 15° to 45°, and an area of the engaging surface 22E, 23E is set to 20 to 500 square millimeters.
 - 8. The shoe sole according to any one of claims 1 to 7, wherein an angle 031-034 formed between a normal NL perpendicular to the engaging surface 31E-34E of at least one of the third cleats 31 to 34 and a longitudinal axis CL of the foot is set to 15° to 45°, and an area of the engaging surface 31E-34E is set to 20 to 500 square millimeters.
 - 9. The shoe sole according to any one of claims 1 to 8, wherein an angle θ11-θ14 formed between a normal NL perpendicular to the engaging surface 11E-14E of at least one of the first cleats 11 to 14 and a longitudinal axis CL of the foot is set to 20° to 60°, and an area of the engaging surface 11E-14E is set to 20 to 500 square millimeters.
 - 10. The shoe sole according to any one of claims 1 to 9, wherein the midsole 4 includes a midsole body 40 and a reinforcement device 41 having a larger Young's modulus than the midsole body 40, with at least some of the second cleats 22 and 23 arranged directly under the reinforcement device 41.
 - **11.** The shoe sole according to claim 10, wherein:

there are a plurality of medial second cleats 22 spaced apart from one another in a front-rear direction of the foot, and under no load, a top surface T of an anterior medial second cleat 22 has a greater distance from a road surface than a top surface T of a posterior D2 medial second cleat 22; and

there are a plurality of lateral second cleats 23 spaced apart from one another in the front-rear direction of the foot, and under no load, a top surface T of an anterior lateral second cleat 23 has a greater distance from the road surface than a top surface T of a posterior D2 lateral second cleat 23.

12. The shoe sole according to claim 11, wherein the

15

20

30

35

40

45

50

top surfaces **T** of the anterior **D1** second cleats **22** and **23** do not contact the ground under no load, and contact the ground when a load on one foot divided by a size of the foot is 3 kg/cm.

13. The shoe sole according to any one of claims 1 to 12, wherein:

the medial third cleats 31 and 32 include a plurality of central cleats 32 spaced apart from one another in a front-rear direction of the foot and arranged closer to a longitudinal axis CL of the foot than a medial edge of the outsole 5, and a plurality of medial-edge-side cleats 31 spaced apart from one another in the front-rear direction of the foot and arranged closer to the medial edge than the longitudinal axis CL; and the lateral third cleats 33 and 34 include a plurality of central cleats 33 spaced apart from one another in the front-rear direction of the foot and arranged closer to the longitudinal axis CL of the foot than a lateral edge of the outsole 5, and a plurality of lateral-edge-side cleats 34 spaced apart from one another in the front-rear direction of the foot and arranged closer to the lateral edge than the longitudinal axis CL.

14. The shoe sole according to claim 13, wherein:

the central cleats 32 and the medial-edge-side cleats 31, of the medial third cleats 31 and 32, are offset from, and alternate with, one another in a normal NL direction, which is perpendicular to the engaging surfaces 31E and 32E of these cleats 31 and 32; and

the central cleats 33 and the lateral-edge-side cleats 34, of the lateral third cleats 33 and 34, are offset from, and alternate with, one another in the normal NL direction, which is perpendicular to the engaging surfaces 33E and 34E of these cleats 33 and 34.

- 15. The shoe sole according to claim 14, wherein the central cleats 32 of the medial third cleats 31 and 32 and the central cleats 33 of the lateral third cleats 33 and 34 are offset from one another in the longitudinal axis CL direction.
- **16.** The shoe sole according to any one of claims 1 to 15, wherein:

the medial first cleats 11 and 12 include a plurality of central cleats 12 spaced apart from one another in a front-rear direction of the foot and arranged closer to a longitudinal axis CL of the foot than a medial edge of the outsole 5, and a plurality of medial-edge-side cleats 11 spaced apart from one another in the front-rear direction

of the foot and arranged closer to the medial edge than the longitudinal axis **CL**; and the lateral first cleats **13** and **14** include a plurality of central cleats **13** spaced apart from one another in the front-rear direction of the foot and arranged closer to the longitudinal axis **CL** of the foot than a lateral edge of the outsole **5**, and a plurality of lateral-edge-side cleats **14** spaced apart from one another in the front-rear direction of the foot and arranged closer to the lateral edge than the longitudinal axis **CL**.

17. The shoe sole according to claim 16, wherein:

the central cleats 12 and the medial-edge-side cleats 11, of the medial first cleats 11 and 12, are offset from, and alternate with, one another in a normal NL direction, which is perpendicular to the engaging surfaces 11E and 12E of these cleats 11 and 12; and the central cleats 13 and the lateral-edge-side cleats 14, of the lateral first cleats 13 and 14, are offset from, and alternate with, one another in the normal NL direction, which is perpendicular to the engaging surfaces 13E and 14E of

18. The shoe sole according to claim 17, wherein the central cleats 12 of the medial first cleats 11 and 12 and the central cleats 13 of the lateral first cleats 13 and 14 are offset from one another in the longitudinal axis CL direction.

these cleats 13 and 14.

- 19. The shoe sole according to any one of claims 16 to 18, wherein for the central cleats 12 and 13 of the first cleats 11 to 14, the engaging surface 13E of the lateral first cleat 13 arranged on the lateral side LA of the foot has a larger area than the engaging surface 12E of the medial first cleat 12 arranged on the medial side ME of the foot.
- **20.** The shoe sole according to any one of claims 16 to 19, comprising:

a medial auxiliary cleat 15 arranged in an area surrounded by two medial-edge-side cleats 11 and 11 and two central cleats 12 and 12 of the medial first cleats 11 and 12, and having an engaging surface 15E on a plane crossing the engaging surfaces 11E and 12E of the medial first cleats 11 and 12; and

a lateral auxiliary cleat 16 arranged in an area surrounded by two lateral-edge-side cleats 14 and 14 and two central cleats 13 and 13 of the lateral first cleats 13 and 14, and having an engaging surface 16E on a plane crossing the engaging surfaces 13E and 14E of the lateral first cleats 13 and 14,

20

25

30

35

wherein the auxiliary cleats **15** and **16** are spaced apart from the first cleats **11** to **14**.

- 21. The shoe sole according to any one of claims 1 to 20, wherein a virtual line VL is defined extending smoothly in a front-rear direction along a longitudinal axis CL of the foot, wherein the medial cleats 11, 12, 22, 31 and 32 are arranged on the medial side ME of the virtual line VL and the lateral cleats 13, 14, 23, 33 and 34 are arranged on the lateral side LA of the virtual line VL.
- 22. The shoe sole according to claim 21, wherein the cleats 12, 13, 32 and 33, of the first and third cleats 11 to 14 and 31 to 34, that are arranged in the vicinity of the virtual line VL, each have a first groove G1 on a side thereof extending along its first side S1, which is closest to the virtual line VL.
- 23. The shoe sole according to claim 22, wherein the cleats 12, 13, 32 and 33, arranged in the vicinity of the virtual line VL, each have second grooves G2 which are continuous with the first groove G1 and extending along a pair of second sides S2 and S2 adjacent to the first side S1.
- 24. The shoe sole according to any one of claims 20 to 23, wherein a long groove G extending along the virtual line VL from the forefoot portion 5F to the rearfoot portion 5R is formed on the base surface 5S.
- 25. The shoe sole according to any one of claims 1 to 24, wherein the central cleats 12 and 13 of the first cleats 11 to 14, the second cleats 22 and 23, and the central cleats 32 and 33 of the third cleats 31 to 34 are each formed in a quadrilateral thick-plate shape.
- 26. The shoe sole according to any one of claims 1 to 25, wherein a total area of top surfaces T of the second cleats 22 and 23 having heights of 2 mm to 10 mm is 20% to 60% of a project area of a middle foot portion 5M of the shoe sole as projected onto a plane.
- 27. The shoe sole according to any one of claims 1 to 26, wherein a total area of top surfaces T of the cleats 11 to 16 having heights of 2 mm to 10 mm in a region 5FR of the forefoot portion 5F that is posterior D2 to a first metatarsal phalangeal joint MP1 is 25% to 65% of a project area of the posterior D2 region 5FR of the shoe sole as projected onto a plane.
- **28.** The shoe sole according to any one of claims 1 to 27, wherein:

fourth cleats **42** and **43** are provided in a region **5F2** of the forefoot portion **5F** that is posterior **D2** to a line **MP** connecting together metatarsal

phalangeal joints;

the medial fourth cleat **42** arranged on the medial side **ME** of the foot, of the fourth cleats **42** and **43**, has an engaging surface **42E** facing toward an anterior **D1**-lateral **LA** diagonal direction; and

the lateral fourth cleat **43** arranged on the lateral side **LA** of the foot, of the fourth cleats **42** and **43**, has an engaging surface **43E** facing toward an anterior **D1**-medial **ME** diagonal direction.

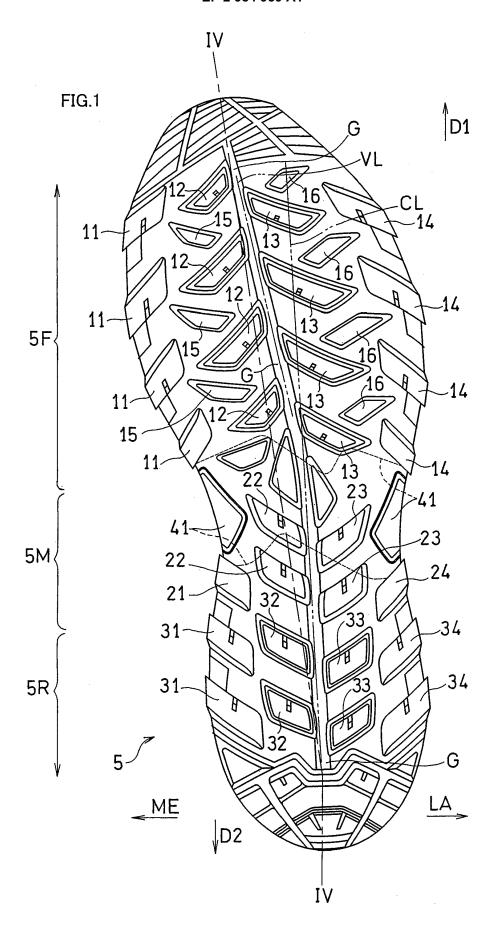
- 29. The shoe sole according to any one of claims 9 to 28, wherein in an area of the forefoot portion **5F** that is anterior **D1** to a ball **O1** of a big toe, the angle θ 11 is larger for a more posterior **D2** one of the medial first cleats **11**.
- 30. The shoe sole according to any one of claims 1 to 29, wherein further comprising a plurality of first to fourth cleats 10, 11, 42 and 43 provided around a ball O1 of a big toe in the forefoot portion 5F, the first to fourth cleats 10, 11, 42 and 43 having engaging surfaces 10E, 11E, 42E and 43E facing toward the ball O1 of the big toe.
- **31.** The shoe sole according to any one of claims 1 to 30, further comprising, in the middle foot portion **5M**:

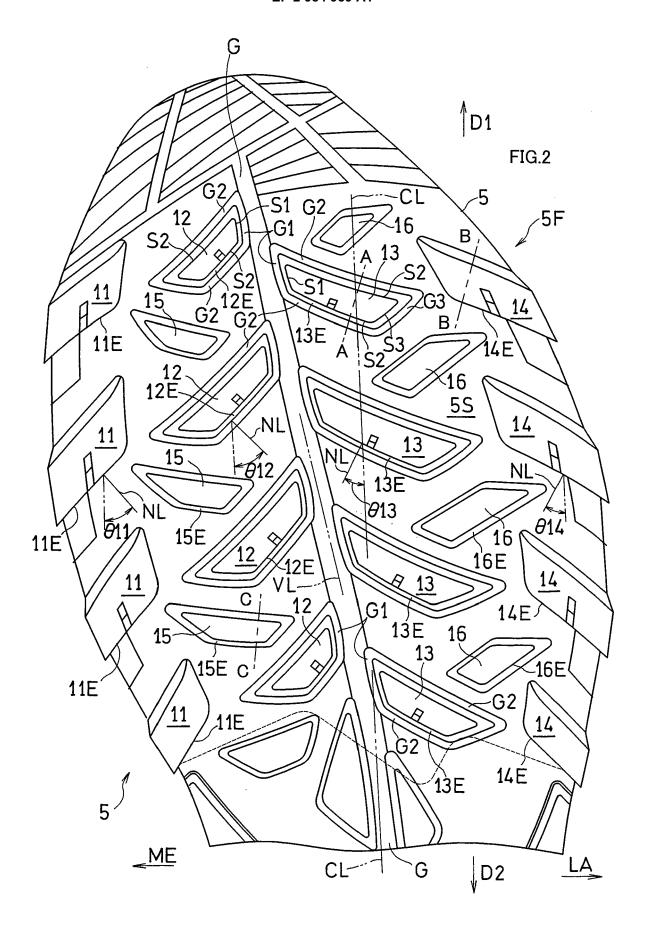
a medial-edge-side second cleat 21 having an engaging surface 21E facing toward an anterior D1-lateral diagonal direction, and arranged closer to a medial edge than the medial second cleat 22; and

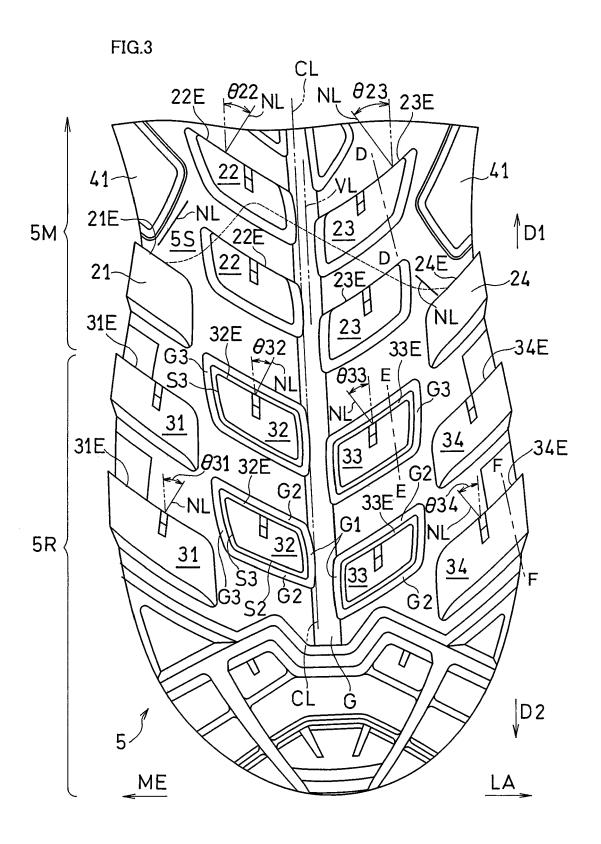
a lateral-edge-side second cleat **24** having an engaging surface **24E** facing toward an anterior **D1**-medial diagonal direction, and arranged closer to a lateral edge than the lateral second cleat **23**.

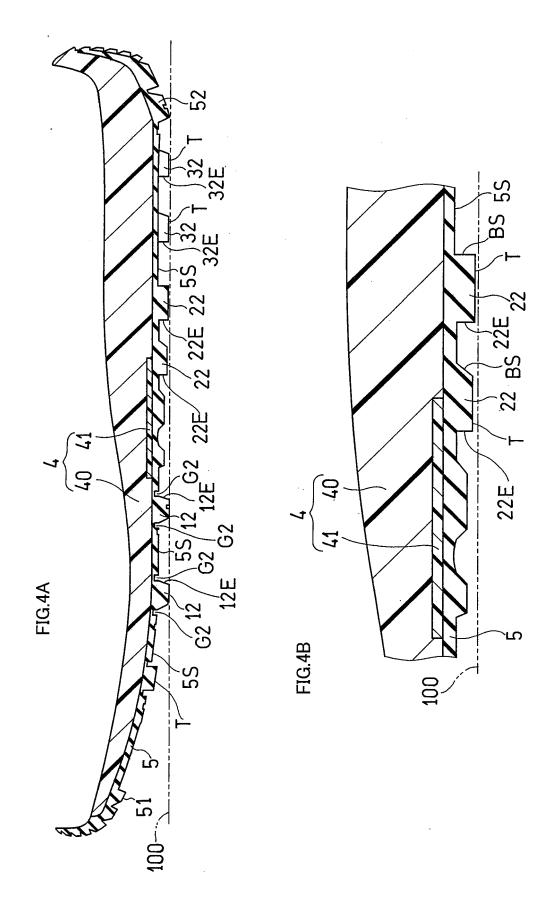
32. The shoe sole according to claim 31, wherein:

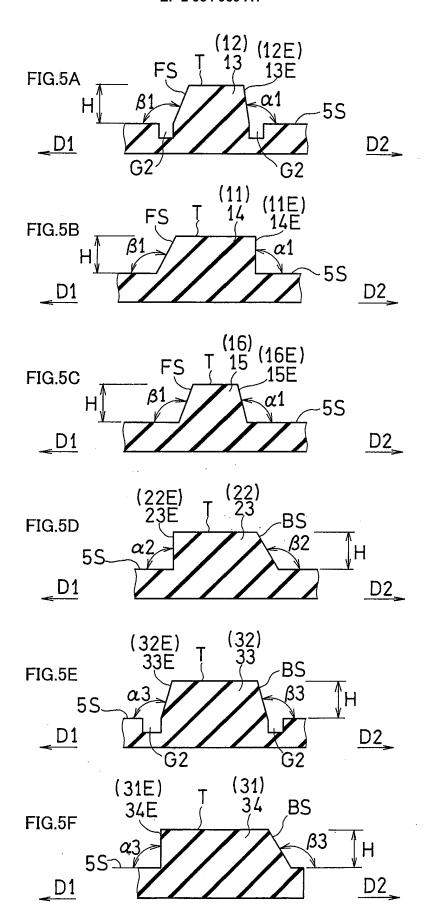
the medial-edge-side second cleat **21** is arranged more posterior to the most posterior one of the medial second cleats **22**; and

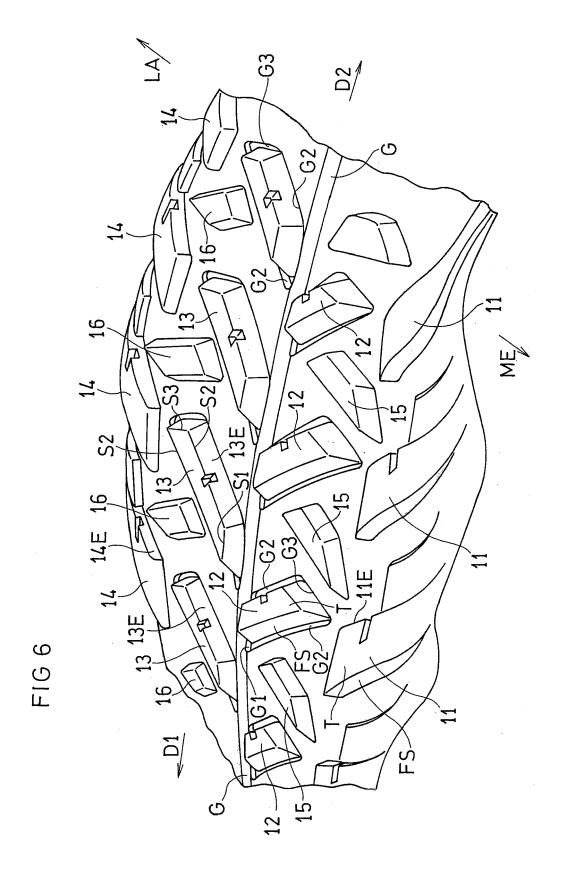

the lateral-edge-side second cleat **24** is arranged more posterior to the most posterior one of the lateral second cleats **23**.

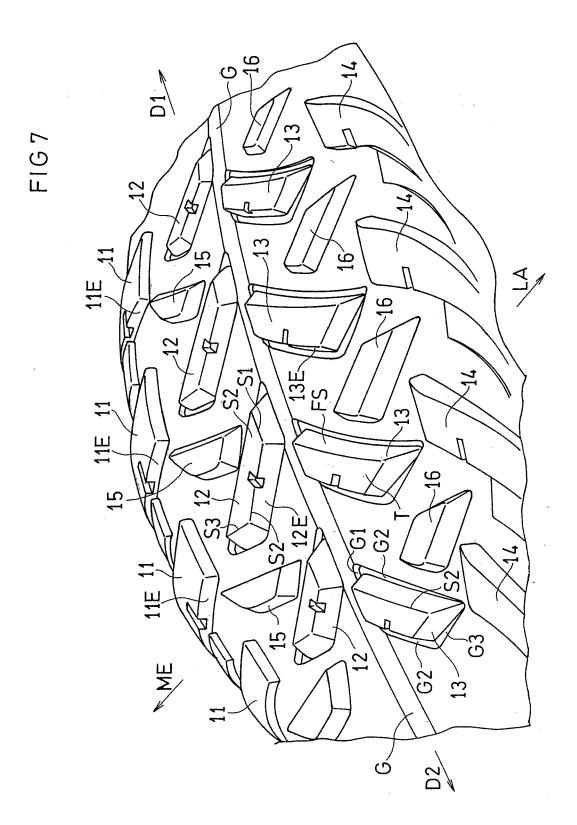

33. The shoe sole according to claim 31 or 32, wherein the medial-edge-side second cleat 21 is arranged between the most posterior one of the medial second cleats 22 and the most anterior one of the medial third cleats 32, while being offset in a normal NL direction, which is perpendicular to the engaging surface 21E, from these cleats 22 and 32; and the lateral-edge-side second cleat 24 is arranged between the most posterior one of the lateral second cleats 23 and the most anterior one of the lateral

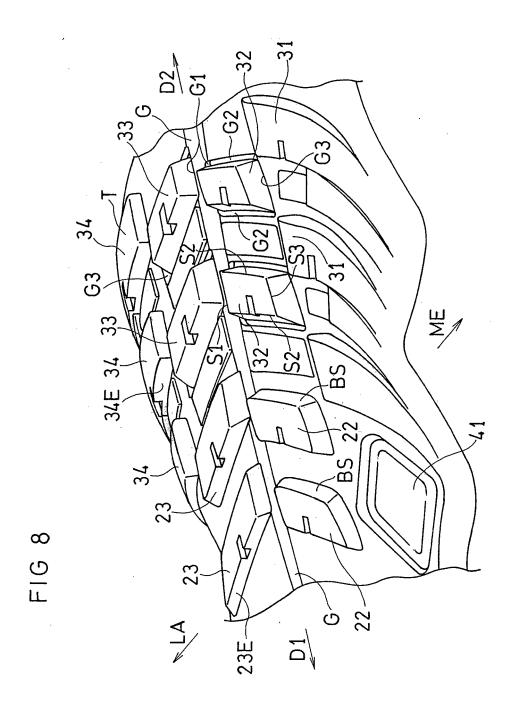

50

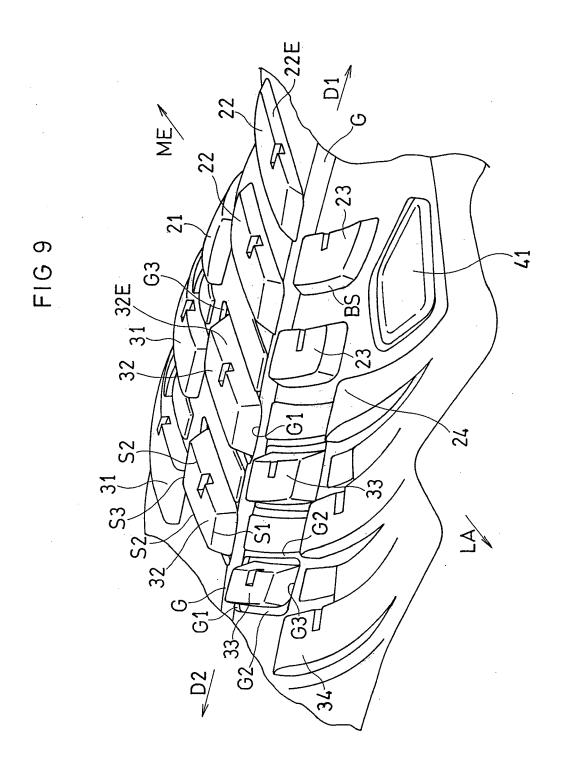

third cleats 33, while being offset in a normal NL direction, which is perpendicular to the engaging surface 24E, from these cleats 23 and 33.

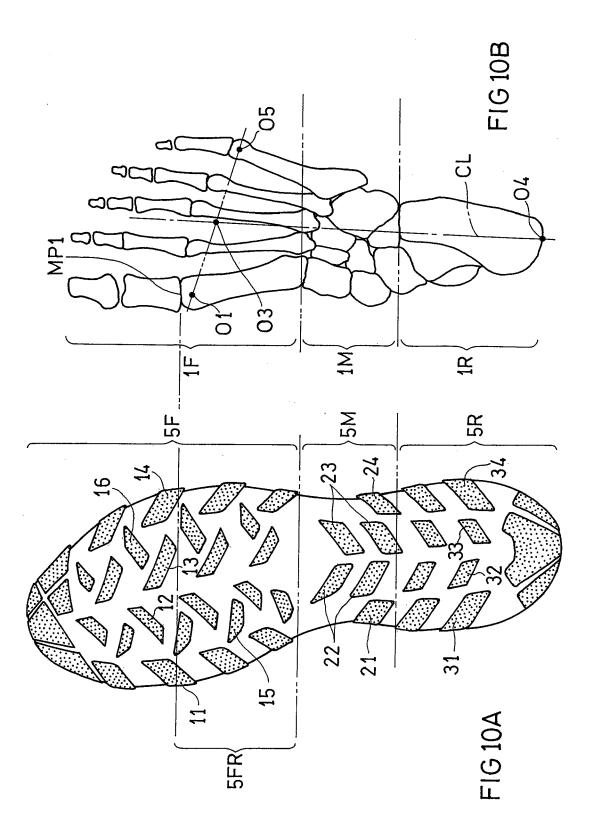

34. The shoe sole according to any one of claims 1 to 33, wherein the medial second cleats **22** and the lateral second cleats **23** are offset from one another in a long-axis direction **CL** of the foot.

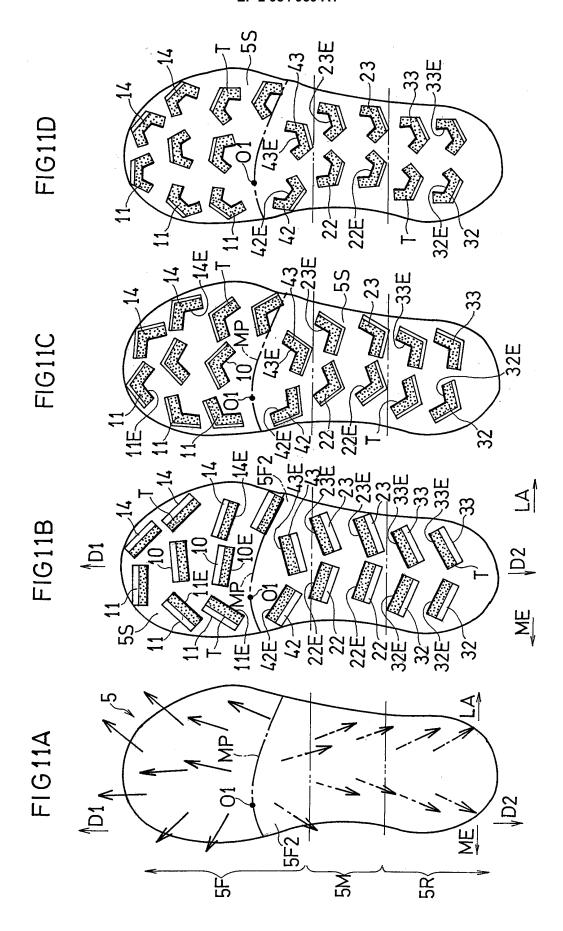












EP 2 984 959 A1

	INTERNATIONAL SEARCH REPORT		international appu		
A. CLASSIFICATION OF SUBJECT MATTER		PCT/JP2013/061074			
	(2006.01) i				
According to Int	ernational Patent Classification (IPC) or to both national	al classification and IPO	C		
B. FIELDS SE	EARCHED				
	nentation searched (classification system followed by cl., $13/14$, $13/22$, $13/26$	assification symbols)			
	searched other than minimum documentation to the exte				
		tsuyo Shinan To oroku Jitsuyo Sl		1996-2013 1994-2013	
Electronic data b	base consulted during the international search (name of	data base and, where pr	racticable, search te	erms used)	
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages		ant passages	Relevant to claim	
А	JP 07-136003 A (Simon Corp.) 30 May 1995 (30.05.1995), (Family: none)	,		1-34	
A	US 6205683 B1 (Clark et al.) 27 March 2001 (27.03.2001), (Family: none)	,		1-34	
Further do	ocuments are listed in the continuation of Box C.	See patent fan	nily annex.		
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date		 "T" later document published after the international filing date or prio date and not in conflict with the application but cited to understant the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an invent 			
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		step when the do "Y" document of part considered to in	considered to involve an inventive step when the document		
"P" document p	eferring to an oral disclosure, use, exhibition or other means ublished prior to the international filing date but later than date claimed	being obvious to	ne or more other such a person skilled in the er of the same patent		
	al completion of the international search y, 2013 (09.07.13)	Date of mailing of the 16 July,	ne international sear 2013 (16.0		
	ng address of the ISA/ se Patent Office	Authorized officer			
Japane	oc racene orrice				

EP 2 984 959 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2011000382 A **[0003]**
- JP 2009233163 A **[0003]**
- JP 2007307377 A **[0003]**

- JP 2002034609 A **[0003]**
- JP 9075106 A [0003]
- JP 7136003 A [0003]